+ LA-UR-96-2748

Title: | EXTENDING THE CLASS OF ORDER-K DELINEABLE
PROBLEMS FOR THE GENE EXPRESSION MESSY
GENETIC ALGORITHM

CONF~ 960 ?30« 5

{x.wm\.,ezwas u;

L e

~

g £ ¢nmm
SEP =09

C8Ti

Author(s): | H. Kargupta, D. E. Goldbert, L. Wang

Submitted to: | Foundations of Genetic Algorithms(FOGA4)
San Diego, CA, August 1996

DISTRBUTION OF THIS DOCUMENT 15 ’ MASTER

Los Alamos

NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity empldyer, is operated by the University of California for the U.S. Department of Energy
under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory
requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Form No. 836 R5
ST 2629 10/91

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

LA-UR-96- 2 148

Extending the Class of Order-k Delineable
Problems For the Gene Expression Messy
Genetic Algorithm

Hillol Kargupta
Computational Science Methods Group
Los Alamos National Laboratory
Los Alamos, NM 87545

David E. Goldberg & Lewei Wang
Department of General engineering
University of Illinois at Urbana-Champaign
Urbana, IL

Extending The Class of Order-kt Delineable Problems
For The Gene Expression Messy Genetic Algorithm

Hillol Kargupta*
Computational Science Methods Group

X Division, Los Alamos National Laboratory

Los Alamos, NM, USA.

Abstract

This paper revisits the recently introduced gene ez-
pression messy genetic algorithm (GEMGA) (Kar-
gupta, 1996) and offers some modifications to ex-
tend the class of order-k delineable problems (class
of problems that can be solved using a bounded order
of relations) in GEMGA. The fundamental compo-
nents that control the delineability of relations are re-
viewed in the light of the recently proposed SEARCH
framework (Kargupta, 1995). Modified class and re-
lation comparison statistics of GEMGA are proposed.
The sample complexity of this improved version of
GEMGA is shown to be subquadratic. Theoretical
conclusions are also substantiated by experimental re-
sults for large, multimodal order-k delineable prob-
lems with respect to class average comparison statis-
tic. We also present results for the recently con-
structed Goldberg-Lewet test functions.

1 Introduction

The gene expression messy genetic algorithm
(GEMGA)—a new class of messy GAs was introduced
in the recent past {Kargupta, 1996) following the al-
ternative perspective of natural evolution offered by
the SEARCH (Search Envisioned As Relation and
Class Hierarchizing) framework developed elsewhere
(Kargupta, 1995). SEARCH offered a foundation of
blackbox optimization (BBO) in terms of relations,
classes, and partial ordering.

The GEMGA embodied the lessons from SEARCH
in a distributed manner by using the natural moti-
vation of gene expression in evolution. The sample
complexity of this algorithm can be proven to be sub-
quadratic with the problem size for the class of order-k

*The author can be reached at, P.O. Box 1663, XCM, Mail Stop
F645, Los Alamos National Laboratory, Los Alamos, NM 87545,
USA. e-mail: hillol@lanl.gov

David E. Goldberg & Lewei Wang
Department of General Engineering
University of Illinois at Urbana-Champaign
Urbana, IL, USA.

delineable problems, defined with respect to the class
comparison statistic used in GEMGA.

The main objective of this paper is to extend the
class of order-k delineable problems for the GEMGA
by eliminating the interference among the class and
relation comparison statistics. Unlike the previous
version of GEMGA, the proposed scheme explicitly
deals with separate relation, class, and sample spaces.
We modify the transcription operator of GEMGA
to eliminate the interference and show the overall
sample complexity of the process still remains sub-
quadratic. However, the population size still re-
mains independent of problem length. This paper also
presents experimental results for this modified version
of GEMGA.

Section 2 briefly reviews the SEARCH framework.
Section 3 revisits the issue of order-k delineability
that plays an important role in GEMGA. Section 4
presents a description of the GEMGA and points out
the interference among the class and relation com-
parison statistics in the design of GEMGA. Section
5 describes the proposed modifications. This is fol-
lowed by Section 6 which presents the test results for
large multimodal, order-k delineable problems. Fi-
nally, Section 7 concludes this paper.

