P . 3

ocT 15 19%

SANDIA REPORT .
SAND96-2344 « UC—705 P‘ECENED
Unlimited Release ocT 23 1996
Printed September 1996

0SsTI

Information Integrity and Privacy for
Computerized Medical Patient Records

n"’i;: - el ‘lg }sa i

ey 'i;i:":mothy Meeks

Prepared by

Sandia National Laboratories L
Albuquerque, New Mexico 87185 and leermore, Callfornla 94550

for the United States Department of Energy -
under Contract DE-AC04-94A1.85000

BisTRR
o O THIBUTION. OF THIS DOCUMENT 1S UNLIMITED

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A05
Microfiche copy: A01

0

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

SAND96-2344 Distribution
Unlimited Release Category UC-705
Printed September 1996

Information Integrity and Privacy for
Computerized Medical Patient Records

Joselyne Galiegos and Victoria Hamilton
Data Systems Security Department

Timothy Gaylor
Data Transport and Network Design Department

Kevin McCurley
Parallel Computing Sciences Department

Timothy Meeks
Software Integration, Technology, and Standards Department

Sandia National Laboratories
Albuquerque, NM 87185

Abstract

Sandia National Laboratories and Oceania, Inc. entered into a Cooperative Research and
Development Agreement (CRADA) in November 1993 to provide “Information Integrity
and Privacy for Computerized Medical Patient Records” (CRADA No. SC93/01183).
The main objective of the project was to develop information protection methods that
are appropriate for databases of patient records in health information systems. This docu-
ment describes the findings and alternative solutions that resulted from this CRADA.

G/ﬁNL - 5CG30//93

Contents

Contents

Figures ceeees ceeaes cesesesseasaa... Figures -1
Tables C e ereessaaeaens Ceeenes Tables - 1
Chapter1-iIntroductionccoons.. ce e 1-1

L. PUFPOSE . .cvvitinrereseosnsesesnsssssssssesssescasacsssssssons 1-1

2. OVeIVIEW .o ivviveecnaronecesosnesasossessssssnssscnssesnsnannse 1-1
Chapter 2 - Basics of InformationSurety 2-1

3. Threat AnalysiScoeuu.. et teeeneeeeetenaeeaenaraaees 2-1

4. EnCryplionccceiiiieiennoiencesstccccncsconsscennncsnans 2-2

5. User Authentication and Network Authentication 2-2

6. Access Controlcoiiiiriiiiiiiiiiiitattiiattereterereannas 2-3

7.Digital Signaturescovveeiitrrcttrercseccssocsascssssscsans 2-3

8. SmartCardscv00ivnnnnn ceraues esesssesssessrenssenuns 2-3

9. Audit Trails P reessesestensatteesreaeraanns 2-3

10. Secure Timestamping Ceesetecitiacitactacttestanarananas 2-4

11.KeyManagementccoviveiritiennrncocesasonssonsonnns 2-4

12. Policiescovevvnnnen.. ceseectsiccecnarencctonasonctarnas 2-5
Chapter 3 - Securing a UNIX Database Server 3-1

LOverviewand GoalScoiiiiiiiiiianiinarnassacnoannsnnenas 3-1

2. Who Has a Legitimate Need For Access?cciiiivniennnnnns 3-1

3. Use a Firewall or Securethe Server?coiiiiiiineinecnnenss 3-2

4. Tools for Securing Machines...........coiiiiiiiirniienenennenans 3-4

5. Network Authenticationcociiiiiiiiireinnncencrencas 3-5

5.1 Which Kerberos?o. i, 3-5

6. UNIXCanBeMadeSecurecooveiieernaconanncnnnnonnans 3-6

6.1 Turn Off Everything YouDon’tNeed 3-6

6.2 Services Startedat Boot Time 3-7

6.3 Services Typically Started in fetc/inetd.conf 3-8

6.4 Other SEIVICES . . o vttt ittt ittt e 3-9
Chapter 4 - Database Specifics e 4-1

1. Database User Authenticationccciiiiiiiinnnnnesennns 4-1

1.1Sybase LOgInsttt i 4-1

1.1.1 HowLogins Work e 4-1

1.1.2 System Administratorsccoiuiii i iiaenannn 4-1

1.2 Sybase Passwordsc.iuiiii i 4-2

2. Database User Authorizationc0iiiiiiiiiinnnenrnnens 4-2

2.1Object Privileges 4-2

22Table Definitionsiiiin it 4-3

23 Al Privilegesot 4-4

2.4 Granting Specific Table Privileges to Users and Groups 4-5

2.5Basic Stored Procedures 4-6

Contents - 1

Contents

2.5.1 INSERT Stored Procedure 4-7

252 UPDATE StoredProcedure oiiiiiennnn.. 4-8

253 DELETEStoredProcedureiiiiiininnnennnnn 4-9

2.5.4 Basic Stored Procedures Privileges 4-9

2.6 Extended Basic Stored Procedures c00iein... 4-11
2.6.1 Extended UPDATE Stored Procedure 4-11

2.6.2 Extended DELETE Stored Procedure 4-12

2.6.3 Extended INSERT Stored Procedure 4-13

2.6.4 Extended Stored Procedures Summary 4-15

27 USINg VieWS . .t e e e 4-15

2.8 Labeling of Subjectsand Objects 4-18
3.Database Audit Trailscc0viiiiiriiecrinrncnnesensncnas 4-19
31 The Audit Systemc.iineriiniiiniiinaneennn. 4-19

3.2 Establishing Auditing i, 4-19
3.2.1 System-Level AuditRequirements 4-19
322Auditing Usersc.viniiiiinniiiie i, 4-20

323 AuditingDatabases i, 4-20

3.2.4 Auditing Tablesand Views 4-20

3.2.5 Auditing Stored Procedures 4-20

3.2.6 Adding User-Specified Records to the Audit Trail 4-20

33 Audit Trail Operationsc.coutvininninininnnann.n. 4-21
34 Archiving AuditData i i 4-21

Q. SUIMIMATY « ot oottt eereosocnsesosssssssessnescncasoanannanes 4-21
Chapter5-SmartCards i iiiiiieneannn..
L.Standardsiviiiiiiiiiiiiittiittietteiiitseaenereatnonan 5-1
2, CUrrent USeS « oot vviiieenueraneansosiressscssonsssssaasnnassnes 5-2
3.Common Featuresc.oiviivenrencnsrssesacscsocsssocssnns 5-2
31FileStructure 5-2
3 SeCUIItY . .ottt 5-2

33 ComMmMuUNiCationt 5-3
341InstructionSet, e 5-3

4. Cryptographic Usesof SmartCardsccooiiiinennnnnnnennnns 5-4
5. Functional Requirementscccovieiiieernnerennennnnannes 5-4
Chapter 6 - Architecture Alternatives
LIntroductionc.ciiuiiiiiiinencnscnssonennneasencannanons 6-1
2. Specific Architecture Alternativescoiiiiiiiiininenne, 6-1
2.1 Architecture Alternative A ittt e 6-2
2.2 Architecture Alternative B 6-3

2.3 Architecture Alternative C 6-4

2.4 Architecture Alternative D

Contents - 2

Appendix A - Multi-tiered Architecture A-1

LIntroductionccviieiiinrennennccnscncans eesesstaennes A-1

2. Two-tiered Model e ereceresseatarecttsertasttraannns A-1

3. Three-tiered Modelcoovuiirriieiiirieriiernnnnennncnnss A-1

. 4.Choice of TOOIScoiiieieierenrenconersessoseesssossosnncnse A-2
Appendix B - Distributed Computing Environment B-1

. L Introductionto DCEcciiiiiiiriiiiieriiiienccesnnnnanes B-1

11U0UIDs e B-2

12DCECells e e e e e e e e e B-2

13Remote Procedure Callso, B-2

1.4 DCE Servers and Application Serversccoovueunn... B-2

ISRPCInterfacesottt it B-3

1.6 The DCE Control Program (dcecp)coviiiiiinnennn.n.. B-3

2. Directory ServiCecoiivviirerecaccecrssernsscsesancnranasas B-3

2.1 Cell Directory SeIviCecvviiii et B-4

2.2 Global Directory AGentcuiiintiie i B-4

23Endpoints e e B-4

24 Putting It All Together, B-4

25Access Control e B-5

26 CDS Replicationiiiiieiii i B-5

2.6.1 Multiple Clearinghousesiiiiiiiiiiinennennnnn. B-6

2.6.2 Multiple cdsd Processescoiiiiniiiina... B-6

3. Security Servicec.ciiiiiiiiiiiiiiiiiitet it iietataatoseaanan B-6

3l RegIStTY ServiCeot e B-6

3.1.1 Security ASSUMPHONS . & ...\ ittt ittt i e B-7

3.12Principals B-7

3.1.3 Accounts A S B-7

3.1.4 Security Groupsvouiiiin it e B-7

3.1.50rganizations B-8

36POLCIES ... e B-8

317 AHESES e B-8

3.2 Authentication Servicettt e B-8

3218essionKeys B-8

B2 2 THCKetS . .ot e B-8

. 323TGTand PTGTo e B-9

324 8erver TICKetSottt B-9

. 3.2.5 Mutual Authenticationc.ccoiiiniiiiinnran.. B-9

3.3 Privilege Serviceand ACLSot B-9

3.3.1 Access Control Lists (ACLS)t .. B-9

Contents - 3

Contents

332ACLMANAZETS .. ivii ittt i i e e e B-10

333 ACLINhErtanceoiv ittt it B-10

334KeytabFiles B-10

4. Time Servicecoviiieiiiiectistseeseosessessosscasoscssnnns B-10

4l DTS SerVerS. . oottt e e e B-11

42 DTS ClerRS . .ot B-11

43 Access Control P B-11

5. HoSt SerViCeS ..o vvvviirieeeeeneresossasacacsosssassoasnnnsnans B-11

6. Audit Servicecciieeirereerocesensesscrcsssscsocnaacnans B-11
Appendix C - Open Horizon’s Connection C-1

1. Application Brokercciieteiiriiiirecereescnnnasancnns C-1

2. ArChitectureccvviieeeeeneeneerossonceossocsssnaneansnonns C-1

S DCEComphantcocieveeeresensssecoccsocscancsonooncens C-2

4.RemoteProcedure Callscciiiiiiiriiiineneneneaennanns C-2

5.,0DBC Compliantcoovvtitiieerennnernencecaseansoneosnnns C-2

6. Database Vendor APTSupportcoiviiiveenreeeeanennovenns C-2

7. Three-Tiered SUpPportcoiiiiiiiieiineeeseeaeenenananeens C-2
Referencesciiiiiiiiinrennnnnnecenn References - 1
€] [T | Glossary - 1
g T = Index - 1
Distribution i, Distribution - 1

Contents - 4

Figures

Firewalls

Figures

Smart Card File Structure
Generic Architecture

Architecture Alternative A
Architecture Alternative B
Architecture Alternative C
Architecture Alternative D

Figures

Figures - 2

Tables

Tables

LADACCESS ¢ oovvvnvinncncnnonsnes fesecesecasasresentrencransanena 4-3
LdbPatient...............oc0uuee, teeeceeeateanarnetetesnaanaranns 4-3
LAbProviderccoiiiiiiiineiesescecncnnsassocessossssncsnsnns 4-4
LdbPPatientListcc000uns Ceereetesecsecrrtertastarenrenns 4-4
ANl Privileges . .o cviviiiiiiiiiiiirnrieresirensecssscnsssosssanonsnes 4-5
Specific Table Privileges.coiiitiiieriiiiertcecererscesnceessanas 4-6
Basic Procedure Privileges.oiiiiiiiieniinerrecacocaconassnaess 4-9
View Definitions Cherecseseceetrestanaaesaaranas 4-15

View Privilegesc.0ves Ceeeseecsecseeetatatarernsnennn 4-16

Tables

Tables -2

Introduction

Chapter 1 - Introduction

Sandia National Laboratories and Oceania, Inc. entered into a Cooperative Research and
Development Agreement (CRADA) in November 1993 to provide “Information Integrity
and Privacy for Computerized Medical Patient Records” (CRADA No. SC93/01183).
The main objective of the project was to develop information protection methods that
are appropriate for databases of patient records in health information systems.

Purpose

The purpose of this document is to describe the findings and alternative solutions that re-
sulted from this CRADA. This paper documents products and technologies which may
be useful to Oceania’s development effort. However, the authors should not be assumed
to endorsing particular products. Any product information is purely informational. Oth-
er products may be equally satisfactory.

It should also be noted that the versions of Oceania software, including database defini-
tions and application software, possessed by the authors were obtained approximately
one year prior to the publishing of this report. The findings and alternative solutions pre-
sented are based on these versions. Oceania has since proceeded on an aggressive devel-
opment schedule leading to similar findings and solutions.

Overview

Chapter 2 includes a description of the basic techniques and technologies used to pro-
vide information surety. Chapter 3 details mechanisms for securing a UNIX database
server including specifying UNIX functionality which should, if possible, be avoided.
Chapter 4 provides information useful in securing the database itself. It includes several
detailed examples discussing database audit trail services. Chapter 5 describes the re-
sults of investigation into the current capabilities of smart cards. Chapter 6 summarizes
the previous chapters by detailing system architecture options and their associated infor-
mation surety features. The document includes several appendices. Appendix A is a tu-
torial on multi-tiered architectures. Appendix B and C describe the Distributed Comput-
ing Environment and the Open Horizons Connection products respectively. A complete
list of references, including web pages follows. Finally, the definitions of technical
terms and phrases used in this specification are given in the Glossary. Acronyms and ab-
breviations also appear in the Glossary.

Introduction

Basics of Information Surety

Chapter 2 - Basics of Information Surety

Sandia National Laboratories uses the term information surety to refer to balancing con-
fidentiality (or privacy), integrity, and availability of data. The term information surety
refers to a balance between protection against unauthorized use of information and assur-
ance of authorized use. By contrast, the term information security connotes an empha-
sis on protection against unauthorized use of information.
The information surety issues that were addressed in this project were to:

« determine whether the user of a system is who he claims to be;

« ensure that data maintains its privacy;
ensure that data is not changed or accessed by an unauthorized action or user;
ensure that data is not changed by accidental means;
« ensure that data cannot be refuted;
¢ determine when data was created or modified;

» determine who created or modified data;

e determine when data was accessed;

* determine who was granted what access by the system; and
« ensure that data will be available and useable when needed.

The following techniques and technologies were assessed and integrated into the design
of several security infrastructures, to address the information surety issues listed above.

* Encryption

» Strong Authentication
*» Access Control

+ Digital Signatures

* Smart Cards

* Secure Timestamps
 Audit Trails

» Key Management

Threat Analysis

Before designing surety into any system, it is important to know about the potential
threats so that the appropriate counter-measures can be taken. It is impossible to predict
every threat to a system, and it is very expensive to protect against all threats. Threats
must be prioritized and weighted according to their seriousness and consequences. A
balance must be struck between the cost of surety and the value of the assets being pro-
tected. In essence, providing surety is a matter of risk management.

In addition to malicious threats against the surety of a system, the threats resulting from
hardware, software, and network failures must also be considered. This makes the case
for formal analysis, design, implementation, testing, and verification of systems even
more compelling. Human errors often stemming from ignorance are also threats to the
surety of a system. Users must be educated about information surety. Usage policies

Basics of Information Surety

and security policies help prevent security incidents and provide guidance for when inci-
dents do occur. The policies must include guidelines for violations and they must be en-
forced. Users must be made aware as to the appropriate uses of resources.

Encryption

Encryption is a method of making information indecipherable [Schneier, 1996] to author-
ized users. The purpose of encryption is to protect data from unauthorized viewing or
use during transmission and storage. Encryption algorithms generally require at least
one key and may require more than one key. A good encryption algorithm is one that
has the property that even if the algorithm is known, data may not be deciphered without
the key(s). The length of the key(s) also affects the strength of the algorithm. Symmet-
ric key encryption requires that both the originator and intended recipient use a shared
key. Asymmetric key or public-key encryption requires that the originator use the publi-
cized key of the intended recipient to encrypt and the intended recipients use his/her pri-
vate key to decrypt. Data Encryption Standard (DES) is an example of a widely availa-
ble symmetric key algorithm [NISTa, 1993]. The Rivest, Shamir, Adleman (RSA) algo-
rithm is an example of a widely available asymmetric key algorithm [Rivest, 1978].

There are several issues associated with the use of encryption technology. Since encryp-
tion generally requires the use of keys, key management must be addressed (see the Key
Management section for further discussion of these issues). In addition, the export of en-
cryption software and hardware is closely controlled by the United States government.
Encryption methods that use keys greater than a given length (generally 40 bits for most
symmetric algorithms) are subject to scrutiny and fairly rigorous export control [DOS,
1989, 1992].

User Authentication and Network Authentication

Identification of legitimate users is a prerequisite to any sort of security. In a networked
system in which data is passed between machines, identification is also required between
different computers on a network.

It is generally acknowledged that user authentication can be accomplished by using
some combination of something known by the user (e.g., a password or PIN), something
possessed by the user (e.g., a badge or token), and something unique to the user (e.g., a
fingerprint). Two-factor authentication is built by a combination of at least two of these,
such as a password and a token. In this case, an adversary must have both the password
and the token to impersonate a user. Strong user authentication is the establishment of
validity of a claimed identity using cryptographic techniques.

In today's client/server systems, communication will need to take place between a client
workstation and the server system where the data actually resides. Users will need to au-
thenticate themselves not only to the server system but also to the client system. The
major problem in this scenario is how to transmit the authenticator (most commonly a
password or passphrase) over open networks from the client to the server. One system
to designed to address this problem is Kerberos, which was developed at M.I.T. [Neu-
man, 1993].

