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Abstract

PHASER (Probabilistic Hybrid Analytical System Evaluation Routine) is a software tool
that has the capability of incorporating subjective expert judgment into probabilistic safety
analysis (PSA) along with conventional data inputs. An earlier report described the
PHASER methodology, but only gave a cursory explanation about how dependence was
incorporated in Version 1.10 and about how “Importance” and “Sensitivity” measures
were to be incorporated in Version 2.00. A more detailed description is given in this
report.

The basic concepts involve scale factors and confidence factors that are associated with
the stochastic variability and subjective uncertainty (which are common adjuncts used in
PSA), and the safety risk extremes that are crucial to safety assessment. These are all
utilized to illustrate methodology for incorporating dependence among analysis variables
in generating PSA results, and for Importance and Sensitivity measures associated with
the results that help point out where any major sources of safety concern arise and where
any major sources of uncertainty reside, respectively.
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l. Introduction

In 1993, an effort was initiated to help supplement traditional probabilistic safety analysis
(PSA) methodology with a mathematically systematic way of incorporating expert
judgment inputs. This work was based on fuzzy mathematics for processing subjective
information and hybrid mathematics for combining subjective and probabilistic
information. This led to the development of a software tool, PHASER (Probabilistic
Hybrid Analytical System Evaluation Routine), which has the capability for incorporating
subjective judgment into PSA. An earlier report [Ref. 1] described the methodology used.
Some subjects addressed in the report were intentionally treated in overview fashion, since
they were not yet incorporated in the software. For example, the report gave only a
cursory explanation about how dependence was to be incorporated in Version 1.10 and
about how “Importance” and “Sensitivity” measures were to be incorporated in Version
2.00. A more detailed description is given in this report, which along with Ref.1 provides
a complete methodology description for the PHASER 2.10 software. The PHASER 2.10
User’s Manual [Ref. 2] gives a definitive description of the software and its use.

One of the basic concepts covered in this report depends on scale factors and confidence
factors that are associated with known (data-based or physical-first-principle-based)
stochastic variability and subjective (engineering judgment) uncertainty. (The latter is an
important constituent of PSAs.) The other basic concept is that the safety risk extreme is
the most crucial area for safety assessment. These concepts are utilized to illustrate
methodology for incorporating dependence among analysis variables in generating PSA
results, and for “Importance” and “Sensitivity” measures associated with the results, which
help point out where any major sources of safety concern arise and where any major
sources of uncertainty reside, respectively.

Il. Dependence

Fault tree and event tree construction can explicitly account for some forms of dependence
among input variables. Some PSA codes (e.g., LHS) also allow the introduction of
correlation (positive, negative, or zero). However, these capabilities are only a subset of
subjective dependence, which must be accounted for in a variety of applications. After a
substantial investigation', development of a subjective dependence algorithm was initiated
for introduction into PHASER. This capability first became available in Version 1.10.

The method for addressing dependence is derived from the classical Frechet bounds.
These specify two general relationships (Eqn.1). One gives bounds for the probability of
the logical and of two variables 4 and B and the other gives bounds for the probability of
the logical or of the two variables.

! References 3 and 4 describe SNL contract work done in association with this project. The subject of
dependence was addressed in both of these reports as one aspect of the contract work, and dependence
research was also carried out at Sandia National Laboratories.




max(0, Pr(A) + Pr(B) — 1) < Pr(AandB) < min(Pr(4), Pr(B)) :

max(Pr(4), Pr(B)) < Pr( AorB) < min(l, Pr(4) + Pr(B)) M
These bounds allow for positive or negative dependence. Based on the safety analysis
problems we have observed, we elected to restrict relations to positive dependence.? With
this modification, the Frechet bounds become:

Pr( A) Pr(B) < Pr(A4andB) < min(Pr(4), Pr(B))

max(Pr(4), Pr(B)) < Pr( AorB) < Pr(A) + Pr(B) — Pr(A)Pr(B) @)
Some additional considerations are necessary before these bounds can be used in the types
of safety analyses we are considering, however. For example, the events represented in
the upper bounds above include any dependence that may exist. In contrast, the input data
available for the events in a safety analysis ordinarily address the events independently.
Furthermore, some situations are Markov-dependent in time so that event A occurring
independently before event B causes a different event (say B*) because of the dependence
of B* on the previous 4, and on the other hand, event B occurring independently before
event A can cause a different event (say A*) because of the dependence of A* on the
previous B. For positive dependence, P(B*)>P(B) and P(4*)>P(4), but how much
greater is unknown. If we are restricted to use only P(4) and P(B) as inputs (dependence
effects are unknown), the classical Frechet bounds do not directly apply. Where only one
(either one) of the Markov-dependent situations occurs, the upper bound becomes the
maximum of the two:

Pr(A)Pr(B) < Pr(AandB) < max(Pr(4), Pr(B)) . 3)

This inequality is implemented in PHASER. For the more general case of an inclusive-or
of the two Markov-dependent situations:

Pr( 4)Pr(B) < Pr(AandB) < Pr(A) + Pr(B) - Pr(A)Pr(B) . @)

Eqn. 3 specifies a higher bound than would the direct (independent data) application of the
Frechet upper bound as explained above. Eqn. 4 specifies an even higher bound.

Although not specifying a strict upper bound, our judgment is that Eqn. 3 gives a more
practically applicable model than Eqn. 4. As we, and others involved in this issue, become
more experienced with this technique, we will continue to consider this issue.

Since PHASER uses a disjoint set algorithm [Ref. 1] for this application, the second
Frechet bound can be modified to correspond to the form of the algorithm and Boolean
result produced by PHASER. The resultant equality is:

2 It is possible that information may later become available that would cause the positive dependence
restriction to be removed.




Pr(AorBA) = Pr(A)+Pr(BandA) . )

The second term of Eqn. § is accounted for by Eqn. 3. The forms of the Frechet bounds
specified by Eqns. 3 and 5 have been used in the PHASER methodology under the specific
conditions given, which apply to safety analysis modeled by Boolean-logic-based
expressions (such as those developed for fault trees and event trees) where disjoint set
algorithms are implemented.

The logic of inserting judgment-based dependence into the PHASER methodology follows
the previously established precedent of allowing expert engineering judgment to determine
values that cannot be precisely determined through principle-based analytical modeling or
through definitive experiments. Similar to many other features in PHASER, this allows
supplemental methodology where it is desired to transcend conventional methodology.
The subjective dependence approach is modeled after the modified Frechet bounds results
described above and on Dependency Bounds analysis [Ref. 5]. The latter portrays the
bounds on variable parameters by specifying the limits of the cumulative distribution
functions (CDFs) possible. We apply a subjective measure to estimate the CDF within the
bounds and analogously apply the same measure to estimate the position within the upper
and lower bounds of the corresponding fuzzy variables. This is described below.

First, consider dependence between two conjuncted events under the conditions described
above, which are specified by Eqn. 3. Since a result influenced by dependence can be
anywhere within or including the bounds specified, we allow a user to specify a position
within the bounds by a dependence measure, ranging from but not including zero’
(independence) to one (complete dependence). The dependence measure specifies a
linearly converted position between the two bounds. If the user-specified dependence
measure is termed d, the resultant probability is:

Pr(AandB) = d{max(Pr(A4), Pr(B)) — Pr(4) Pr(B)] + Pr(4A)Pr(B) . 6)

Eqn. 6 is applied to all of the function abscissa values (to the entire fuzzy function and to
the entire probabilistic function for both variables 4 and B). An example application of
Eqn. 6 is illustrated in Fig. 1. The probabilities of variables 4 and B are illustrated by
light-lined trapezoidal fuzzy numbers, as shown. A user-specified value of d = 0.3 results
in the heavy lined trapezoidal function shown. The dashed line shows the result that
would have been obtained if the operands were independent. Note that dependence
increases the joint probability so that a derived top event probability may indicate
increased safety concern.

* Although allowed by the bounds, zero is excluded from the dependence routine since zero implies
independence.
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Figure 1. Nlustration of Dependence

A group of three or more (n) conjuncted dependent events can have pairwise dependence
between n(n-1)/2 pairs of events. Each can be specified by ad; (i=1,2, ... ,n(n-1)/2).
Eqn. 7 generalizes Eqn. 3 to n variables.