2 SEARCH: A Brief Review

The foundation of SEARCH is laid on a decom-
position of the blackbox search problem into relation,
class, and sample spaces. A relation is a set of ordered
pairs. For example, in a set of cubes, some white and
some black, the color of the cubes defines a relation
that divides the set of cubes into two subsets—set
of white cubes and set of black cubes. Consider a
4-bit binary sequence. There are 2* such binary se-
quences. This set can be divided into two classes us-
ing the equivalence relation! f###, where f denotes

} An equivalence relation is a relation that is refiexive, symmet-
ric, and transitive.

oo e 1100
\/

\so###\ ,”31011

R R e R X X L 5 0110

TTeeda ###0/’ R 0001

Relation space Class space Sample space

Figure 1: Decomposition of blackbox optimization in

SEARCH.

position of equivalence; the # character matches with
any binary value. This equivalence relation divides up
the complete set into two equivalence classes, 17 ##
and O###. The class 1### contains all the se-
quences with 1 in the leftmost position and 0###
contains those with a 0 in that position. The total
number of classes defined by a relation is called its
index. The order of a relation is the logarithm of its
index with some chosen base. In a BBO problem,
relations among the search space members are often
introduced through different means, such as represen-
tation, operators, heuristics, and others. The above
example of relations in binary sequence can be viewed
as an example of relation in the sequence representa-
tion. In a sequence space of length £, there are 2¢
different equivalence relations. The search operators
also define a set of relations by introducing a notion
of neighborhood. For a given member in the search
space, the search operator define a set of members
that can be reached by one or several application of
the operators. This introduces relations among the
members. Heuristics identifies a subset of the search
space as more promising than others often based on
some domain specific knowledge. Clearly this can be
a source of relations. Relations can sometimes be
introduced in a more direct manner. For example,
Perttunen and Stuckman (1990) proposed a Bayesian
optimization algorithm that divides the search space
into Delaunay triangles. This classification directly
imposes a certain relation among the members of the
search space. The same goes for interval optimiza-
tion (Ratschek & Voller, 1991), where the domain is
divided into many intervals and knowledge about the
problem is used to compute the likelihood of success
in those intervals. As we see, relations are introduced
by every search algorithm, either implicitly or explic-
itly. The role of relations in BBO is very fundamental
and important.

Relations divide the search space into different
classes and the objective of sampling based BBO is
to detect those classes that are most likely to contain

the optimal solutions. To do so requires constructing
a partial ordering among the classes defined by a re-
lation. The classes are evaluated using samples from
the search domain and a class comparison statistic is
used for comparing different classes. For a given class
comparison statistic <7 and some number M, a rela-
tion is said to properly delineate the search space if the
class containing the optimal solution is within the top
M classes, when the set of all classes defined by the
relation are ordered using <7. This basically means
that if a relation satisfies the delineation constraint
then, given sufficient samples, the relation will pick
up the class containing the optimal solution within
the top M ranked classes. If a relation does not sat-
isfy this, then the relation leads to wrong decision and
as a result success in finding the optimal solution is
very unlikely. .

A particular relation may not satisfy the delineation
constraint for different problems, different class com-
parison statistics, and different values of M. One re-
lation may work for a particular case and may fail to
do so for a different setting. Therefore, any algorithm
that aspires to be applicable for a reasonably general
class of problems, must search for appropriate rela-
tions. Determining whether or not a relation satisfies
this delineation constraint requires decision makingin
absence of complete knowledge. For a given relation
space ¥,, a BBO algorithm must identify the rela-
tions that properly delineate the search space with
certain degree of reliability and accuracy. This re-
quires comparing one relation with another using a
relation comparison statistic and constructing a par-
tial ordering among them.

A BBO algorithm in SEARCH cannot be efficient
if it needs to consider relations that divide the search
space in classes, with the total number of classes grow- .
ing exponentially with the problem dimension. For
example, in an £-bit sequence representation, if there
is a class of problem which requires considering the
equivalence relations with {£—1) fixed bits then there
is a major problem. This relation divides the search
space into 2¢~! classes and we cannot solve this prob-
lem in complexity polynomial in £. However, in BBO
the ultimate objective is to identify the optimal so-
lution which basically defines a singleton class. The
smaller the cardinality of the individual classes, the
larger the index of the corresponding relation. So we
need the higher order relations for finally identifying
the optimal solution, but we cannot directly evaluate
them since their index is large. The solution is to limit
our capability and realize that we can only solve those
problems which can be addressed using low order rela-
tions and when high order relations are decomposable
to those low order relations. This means that the in-

formation about low order relations can be used to
evaluate the higher order relations. Consider the fol-
lowing example. Let rg be a relation that is logically
equivalent to r1 Arg, where r; and ry are two different
relations; the sign A denotes logical AND operation.
If either of 1 or ro was earlier found to properly delin-
eate the search space, then the information about the
classes that are found to be bad earlier can be used
to eliminate some classes in ry from further consider-
ation. This process in SEARCH is called resolution.
Resolution basically evaluates the relations of higher
order using the information gathered by direct evalu-
ation of bounded order relations.