2-2

Basics of Information Surety

Access Control

Access Control refers to the ability of the system to grant, revoke, determine, and en-
force different privileges granted to users within the system. Access control and user au-
thorization mechanisms are required to permit or deny users the abilities to read from,
write to, and execute particular system resources. For instance, access to computer sys-
tems in general is usually provided through the use of unique user identifiers, passwords,
group memberships, etc. Access to computer files is provided through privileges granted
to individual user identifiers and groups of users. Access to database objects, tables, etc.,
is also controlled through the use of privileges granted to similiar subjects (i.e., user iden-
tifiers and group of users).

Digital Signatures

A digital signature algorithm is a public-key cryptographic method used by the data’s re-
cipient and any third party to verify the identity of the originator of the data. It can also
be used to verify the authenticity of the data. An originator of data creates a digital sig-
nature by uniquely transforming the data with his or her private key. A recipient, using
the originator’s public key, verifies the digital signature by applying a corresponding
transformation to the data and the signature [Schneier, 1996]. Digital signatures may
also be used to support non-repudiation. Non-repudiation means that the originator can-
not at a later date deny data origination, modification, or deletion. The Digital Signature
Algorithm (DSA) [NIST, 1993b, 1994] and RSA [Rivest, 1978] are two of the most com-
mon digital signature algorithms. -)

Since digital signature algorithms require the use of keys, key management must be ad-
dressed (see the Key Management section below). Unless a digital signature algorithm
can be used for encryption as is the case with RSA, its export is not controlled by the
United States government. However, developers should verify this before attempting ex-
port.

Smart Cards

ISO-standard smart cards are similar in form factor to standard credit cards, but they
have an embedded microprocessor and I/O channel. There are different types of smart
cards with different capabilities. See the chapter on Smart Cards for a more detailed dis-
cussion. For this project, the smart cards considered are those with cryptographic capabil-
ities. Such smart cards can be used in key management, strong user authentication, en-
cryption, and digital signature generation.

Audit Trails

Audit trails are one of the most important security mechanisms. When implemented
properly and securely, these mechanisms allow the tracking of who accessed what infor-
mation in the system and when. They are often instrumental in implementing non-repu-
diation requirements. Note that access to information includes reading, appending, gener-
ating, modifying, or deleting information. This mechanism could be used in court, if re-
liable enough, as evidence of proper (or improper) handling of health information. In
fact, the very existence of audit trails often serves as a deterrent for the mishandling of
information. The audit trail is an appealing technology since it minimizes reliance on

Basics of Information Surety

trusted users. Today’s systems require that audit trail data be accessible to system ad-
ministrators and system security administrators, who are generally considered trusted us-
ers. Mechanisms must still be developed to protect the audit trail from abuse by these
users. Legal may determine how long audit data must be kept. Audit tools may be neces-
sary for convenient viewing of audit data.

Access logs can be constructed from audit trails. Whenever a part of a system or re-

~ source is accessed, what information was accessed, who accessed it, and for what pur-

10.

11.

pose can be logged. If this is the case, then protection from unauthorized access to these
logs must be deemed important. Access patterns could themselves convey sensitive in-
formation.

Secure Timestamping

In addition to protecting the content of information in electronic records, it is also neces-
sary to record the time at which an entry was made in the record so that records cannot
be changed later. If the date of an action is simply entered into the record, then this

date can later be changed like any other piece of information, unless proper cryptograph-
ic techniques are applied to timestamps to prevent such changes. This is particularly im-
portant for the use of electronic records in legal environments (for example, to satisfy
non-repudiation requirements).

Other applications for cryptographically secure timestamps are audit trails and digital sig-
natures. In audit trails, it is necessary to record the time at which an entry was made in
the audit trail so that the audit trail itself cannot be changed later. For digital signatures
to truly provide non-repudiation, timestamp information must be included. One of the
reasons for this is that if a user chooses to repudiate his signature (e.g., his private key
was compromised), then he should not have complete freedom to repudiate individual
signatures. If his key was indeed compromised, then it may be necessary to issue a revo-
cation of signatures generated after that date. Another reason to include secure times-
tamps is that they can be used to detect replay attacks. A replay attack occurs when an
adversary intercepts a valid message and transmits it at some later date. In addition, digit-
al signatures, or more accurately the public key certificates associated with digital signa-
tures, also have expiration dates.

Key Management

Key management is the process of:
= generating keys, including the choice of appropriate key values;
* protecting keys within the system;
» verifying the authenticity of keys;
* using the keys;
storing the keys, including escrow and archival;
changing the keys;
destroying the keys; and
» handling compromised keys.

Basics of Information Surety

Any system which makes use of cryptographic keys must address key management.

Key management can often be the bulk of a secure system focus. In addition, any sys-
tem which employs public-key or asymmetric algorithms for encryption or digital signa-
tures must provide a mechanism for linking a user identity to his or her public key. One
mechanism for accomplishing this connection is the implementation of certificates. Cer-
tification as defined in the X.509 standard [ITU-T, 1993] is accomplished by a certifica-
tion authority or a chain of certification authorities that are trusted by users. Users ob-
tain certified public keys from a certification authority or are notified that their request
cannot be met if the public key has been revoked or has expired.

12. Policies

Usage policies and security policies help prevent security incidents and provide guidance
for when incidents do occur. The policies must include guidelines for violations and
they must be enforced. Users must be made aware as to the appropriate uses of resourc-
es. In the health care environment, guidelines for the handling of information must be
designed with an eye towards government legislation and regulations.

Basics of Information Surety

2-6

Securing a UNIX Database Server

Chapter 3 - Securing a UNIX Database Server

Overview and Goals

The purpose of this chapter is to provide an overview of how to secure a SQL server run-
ning on top of a generic UNIX platform, as is required for the Oceania CRADA. This
chapter is aimed at a system administrator who is familiar with basics of UNIX, and
does not address a particular vendor’s operating system. A system that is configured ac-
cording to the principles here should be quite resistant to all but the most dedicated hack-
ers, but each variation of UNIX will have its own peculiarities. It is recommended that
the vendor’s instructions for patching security holes be used to complement the proce-
dures discussed here. Some vendors are more responsive than others in patching such
holes, but the increasing reliance on the Internet has made all of the vendors more con-
scious of security problems.

Providing security for a complete information system will require attention to other as-
pects not covered here, including:

» key management for encryption and authentication,

* database configuration to provide access control and auditing mechanisms,
* client security, and

* policies for users and administrators.

This chapter will concentrate on securing the database host, in order to protect against
back door attacks. This does nothing to address abuses of data and/or systems by sys-
tem administrators and legitimate users.

Who Has a Legitimate Need For Access?

There are two kinds of access: physical and logical. It is generally very desirable to pro-
vide physical security for the server if at all possible, because otherwise disks can be car-
ried away to be read elsewhere, tape backups can be made, and boot procedures can of-
ten be over-ridden. Physical protection can be provided by locking the machine in a
room where the only people who are authorized to enter are the database and system ad-
ministrators. If it is placed in a large common machine room where multiple people can
get to it, there will be risks from attacks that would not otherwise be possible.

The database may need to be logically accessed by the following persons (some of
whom may perform multiple tasks):

* one or more UNIX system administrators (with root password)
* one or more database system administrators

* one or more database security administrators

* the database users ’

However, the form of access that is provided to the system should certainly vary. In par-
ticular, there should be no need for the database users to have UNIX accounts on the
server. Moreover, it is a fairly large security hole to do so. If a user can gain access to
a shell on most UNIX machines, there are generally holes that can be found in setuid
system utilities that will allow them to gain root privileges. Examples of past compro-

Securing a UNIX Database Server

mises include the use of rdist, sendmail, /bin/login, and /bin/mail. Moreo-
ver, even if the legitimate user does not have this ability or knowledge, legitimate users
logging into the server will create an opening to break into the machine, through a varie-
ty of mechanisms such as password sniffing or badly chosen or improperly handled pass-
words.

Access to the database itself need not go through the front door. In particular, if the
UNIX system administrator is not the same as the database administrator, the UNIX sys-
tem administrator can still read the data from the raw device file where the database is
located using standard UNIX utilities such as cpio, dump, dd, or cat. The interfaces
to these utilities are not particularly easy to use for the average user, but are relatively
easy for a competent system administrator. Using these utilities, it would be simple to
replicate the raw partition to a tape and move it to another database server.

In the event that there is more than one system administrator with knowledge of the root
password, one should probably institute a policy that they log in under their own identity
and execute an su command to obtain root privileges. The method for doing this is sys-
tem-dependent (e.g., /etc/ttytab in SunOS), but it can usually be enforced to disal-
low remote root logins. This is useful to instill responsibility in administrators, but can
also be used to keep track of who makes administrative changes.

Use a Firewall or Secure the Server?

Unfortunately, the definition of access as discussed so far is simplistic. Computers are
often installed as part of a larger information infrastructure, and may in fact interact with
processes on other computers on the network. For example, systems generally need to
be backed up, and this is often done on a facility-wide system rather than on an individu-
al system. Such network services can, however, be a gaping hole to someone trying to
penetrate the database server, and such things need to be planned in such a way that
they do not compromise security. For example, the BudTool backup system requires
that the backup server perform an rsh with root privileges to systems being backed up,
and this leaves a gaping hole in what might otherwise be a very secure system. Com-
mercial products such as this should be examined to ensure that they do not open up
holes.

In the current world of internetworked computers, one can usually identify sets of sys-
tems that need to trust each other, and sets of computers that need to communicate with
each other without necessarily trusting each other. For example, the previously men-
tioned problem of backing up a network of computer systems generally requires the
backup system to be trusted (unless a cryptographic mechanism is used to identify the
backup system to the systems being backed up). It often makes sense to draw a fence
around machines within a single administrative trust domain, and protect these machines
from outside untrusted machines. Such a fence is called a firewall, and can greatly sim-
plify the task of administering security by allowing attention to be focused on the bound-
ary where trust is not universal. It is important to remember, however, that trust is tran-
sitive. That is, if machine A trusts machine B, and machine B trusts machine C, then
machine A is implicitly trusting machine C. Boundary machines of a firewall (often
called bastion hosts) therefore need to be configured very carefully to limit this transfer
of trust.

3-2

Securing a UNIX Database Server

In the example of the Oceania CRADA, the SQL server might be grouped together with
machines such as an administrator’s workstation, backup server, mail server, or Kerberos
security server, but separated from database user workstations. The most obvious com-
munication that needs to take place between the trusted Local Area Network (LAN) and
user workstations is SQL. Sybase uses a very simple communication between clients
and servers that is well-suited to protection by a firewall, namely communication over a
single TCP port connection to the server, on a destination port that is chosen at installa-
tion time. Firewall architecture is beyond the scope of this discussion, but this kind of
communication can easily be handled with a packet filter provided by a router or dual-
hosted firewall. If this is the only service required from the server by the outside world,
then a boundary router with an access control list allowing only the SQL port to pass in-
side will be a very simple solution. For more information on firewalls, consult the excel-
lent books by Cheswick and Bellovin [Cheswick 1994] and Chapman and Zwicky [Chap-
man 1995]. ’

In the event that further services are required to be passed from the trusted database serv-
er to untrusted machines, a full-blown and potentially complicated firewall will likely be
needed. For example, SMTP mail service must be configured carefully to protect

against known security weaknesses in sendmail. There are times when existing net-

- work architectures or performance considerations make it impractical to use a firewall.
For example, firewalls are usually dependent on packet filters provided by routers or
UNIX machines that function as routers. In a network architecture such as switched eth-
ernet or ATM, this may not be possible. In this case, much more effort needs to be ap-
plied to securing the database server.

It is now commonplace to provide remote network access via dial-up terminal servers
that run SLIP or PPP. One of the biggest problems with using this kind of network ac-
cess is that most PC dialup software does not allow for support of one-time passwords
for strong authentication. In particular, this author is not aware of any configurations to
support the OSF Distributed Computing Environment (DCE). As a result, dialup termi-
nal servers can become a target of attack, and can be very difficult to secure (or audit).

This raises the question about where to place the firewall, and in particular whether to as-
sume that the database clients are within the trusted domain secured by a firewall.

There is no simple answer to this question, since it will depend on the function of the cli-
ents, the other systems they interact with, and the level of control that can be placed on
clients. In the case of dial-up clients, however, one should probably assume that they

are outside a firewall, and provide only the access that they need. This probably means
only allowing SQL and DCE authentication requests to come through the firewall.

3-3

Securing a UNIX Database Server

[

~ N

Client 1
o Database Dial-up
Server Terminal
Server
Client 2

_ Firewall)

Firewall J

Figure 3.1 Firewalls

Firewalls can be placed around the database server, around a domain containing the serv-
er and the clients, or in both locations. The purpose of a firewall is to limit the interac-
tion between two domains, and they can be configured to protect servers from clients,
and to protect clients from the outside world.

Tools for Securing Machines

There are a number of tools and products that can be used to secure a UNIX system.
Among the more notable are:

SATAN

ISS

tcp_wrappers

Kerberos

DCE
S/Key

This tool is available from the Internet at various sites. It is not a marketed
product and can be tricky to use and install. It’s quite useful however if one
has the time.

The Internet Security Scanner is used for probing machines from outside to
reveal weaknesses.

This set of tools can be used to limit the IP addresses that connect to a given
service started from inetd. Itis very useful, and available for free on the
Internet [Purdue].

More on this later.

See the appendix discussing DCE.

S/Key is a challenge-response user authentication system that can be used
to replace passwords. This has recently been superseded by OPIE, and is
available from the Internet [Navy].

Securing a UNIX Database Server

5.1

TIS firewall This is an early freeware version of the Gauntlet firewall product. Itisnota
toolkit complete firewall, but a useful set of tools for building a firewall. For a se-
rious installation, you should probably purchase the commercial version.

Other The last few years have brought an explosion in the number of vendors sell-
firewalls ing firewall products. There has been very little reputable evaluation work
done on these products, and most of them are designed for different purpos-
es than the requirements of the Oceania product. Some vendors that appear
to be quite reputable are TIS, V-One, and Secure Computing Corporation.
A large list of firewall products and vendors is provided on the Internet

[GreatCircle].
Security A handheld authentication replacement for passwords. The kit that they sell
Dynamics includes software for the host that replaces the login shell with a proprietary
SecurID program to call the authentication server. In comparison to other handheld
devices, this one has some advantages in the battery life and relatively little
typing required by the user.
Tripwire Once you think you have secured the database server, you then have the

problem of maintaining your confidence in it. One tool that can be very use-
ful for this is Tripwire, which keeps a database of cryptographic checksums
of critical files and programs that will aliow you to detect changes caused
by hackers. It is available from the COAST project at ftp://
coast.cs.purdue.edu/pub/tools/unix/Tripwire.

A very useful list of security tools is available online [CIAC A, 1996].
Network Authentication

Given that the number of accounts on the server should be severely limited, there are
still situations in which remote logins to the machine are required, for example to per-
form system backups, database administration, or other system maintenance tasks. This
is particularly true if the machine is located in a physically secure location such as a
locked computer room. In such cases, it is extremely desirable to use a mechanism
whereby the remote login session is strongly authenticated with cryptography, and the
contents of the communication are-also encrypted to prevent eavesdropping. The Ker-
beros network security system can provide both services, and is strongly recommended
if remote maintenance is required. Without it, attacks can be mounted against the sys-
tem using password sniffing, TCP session takeovers, or password guessing. This is par-
ticularly important if the network used to connect the server and administrator worksta-
tion has untrusted users or machines located on it.

Which Kerberos?

Kerberos was originally developed under U.S. government funding at M.LT., and ver-
sion IV gained wide acceptance among a variety of sites. There were however weak-
nesses and deficiencies in version IV, so multiple organizations undertook to enhance it.
For example, Sandia National Laboratories undertook to write extensions for using hand-
held authentication tokens, but these changes were never folded into the M.I.T. distribu-
tion directly. The most notable version of Kerberos now available is M.1.T.’s version 5,

Securing a UNIX Database Server

6.1

which DCE Security Services are based on. The former is available in source code
form, but comes with no support from M.L.T.. Third party support is available from sev-
eral sources however, including Cygnus Software in Mountain View, California [Cyg-
nus, 1996]. DCE Security Services offer extensions including access control lists and
groups, and DCE Security Services are also used in DCE’s Distributed File Service
(DFS). DCE is generally regarded as more powerful, but also includes more complexi-
ty, more expense, and only limited support of server platforms. Information on DCE is
available from OSF [OSF/DCE, 1996].

One of the strongest factors in favor of using Kerberos is that it provides a key manage-
ment infrastructure to support “single login”, where a user has a single method of log-
ging into all machines that are within a single administrative domain. In particular, in
theory this can be used to secure access to the database, logins on the database server
via telnet, logins on the clients, and logins on the terminal server. In practice, support
for Kerberos is not universal. It should be noted that all UNIX machines support Ker-
beros, and Xyplex terminal servers support it as well. In addition, Microsoft has an-
nounced support for Kerberos/DCE in the next version of NT (Cairo) [MicroSoft A,
1996] [MicroSoft B, 1996].

UNIX Can Be Made Secure

UNIX machines have been the perennial whipping boys of the computer security commu-
nity. The reasons for this are twofold: (1) UNIX machines were primarily designed to
provide a robust and rich set of services, but were designed to be open, not necessarily
secure, and (2) UNIX machines are generally shipped with a default configuration that
favors a multitude of services rather than security. For example:

* Sun systems default to have a plus sign in the /etc/hosts.equiv file, allow-
ing root users from other machines to login as root without a password,

* SGI machines are shipped by default with several guest accounts that have no pass-
words.