Pr(4:)Pr(42)...Pr(4,) <Pr(41and4,and.. . andA4,) < max(Pr(4,),Pr(4,),...,Pr(4,)) (7)

Among various options, we have chosen to combine exhaustive specifications of pairwise
dependence to obtain group dependence for conjuncted variables. We selected a weighted
average of the pairwise dependencies to specify a position in the interval determined by
Eqn. 7. The weighting was selected because pairwise dependencies with greater upper
bounds were judged to have more influence in moving toward a greater interval position.
Therefore, the weighting factor for each pair is the maximum value of the bounding
interval for the dependence pair. The result, which is implemented in PHASER, is given in
Eqgn. 8.

Pr(dandArand.. .andA,)=(wr\ditwady+. . +two(n-1)/2)[max(Pr(4,),Pr(42),...,Pr(4.))
Pr(41)Pr(42)... Pr(4.)]+Pr(41)Pr(42). .. Pr(4y) (8)

n(n-1)/2
where w; = max(Pr(4;,Pr(4x))/ Z w;. For simplicity, we have made the notation of
i=]
Eqn. 8 dual in nature. The i subscript (the weight subscript) varies from 1 to n(n-1)/2,
while the j and k subscripts each vary independently from 1 to n. Where i happens to
equal j or k or both, there is no association except notational coincidence.

PHASER has the optional capability to use a disjoint set algorithm to obtain the Boolean
expressions used for computing top events. When computing with dependent variables,
the disjoint set algorithm is unconditionally imposed. This allows the joining of disjuncted
cutsets to be determined directly from Eqn. 5 with no additional dependence calculations.

lll. Scale Factors and Confidence Factors

Scale factors are used in association with the inputs to PHASER in order to measure the
relative amounts of probabilistic and subjective data available for any particular variable. .
The combination of hybrid scale factors to obtain confidence factors, as specified by Ref.
1, is repeated below (Eqns. 9 and 10), but is expressed more generally to account for n




additive operands and m multiplicative operands, respectively. All of the probabilistic
processing, the fuzzy processing, and the scale factor processing take place separately in
PHASER. However, the probabilistic and fuzzy processing are related to each other
through the confidence factor associated with each.

ap+..ap, (1-a)f+.(1-a)f,
B+ b, == (e p (X)) + 2=

Dy+... D, fi+. f,

..y = E%(P:(X)x...pm(x)).y d-a+.1-a,)

WACI M C M)
% (X)) (10)

Since scale factor processing (to obtain confidence factors) can become very complex for
non-minimal (unsimplified) Boolean expressions, PHASER Boolean inputs are computed
most efficiently if they are minimized. All scale factor processing is currently applied
directly to the input, which is assumed to be minimized*. In contrast, the disjoint set
expressions derived in the PHASER exact solution processing are non-minimal. This is
because non-minimal expressions are required for accurate top event probability
computations as well as for the PHASER dependence algorithm. PHASER Versions 1.00
and 1.10 tied the scale factor and top event processing together, allowing a user option on
whether to compute the two with the disjoint set expression or the input expression.
PHASER 2.10 allows a user option on whether or not the top-event expression is
computed exactly, but enforces scale factor computation from the input expression. This
change was especially important for maintaining processing efficiency, since confidence
factors must also be recomputed for both the Importance and Sensitivity algorithms,
which are new to Version 2.00.

An informative view of scale factors and confidence factors can be derived from an
example problem, illustrated in Fig. 2. A simple fault tree is shown for which a “point
estimate” of 2.86 x 10® has been derived from the basic events (described subsequently).

P=286x10"
[Requirement = 10'6]

Figure 2. Example Fault Tree

* Most codes (e.g., SABLE, SETS) provide minimized output expressions, which are then appropriate
PHASER input expressions.




Note that an example “requirement” is aiso indicated. The point estimate might suggest
that the requirement would be easily met. This question will be examined as the example
is pursued in more detail.

As shown in Fig. 3, the point estimate inputs used to compute the result 2.86 x 10 are all
“order-of-magnitude” values. This illustrates one way in which more accuracy can be
implied than is warranted. Also shown in Fig. 3 are indications of where the inputs came
from. Some were data-based, some were subjectively derived from engineering judgment,
and some involved portions of each. These represent the scale factor information (a =1
for data-based inputs, a = 0 for engineering-judgment-based inputs, and a = V% for the
three “mixed” inputs. Note that PHASER lists the scale factor information and confidence
factor information numerically rather than the graphical depiction used in Fig. 3.