* SGI machines are shipped with a default on their X windows display manager
(xdm) configuration set so that all keystrokes are world readable.

Each of these problems can be easily corrected, but one must know to do so. It should
be pointed out that SGI and Sun are not necessarily worse than the other vendors in secu-
rity, but these are the ones that the authors are most familiar with. In spite of the fact
that UNIX has a bad reputation in security, it is a fact that the overwhelming majority of
Internet firewalls are built from specially configured UNIX machines, and a properly
configured UNIX machine can provide both a high degree of functionality as well as a
high degree of security in the face of capable adversaries. The devil is in the details
however.

Turn Off Everything You Don’t Need

The function identified for the server in the Oceania CRADA is very simple: provide da-
tabase services to standard SQL commands. Anything beyond this function should be
considered a potential risk. The purpose of a firewall is to mediate the communication
between different trust domains so that only safe communication is allowed. The discus-

3-6

Securing a UNIX Database Server

6.2

sion of this section can be used to design such a firewall or to secure the database server
in lieu of a firewall.

The previous section mentioned that the number of UNIX user accounts on the server
machine should be severely limited. This generally precludes using such a server in a
dual role as an electronic mail server (say using the POP protocol). For a large installa-
tion, this is completely reasonable because there are often other machines available for
these other functions. For a small organization that wants to leverage a single machine
for multiple functions, the situation becomes much more complicated. In particular,-if
the SQL server is also a POP server, then user accounts and passwords are required on-
the SQL server. If the SQL server is used as a World Wide Web server, then the ma--
chine is vulnerable to attacks through the ht tp protocol. It’s best to keep things simple.

Given that you have identified the services that you need to supply, the next thing to do
is to turn off all other services. This is a somewhat haphazard procedure that depends
on the particular brand of UNIX that is being used. In general network services are ei-
ther started at boot time or else are started through the Internet services daemon in-—
etd. A complete discussion of services is beyond the scope of this paper, but we dis-
cuss the most common ones here. Further information can be found in the books by
Chapman and Zwicky [Chapman, 1995] or Garfinkel and Spafford [Garfinkel, 1996].

Services Started at Boot Time

Services started at boot time are usually accessed from the /etc/rc* hierarchy, al-

though variations exist on different UNIX flavors. The following services need to be ex-

amined:

named This is the domain name service. This is often necessary for convenience,
but in no case should security be based on it. Whenever machines are re-
ferred to in access control lists (say on a router), the reference should be
made by IP address only and not DNS names. This is necessitated by the
fact that DNS uses no authentication, and is subject to spoofing. Note that
there has recently been a dramatic increase in attacks using DNS corruption
on the Internet. ‘

sendmail/smtp This is the protocol used for transferring mail. If at all possible, it should be
disabled on the database host. This has been the single biggest cause of se-
curity compromises in UNIX machines.

NFS NFS stands for Network File System. Most implementations are based on
version 2.0, and are inherently insecure because the only authentication that
is done is performed at initial mount time, and never after this. It is excep-
tionally convenient for sharing files, but in no case should it be used to share
files that are critical to security. In particular, if user’s home directories are
exported or imported via NFS, then the .rhosts files are vulnerable to at-
tack. If the /etc partition is exported from the server, then it will likely
expose weaknesses on the server.

statd This is used to provide remote stat () service for the Network File Sys-
tem. There is currently a weakness that has been discovered in UNIX fla-

3-7

- Securing a UNIX Database Server

6.3

syslog

Epcbind and
portmapper

vors involving the statd daemon, and is being exploited to break into
machines. No patch is yet available for some vendors, so you should turn it
off unless you absolutely need NFS.

syslog is used for receiving and sending log messages. Unfortunately,
bugs have been found in the syslog () routine of UNIX versions derived
from BSD (it uses gets ()), and this can be exploited to break into ma-
chines if it has not been patched. On the other hand, logging things can be

-very useful to detect break-in attempts and service failures. Make sure you

pay attention to how it is configured, and try to make sure that the server
does not accept syslog information from just any machines. It may also be
useful to do remote logging of security and service events such as failed lo-
gins and TCP/IP portscans. This can be done for clients, network routers,
and terminal servers. '

These are used for RPCs (remote procedure calls) to support other services.
Unfortunately, network services that go through most vendor-supplied port-
mapper programs cannot be trusted, and should be disabled if possible. In
any event you should be careful to screen the portmapper and RPC services
against untrusted machines.

Services Typically Started in /etc/inetd.conf

At boot time, a master daemon is started called inetd (Internet Services Daemon).

The purpose of this process is to listen to the network and answer calls to start other pro-
grams to provide services. The configuration of inetd is contained in the file /etc/
inetd.conf. Consult your UNIX vendor documentation for the exact syntax.

ftp

telnet

This is used to transfer files across netwofks. It is often required, but should
be configured to use strong authentication such as Kerberos, S/Key, or a
hand-held authenticator. TURN OFF ANONYMOUS FTP.

This is used for remote login. It should be configured to use strong authen-
tication via one-time passwords. This can be done with Kerberos, S/key, or
a variety of other products. Beware also that some telnet server programs
have been discovered to have bugs related to the passing of environment
variables. Make sure that your version has the latest security patches from
the vendor.

shell/login/exec This is the Berkeley suite of remote operations. They should be disabled as

talk

finger

they are inherently insecure. They rely on passwords or . rhosts files
placed in the home directories of users.

This is a remote talk protocol for interactively typed conversations. Turn it
off.

This is useful for finding out who is actively logged onto the server, but it
can also be used to reveal usernames for password guessing attacks. Weak-
nesses in older versions of the £ i nger daemon were used in the Morris In-
ternet worm. Turn it off.

Securing a UNIX Database Server

6.4

tftp This is sometimes used for booting X terminals, terminal servers, routers, or
diskless workstations. It has no authentication whatsoever, and if it is im-
properly configured can be used to fetch absolutely any file from the server.
Other devices on the network should be configured to boot from local flash
cards or other t £tp servers. Turn it off.

systat Turn it off. 1t allows others to invoke a setuid executable to see what
processes are being run.

netstat Turn it off. It can be used to see what network connections are open to re-
mote machines. _

uucp This is a crufty old mechanism used to transfer mail and files, primarily over

dialup lines. Turn it off on the server.

time This is an old protocol for keeping clocks of machines on a network syn- -
chronized. A much better alternative is NTP, the Network Time Protocol.
Source for NTP is available for free on the Internet. Note that a reliable time
source is needed for timestamping, so you should pay particular attention to
this if you intend to rely on the machine’s notion of time.

mountd This is part of NFS (Network File System). It is generally a very bad idea
to export file systems from the server, and in any event should only be done
in a read-only mode. If NFS is not required, then turn it off.

rexd This is an insecure remote execution protocol. Turn it off.
rquotad This is used to support quotas for NFS clients. Turn it off.
rusersd This is used to determine what users are logged into the server, and should

be turned off just like finger.

sprayd This service is used for network testing, but is generally redundant with oth-
er services. Turn it off.

walld This is used for broadcasts to all users logged into a machine. Turn it off.

The advice given here is not absolute. You might actually need some of these services
for your network environment. In the event that you need to leave one or more running,
you will need to evaluate options for securing them or screening them from untrusted
machines.

Other services

Once you have gone through the list of services described here, you should reboot your
system and go over it again. First run ps to see what processes are still running. The

list should be very small, and you should be able to identify what each and every proc-
ess is there for. Some of these (like init) are part of the kernel and need to be there.

Others should be tracked down to determine if they are needed or if they pose a risk.

One method you can use to identify dangerous processes is to run netstat to see what
network connections are available or active. As an alternative, you can install a port
scanner to see what services are still running. There are several commercial product
(ISS is a reputable product), but you can also use the freely distributed scanners from

3-9

Securing a UNIX Database Server

the SATAN network security scanner, or the TIS firewall toolkit. Pointers to the source
code for these can be found through the CERT [SEI, 1996] and CIAC World Wide
Web pages [CIAC B, 1996]. CERT stands for Computer Emergency Response Team,
and CIAC stands for Computer Incident Advisory Capability. The former serves the uni-
versity research community, and the latter serves the Department of Energy complex.
Both offer an excellent source of information on securing internetworked systems.

3-10

Database Specifics

1.1

Chapter 4 - Database Specifics

This chapter will discuss the following specific database issues:
* Database User Authentication,
» Database User Authorization, and
* Database Event Auditing.

Database User Authentication

Oceania’s current implementation utilizes Sybase’s supplied authentication service. Ac- |
cess is controlled through a SQL Server login and password (not an operating system lo--
gin and password).

Sybase Logins

When a login is established, the user can connect to the server and use any database to
which he or she has permission.

1.1.1 How Logins Work

When a new login is created, a row is added to a system table. Each login is assigned a
system identifier that identifies that user uniquely in the server. During login, the server
matches the name passed in the login structure against the name column in a system ta-
ble. If a match is found and the password matches, the user’s identifier is stored in the
memory allocated for the new connection.

The login name is not stored in any table except the system table. The user’s identifier is

the key used in all other tables that relate to a person’s login, including system tables as-
signing roles and those relating server access to database access.

1.1.2 System Administrators

System Administrators are special users who handle tasks not specific to applications.
SQL Server recognizes a System Administrator as a super-user who works outside SQL
Server’s command and object protection system. The role of System Administrator is
usually granted to individual SQL Server logins. This provides a high degree of individu-
al accountability because all actions taken by that user can be traced to his or her individ-
ual server user ID. ’

The fact that a System Administrator operates outside the protection system serves as a
safety precaution. For example, if the Database Owner accidentally deletes all the entries
in the sysusers table, the System Administrator can recover the information (provid-
ed, of course, that the system is being backed up regularly).

When Release 10.0 of SQL Server is installed, it still has the default “sa” account,
which has System Administrator, System Security Officer, and Operator roles enabled.
For greater accountability for the highly privileged users in your system, it is recom-
mended that you create individual login accounts for users who are to be granted these
privileges, grant them their roles, and then lock the “sa” account.

Database Specifics

1.2

2.1

Sybase Passwords

In Sybase SQL Servers of release 10.0 and later (currently used by Oceania), passwords
may be encrypted on the client side before passing across a network. If password encryp-
tion is desired, the following occurs:

* The initial login packet is sent without passwords.
* The client indicates to the remote server that encryption is desired.

» The remote server sends back an encryption key, which the client uses to encrypt
its plaintext passwords.

* The client then encrypts its own passwords, and the remote server uses the key to
authenticate them when they arrive.

This scheme is vulnerable to the following attacks:

» Anyone who overhears or intercepts the key in transit can later read all pass- °
words encrypted using that key.

» A man-in-the-middle attack, where someone masquerades as the server, in-
tercepts the key, passes it to the user, and then authenticates to the server
with the response.

» A password guessing attack.

Database User Authorization

Once clients (i.e., users) are authenticated, the server application is responsible for verify-
ing which operations are permitted on the information being accessed. A requirement
placed on the system by one of Oceania’s customers is that a “user’s rights are identical
whether the interaction is through the EMR (Electronic Medical Record) application or
third party SQL tools”!. It will be necessary to implement a sophisticated privilege
scheme in order to satisfy this requirement.

This section will briefly discuss DBMS object privileges and present several different ta-
ble privilege granting schemes. It assumes a basic understanding of Sybase authorization
mechanisms. The examples presented will graduate from one that will provide no securi-
ty at all to one that provides row-level security enforced within the database server. The
section will not discuss field-level security in any detail, but notes that the examples
could be extended to provide for such granularity.

Object Privileges

To obtain access to database tables, views, and procedures, users must either have privi-
leges based on role, special user status, or group membership, or be granted explicit per-
mission for each type of access. Database and object owners can grant or revoke permis-
sion on objects they own. For each permission granted, the grantor can specify that the
recipient can grant the permission to another user. This form of delegating permission is
called “granting with grant”. When revoking permission, the revoker can specify that the
permission be revoked from all users to whom the recipient granted it.

You can grant or revoke the following object permissions:
* SELECT select data from a table or view

1. Oceania Inc., Security Functional Requirements V.2.2, January 30, 1996

Database Specifics

2.2

* INSERT insert a row in a table or view

* DELETE delete a row in a table or view
UPDATE update a row in a table or view
EXECUTE execute a procedure

Providing and enforcing user authorizations to the table-level within a relational database
is quite trivial. Permissions to tables may be granted and revoked to and from users and
groups of users and enforced within the database server. Providing row-level security,
however, is another matter. Providing and enforcing user authorizations to the row-level
or field-level can be accomplished within the client application, but is useless if a user
accesses the database through a third-party query tool or one of the database vendor sup-
plied utilities.

Table Definitions

In order to illustrate some privilege schemes, the following table definitions ihcluding
subsets of fields from the respective Oceania tables will be used:

» LdbAccess defines which application users can access which patient records
* LdbPatient holds information about patients

» LdbProvider holds information about providers

» LdbPPatientList assigns patients to providers

Table 1: LdbAccess

Field Name Data Type Null Pr;‘{nezsry
LdbPatientID char(10) not allowed X
LdbUserID char(10) not allowed X

Table 2: LdbPatient
Field Name Data Type Nudl Pr ZZ;W
e e — —

LdbPatientID char(10) not allowed X
SSN varchar(11)

LastName varchar(32)

FirstName varchar(32)

MiddleName varchar(32)

DateOfBirth datetime

Database Specifics

Table 2: LdbPatient
Field Name Data Type Null Pr;(mary
ey
| PrimaryPhysician char(10) :
Table 3: LdbProvider
Field Name Data Type Null Primary
Key
e
LdbProviderID char(10) not allowed X
SSN varchar(11)
LastName varchar(32)
FirstName varchar(32)
MiddleName varchar(32)
UserID int
Table 4: LdbPPatientList
Field Name Data Type Null Primary
Key
LdbProviderID char(10) not allowed X
LdbPatientID char(10) not allowed X

2.3 All Privileges

The simplest implementation of table access grants SELECT, INSERT, UPDATE, and
DELETE on every database table to the public group (see the following table). Every
user defined by the database is automatically a member of the public group and may
then perform queries against all tables granted to the group. Where all privileges are
granted to the public group, any user may insert new rows, and select, update and de-
lete existing rows within the tables. Essentially, no security is enforced.

Database Specifics

Table 5: All Privileges

Object Object Type | Permission Subject (Group)

LdbAccess User Table | SELECT public
INSERT
UPDATE
DELETE

LdbPatient User Table | SELECT public
INSERT
UPDATE
DELETE

LdbPPatientList User Table | SELECT public
INSERT
UPDATE
! DELETE

LdbProvider User Table | SELECT public
INSERT
UPDATE
DELETE

2.4 Granting Specific Table Privileges to Users and Groups

To limit query activity to the table level, all privileges could be revoked from the pub-
1ic group and specific privileges granted to application specific groups (and/or users).
For instance, SELECT could be granted on a particular table for some groups of users
and INSERT, UPDATE, and DELETE be explicitly revoked on the table for other groups
of users. In this case, a user who is the member of a group possessing the SELECT privi-
lege may select (i.e., retrieve) all rows in the table. However, he or she may not insert
new rows or update or delete existing rows without the appropriate privileges. This
scheme provides no row-level security. The privileges granted allow queries to be per-
formed on all rows within the respective tables.

The following groups of users will be used for the examples:
* OC_SYSADMIN System Administrators,
» OC_PHYS Physicians, and
* OC_RN Registered Nurses.

- The following table reflects such a scheme. It is not, necessarily, intended to duplicate
Oceania’s use of group privileges.

Database Specifics

2.5

Table 6: Specific Table Privileges

Object Object Type | Permission Subject (Group) ’
LdbAccess - | User Table | SELECT OC_SYSADMIN
-INSERT s
UPDATE
DELETE
LdbPatient User Table SELECT OC_SYSADMIN
UPDATE OC_PHYS
OC_RN
LdbPatient User Table INSERT OC_SYSADMIN
DELETE
LdbPPatientList User Table SELECT OC_SYSADMIN
OC_PHYS
OC_RN
LdbPPatientList User Table INSERT OC_SYSADMIN
UPDATE
DELETE
LdbProvider User Table SELECT OC_SYSADMIN
OC_PHYS
OC_RN
LdbProvider User Table UPDATE OC_SYSADMIN
OC_PHYS
LdbProvider User Table INSERT OC_SYSADMIN
) DELETE

Referring to the LdbPatient table in explaining the above table of privileges, notice that
users who are members of the OC_SYSADMIN, OC_PHYS, and OC_RN groups have
the ability to select (and view) and update existing rows in the table. Only members of
the OC_SYSADMIN group have the ability to insert new rows (i.e., patients) and delete
existing rows.

Privileges as granted in this case are granted to users whether they are accessing the data-
base through the client application (i.e., WAVE), a third-party query tool, or database
server utilities like ISQL. They do not, however, provide row-level security.

Basic Stored Procedures

For this discussion, a basic stored procedure is one that performs an elementary SE-
LECT, INSERT, UPDATE, or DELETE fransaction against an individual table. Extend-

Database Specifics

ing the previous example, some row-level security may be enforced by performing all da-
tabase updates with basic stored procedures.

These basic stored procedures must be called from the user interface or some functional
layer between the user interface and the database server. They require input parameters
< and return result sets and/or status information.
Here are some example basic stored procedures for the LdbPatient table assuming the
following naming conventions:
* dletrablename for all DELETE procedures,
* nsrttablename for all INSERT procedures, and
» updttablename for all UPDATE procedures.

2.5.1 INSERT Stored Procedure

create procedure nsrtlLdbPatient

(eLdbPatientID char(10) = null,
@SSN wvarchar(l1l) = null,
@LastName varchar(32) = null,
@FirstName varchar(32) = null,
@MiddleName varchar(32) = null,
@DateOfBirth datetime,
@PrimaryPhysician char(10) = null)
as
—— Procedure for inserting a row in the LdbPatient ta-
ble
if @LdbPatientID = null
begin

print “Invalid Patient identifier”
return -100
end
INSERT into LdbPatient
values (@LdbPatientID,
@SSN,
@LastName,
@FirstName,
@MiddleName,
: @DateOfBirth,
@PrimaryPhysician)
if @@transtate = 2

Database Specifics

begin
rollback tran
return
end
commit tran

return

2.5.2 UPDATE Stored Procedure

create procedure updtLdbPatient
(@LdbPatientID char(10) = null,

@SSN wvarchar(ll) = null,
RLastName varchar (32) = null,
@FirstName varchar(32) = null,
@MiddleName varchar(32) = null,
@DateOfBirth datetime,
@PrimaryPhysician char(10) = null)

as

—— Procedure for updating a row in the LdbPatient
ble

if @LdbPatientID = null
begin
print “Invalid Patient identifier”
return -100
end
UPDATE LdbPatient
set SSN = @SSN,
LastName = (@LastName,
FirstName = (@FirstName,
MiddleName = @MiddleName,
DateOfBirth = - @DateOfBirth,
PrimaryPhysician = (@PrimaryPhysician
where LdbPatientID = @LdbPatientID
if @@transtate = 2
begin
rollback tran

ta-

4-8

Database Specifics

end

return

commit tran

return

‘ 2.5.3 DELETE Stored Procedure

create procedure dletlLdbPatient
(€LdbPatientID char (10)

as

= null)

-— Procedure for deleting a row in the LdbPatient ta-

ble

if @LdbPatientID = null

begin

print “Invalid Patient identifier”

return

end

DELETE LdbPatient

where LdbPatientID = {@LdbPatientID

if @Rtranstate = 2

begin

rollback tran

return

end

commit tran

return

2.5.4 Basic Stored Procedures Privileges

In order to duplicate the functionality described in the section, Specific Table Privileges,
privileges to execute the stored procedures would be as follows:

Table 7: Basic Procedure Privileges

Object

Object Type

Permission

Subject

Ldb-ches;—

User Table

SELECT

OC_SYSADMIN

Database Specifics

Table 7: Basic Procedure Privileges

Object Object Type | Permission Subject
nsrtLdbAccess Procedure EXECUTE OC_SYSADMIN
updtLdbAccess Procedure EXECUTE | OC_SYSADMIN
dletl.dbAccess Procedure EXECUTE OC_SYSADMIN
LdbPatient User Table | SELECT OC_SYSADMIN

OC_PHYS
OC_RN
nsrtL.dbPatient Procedure EXECUTE OC_SYSADMIN
updtLdbPatient | Procedure EXECUTE | OC_SYSADMIN
OC_PHYS
OC_RN
dletL.dbPatient | Procedure EXECUTE OC_SYSADMIN
LdbPPatientList User Table | SELECT OC_SYSADMIN
OC_PHYS
OC_RN
nsrtl.dbPPatientList '| Procedure EXECUTE OC_SYSADMIN
updtLdbPPatientList Procedure EXECUTE OC_SYSADMIN
dietL.dbPPatientList Procedure EXECUTE OC_SYSADMIN
LdbProvider User Table | SELECT OC_SYSADMIN
OC_PHYS
OC_RN
nsrtL.dbProvider Procedure EXECUTE OC_SYSADMIN
updtLdbProvider Procedure EXECUTE | OC_SYSADMIN
OC_PHYS
dietLdbProvider -1 Procedure EXECUTE OC_SYSADMIN

Although the above example procedures and privileges provide no more security than
granting specific privileges on tables to groups, there are a couple of immediate advan-
tages: ‘
* SQL to perform the inserts, updates, and deletes has been removed from the client
application.
* The procedure source code may be programmatically generated given the table defi-
nitions stored in the database server.

The next section will extend the procedures in order to illustrate how further levels of se-
curity could be accomplished.

Database Specifics

2.6 Extended Basic Stored Procedures

In both, the Specific Table Privileges examples and the Basic Stored Procedures exam-
ples, we noticed that any member of the OC_PHYS group can update any and all exist-
ing rows in the LdbPatient table. To extend the examples without creating new database
’ tables or modifying the existing ones, we will make the following assumptions:
* The values stored in the LdbUserID field in the LdbAccess table match user names
' in the database server.
» The LdbAccess table identifies which LdbPatient occurrences can be updated by
the current user.
The examples presented will extend the UPDATE and DELETE stored procedures for the
LdbPatient table. Permissions to execute the procedures will remain as above. Inserts to
the table will be discussed in a later section.

2.6.1 Extended UPDATE Stored Procedure

create procedure updtLdbPatient

(RLdbPatientID char(10) = null,
@SSN wvarchar(1l)y = null,
@LastName varchar(32) = null,
@FirstName varchar(32) = null,
@MiddleName varchar (32) = null,
@DateOfBirth datetime,
@PrimaryPhysician char{(10) = null)
as

—-— Procedure for updating a row in the LdbPatient ta-
ble

if @LdbPatientID = null

begin

print “Invalid Patient identifier”

return -100

end

—— Begin extension to provide row-level security

—— Check to see if the current user has been provid-
ed access to the patient

—— Accepting the current user’s name from the server
assures that the user

—— has successfully completed the authentication proc-
ess.

if not exists (SELECT * from LdbAccess

Database Specifics

where LdbPatientId = Q@LdbPatientID
and LdbUserID = suser name ()

begin ,

print “Access to patient denied.”
return -200

end

~-— End extension to provide row-level security
UPDATE LdbPatient

set SSN = @SSN,

LastName = @LastName,

FirstName = @FirstName,

MiddleName = @MiddleName,
DateOfBirth = @DateOfRirth,
PrimaryPhysician = @PrimaryPhysician
where LdbPatiehtID = @LdbPatientID
if @@transtate = 2

begin

rollback tran

return

end

commit tran

return

2.6.2 Extended DELETE Stored Procedure
(just like the UPDATE procedure)

create procedure dletLdbPatient

(RLdbPatientID char(10) = null)

as

—-— Procedure for deleting a row in the LdbPatient ta-
ble

if @LdbPatientID = null

begin

print “Invalid Patient identifier”
return -100
end

Database Specifics

—-— Begin extension to provide row-level security

—— Check to see if the current user has been provid-
ed access to the patient

—— Accepting the current user’s name from the server
assures that the user :

-— has successfully completed the authentication proc-
ess.

if not exists (SELECT * from LdbAccess
where LdbPatientId = @LdbPatientID

and LdbUserID = suser_name ()

begin

print “Access to patient denied.”

return -200

end

—— End extension to provide row~level security
DELETE LdbPatient

where LdbPatientID = (@LdbPatientID
if @Rtranstate = 2

begin

rollback tran

return

end

commit tran

return

2.6.3 Extended INSERT Stored Procedure

In discussing INSERT privileges, we will continue using the LdbPatient table as our ex-
ample. Since the inserting of an LdbPatient row establishes a new patient with a new
identifier (i.e., LdbPatientID), we know that a row with the same patient identifier can-
not exist in the LdbAccess table prior to the insert. We note from the privileges table
above that members of the OC_SYSADMIN group are the only users capable of insert-
ing rows into the LdbPatient table. And, members of the OC_SYSADMIN group are the
only users that can insert into the LdbAccess table. Therefore, only members of the
OC_SYSADMIN group can insert rows into the LdbPatient table and the LdbAccess ta-
. ble. This is important because one would assume that a user who is authorized to insert
new patient information should also be able to update or delete the information (i.e.,
grant herself or himself permissions to do so).

The following INSERT procedure establishes the access permissions for the user -
entering new patient information. It does not establish privileges for any other us-

€r1S.

Database Specifics

create procedure nsrtldbPatient

(@LdbPatientID char(10) = null,
@SSN varchar{ll) = null,
@LastName wvarchar(32) = null,
@FirstName wvarchar(32) = null,
gMiddleName wvarchar(32) = null,
@DateOfBirth datetime,
@PrimaryPhysician char(10) = null)
as

—-— Procedure for inserting a row in the LdbPatient
ble

if QLdbPatientID = null

begin

print “Invalid Patient identifier”
‘return -100

end

INSERT into LdbPatient

values (Q@LdbPatientiD,

@SSN,

@LastName,

@FirstName,

@MiddleName,

@DateOfBirth,

@PrimaryPhysician)

if Q@QRtranstate = 2

begin

rollback tran

return

end

—-— Begin extension to provide row-level security
-— Insert privileges to patient for current user
INSERT into LdbAccess

values (@LdbPatientID,

suser name())

if @@transtate = 2

.

ta—

4-14

Database Specifics

begin

rollback tran

return

end

-— End extension to provide row-level security
commit tran

return

2.6.4 Extended Stored Procedures Summary

This section illustrated one method for providing and enforcing privileges to insert, up-
date, and delete rows in and from the LdbPatient table to the current user. The examples
utilized existing Oceania table definitions without additional tables or attributes. User/
group privileges to tables and procedures were modified to accommodate the examples.
There were some necessary assumptions made during the process. The procedure code
was intended to provide easily understood examples and is not necessarily performance
tuned.

The section does not address the issue of row-level privilege management. The INSERT
procedure illustrated how the user inserting the new patient information could be auto-
matically granted access to update and delete the respective patient information. It does
not, however, address privileges to be granted to other users. It also does not address the
issue of revoking privileges. However, the DELETE procedure does remove privileges
from the LdbAccess table when a patient is removed from the LdbPatient table. Further-
more, none of the procedures address referential integrity issues that may need to be pro-
grammatically maintained when considering dependent relationships.

2.7 Using Views

Enforcing row-level security during retrievals can be enforced through database proce-
dures or views. This section will present some examples of using views. As before, there
will be no additional attributes or tables, user/group privileges to tables will remain the
same as in the previous section, and direct access to tables is prohibited.

We will begin with the view definitions required.

Table 8: View Definitions

View Name ..
Definition
[comment]
Access create view Access as

[select all rows and all columns from the SELECT * from LdbAccess
LdbAccess table that meet the supplied
where clause criteria]

Database Specifics

Table 8: View Definitions

View Name
[comment]

Definition

Patient

[select all rows and all columns from the
LdbPatient table that meet the supplied
where clause criteria and where the user
has been granted access to the patient in
the LdbAccess table]

create view Patient as

SELECT b.* from LdbAccess a, Ldb-
Patient b :
where a.LdbUserID =
"and b.LdbPatientID =
tID

suser_ name ()
a.LdbPatien-

PPatientList

[select all rows and all columns from the
LdbPPatientList table that meet the sup-
plied where clause criteria and where the
user has been granted access to the patient
in the L.dbAccess table]

create view PPatientlist as
SELECT b.* from LdbAccess a,
PPatientList b

where a.LdbUserlID =
and b.LdbPatientID =
tID

Ldb-

suser_name()
a.LdbPatien—

Provider

[select all rows and all columns from the
LdbProvider table that meet the supplied
where clause criteria]

L create view Provider as
SELECT * from LdbProvider

| Table 9: View Privileges

Object Object Type | Permission Subject
e o e

LdbAccess User Table | none nfa

Access View SELECT OC_SYSADMIN

LdbPatient User Table none n/a

Patient View SELECT OC_SYSADMIN
OC_PHYS
OC_RN

LdbPPatientList User Table none nfa

PPatientList View | SELECT OC_SYSADMIN
OC_PHYS
OC_RN

LdbProvider User Table none nfa

Database Specifics

Table 9: View Privileges

Object Object Type | Permission Subject
Provider View SELECT OC_SYSADMIN
’ OC_PHYS
. Notice in the View Privileges table that SELECT permissions are the only permissions

granted to the views. It is possible to insert, update, and delete rows from views. It is, al-
SO, possili)le to enforce certain update rules with views. There are, however, caveats. For
instance:

* DELETE statements are not allowed on multi-table views.

e INSERT statements are not allowed unless all non null columns in the underlying
table or view are included in the view through which you are inserting new rows.

* You cannot insert a row through a view that includes a computed column.

* INSERT statements are not allowed on join views created with distinct or
with check option.

» UPDATE statements are allowed on join views with check option. The up-
date fails if any of the affected columns appears in the where clause, in-an expres-
sion that includes columns from more than one table.

» If you insert or update a row through a join view, all affected columns must belong
to the same base table.

* You cannot update or insert into a view defined with the distinct clause.

» Data update statements cannot change any column in a view that is a computation,
and cannot change a view that includes aggregates.

The limits described above prohibit us from duplicating all of the functionality provided
by the stored procedures in the previous sections with views alone. We could, however,
enforce retrieval (i.e., SELECT) row-level security through views and UPDATE and DE-
LETE row-level security through stored procedures. Providing and enforcing row-level
security when inserting rows, becomes another issue.

It is easy to grant permissions to select, update, and delete particular rows to the user
who inserted the rows. It would also be easy to grant permissions to select, update, and
delete those rows to users that are members of the same group as the user who inserted
them. It would just be a matter of keeping track of users and the group or groups to
which they belong. How would we, though, grant permissions to a particular user or
group of users to insert a particular row before we know about the row? Let’s use an ex-
ample. Say, Bob is a legitimate user of the system and a member of the
OC_SYSADMIN group with permission to insert rows into the LdbPatient table. While
using the system, Bob has the need to enter information about a new patient, John. Since
Bob has permission to insert into the table, should the system let him insert information
concerning John, or should the insert be authorized by John or some representative of
. John? If John was required to authorize the insert, how would he interact with the sys-

tem? If John was unable to interact with the system and there were no representatives

available, how would the insert be authorized? How could the system grant permission

1. Sybase SQL Server v10.0 Reference Manual Volume 1, 1994

Database Specifics

2.8

to Bob to insert information concerning John if it doesn’t even know about John? This
paper will not attempt to answer these questions, only to point out the simple example.
The paper does assume that if Bob has the privileges necessary to insert a row into the
LdbPatient table, then he possesses the necessary authorization to insert information
about John.

Labeling of Subjects and Objects

Secure Relational Database Management Systems (SRDBMS) as provided by some ven-
dors implement sensitivity labeling of subjects and objects in order to provide trusted
transactions and multi-level security. These SRDBMSs, however, are probably not practi-
cal for most non-military applications. For instance, Sybase’s Secure SQL Server re--
quires a secure server operating system and expensive client software. It also labels such
objects as databases and tables and provides certification of stored procedures that may
be considered unnecessary for most applications.

It would be desirable, however, to implement some of the functionality provided by se-
cure RDBMSs in a non-secure database application, especially sensitivity labeling of sub-
jects (or users) and objects (or rows). If row-level security is considered during the infor-
mation modeling phase, the appropriate attributes could be implemented as integral parts
to the data tables and queries.

In Sybase’s Secure SQL Server, access control is enforced through the implementation
of sensitivity labels. Sensitivity labels are applied to subject users and procedures, and to
object databases, tables, views, and rows. In order to access (i.e., SELECT, INSERT,
UPDATE, DELETE) any particular object, the subject must possess clearance levels (or
labels) that exceed or dominate the object’s sensitivity labels.

Labels are composed of two components:
* hierarchical classification
» non-hierarchical compartments

A sensitivity label consists of a single hierarchical classification label plus any number
of non-hierarchical compartments. The number of hierarchical classification levels and
non-hierarchical compartments is limited only by the secure operating system. Examples
of hierarchical classification could be:

» Top Secret
* Secret
* Confidential
* Unclassified
Examples of non-hierarchical compartments could be:
*A-Z
An illustration of label dominance could be:

» Top Secret dominates all Secret, all Confidential, and all Unclassified, but does not
dominate Top Secret A.

» Secret A B does not dominate any Top Secret or Secret C, but does dominate Se-
cret A, Secret B, Secret A B, all Confidential, and all Unclassified.

Database Specifics

This paper will not attempt to create examples of how sensitivity labels might or should
be implemented within a non-secure RDBMS application. It only proposes that the use
of such a scheme along with stored procedures and database views could increase the
granularity at which row-level and field-level security could be achieved.

3. Database Audit Trails

Auditing is an important part of security in a database management system. Security-re-
lated system activity can be recorded in an audit trail, which can be used to detect pene-
tration of the system and misuse of resources. By examining the audit trail, system secu-
rity officers can inspect patterns of access to objects in databases, and can monitor the
activity of specific users. Audit records are traceable to specific users, enabling the audit
system to act as a deterrent to users attempting to misuse the system.

This chapter will discuss some database event auditing requirements.

3.1 The Audit System

The audit system should:
* be able to enable and disable system-wide audit options;

» establish auditing of different types of events within a database, or of references to
objects within that database from another database;

* establish selective auditing of accesses to tables and views;
* audit the execution of stored procedures;

* audit a user’s attempts to access tables and views, or the text of commands that the
user executes; and

» allow privileged users to enter user-defined audit records (comments) into the audit
trail.

3.2 Establishing Auditing
The System Security Officer should manage the audit system. Only a user who has been
granted that role should be able to:
* execute any of the auditing system procedures;
* read the audit trail; and
* access the audit database.

3.2.1 System-Level Audit Requirements
The following is a list of system-level auditing requirements. The system should:

« provide for enabling and disabling of system-wide auditing. A System Security Of-
ficer must set the enable auditing option on before any other auditing can take
place. Enabling or disabling auditing should automatically generate an audit record,
so that you can bracket time periods when auditing was enabled.