Fault Tree Top Event
Key: P=2.86x10"
E D
Data- Engineering ]
Based Judgment ].3)(10-4
2.2x10™
\
10 10 ‘

L

107 §
10 10 ]0'510'5 N

l | N
Fault Tree Basic Events

Figure 3. Fault Tree Indicating the Source of the Input Information

Also shown in the figure are the results of processing scale factor information up the tree
to obtain confidence factor information. These computations used Eqgns. 9 and 10.
Variability will be added to this fault tree example in the next section.

IV. Safety Emphasis on the Extreme Concern

Fuzzy mathematics gives a different perspective on extremes than conventional PSA,

. because it incorporates subjectivity differently and because the mathematical operations
involving each abscissa value are not constrained probabilistically by the corresponding
ordinate values. One way of describing this difference is to consider three different

10




possible values (mid-range, low-range, and high-range) for an input that is not precisely
known, and one for which the process that causes the potential variation is not known. In
conventional PSA processing, these might be members of a probability distribution, in
which case multiple selections from the distribution are assumed to be independent,” so
that no one value will be selected at a different frequency than that indicated by its
probability function (PDF or CDF). For conventional probability functions (even “non-
informative” probability functions) the most unsafe extreme value will not be selected
repeatedly. However, a fuzzy description of the variation implies that there is no known
frequency characteristic. The values that lie within the fuzzy intervals could have
frequency characteristics across the spectrum, or they could all be located at the most
unsafe extreme®. The allowance for the latter possibility is what distinguishes fuzzy
analysis from probabilistic analysis and thereby leads to less suppression of indication of
extreme values.

In Fig. 4, the previous example (begun in Figs. 2 and 3) shows the addition of variability
to data-based inputs and uncertainty to engineering-judgment-based inputs. Also shown
are the processing steps as the information is processed up the tree using the PHASER
methodology. PHASER does not compress the ordinate when producing these types of
plots. However, in Fig. 4 the ordinates of the plots are shown compressed proportionally
to the scale factors and confidence factors for correspondence to the knowledge-source
“bars.”

Fault Tree Top Event requirement

N P=2. 86x10
I A
Data- Engineering Y

Based Judgment _D_ ‘ 10-10 Ib's 110-6

10° 10 10” \ 2
: 07 10%10°
10°10™*10°
ARG\
> 3 l IlO *10%107
I

10°10% 10
10 $10°10%
L BN—
10¢10° 107 A
104107107 Toe TS o 10 610% 10

Figure 4. Previous Example with Variability and Uncertainty Added.

> Note that this is not the same as assuming all variables are independent.

¢ The bounds of fuzzy numbers do not imply accurate knowledge about the extremes, but merely allow
incompiete knowledge to be described more accurately. This means that the potential for values at the
extremes cannot be preciuded unless sufficient knowledge about the process becomes available (which
would result in higher confidence factors for probabilistic descriptions).
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At this point, the example “requirement” of 10 is re-visited. The tail suppression shown
in the probabilistic portion of the analysis might lead one to a different conclusion than the
trapezoidal edge in the fuzzy analysis. The confidence factors give guidance about which
of the two types of information is more appropriate for any particular safety assessment.

For safety analysis, the most important regime in a spectrum of uncertainty is the extreme
that indicates maximum potential for loss of safety. This means that portrayal of extremes
is of crucial importance in safety analysis. If knowledge about input characteristics is
lacking, assumption of tail suppression due to asserted knowledge about the input
characteristics could be misleading. The assertion could also turn out to be correct, but
the point is that if one doesn’t know, the potential safety assessment impact could be
disastrous. There are many real-world examples of inputs to PSAs that are necessarily at
least partly subjective. The concern is that modeling these based strictly on stochastic
assumptions may lead to minimal expectation of extreme threats, whereas the minimal
expectation may be merely an assertion, rather than a reflection of reality.

For this reason, we selected Importance and Sensitivity measures that directly reflected the
behavior of the results at the “extreme” of most safety concern. This is described in detail
in the next two sections.