* be able to enable or disable auditing of successful, failed, or all login attempts by
uSers.

* be able to enable or disable auditing of all logouts from the server, including unin-
tentional logouts such as dropped connections.

4-19

Database Specifics

* be able to enable or disable the generation of an audit record when the server is re-
booted.

* be able to generate an audit record whenever a user from another host connects to
the local server to run a procedure via a remote procedure call (RPC). Auditing
should be able to capture all connection attempts, successful attempts only, or
failed attempts only.

* be able to audit the use of any privileged commands requiring special roles for exe-
cution. It should be able to audit for successful executions only, failed attempts
(where failure is due to the user lacking the proper role), or both.

* be able to audit fatal errors (errors that break the user’s connection to the server
and require the client program to be restarted), nonfatal errors, or both kinds of er-
rors.

+ allow privileged users to send text to the audit trail.

3.2.2 Auditing Users

The auditing system should be able to audit a user’s attempts to access tables and views
in any database, and the text of commands that the user sends to the database server. An
access is the use of the SELECT, INSERT, UPDATE, or DELETE command on a table
or view. '

3.2.3 Auditing Databases

The system should permit the establishment of selective auditing on databases. These are
some auditable events that can occur in or on a database:
» Use of the drop, grant, revoke, and other table commands within a database.
¢ Use of the all database level commands.

¢ Execution of SQL commands from within another database that reference the audit-
ed database.

3.2.4 Auditing Tables and Views

The auditing system should allow you to audit accesses of specified tables and views.
An access is the use of the SELECT, INSERT, UPDATE, or DELETE command on a ta-
ble or view. It should allow the establishment of auditing of specified tables and views,
or create default audit settings for newly-created tables and views.

3.2.5 Auditing Stored Procedures

The auditing system should allow you to audit the execution of stored procedures. The
values of any parameters passed to a stored procedure should be audited. It should allow
the establishment of auditing of existing stored procedures or create default audit set-
tings for newly-created stored procedures.

3.2.6 Adding User-Specified Records to the Audit Trail

The system should allow privileged users to enter user-defined audit records (comments)
into the audit trail. For instance, it may be important to note with comments such actions
as disabling and enabling particular types auditing.

4-20

Database Specifics

3.3

3.4

Audit Trail Operations

The only operations allowed on the audit trail should be SELECT and other commands
that may be executed only by a system security officer.

Archiving Audit Data

Because the audit trail is appended continuously, it is necessary to archive old audit data
from time to time, depending on the size of the device on which it resides. If the audit
device fills up, audited system activity and database activity may come to a halt.

Summary

The user authentication process provided by the DBMS vendors must be considered vul-
nerable to attack. It may be necessary to investigate the effectiveness of using a DCE/
Kerberos system accompanied with smart card technology to provide a safe authentica-
tion process (see the appendix on DCE and the chapter on Smart Cards).

This chapter has presented several examples of stored procedures and database views to
provide and enforce row-level security. It has proposed that the addition of a sensitivity
labeling scheme could be added to increase row-level and field-level security granulari-
ty. Oceania’s scheme of granting permissions to tables to users and groups of users
alone will not provide row-level security. Legitimate users and system administrators
will be able to access all rows in tables where permissions have been granted. They will
be able to access the database tables through third party query tools bypassing the client
application.

Stored procedures offer many advantages, but there are some drawbacks. The main draw-
back of stored procedures is that they are non-standard. No two vendor implementations
are alike. The language for describing the stored procedures and their functionality vary
from server to server. Stored procedures are not portable across vendor platforms. There
is no standard way to pass or describe the parameters.

In a typical two-tiered application such as Oceania’s application, the business rules are
enforced in either the client application, the stored database procedures, or some combi-
nation of the two. In a three-tiered architecture (see the appendix on Multi-tiered Archi-
tecture) that contains a data layer, a functional layer, and a presentation layer, the busi-
ness rules are enforced in the functional layer residing on a server. The stored proce-
dures presented in this paper along with the rules of the business could be implemented
in a functional layer. Implementing a functional layer would avoid the drawbacks of
stored procedures and remove functions from the client application. Authorizations to ex-
ecute the functions would have to be granted and maintained through a facility independ-
ent of the client application and the database management system such as the DCE’s
Privilege Service and Access Control Lists (ACLs) (see the appendix on Distributed
Computing Environment). The Privilege Service determines whether a given client is au-
thorized to perform specific operations. Access to the database would be granted to the
functional layer only. Direct access would not be granted to users or groups.

In order to meet the requirement that a “user’s rights are identical whether the interac-
tion is through the Electronic Medical Record (EMR) application or third party SQL
tools™, it will be necessary to implement a sophisticated security mechanism that will

Database Specifics

1.

provide and enforce user privileges regardless of access method. Granting permissions to
access tables and views to users and groups of users alone will not suffice. It is suggest-
ed that direct access not be granted to tables and that some combination of views, sensi-
tivity labeling, and stored procedures or functions be used to accomplish row-level and/
or field-level security. There will be maintenance issues involved with a sophisticated se-
curity scheme. Privileges to views and stored procedures would have to be managed
through the DBMS. Tools would probably have to be developed to managed the sensitiv-
ity labeling of subjects and objects.

Auditing is an important part of security in a database management system. An exten-
sive audit system is required to detect penetration of the system and misuse of resources.
By examining the audit trail, system security officers can inspect patterns of access to ob-
jects in databases, and can monitor the activity of specific users. Audit records are tracea-
ble to specific users, enabling the audit system to act as a deterrent to users attempting

to misuse the system. Most DBMS vendors supply auditing capabilities that may be suf-
ficient for recording database activity.

Oceania Inc., Security Functional Requirements V.2.2, January 30, 1996

Smart Cards

Chapter 5 - Smart Cards

A smart card contains a microcontroller that is mounted onto a plastic card the size of a
credit card. The card has specific built-in functions such as protected memory, crypto-
graphic functions, and I/O control. The microcontroller contains a microprocessor usual-
ly based on the Motorola 68HCOS or Intel 8051 calculation unit (used for the encryption
algorithms), small amount of RAM (usually around 256 bytes), ROM which is used to

. store the controller's operating system and instruction set (from about 4K to 14K bytes),
and user memory in the form of EEPROM. Currently the EEPROM ranges from 256
Bytes to 8K bytes depending upon the application needs and budget allocated to pay for
the cards (current prices are from $4.00 to $19.00 for small quantities of cards). The en-
cryption algorithms are usually DES, RSA, or both.

A card's memory basically determines the card's performance and usability. The size of
the RAM greatly affects the encryption performance. The size of the ROM determines
what functions can be included in the card's operating system. The EEPROM deter-
mines how much user or application information can be stored in the card.

Smart card operating systems can be rather difficult to understand. In addition, the tech-
nical documentation for the card’s operating system is often poorly written. Smart card
application developers will need to become very familiar with the operating system for
the respective cards they are working with.

Some of the advantages of smart cards are that they:
* Can easily be used as an ID badge;

* Perform basic cryptographic functions that can be used to provide authentication
and digital signatures; '

* Provide protected memory that can be used to store a user's private encryption keys
and other confidential information; and

 Are inexpensive technology.

A major disadvantage of smart cards is the small amount of usable memory (only a few
thousand bytes).

1. Standards .
The International Standards Organization (ISO) has defined several standards for smart
cards, which include:
* -ISO 7816-1. Physical characteristics.
» -ISO 7816-2. Dimensions and location of contacts.
» -ISO 7816-3. Electronic signals and transmission protocols.
» -ISO 7816-4. Inter-industry commands and responses (i.e., read, update, etc.).

» -ISO 7816-5. Registration system for applications in cards (standard method to
store application "XYZ' on a card).

. -ISO 7816-6. Data Elements for interchange (i.e., user's name, address, card expira-
tion date, etc.).

Smart Cards

Current Uses

While smart cards are being utilized heavily in Europe and Asia, they are currently still
in the early stages of development in the U.S. Some examples of their current uses are
given below.

» Pay Telephone Debit Cards. Individuals purchase a fixed amount of telephone cred-
its. When they use the card, the phone deducts the number of credits consumed by
the call from what is available on the card. The card is disposed of when all the
credits are used.

* Electronic Purse. Individuals can go to their local bank or ATM and transfer funds
from their account into their smart card. The card is then used like cash. The Ma-
rine Corps training facility at Paris Island is currently using a modified version of
the electronic purse. Recruits have their pay entered in the cards which they then
use to make purchases on the base or get cash withdrawals from post exchanges.

* Vehicle Maintenance. Toyota in Japan is issuing a smart card with each new car
to track the vehicle's maintenance history. v

» Agriculture. The U.S. Department of Agriculture has issued smart cards to several
peanut farmers to monitor and control crop sales.

Common Features

File Structure

The basic file structure on the card is divided into three areas, as shown in the structure
below. The first is the Master File (required); the next level is the Dedicated File (DF)
and finally, the Elementary File (EF). DFs are used to store EFs (like a sub-directory
in DOS) and the EFs store user data (like user files in DOS).

MasterFile
DF1 DF2
EF1 ER2 EF3 EF4

Figure 3.1 Smart Card File Structure

3.2 Security

Security is usually handled by the use of a Personal Identification Number (PIN). The
PIN, however, is not limited to numbers, but can be any ASCII character (so the PIN
can be a password). A maximum of eight characters can be used to create the PIN.

5-2

Smart Cards

3.3

3.4

Once the PIN has been correctly submitted, the card then will allow access to the data
protected with that PIN. For example, EF1 and DF1 files could be protected by a single
PIN. Once that PIN is entered, all data in those areas can be accessed by the user. DF2
on the other hand could be protected by a different PIN. Many cards have variations on
this approach where EFs within a specific DF can be individually protected by their own
PIN. This can be useful if several different applications wish to use the same card. If
the card is to be used in only one application, this feature is often not used.

In order to protect the data in the card from password attacks, the card will only allow a
fixed number of wrong PIN submissions by the user. Usually this value can range from
one to seven and can be programmed by the application developer. If a user submits in--
correct PINs beyond the specified limit, the card will become locked until the card issu-
er unlocks it. For example, if the value is three then after three wrong submissions the
card is locked until the issuer unlocks it. With some cards the three wrong entries must
be entered consecutively (three misses in a row). With other cards, wrong PIN entries
are cumulative (three wrong submissions over the life of the card). To unlock a card,
the issuer must usually submit its PIN and the user's PIN (this can be a problem if the
user has forgotten his or her PIN).

Communication

Communication with a smart card is performed via a serial I/O port. The I/O speed of
most smart cards is 9600 bits per second.

Instruction Set

Smart cards have a limited basic instruction set due to the fact the operating system
must fit into a few thousand bytes of ROM. Each smart card vendor has a slightly dif-
ferent instruction set but most include the following functions:

* Read data stored in the card's memory.
» Write data to the card's memory.

* Erase data stored in the card's memory.
* Submit PIN or key.

* Read result of last operation performed by the card (for example, result of DES en-
cryption).

» Generate a random number.
* Select DF or EF.
~ * Create DF or EF.
» Generate temporary DES key (i.e., session key).
» Encrypt (use DES to encrypt ‘an eight byte block of data).
* Decrypt (use DES to decrypt an eight byte block of cipher text).
* Increment/decrement count.

» Increase/decrease the balance of an electronic purse.

Most card manufacturers provide a set of high level language libraries in C. Some ven-
dors also provide Visual Basic libraries.

Smart Cards

4. Cryptographic Uses of Smart Cards

Microprocessors with built-in cryptographic capabilities such as DES, RSA, and DSS
(Digital Signature Standard) are available. Smart cards with cryptographic capabilities
accessible by application developers can be used in key management, strong user authen-
tication, encryption, and digital signatures.

In a typical Kerberos or DCE environment, a user submits his or her password (shared

by the user and the Kerberos server) to a client. The client uses the user’s password to

encrypt/decrypt authentication information toffrom the Kerberos/DCE server. The use of
~ a smart card in a Kerberos/DCE environment has four advantages, as described below.

* The user’s Kerberos password can be securely stored on the card and does not
have to be remembered by the user.

* Since the user does not have to remember his or her password, the password could
be the 56-bit DES key shared by the Kerberos/DCE Server.

» Since the password is stored on the card, it could be used to decrypt and store the
Kerberos/DCE credentials.

» The password is never passed to the client.

« It provides two-factor authentication. The user must use a password to gain access
to the smart card and must have physical possession of the card to gain access to
the Kerberos password.

Smart cards with support for public key cryptography can also be used for digital signa-
ture generation. The card can store the signer’s private key and compute the digital sig-
nature. As such, the signer’s private key is not exposed to the client workstation. In or-
der to improve the performance of document signing, the client workstation can perform
the one-way hash function on the data that is to be signed. The hashed data can then be
passed to the card, which will then compute the digital signature.

5. Functional Requirements

An examination of ten smart card vendors was performed for this CRADA. The types
of smart cards available from these vendors range from protected memory cards which
have no processing capabilities to cards that have complex cryptographic capabilities.
To be able to use the smart cards as described above in a Kerberos or DCE environ-
ment, the smart card must meet the following functional requirements.

* The System Security Officer must be able to choose and store the user’s Kerberos/
DCE password (a DES key) in the card's protected memory. This is necessary so
that both the card and Kerberos/DCE server share the same key, and that it can be
updated when necessary.

* The card must be suprrt public key cryptography for digital signatures.

» The card must be capable of using the DES key(s) stored in its protected memory
to perform encryption and decryption of data. The card must be able to decrypt
the Kerberos/DCE ticket granting ticket on the card.

* The card must have a basic file system that will be used to store information
deemed necessary by application developers.

Smart Cards

* The card vendor should provide a high level language library (for example, C) for
the card. If this is not provided the application developers will have to program
the card with machine language.

» The card vendor must provide good technical documentation and good technical
support.

Microprocessors with cryptographic features are available that would enable smart cards
to be used for key management, strong user authentication, encryption, and digital signa-
tures. However, no COTS smart card with such features has been identified. Custom
smart cards could be manufactured, but at an extra expense. Hence, one must consider
the individual strengths and weaknesses of each card and compare them to the minimum
requirements for an application. In the near term, vendors are expected to develop smart
cards capable of meeting all of the specified requirements. Such cards may become
available in 1997.

Smart Cards

5.6

Architecture Alternatives

Chapter 6 - Architecture Alternatives

1. Introduction
- After assessing the surety needs of Oceania, this project focused on Commercial Off-

‘ The-Shelf-based (COTS) solutions. The hope was that COTS-based solutions would
minimize the amount of surety development by Oceania. However, the current state of
. COTS surety products and technologies replaces custom surety development with cus-

tom and complex integration and surety system administration. No product today pro-
vides the complete set of surety services required by systems like Oceania’s. The best
that can be done today is to integrate several products to provide the services needed.
There are trade-offs associated with each combination of products. The architectures be-
low describe specific alternatives built using different combinations of products and the
issues that must be considered with each.

2. Specific Architecture Alternatives

Each of the specific architectures described in the following sections is based on the ge-
neric architecture shown in Figure 2.1. Custom and COTS applications are supported by
a surety layer which in turn runs on a COTS operating system. The differences between
the various architectures are limited to the surety layer. The architectures described are
peer-to-peer indicating that various peers may act as servers for different applications.
The specific architectures include only technologies that are currently available or which
are known to be available in the near term.

Generic Architecture

Peer 1

Insecuré Channetl
or Network

Peer 2

...........................

Figure 2.1 Generic Architecture

Architecture Alternatives

2.1

The following sections describe each alternative and discuss the surety risks mitigated
and those not addressed by the architecture. In addition, the technologies described in
the chapter on Basics of Information Surety are considered where applicable.

Architecture Alternative A
Architecture Alternative A is shown in Figure 2.2. The surety layer functionality is pro-
vided by DCE [OSF, 1992, 1996] (see appendix on DCE) or Kerberos [Neuman, 1993,
1994] [Jaspan, 1995]. DCE and Kerberos are both surety middleware products.
Architecture Alternative A
e Services
Peert — User authentication
i Customand COTS — Access control
i Applicatons —~ Communications privacy
e [............. . . Issues
! DCEMerberos | — Heavy maintenance and administrative
OO URT burden assotiated with DCE
grereeeenees | . ~ DCE provides a distributed computing
COTS 0S : environment which includes more than
.......................... : security features
insecure Channel - DCE pro_vide; a distributed time service
or Network and audit trail capabilities
— Some customers may be adopting a DCE
infrastructure
- No public key support
« No digital signatures
— Application code must be altered
Peer2 o —— T - » Impact of code modification is
: : greater when using DCE
: COT_? os H -~ Peer which acts as security server must
U be physically protected
: — Peer which acts as database server must
i DCBerberos - be physically protected
........................ ! ~ Smart cards may be used
Custom and COTS
: Applications

Figure 2.2 Architecture Alternative A

DCE security is based on Kerberos so many of the surety features in the current version
of DCE are provided by the underlying Kerberos libraries. In particular, Kerberos fur-
nishes the authentication capability. However, DCE supplies other functionality in sup-
port of distributed computing including audit trail and a distributed time service capabili-
ty. While DCE supports flexible access control to system objects, access control within
an application must still be managed by the application. DCE does provide Access Con-
trol List (ACL) (see the appendix on DCE) support but the lists must be managed by the
applications via ACL management software written by developers. Confidentiality
across communications links is a feature of both DCE and Kerberos. However, encryp-
tion is used to provide this feature and so export controls apply to both of these products.

DCE is a complex environment so the system administrative and maintenance costs
could be quite high. Since Kerberos provides some of the underlying surety features for

Architecture Alternatives

2.2

DCE, it appears likely that a system run on M.LT. Kerberos version 5.0 will be compati-
ble with a system run on DCE version 1.1. Kerberos requires a much smaller system ad-
ministration burden and might therefore, be the better choice for Oceania to support.

Neither Kerberos nor DCE provide any digital signature capabilities. Open Software
Foundation (OSF), the consortium that sponsors the development of DCE, has formed a
working group to develop a public-key infrastructure. However, it does not seem likely
that a public key infrastructure capability will appear in the near term. Since digital sig-
nature algorithms are public-key algorithms, a public-key infrastructure that provides key
management functions is required. While the availability of digital signature capabilities
in DCE may not be imminent, OSF is aware of the need. DCE does support the use of
smart cards within the system and smart cards can be used to generate digital signatures
[Merckling, 1994]. However, there are several caveats:

* applications must support smart cards;
» principal registry structures must be changed;
* some protocols must be changed (login, account creation, password and key modifi-
cation); and :
» the smart card must be able to store auxiliary files.
However, digital signature capabilities generally require a public-key infrastructure that
would have to be developed.

DCE and Kerberos require modifications to application code to make use of their surety
features. Therefore, portability to systems other than those which are DCE- or Kerberos-
enabled must be addressed. Within the system, peers that act as database servers and/or
security servers must be physically protected. This protection could be provided by sim-
ply locking these servers in a room and limiting access.

Architecture Alternative B

Architecture Alternative B is shown in Figure 2.3. The surety layer functionality is pro-
vided by Entrust from Northern Telecom [Entrust]. Entrust features may be accessed
through the Entrust Programmer’s Toolkit or via the Entrust application.

Architecture Alternatives

2.3

Architecture Alternative B
+ Services
Peer1 - User authentication
i Customand COTS : — Digital signatures
______ Applications - Encryption
R | S : — Key management
! Entrust ~ Public key infrastructure
Cerrenieieen j el . Issues
gt : — No access control
: COTS 03 ‘ — Peer which acts as security server must
g be physically protected
insecure Channel ~ Peer which acts as database server must
or Network be physically protected

User is associated with a particular peer
No smart card support

Application code must be altered

Some customers may be adopting a DCE
Peer2 infrastructure

N4
-

i Custom and COTS |
Applications :

Figure 2.3 Architecture Alternative B

This architecture provides a public-key infrastructure that includes X.509 certificates
[ITU-T, 1993]. These certificates are internationally recognized which would allow for
broad compatibility with other such applications. Entrust supplies both RSA and DSA
digital signature algorithms. Encryption is available to provide confidentiality of data in
storage and transmission. Export controls clearly apply. Entrust manages both encryp-
tion and digital signature keys. However, Entrust provides no support for smart cards.
This lack of support would not be problematic except that Entrusts key management
mechanism associates a user with a particular peer. Handling users who access the sys-
tem from various peers would be difficult although this issue might be mitigated by de-
velopment to support smart cards independent of Entrust.

Entrust supplies user authentication functionality but not access control functionality. In
addition, using Entrust alone would not support a DCE-based architecture. As with
DCE and Kerberos, application code would have to be altered to make use of Entrust’s
surety features so portability issues would have to be addressed. However, Entrust is
IDUP-GSS-API [Adams, 1996] compliant so applications can be ported to other IDUP-
GSS-API compliant environments. In addition, the peers that act as security servers and
database servers must be physically secured.

Architecture Alternative C

Architecture Alternative C is shown in Figure 2.4. The surety layer functionality is pro-
vided by DCE or Kerberos, and Entrust. This architecture combines the access control

6-4

Architecture Alternatives

capabilities of DCE/Kerberos with the digital signature, key management and public-key
infrastructure capabilities of Entrust. In addition, this architecture would support a DCE-
based architecture. Not unexpectedly, integration of these products would require some
effort.

Architecture Alternative C
) * Services
Peer1 _— — User authentication

i Customand COTS | —~ Access control

...... Applications - Digital signatures

............. L ~ Encryption

DCEferberos - Key management
......... E"J"“s‘ ~ Public key infrastructure
.......................... : . Issues
COTS 0S8 : - Heavy maintenance and administrative
burden associated with DCE
Insecure Channel — DCE provides a distnbuted computing
or Network environment which includes more than
security features
-~ DCE provides a distributed time service
and audit trail capabilities
— - Some customers may be adopting a DCE
infrastructure
Peer2 4 — Application code must be altered
cOTS 08 * Impact of code modification is

2.4

o greater when using DCE
........ ‘ — Peer which acls as security server must
! DCEWKerberos | be physically protected

: Entrust : ~ Peer which acts as database server must

'''''''''''''''''''''''' [be physically protected

. Custom and COTS | ~ Smart cards may be used

i Applications | — User is associated with a particular pser
for the purposes of generating digital
signatures

Figure 2.4 Architecture Alternative C

If DCE is chosen rather than Kerberos, the system administration and maintenance bur-
den is quite high. Application code would have to be modified to make use of DCE/Ker-
beros and Entrust surety features; so code portability is an issue. Smart cards could be
used for user authentication and encryption, but users would be associated with a particu-
lar peer for purposes of generating digital signatures. Although, this issue might be miti-
gated by development to support smart cards independent of Entrust. See a discussion
of the caveats for using smart cards with DCE in the section on Architecture Alternative
A. Finally, peers that act as security servers and database servers must still be physical-
ly secured.

Architecture Alternative D

Architecture Alternative D is shown in Figure 2.5. The surety layer functionality is pro-
vided by DCE or Kerberos, Entrust and Open Horizon’s Connection [OpenHorizon] (see
the appendix on Open Horizon’s Connection). In addition to the functionality provided
in Architecture Alternative C, Connection provides a single sign-on capability and appli-
cation authentication. Single sign-on in this context means that the user is not forced to

6-5

Architecture Alternatives

log on to the system and then log on to various applications separately. The user logs on
only once. Application authentication means that applications can authenticate them-
selves to the system and to other applications. Perhaps more importantly, the use of
Connection would allow developers to easily write portable applications. Connection cur-
rently supplies support for DCE and Kerberos. Support for Entrust is under development.

Architecture Alternative D

Peer1

gt mteetemiesaieaiaiin oo,

Customand COTS
Applications

: Open Horizon

: Connsction :

: DCE/Kerberos
Entrust

COTS OS
e eieaieaas '.

Insecure Channe!
or Network

Peer2

............ | T—

COTS 08

DCE/MKerberas
: Entrust :
: Open Harizon :
: Connection :
Custom and COTS
Applications :

Services

User authentication
Access control

Digital signatures
Encryption

Key management

Public key infrastructure
Single sign-on
Application authentication

Heavy maintenance and administrative
burden associated with DCE

DCE provides a distributed computing
environment which includes more than
security features

DCE provides a distributed time service
and aud trail capabilities

Some customers may be adopting a DCE
infrastructure

Peer which acts as security server must
be physically protected

Peer which acts as database server must
be physically protected

Smart cards may be used

User is associated with a particular peer
for the purposes of generating digital
signatures

Figure 2.5 Architecture Alternative D

The maintenance and administration of DCE is still burdensome and peers that act as se-
curity servers and database servers must still be protected. Users are still associated
with a particular peer for the purposes of generating digital signatures. Although, this is-
sue might be mitigated by development to support smart cards independent of Entrust.
See a discussion of the caveats for using smart cards with DCE in the section on Archi-

tecture Alternative A.

6-6

Multi-tiered Architecture

Appendix A - Multi-tiered Architecture

Introduction

Multi-tiered application architecture, sometimes referred to as application partitioning, is
not a new concept. Application designers have attempted to partition applications in one
form or another for many years. Business logic has been separated from data access in

many corporate applications in order to allow for future changes in technology. Applica-
tions developed in client/server environments are divided into components and typically

_distributed to two or more computers. Client/server physically distributes process, data,

and transactions across local and wide area networks.

Two-tiered Model

A two-tiered application usually consists of two primary machines: the user’s client ma-
chine and a remote database or file server. In a typical two-tiered application, the busi-
ness rules are enforced in either the client application (or user interface), the stored data-
base procedures, or some combination of the two.

When two-tiered departmental applications are pushed to support enterprise use, organi-
zations encounter a number of problems. These problems include unacceptable perform-
ance, lack of scalability, high costs of maintenance, inability to share business rules
across applications, and the inability of the first-generation client/server tools to handle
highly complex business logic. Additionally, organizations find that they lack some of
the mainframe quality services such as security services, which include user authentica-
tion, authorization and data protection, centralized directory services, and a coherent
management solution.

Organizations have invested heavily in the development of logic that encapsulates rules
about the business. With these business rules located on client workstations embedded
within an application, they are inaccessible to other applications. Therefore, they must
be re-developed and maintained for each individual application.

Three-tiered Model

Client/server application partitioning scenarios have been worked out in detail by several
organizations. The most popular partitioning scheme divides an application into three
specific layers: the presentation layer, the function layer, and the data management layer.
Developers accommodate the presentation layer by creating a user interface. The func-
tion layer is refined into subcomponents including data validation, data integrity, and
transaction-processing control, and apportioned between the client and server. The data
management layer accommodates the data services, such as the database management
system, on one Or more Servers.

There are some inconveniences to partitioning applications. One is complexity. The dis-
tribution of process, data, and transactions across numerous physical environments great-
ly increases complexity. The application’s components no longer reside within a single,
well-controlled physical environment. They must now communicate among themselves
in a coordinated fashion. A complex transaction may have to access several computers
in order to complete as a logical unit of work.

Multi-tiered Architecture

Another inconvenience is connectivity. A client/server application adds to the competi-
tion among applications by distributing them across networks with finite capacities. De-
velopers must overcome this issue by optimizing distribution for performance.

Distributed applications bring considerable flexibility and challenge to the developer’s
world. It is considered normal for part of an application to exist on the end-user’s desk-
top while attached to a local area network. It is also expected that the same functionality
be portable. The application’s end user may need to access the application from home or
on the road using a laptop computer and a means of connectivity that’s not nearly as fast
as a departmental local area network. A specific connectivity scenario may require parti-
tioning the application in a way that further adds to its complexity. There is also a need
to insulate the required application partitions from the end users, making them transpar-
ent. '

Choice of Tools

The choice of tools to implement a three-tiered architecture covers a broad spectrum. Be-
ginning with the presentation layer, several popular 4GL integrated development environ-
ments are on the market. 3GL languages such as C/C++ and COBOL may also be used.

With the business (or function) layer, the developer has even more choices. 4GL devel-
opment is an option for the function layer; however, when combined with the 4GL of
the presentation layer, it leads to the fat-client implementations that are prevalent today.
In addition, traditional 3GL languages such as C/C++, COBOL, or FORTRAN may be
used. Notice also that RDBMS proprietary stored procedures are also used to implement
the functional layer. However, stored procedures are non-standard but in this architec-
ture, the functional layer could be implemented to perform the tasks of stored procedures
using ANSI SQL. This would provide portability between commercial database manage-
ment systems.

The biggest challenge is deciding the physical location of service execution. A direct re-
lationship exists between the physical tools chosen to build logical services and where
the components can physically execute. For example, if functional layer services are con-
structed using a 4GL tool such as VisualBasic, then the developer’s only choice for exe-
cution is on the processor serving the client. A better solution would be to write as much
of the business logic as possible using a tool that provides the most flexibility, portabili-
ty, and leverage for the future, like C/C++ and COBOL.

Distributed Computing Environment

Appendix B - Distributed Computing Environment

In 1990, the Open Software Foundation (OSF) announced the Distributed Computing En-
vironment (DCE), a comprehensive, integrated set of services that supports the develop-
ment, use and maintenance of distributed systems. DCE is a distributed architecture that
consists of Security Services, Directory Services, Remote Procedure Calls (RPCs),
Threads, Distributed File System, and Time Services. DCE is an industry standard and

its specifications have been incorporated by X/Open into the Common Application Envi-
ronment. DCE allows companies to create an environment in which all systems and their
resources are immediately accessible to users on the network, regardless of their loca-
tion, and provides the necessary services across multiple operating environments for se-
curity and global naming.

Introduction to DCE

Computer users require a communications environment that will allow information to
flow from wherever it is stored to wherever it is needed, without exposing the network’s
complexity to the end user, system administrator or application developer. The goal of
distributed computing is to make a network of individual computers act as one. Benefits
include uniform access to resources and ease of resource sharing. The OSF DCE is a
software systemn that allows people to build scalable, secure distributed applications.

DCE provides an architecture for building applications that are:
e Scalable,
* Secure,
« Distributed,
* Interoperable with other resources, and
» Portable across heterogeneous platforms.
DCE comprises the following components:
* Secure Core:
* Cell Directory Service (CDS),
* Global Directory Agent (GDA),
* Remote Procedure Call Facility (RPC),
* Security Service,
* Distributed Time Service (DTS), and
* Threads Facility;
« Extended Services:
 Global Directory Service (GDS), and
* Distributed File Service (DFS); and
* Others:
* Audit Services, and
» Server Management Facilities.

Distributed Computing Environment

1.1

1.2

1.3

1.4

UUIDs

DCE makes abundant use of numeric identifiers called Universal Unique Identifiers
(UUIDs) for anything that requires a unique identifier (i.e., DCE cells, users, processes,
interfaces, etc.). A UUID is built from a timestamp, process ID of the generating proc-
ess, a machine ID, and 32 bits for uniqueness. UUIDs have no inherent meaning.

An example UUID:
00162b64-6738-1060-933e-9¢621066aa77
! | I I
I I | Machine ID
! I Process ID
| Timestamp
Uniqueness bits

DCE Cells

DCE divides its world into cells. A cell is a collection of users, computers, and other re-
sources managed as a group. Boundaries depend on the purpose of the cell. A cell may
encompass an entire organization, departments within an organization, or some other log-
ical division.
Each DCE user and machine belongs to a single cell, called the local or home cell. Oth-
er cells are called foreign cells.
Each cell includes components of the DCE Secure Core:

* Remote Procedure Call Facility (RPC),

¢ Cell Directory Service (CDS),

* Security Service,

* Distributed Time Service (DTS), and

 Threads Facility.

Remote Procedure Calls

The OSF Remote Procedure Call capability is based on the premise: make individual pro-
cedures in an application run on a computer somewhere else in the network. RPC is
DCE’s mechanism for inter-process communication. An RPC is a function call that

looks like an ordinary local function call. The calling code and called procedure actually
belong to different processes that may be on different machines. The client program
makes the RPC and the server program answers the RPC. A process may be both a cli-
ent of some server and a server to some clients. It should be noted that DCE RPCs are
not necessarily compatible with other vendors’ RPC facilities.

DCE Servers and Application Servers

The phrase “DCE server” correctly describes both a DCE server and/or an application
Server.

Distributed Computing Environment

1.5

1.6

DCE’s system servers implement DCE services (i.e., Security servers, Name servers,
etc.). They are provided by the vendor and may act as servers to other system servers
and application servers.

Application servers implement particular applications, are written by a site’s program-
mers, and are often clients of DCE’s system servers.

RPC Interfaces

An interface is a set of function descriptions. A server may offer one or more interfaces.
Many servers may offer the same interface. Each interface is defined in a separate file,
is written by a programmer, some information is compiled into clients, and some infor-
mation is compiled into servers. The interface definition file includes the UUID and ver-
sion number, the interface name, and the set of function prototypes.

The DCE Control Program (dcecp)

DCE 1.1 provides a unified administration tool, dcecp, that supports most, but not all,
of the DCE administration functions. It is based on Tcl (Task Control Language), ver-
sion 7.3. dcecp attempts to provide a common, consistent command-line interface to all
DCE components for user interaction and writing scripts and programs.

Directory Service

The Directory Service provides a single naming model throughout the distributed envi-
ronment. It allows the users to identify by name resources such as servers, files, disks,

or print queues, and gain access to them without needing to know where they are located
in a network. Sometimes called the Naming Service, the Directory Service offers a gener-
al way to locate distributed resources.

DCE client applications will usually know:
« the server’s CDS name: indicates the DCE cell and server desired;
+ the RPC interface specification: indicates the functions offered by a server; and

* possibly, an RPC object UUID, associated by the server code with some specific re-
source.

Programmers determine how clients acquire this information.
To communicate with servers, DCE clients need to find three pieces of data:
 the machine on which the server runs (i.e., IP address);

« the protocol sequence to use when communicating with the server (e.g., TCP/IP or
UDP/IP); and

* the protocol-specific endpoint (i.e., a TCP/IP port number).
Clients store this information in data structures called binding handles.
Directory services fall into three categories:

* Global name services which:

* indicate the home cell of a server, and

» allow clients to narrow their searches to specific DCE cells;
* Cell-wide services which:

Distributed Computing Environment

* indicate the host machine of a server, and

* allow clients to narrow searches to specific machines;
» Machine-specific services which:

» indicate the precise location of a server, and

* allow clients to pinpoint a server.

2.1 Cell Directory Service

The Cell Directory Service (CDS) is DCE’s cell-wide directory service. CDS maps serv-
er’s DCE names to locations. It does not know about foreign cells, does not map host
names to addresses, and is not a replacement for /etc/hosts or DNS. It is, also,
known as the name service.

CDS servers maintain the CDS database. CDS databases are called clearinghouses.

Each DCE cell has a namespace which represents its resources that is structured as a
tree. Servers have names like: “/.../Oceania.com/medDB”. The full name indicates the
DCE cell. Client programs pass this name to CDS in return for the server’s location.

2.2 Global Directory Agent

CDS understands names in the local cell. Other software is used for intercell communica-
tions. DCE provides the Global Directory Agent (GDA) as an intermediary between a
cell’s CDS and the remote name services.