V. Importance

If a safety analysis indicates a potential problem, one would like to know the most
important contributors to the problem. The effects of individual events (variables) depend
on the cutset(s) in which they appear. Since each cutset generally combines a number of
contributory variables, each of which can be examined for contribution to the cutset, we
use cutset Importance measures. Because of focus on the region of extreme concern, we
arbitrarily choose our measure for the “extreme” value for safety concern (f,) on each
fuzzy cutset as the largest abscissa value where the ordinate = 0.1, and the “extreme”
value (pg.) on each stochastic cutset as the largest abscissa value where the probability
density function p = pn,,/10. The choice for the extreme was intended to indicate
approximately where values of concern lie. Since each part of the result (fuzzy and
stochastic) contributes to the total picture through the confidence factors, we combine the
two through confidence factor weighting as shown in Eqn. 11 below.

I = apg + (1-a), a1
2 2

As a result, this extreme-oriented Importance measure identifies those cutsets that
contribute most to the extreme of the range of values portrayed in the final result. Since
the events that form the cutset are identified by PHASER, each of the events in each
cutset of concern can be examined as potentially important contributors (especially those
with multiple appearances). As a result, any effort required to improve safety can be
prioritized on the most important events.

12



An example of the determination of Importance is shown in Fig. 5 for an example cutset
for which a fuzzy variability function, a probabilistic variability function, and confidence
factors have been determined. The Importance measure (a probability value) is indicated
by the vertical line through the right-hand portion of the uncertainty range shown in the
figure.

1.04
. b=0.7
presumption
0 II.O probability
density a=03
ch
T babili
t 10 "
I C

Figure S. Nlustration of Cutset Importance

Returning to the previous example of Figs. 2-4, an Importance plot is shown below in
Figure 6. For illustration, this plot shows the Importance of the 16 cutsets, numbered as
they were entered into the computation. In addition to indicating the Importance of the
cutsets, these plots continue to follow the precedent of the previous figures by showing
the knowledge source of the Importance. o

PHASER displays Iﬁlportance without the graphical depiction of knowledge source used
in the example. An illustrative PHASER Importance plot is shown in Fig. 7.

13




Cutsets 1 to 16 by Importance
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Figure 6. Importance Plots for Previous Example
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Figure 7. Hlustrative PHASER Importance Plot
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V1. Sensitivity

In evaluating variability or uncertainty, one would like to know which events have the
most influence on the variability or uncertainty of the result. Because of safety assessment
interest in the region of extreme safety concern, we obtain sensitivity for each individual
contributory event by computing the top event composite result shown in Eqn. 12 for
comparison with a reduced top event result obtained in the same way, but with a 10%
reduction in the contributory event.

T'=apg + (l-a)fy (12)

Terming the reduced top event composite result 7*, the comparison is done by computing
the ratio between the top event composite reduction and 10%. This result, shown
mathematically in Eqn. 13, is bounded by zero (no sensitivity) and one (maximum
sensitivity).
_I-T*
© 0IxT

(13)

The procedure is again based on identifying the upper extreme measure. We choose the
greatest abscissa value (fz) for the top event composite fuzzy result where selection is
made at the ordinate value 4 = 0.1, and the greatest value (pg) for the top event
composite probabilistic result where the probability density function value, p = ppm,y/10.
These are combined through the top event confidence factors to give an upper extreme
indication of the final composite result as shown in Eqn. 12. A sensitivity plot for the
example illustrated by Figs. 2-4 is shown in Fig. 8.

Events 1 to 8 by Sensitivity
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Figure 8. Sensitivity Plot for the Previous Example
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- As was shown in the Importance plots, this example graphically depicts the knowledge
base, while PHASER does so numerically. An example PHASER sensitivity plot 1s
illustrated below in Fig. 9.

Events 1 to 20 by Sensitivity
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Figure 9. Hlustrative PHASER Sensitivity Plot

Events having the greatest Sensitivity generally have the most influence on the uncertainty
in the vicinity of the most extreme safety risk, and obtaining more information about these
events has the greatest potential for reducing uncertainty about the safety assessment.

VIl. Summary and Comments

The new features in PHASER 2.10 that were not available in PHASER 1.00 are the ability
to address subjective judgment about dependence and the ability to obtain Importance and
Sensitivity measures. The dependence capability obviates the common assumption of
event independence, and the Importance and Sensitivity allow prioritization of any effort
required to better understand and mitigate against input phenomena. At least one more
version of PHASER is planned in order to add Windows 95 compatibility, and a few
plotting enhancements are under consideration. The software can be made available to
those interested in exploring these capabilities more thoroughly through a Research and
Development Letter Agreement. Our “customers” will continue to receive new releases
unless we are notified otherwise. '
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