If a client wants to contact a remofte server:
* The client’s GDA uses DNS to look up the other cell,
* DNS tells GDA where the other cell’s CDS server is,
* GDA tells the client where to find the other cell’s server, and
* The client asks the other cell’s CDS for the servers location.

2.3 Endpoints

After finding the server’s machine through CDS, the client must find the endpoint(s) at
which the server is listening. “Endpoint” is a generic term for a specific network address
(for example: a port in TCP/IP).

The RPC endpoint mapper:
* Tracks which servers are currently using which endpoints (ports),
* Runs on every machine,
* Maintains a local table that is:
* the endpoint database (or map), and
* a per-machine, not per-cell, table:
* is more dynamic than IP addresses, and
* is of no use elsewhere.

2.4 Putting It All Together
When starting, a DCE server:

Distributed Computing Environment

* DCE informs the endpoint mapper of the ports it’s using,
* informs CDS of: :
» the IP address of the host,
» any supported protocol sequences, and
* services provided:
« interfaces, and
» RPC objects.

A DCE client contacting a server imports binding information by:
* finding a foreign cell with global naming and GDA (if necessary),
* locating the machine through CDS,

* the machine IP address,

* the protocol sequence;
* determining the server’s endpoint, and
» communicating with the server.

2.5 Access Control

CDS protects its resources with Access Control Lists (ACLs). ACLs provide privileges
to user requests based on DCE Security Identities (principals). The CDS server stores
and manipulates ACLs. Administrators manage ACLs via the DCE Control Program
ACL manager.

CDS places ACLs on everything:

* Names in the namespace are for:
* Directories,
* Objects,
* Clearinghouses,
* etc.

* Processes
» DCE client process

» CDS advertiser - a per-host process that creates and loads the host’s
CDS cache, locates CDS servers at DCE start-up, and creates cdscle-
rk processes for users.

* CDS clerks - a process for each CDS user on a machine that makes
requests to the CDS server for importing client binding information
and exporting server binding information.

» CDS server process: cdsd is a process that runs on a DCE server that main-
¢ tains the CDS database, writes from servers exporting information, reads
from clients importing information, etc.

2.6 CDS Replication

Replication makes CDS information more available by making copies of the information.

Distributed Computing Environment

» A Replica is a physical copy of a CDS directory where a writable copy is called
the master and a read-only copy is called read-only.

* A Clearinghouse is a collection of directories where a cell can have multiple clear-
inghouses, each holding some subset of directories in the namespace.

* A replication unit is a CDS directory.
Each CDS directory can be stored in multiple clearinghouses. In the most common form
of replication, one clearinghouse holds the master replica and other clearinghouses hold

read-only replicas. CDS clients automatically talk to the proper kind of replica: master
for updates read-only or master for lookups.

Skulking is when CDS-automatically propagates updates from the master to the read-
~ only replicas.

2.6.1 Muitiple Clearinghouses

Replication results in multiple clearmghouses Each is maintained by a cdsd process.
Each has files stored on local disks. Each has an entry in CDS.

Each clearinghouse may hold a different subset of CDS directories. Depending on the
replication scheme, a clearinghouse may hold master copies of some directories and read-
only copies of others.

2.6.2 Multiple cdsd Processes

Multiple clearinghouses mean multiple CDS servers, each of which exports binding infor-
mation to CDS.

3. Security Service

Security servers offer three component services:
* Registry Service - manages information about DCE users,
» Authentication Service - verifies the identities of users, and
« Privilege Service - helps determine which users are allowed to do what.
Some Security-related definitions:
* Principal: any user of DCE services (i.e., people, computers, processes, cells).
* Account: information used when a principal logs in is:
» similar to UNIX /etc/passwd file, and
» includes a password, home directory, etc.
* Group: a collection of principals used for access control, and
* Organization: a collection of principals assigned a set of password rules.

3.1 Registry Service

Each cell has its own Security Registry that holds information about DCE principals and
accounts, security groups, and other information. It is separate from the operating sys-
tem’s security files (like UNIX’s /etc/passwd and /etc/group).

Distributed Computing Environment

3.1.1 Security Assumptions
DCE Security works under these assumptions:

» Machines on users’ desks are untrustworthy.
+ Users are knowledgeable and malicious.
e Hardware and software can be hacked.

* Cell Directory Service is untrustworthy.

* Only Security server machines are trustworthy.
« Hardware and software are safe.
« Bad guys can’t get administrative access.

» All DCE users keep their passwords secret.

3.1.2 Principals
A principal identifies a user of DCE services as any of the following:
* people,
e machines,

* processes, and
* DCE cells.
DCE services include:
* Cell Directory Service (CDS),
« Distributed Time Service (DTS),
» Distributed File System (DFS),
» Security Service, and
* access to other applications using such services.

3.1.3 Accounts :
The Security Registry also holds an account for every DCE user. A prmc:1pa1 without an
account cannot log into DCE.
Each account is a “triple” of:
* Principal,
* Principal’s primary DCE Security group, and
* Principal’s primary DCE Security organization.
Before an account can be created, each element of the triple must exist and the principal
must belong to both, a group and an organization.

3.1.4 Security Groups

Security groups are used only to simplify access control. A set of principals with similar
rights belongs to the same primary group. Principals may belong to many groups.

Distributed Computing Environment

3.1.5 Organizations

An organization holds a collection of principals similar in administration to a Security
group. It is used for password management, not access control as groups are. Each princi-
pal belongs to a “primary” organization.

3.1.6 Policies

Policies are sets of rules governing security. Different policies may apply to the entire
cell, each organization, and individual accounts.

3.1.7 Aliases

A user can have multiple, alternate names, “aliases”. One principal is called the primary.
One primary may have multiple aliases. Aliases allow a single user to assume multiple
DCE identities that share the same UUID. Each alias has a separate account with a dif-
ferent password, different group, and different organization. DCE’s Distributed File Sys-
tem (DFS) allows aliases to access different sets of files.

3.2 Authentication Service

The Authentication Service allows users to establish DCE identities. Authentication
proves you are who you say you are.

The Authentication Service:
* receives authentication requests from principals,
« issues DCE identities (credentials) to users,
* provides mutual authentication between a client and a server,
* is based on Kerberos version 5 from M.I.T., and

* provides account passwords that are used for encryption and decryption and are not
sent out over the network.

3.2.1 Session Keys

A session key is a temporary secret key that is generated by the Authentication Service.
This key is made known only to the two parties requiring authentication. For instance,
when the client sends a message to the server, the client would encrypt the message us-
ing the assigned session key. The server would then decrypt the message using its copy
of the session key. If the message decrypts properly, the sender must be the client since
the client is the only other principal that knows the key.

3.2.2 Tickets
Tickets provide the abilities to:
» protect the session keys from being tampered with;
» verify that the session key was generated by the Authentication Service; and

» prohibit anyone else from getting the session key even if they were to intercept the
message that carried the session key.

Distributed Computing Environment

3.23 TGT and PTGT

A successful DCE login leaves the user holding tickets or credentials. A ticket-granting

ticket (TGT) granted by the Authentication Service is a user’s basic proof of identity. A

privilege ticket-granting ticket (PTGT) created by the Privilege Service is a list of securi-
’ ty groups to which a user belongs.

R 3.2.4 Server Tickets

Clients need separate server tickets to talk to each server. The Security Service automati-
cally constructs server tickets on request from authenticated users. Each server ticket is
encrypted with the target server’s key, clients don’t know the key nor can they forge
server tickets. A client sends the ticket to a server with requests. The server decrypts the
ticket and responds.

3.2.5 Mutual Authentication

The exchange of tickets between clients and server securely gets a key to the client and
server and provides mutual authentication between processes. The server believes the us-
er’s identity because the client holds a server ticket. The client believes the server’s iden-
tity because the server can decrypt the ticket.

3.3 Privilege Service and ACLs
The Privilege Service creates privilege ticket-granting tickets (PTGTs).

3.3.1 Access Control Lists (ACLS)

Access-control lists permit applications to protect resources. They are similar to the
UNIX filesystem’s “mode bits”, which divide the universe up into:

 Three categories of “who” are:
« the owner of the file,
* the group (i.e., other members of the owner’s group), and
* the rest of the world.
» Three categories of “what” are:
* read,
s write, and
* execute.

When making a request to a server, a client presents its “certificate of identity”, granted
by the Security Service. The server:

» extracts the client’s identity information;
» evaluates the combination of the:
* client’s identity,
» resource the client wishes to access, and
+ the operation the client wishes to perform; and

« grants or refuses access if the client:

Distributed Computing Environment

* has the necessary rights on the resource, the server authorizes the client and
permits access, or

*» doesn’t have the necessary rights, the server refuses access.

3.3.2 ACL Managers
Servers implement access control in code called the ACL managers.

DCE does not use a common ACL manager. Each server that uses ACLs must manipu-
late its own ACLs. DCE applications don’t even have to use ACLs; they can do authori-
zation in any way they choose. Each application is free to manipulate ACLs as it sees fit.

3.3.3 ACL Inheritance

ACLs on the Registry allow access restrictions to propagate down the tree. Each directo-
ry has three ACLs:

* the actual ACL,

* the initial-container ACL, and

* the initial-object ACL.
A new directory in the branch inherits its parent’s initial-container ACL. A new Registry
object in the branch inherits its parent’s initial-object ACL.

3.3.4 Keytab Files

Processes need a way to remember their DCE passwords. A keytab file is a local disk
file that holds some principal’s DCE key. A process uses a keytab file when acting as a
client to automatically authenticate as some principal. A process uses a keytab file when
acting as a server to decrypt incoming server tickets.

Access to keytab files is physically managed by the local operating system. Only author-
ized local users are granted read and write permissions. Keytab files are not stored in a
distributed filesystem.

4. Time Service

DCE’s Distributed Time Service (DTS) synchronizes time across all DCE machines and
provides an API for applications needing accurate time information. Kerberos authentica-
tion requires that there is less than a five minute time difference between client and serv-
er.

The goal of DTS is to keep all clocks within a specified tolerance by reference to an out-
side, reliable time source and negotiating between machines to converge on the external
time. :
The two main problems DTS corrects are:

* Drift - the tendency of a clock to gradually deviate from the actual time.

» Skew - the difference between two clocks’ values of the current time.
The Time Service includes DTS servers that maintain an accurate notion of the current
time, adjust the clocks on their host machines, and provide time to DTS client processes.

And, DTS clerks (clients) that receive time values from DTS servers and adjust their
clocks based on input from DTS servers.

Distributed Computing Environment

4.1 DTS Servers

Each server maintains a local representation of the time by:
* trying to contact a reliable outside source for accuracy;
* if not available:
» ask all other servers for the time,
" * include its own time, and
* compute a new time based on the inputs; and
» adjust its system clock accordingly.

4.2 DTS Clerks

Clerks request the time from a number of servers. The minimum number of servers is
configurable. From these inputs, each clerk:

* computes the time and

* adjusts its system clock accordingly.

Clerks do not use their system clocks as an input. They attempt to use “close” servers
(those on the local LAN).

4.3 Access Control

DTS maintains an ACL on each node’s DTS process to govern the rights to manipulate
DTS on the machine. Members of the DTS administration group automatically get all
rights. '

5. Host Services
Each host maintains local information about its DCE cell. This host-data information in-
cludes:
* the name of the DCE cell,
« any aliases for the DCE cell,
* the name of the host machine, and
* other information.

Administrators can define new host-data items for their own needs. Access to host data
is governed by ACLs.

6. Audit Service

The Audit Service lets DCE record events by providing ways to:
* capture potentially critical events; and '
* select the important events, based on
* individuals causing events,
. » events themselves, and

» combinations of the two.

Distributed Computing Environment

Open Horizon’s Connection

Appendix C - Open Horizon’s Connection

Open Horizon, Inc. is a leading provider of connectivity software that assists organiza-
tions in moving from departmental to enterprise-wide client/server solutions. The compa-
ny builds and markets Connection, the first product to provide new or existing applica-
tions with plug-and-play access into enterprise services, such as heterogeneous databas-
es, user authentication, data encryption, directory services and transaction processing
monitors, for both two-tier and three-tier client/server architectures.

Open Horizon’s Connection is a plug-and-play replacement for proprietary middleware
products available from the relational database management system vendors. It provides -
a connectivity infrastructure that ties together disparate hardware, operating systems and
networks into a single, integrated environment - a single computer. It provides transpar-
ent access to enterprise services, including database, security, directory, application and
management services. Connection also allows an organization to simply plug in new or
existing applications.

Application Broker

The Connection Application Broker (the “Application Broker”) has been designed to
meet the following organizational requirements:

» To enable any client application with the ability to transparently access virtually
any remote business logic that has been implemented with a 3GL (such as C, C++,
or COBOL), a 4GL (such as Dynasty), transaction processing monitors (such as
Encina, CICS, Tuxedo, or Top End), legacy applications, or CORBA-compliant dis-
tributed business objects.

* To allow an organization to continue to leverage their investments in two-tier appli-
cations by providing a simple migration path to extend these applications to three-
tier architectures.

* To support decentralized development teams in which the “front-end” GUI develop-
ers can work independently from the “back-end” business rule developers. While
this separation is important, it can only be effective if both groups are capable of
easily integrating their work.

* To be capable of using built-in functionality from leading GUI vendors’ tools -
such as PowerSoft PowerBuilder, Gupta SQLWindows, Borland Delphi Client/Serv-
er, and Microsoft’s Visual Basic, Excel, and Word - to invoke remote business log-
ic transparently.

» To support a constantly changing business environment, in which new business
rules can be added and existing business rules changed dynamically at runtime,
without the requirement to redevelop, recompile, relink and redeploy applications
across the enterprise each time a change is made.

The Application Broker does not itself provide support for building the front-end GUI or
the back-end business rules. Rather, it provides an infrastructure that allows front-end
tools to access business rules that have been registered within it.

Architecture

Open Horizon’s Connection

Connection’s architecture comprises two primary components, Connection Client and
Connection Server. Connection Client resides on every client workstation in the environ-
ment, as well as every server platform that in turn must interoperate with other server
platforms. A Connection Server library resides on every server platform that will partici-
pate in the environment.

DCE Compliant

Connection is fully DCE-compliant. Open Horizon is a member of the Open Software
Foundation and chairs the DCE Database Special Interest Group.

Remote Procedure Calls

Connection utilizes remote procedure calls (RPCs) to communicate between each in-
stance of Connection Client and Connection Server. Connection leverages the DCE
RPC, but does not require the implementation of DCE Runtime or any other DCE serv-
ice. All required base software comes bundled with the product.

OIDBC Compliant

Connection Client with the ODBC Interface is itself an ODBC driver. When a client ap-
plication issues an ODBC call, it passes the call directly to the Connection ODBC driv- -
er. Rather than convert the ODBC call into the target database API on the client, Connec-
tion takes the call as is and transports it across the network to the Connection Server

that resides next to the target database. The Connection Server hands the ODBC call off
to a server-resident ODBC driver, which converts the ODBC call into the target database
API, and communicates directly with the database. Result sets are then sent back across
the network to the client application.

Database Vendor API Support

In addition to ODBC support, Connection OCI Interface supports the Oracle Call Inter-
face for accessing Oracle databases and Connection CT-Lib Interface supports Sybase’s
Client Library for accessing Sybase databases.

Three-Tiered SUpporl

Connection supports a three-tier application architecture with client application access to
business logic that is packaged for deployment to the second-tier application server. Con-
nection transports client requests to the server in RPC format. On the application server,
Connection formats the RPC into a C language function call. This C function call can be
used to execute business rules that have been deployed in any of several formats: rela-
tional database stored procedures, C functions, etc.

C-2

References

(1]

[2]

[3]

[4]

[5]

(6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]
[16]
(17]

References

[Acly, 1996] Acly, Ed, Connection from Open Horizon - Extending Data Access APIs to
Support Enterprise Middleware Requirements, International Data Corporation, January
1996.

[Adams, 1996] C. Adams, Independent Data Unit Protection Generic Security Service
Application Program Interface, Internet Draft, Bell-Northern Research, February 1996.

[Chapman, 1995] D. Brent Chapman and Elizabeth D. Zwicky, Building Internet Fire-
walls, O’Reilly and Associates, 1995.

[CIAC A, 1996] U.S. Department of Energy, Computer Incident Advisory Capability
World Wide Web page, http://ciac.linl.gov/ciac/SecurityTools.html.

[CIAC B, 1996] U.S. Department of Energy, Computer Incident Advisory Capability
World Wide Web page, http://ciac.lInl.gov/.

[Cheswick, 1994] William R. Cheswick and Steven M. Bellovin, Firewalls and Internet
Security, Addison-Wesley, 1994.

[Colton, 1994] Colton, Malcolm, SYBASE Secure SQL Server For Practical Multi-Level
Database Applications, Sybase, Inc., Technical Paper Series. 1994.

[Colton, 1993] Colton, Malcolm, SYBASE System 10, The Foundation for Enterprise Cli-
ent/Server Computing, Sybase, Inc., Technical Paper Series. 1993,

[Cygnus, 1996] Cygnus Support World Wide Web page, http://www.cygnus.com/data-
dir.html.

[DOS, 1989] Department of State, International Traffic in Arms Regulations (ITAR), 22
CFR 120-130, Office of Munitions Control, November 1989.

[DOS, 1992] Department of State, Defense Trade Regulations, 22 CFR 120-130, Of-
fice of Defense Trade Controls, May 1992.

[Entrust] Entrust Home Page, http://www .nortel.com/entrust/.

[Garbus, 1995] Garbus, Jeff, Solomon, David, and Tretter, Brian, Sybase DBA Survival
Guide, SAMS Publishing. 1995.

[Garfinkel, 1996] Simson Garfinkel and Gene Spafford, Practical UNIX & Security,
O’Reilly and Associates, 1996.

[GreatCircle] World Wide Web page, http.//www greatcircle.com/firewalls/vendors.html
[Hu, 1995] Hu, Wei, DCE Security Programming, O’Reilly & Associates, Inc., 1995.

[ITU-T, 1993] ITU-T, Recommendation X.509, The Directory -- Authentication Frame-
work, International Telecommunications Union, Telecommunications Standardization
Sector, Geneva, 1993.

References - 1

References

[18]

[19]

[20]

(21]

[22]

[23]
[24]

[25]

[26]
[27]
[28]

[29]
[30]

[31]
[32]
[33]
[34]

[35]

[Jaspan, 19951 B. Jaspan, Kerberos Users Frequently Asked Questions, Open Vision
Technologies (http://www.ov.com/misc/krb-faq.html), September 1995.

[McCurley, 1993] Kevin McCurley, FY93 Technology Transfer Initiative Proposal: In-
formation Integrity and Privacy for Computerized Medical Patient Records, Sandia Na-
tional Laboratories, 1993.

[Merckling, 1994] R. Merckling and A. Anderson, OSF RFCs on Smart cards and

DCE, Open Software Foundation DCE SIG, Request for Comments: 57.0, March 1994.

[MicroSoft A, 1996] Microsoft Back_Ofﬁce World Wide Web page, http://fwww.mi-
crosoft.com/backoffice/reading/bst11120.htm.

[MicroSoft B, 1996] Microsoft BackOffice World Wide Web page, http://www.mi-
crosoft.com/backoffice/reading/bst10000.htm.

[Navy] Navy ftp site, ftp://ftp.nrl.navy.mil/pub/security/nrl-opie/.

[Neuman, 1993] C. Neuman, The Kerberos Network Authentication Service (V5), Net-
work Working Group, Request for Comments: 1510, September 1993,

[Neuman, 1994] C. Neuman, Kerberos: An Authentication Service for Computer Net-
works, USC/ISI Technical Report number ISI/RS-94-399, Institute of Electrical and
Electronics Engineers, September 1994.

‘[NISTa, 1993] National Institute of Standards and Technology, NIST FIPS PUB 46-2,

Data Encryption Standard, U.S. Department of Commerce, December 1993.

[NISTb, 1993] National Institute of Standards and Technology, NIST FIPS PUB 180,
Secure Hash Standard, U.S. Department of Commerce, May 1993.

[NIST, 1994] National Institute of Standards and Technology, NIST FIPS PUB 186,
Digital Signature Standard, U.S. Department of Commerce, May 1994,

[Oceanié., 1996] Oceania Inc., Security Functional Requirements V.2.2, January 30, 1996.

[OpenHorizon] Open Horizon, Inc. World Wide Web page, http://www.openhori-
Zon.com.

[OpenHorizon A, 1995] Open Horizon, Inc., Client/Server Connectivity - Beyond the De-
partment to the Enterprise, White Paper, December, 1995.

[OpenHorizon B, 1995] Open Horizon, Inc., 3-Tier Client/Server Applications, White Pa-
per, December, 1995.

[Orfali, Harkey, Edwards, 1994] Orfali, Harkey, and Edwards, Essential Client/Server
Survival Guide, International Thomson Publishing, 1994,

[OSF, 1992] Distributed Computing Environment, An Overview, Open Software Founda-
tion, January, 1992.

{OSF, 1996] DCE Frequently Asked Questions, February, Open Software Foundation,
1996.

References - 2

References

[36]

[37]

[38]
[39]

(401

[41]

[42]

[43]

[44]

[45]
[46]
[47]
[48]
[49]
(501
[51]
[52]

[OSF/DCE, 1996] Open Software Foundation, Distributed Computing Environment
World Wide Web page, http://www.osf.org/dce/.

[Purba, '1994] Purba, Sanjiv, Developing Client/Server Systems Using Sybase SQL Serv-
er System 10, John Wiley & Sons, Inc. 1994,

[Purdue] Purdue Education ftp site, ftp://coast.cs.purdue.edu/pub/tools/unix/tcp_wrappers.

[Reed, 1995] Reed, Paul and Jackson, Steve, Separation Anxiety, Database Program-
ming & Design, October, 1995.

[Rivest, 1978] R.L. Rivest, A. Shamir, and L.M. Adleman, A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems, Communications of the ACM, v. 21, -
n. 2, February 1978, pp. 120-126.

[Schneier, 1996] B. Schneier, Applied Cryptography, John Wiley and Sons, New York,
NY, 1996.

[SEI, 1996] Software Engineering Institute World Wide Web page, http://
www.sei.cmu.edu/SEI/programs/cert/.

[SNL, 1993] CRADA No. SC93/01183, Appendix A, Sandia National Laboratories, July
26, 1993,

[Sybase A, 1994] SyBooks, SQL Server and Open Client/Open Server Release 10.0 on-
line documentation. Sybase, Inc., 1994.

[Sybase B, 1994] System 10 Fast Track to SQL Server. Sybase, Inc., 1994,

[Sybase C, 1994] SYBASE SQL Server Technical Overview. Sybase, Inc., 1994,

[Sybase D, 1994] Tools and Connectivity Troubleshooting Guide. Sybase, Inc., 1994.
[Sybase E, 1994] Sybase SQL Server System Administration Guide, Sybase, Inc., 1994,
[Sybase F, 1994] Sybase SQL Server Security Administration Guide, Sybase, Inc., 1994.
[Sybase G, 1994] SQL Server v10.0 Reference Manual Volume 1, Sybase, Inc., 1994,
[Sybase H, 1994] Secure SQL Server Security »Features User’s Guide, Sybase, Inc., 1994,

[Sybase I, 1994] TransArc Corp., DCE Secure Core System Administration, Sybase,
Inc., 1996.

References - 3

References

References - 4

Glossary

3GL
4GL

ACL

ASCII
ATM (1)
ATM (2)
BSD
CDS

cell
CERT
CIAC

Clearinghouse

COAST
CORBA
COTS
CRADA
CT-Lib

data security

Glossary
Third Generation Language

Fourth Generation Language

Access Control List

An assumed or additional name

Application Program Interface

American Standard Code for Information Interchange
Asynchronous Transfer Mode

Automated Teller Machine

Berkeley Software Distribution

Cell Directory Service

In DCE, a self-sufficient environment for distributed computing.
Computer Emergency Response Team

Computer Incident Advisory Capability

A collection of directories in DCE. A DCE cell can have multiple
clearinghouses, each holding some subset of directories in the
namespace.

Computer Operations, Audit, and Security Technology Laboratory at
Common Object Request Broker Architecture
Commercial-Off-The-Shelf

Cooperative Research and Development Agreement

Sybase’s client libraries.

The means by which the SQL server restricts access to the server,
restricts access to data, restricts operations that can be performed on

data, and maintain an audit trail that keeps records of who entered the
system and/or used any system resources.database owner

Glossary - 1

Glossary

DBMS
dbo
DCE
DES

DF

DFS
DNS
DOS (1)
DOS (2)
DSA
DTS
EEPROM
EF
EMR
FTP
GDA
GDS
GUI

/0

IDUP-GSS-API

IK
IP

ISO

Database Management System
Sybase database owner

Distxibute;:l Computing Environment
Data Encryption Standard
Dedicated File

Distributed File Service

Domain Name Service

Department of State

Disk Operating System

Digital Signature Algorithm
Distributed Time Service
Electrically Erasable Programmable Read-Only Memory
Elementary File

Electronic Medical Record

File Transfer Protocol

Global Directory Agent

Global Directory Service

Graphical User Interface
Input/Output

Independent Data Unit Protection Generic Security Service Application
Program Interface :

Internal Key
Internet Protocol

International Standards Organization

Glossary - 2

Glossary

ISQL

ITU-T
LAN

login

MIT.

master database

NFS

NIST

OCI
ODBC
(O]
OSF
PIN
POP
PPP

PTGT

RDBMS

Replica

In Sybase, Interactive SQL user interface for accessing and updating
system and user databases, tables, indexes, users, groups, etc.

International Telecommunications Union, Telecommunication Standards
Local Area Network

A login is synonymous to an account. It is comprised of a login name
and a password.

Massachusetts Institute of Technology

The Sybase system database that records all of the server-specific
configuration information, including authorized users, devices,
databases, system configuration settings, and remote servers.
Multi-Level Security

Network File Service

National Institute of Standards and Technology

Network Time Protocol

Oracle Call Interface

Open Database Connect

Operating System

Open Software Foundation

Personai Identification Number

Post Office Protocol

Point-to-Point Protocol

Privilege Ticket-Granting Ticket

Random Access Memory

Relational Database Management System

A physical copy of a DCE CDS directory. A writeable copy is called
the master replica and a read-only copy is called a read-only replica.

Glossary - 3

Glossary

Replication Unit A DCE CDS directory

ROM Read-Only Memofy

RPC Remote Procedure Call

RSA Rivest, Shamir and Adleman Algorithm

SGI | Silicon Graphics, Inc.

SLIP Serial Line Internet Protocol

SMTP Simple Mail Transfer Protocol

SQL Structured Query Language

surety A balance between confidentiality, Integrity and availability; a balance
between unauthorized used of information and assurance of authorized
use

Tcl Task Control Language

TCP/TP 7 Transmission Control Protocol/Internet Protocol

TGT Ticket-Granting Ticket

TIS Trusted Information Systems

UDP/IP User Datagram Protocol/Internet Protocol

UUID Universal Unique Identifier

Glossary - 4

Index

Index

Numerics

3GL Glossary - 1
4GL Glossary - 1
A

Access Control2-3,B-5,B-11
Access Control List 6 - 2

Access Control Lists B-5,B-9
AccountB - 6

Accounts B - 7

ACL 6 -2, Glossary - 1

ACL Inheritance B - 10

ACL Managers B - 10
ACLsB-5,B-9

alias Glossary - 1

Aliases B - 8

API| Glossary - 1

Application Broker C - 1

ASCII Glossary - 1

ATM Glossary - 1

Audit Service B - 11

Audit Services B - 1

Audit System 4 - 19

Audit Trails 2-3,4 - 19

Auditing Databases 4 - 20
Auditing Stored Procedures 4 - 20
Auditing Tables and Views 4 - 20
Auditing Users 4 - 20
Authentication ServiceB-6,B - 8
Authorization 4 - 1

B

Basic Stored Procedures 4 - 6
BSD Glossary - 1

C
CDSB-1,B-2,B-5,Glossary - 1
CDS advertiser B - 5

CDSclerks B -5

CDS ReplicationB - 5

CDS serverB -5

cdsd process B - 6

cell Glossary - 1

Cell Directory ServiceB-1,B-2,B-4
Cell-wide services B - 3

CERT Glossary - 1

CIAC Glossary - 1

CICS Glossary - 1

Clearinghouse B - 6, Glossary - 1
COAST Glossary - 1

Index

Commercial Off-The-Shelf 6 - 1
Common Application Environment B - 1
Connection6-5,C-1

CORBA Glossary - 1

COTS 6 - 1, Glossary - 1
CRADA Glossary - 1

CT-Lib C - 2, Glossary - 1

D

Data Encryption Standard 2 - 2

data security Glossary - 1

DBMS Glossary - 2

dbo Glossary - 2
DCE3-4,5-4,6-2,6-6,B-1,C-2,Glossary - 2
DCE Celis B - 2

DCE Control Program B - 3

DCE Secure Core B - 2

DCE serverB - 2

dcecpB -3
DES2-2,5-1,5-4,Glossary - 2

DF Glossary - 2

DFS B - 1, Glossary - 2

Digital Signature Algorithm 2 - 3

Digital Signature Standard 5 - 4

Digital Signatures 2 - 3

Directory Service B - 3

Distributed Computing Environment B - 1
Distributed File Service B - 1

Distributed Time ServiceB-1,B-2,B - 10
DNS B - 4, Glossary - 2

DOS Glossary - 2

Drift B - 10

DSA2-3,6- 4, Glossary - 2

DSS5-4

DTSB-1,B-2,B-10,B - 11, Glossary - 2
DTS Clerks B - 11

DTS Servers B - 11

E

EEPROM Glossary - 2

EF Glossary - 2

EMR Glossary - 2

Encryption 2 - 2

endpoint mapper B - 4

Endpoints B - 4

Entrust6-3,6-4,6-6

exec3-8

Extended Basic Stored Procedures 4 - 11
Extended Services B - 1

F

finger3-8

Index - 2

Index

firewall 3 -2

FTP Glossary - 2

fip3-8

G
GDAB-1,B-4,B-5,Glossary -2
GDS B - 1, Glossary - 2

Global Directory AgentB-1,B -4
Global Directory Service B - 1
Global name services B - 3
Grants4-5,4-6,4-9,4-16
Group B - 6

group Glossary - 2 -

GUI Glossary - 2

H

Host ServicesB - 11
|

I/O Glossary - 2

IDUP-GSS-API 6 - 4, Glossary - 2

IK Glossary - 2

International Standards Organization 5 - 1
IP Glossary - 2

ISO 5 -1, Glossary - 2

ISQL Glossary - 3

ISS3-4

ITU-T Glossary - 3

K
Kerberos3-4,3-5,5-4,6-2,6-6,B-10
Key Management 2 - 4

Keytab Files B - 10

L

Labeling 4 - 18

LAN Glossary - 3

login 3 - 8, Glossary - 3
M

M.LT. Glossary - 3

master database Glossary - 3
MLS Glossary - 3

mountd3 -9

Mutual Authentication B - 9
N

named 3 -7
/ netstat3-9
Network Authentication2-2,3-5
NFS 3 -7, Glossary - 3
NIST Glossary - 3
NTP Glossary - 3

Index -3

Index

0

Object Privileges 4 - 2
OCI C -2, Glossary - 3
ODBC C - 2, Glossary - 3
Open Horizon6-5,C- 1
Open Software FoundationB-1,C-2
Operator 4 - 1
Organization B - 6
Organizations B - 8

OS Glossary - 3

OSF B - 1, Glossary - 3
P

Personal Identification Number 5 - 2
PIN2-2,5-2, Glossary - 3
Policies B - 8
POP Glossary - 3
portmapper 3 - 8
PPP Glossary - 3
Principal B - 6
Principals B - 7
principals B - 5

- Privilege Service B-6,B -9
privilege ticket-granting ticket B - 9
PTGT B - 9, Glossary - 3
R

RAM Gilossary - 3

RDBMS Glossary - 3

Registry Service B - 6

Remote Procedure CaliB-1,B-2
Remote Procedure CallsB-2,C-2
Replica B - 6, Glossary - 3
Replication Unit Glossary - 4
replication unit B - 6

rexd3-9

Rivest, Shamir, Adleman 2 - 2

role Glossary - 4

ROM Glossary - 4

RPCB - 1, B - 2, Glossary - 4

RPC interfaces B - 3

rpcbind 3 - 8

RPCs C-2

rquotad 3 - 9
RSA2-2,2-3,5-1,5-4,6- 4, Glossary - 4
rusersd3-9

S

S/Key 3-4

SATAN3 -4

Secure CoreB - 1

Index - 4

Index

Secure Relational Database Management Systems 4 - 18

Secure Timestamping 2 - 4

SecuriD3-5

Security Groups B - 7

Security ServiceB-1,B-2,B-6

sendmail/smtp 3 - 7

Server Management Facilities B - 1
. Server Tickets B - 9 :

Session Key B - 8

SGl Glossary - 4

shell 3-8

Skew B - 10

SLIP Glossary - 4

Smart Cards 2 - 3

SMTP Glossary - 4

sprayd 3 -9

SQL Glossary - 4

SQL Server Glossary - 4

SRDBMS 4 - 18

statd 3 -7

stored procedure Glossary - 4

surety 6 - 1, Glossary - 4

Sybase Passwords 4 - 2

syslog3-8

systat3-9

System Administrator 4 - 1

System Security Officer 4 -1

T

talkk3 -8
Task Control Language B - 3
Tcl B - 3, Glossary - 4
TCP/IP B - 3, Glossary - 4
tcp_wrappers 3 - 4
telnet 3-8
ttp3-9
TGT B - 9, Glossary - 4
Threads Facility B-1,B -2
Three-tiered Model A - 1
Three-Tiered Support C - 2
Ticket B - 8
ticket-granting ticket B - 9
time3-9
Time Service B - 10

. TIS Glossary - 4
TIS firewall toolkit 3 - 5
Tripwire 3-5
Two-tiered Model A - 1
U

UDP/IP B - 3, Glossary - 4

Index

User Authentication 2 - 2
uucp3-9

UUID B - 2, Glossary - 4
vV .

Views 4 - 15

W

walld3-9

WAVE Glossary - 4

x .
X.5092-5,6-4
X/OpenB -1

Index - 6

Distribution

Distribution

— e e e == NN N L

[y

MS 0449
MS 0449
MS 0451
MS 1109
MS 0661
MS 1109
MS 0449
MS 0661
MS 0451
MS 1380

MS 9018
MS 0899
MS 0619

Joselyne Gallegos, 9415
Victoria Hamilton, 9415
Timothy Gaylor, 9417
Kevin McCurley, 9224
Timothy Meeks, 4821
Art Hale, 9224

Judy Moore, 9415
Michael Pendley, 4821
Michael Sjulin, 9417
David Larson, 4231

Central Technical Files, 8523-2
Technical Library, 4414

Review and Approval Desk, 12630
For DOE/OSTI

Distribution - 1