The above description gives a brief informal
overview of the SEARCH framework. As we saw,
SEARCH addresses BBO on three distinct grounds:
(1) relation space, (2) class space, and (3) sample
space. Figure 1 shows this fundamental decomposi-
tion in SEARCH. The major components of SEARCH
can be summarized as follows:

1. classification of the search space using a relation

2. sampling

3. evaluation, ordering, and selection of better
classes

4. evaluation, ordering, and selection of better rela-
tions

-

5. resolution

A detailed description of each of these processes and
their analysis, leading to the development of a bound
on sample complexity, can be found elsewhere (Kar-
gupta, 1995).

The SEARCH framework has clearly pointed out
the different facets of decision making in BBO and
explained why searching for relations is essential in
BBO. This also identified the class of order-k deline-
able problems, that can be solved in polynomial sam-
ple complexity in SEARCH. An order-k delineable
problem is one that can be solved using a polynomially
bounded number of relations. The main lessons that
will be used in the coming sections are, (1) search for
appropriate relations is essential for transcending the
Hmits of random enumeration, (2) both relation and
class spaces require correct decision making, (3) we
can only efficiently solve problems that need to con-
sider a bounded number of relations from the given
relation space, i.e. the class of order-% delineable prob-
lems, (4) the SEARCH perspective of implicit paral-
lelism (Holland, 1975)—evaluation of different rela-
tions from the same sample set.

Before we conclude this review on SEARCH, let us

revisit the issue of order-k delineability in order to

clear up our current objectives and future directions
for designing BBO algorithms.

Class of problems that
can be transformed to
order-k delineable problems
by relation construction

Class of all problems

Class of order-k delineable problems for a given algorithm

Figure 2: BBO problems from the delineability per-
spective.

3 Implications Of Order-k de-
lineability

As we saw in the previous section, the notion of
order-k delineability presents a picture of the general
class of BBO problems from the perspective of an al-
gorithm. In SEARCH, defining a BBO algorithm re-
quires specifying the relation space, class comparison
statistic, and the constant M that defines how many
“top” classes will be picked up. Therefore, by defi-
nition an algorithm in SEARCH specifies the class of
order-k delineable problems. For a chosen class com-
parison statistic and M, the relation space restricts
the class of order-k delineable problems for an algo-
rithm. Changing the relation space by constructing
new relations may convert a non-order-k delineable

‘problem to an order-k delineable one. For some prob-

lems finding such transformation by constructing new
relations may be possible in sample complexity, poly-
nomial in problem size, reliability, and accuracy of
the solution. Clearly, there may exist a class of non-
order-k delineable problems, that can be transformed
to order-k delineable problems in polynomial sample
complexity. Figure 2 shows a schematic description of
this classification of BBO problems.

It is important to note that, membership of a prob-
lem in the class of order-k delineable problems does
not necessarily guarantee that the algorithm will solve
that problem. It only says that the problem is “ ef-
ficiently solvable” in the chosen relation space, class
comparison statistic, and M. The algorithm needs to
perform adequate sampling and make decisions with
high confidence in the relation and class spaces in or-
der to find the desired quality solution. Therefore, the
first step of an algorithm should be to make sure it
can solve its own order-k delineable class of problems.
That will define the first milestone. The next step

should be to introduce mechanism for new relation
construction and investigate what kind of problems
can be dynamically transformed to order-k delineable
problems efficiently. Unfortunately, there hardly ex-
ists any algorithm that can adequately guarantee the
capability of solving even its order-k delineable prob-
lems. The goal of this paper is to take this elementary
step. The proposed version of gene expression messy
GA does not construct new relation space; rather it
guarantees the capability of solving its own order-k
delineable problems efficiently.

This sets the stage for launching the GEMGA for
solving its k-delineable problems. The following sec-
tion presents the computational and biological mo-
tivations behind the GEMGA. The main features of
the earlier version of GEMGA are described and the
need for explicit processing of relations, classes, and
samples are noted.

4 The GEMGA: Why, What,
And All That

In this section, we shall first present the motivation
behind the GEMGA. This will be followed by a quali-
tative description of previous version of the GEMGA.
Finally, we identify some features of the GEMGA that
restricts its class of order-k delineability problems and
suggest some remedies.

41 Why GEMGA?

The current version of GEMGA is designed to solve
its own class of order-k delineable problems with high
reliability and solution accuracy efficiently. Although
the next step will be to explore the possibility of in-
troducing relation construction for extending the class
of order-k delineable problems, the proposed version
does not make any effort to do that. The computa-
tional and biological motivations behind the GEMGA
are presented below.

e The Computational perspective: Despite
the distinct need of searching for relations in or-
der to transcend the limits of enumerative search,
there exists hardly any blackbox optimization al-
gorithm that realizes this. Moreover, the decision
makings in the relation and class spaces often in-
terfere with each other in common search algo-
rithms since the spaces are not distinctly defined.
For example both simulated annealing, genetic
algorithms use the sample space for evaluating
both relations and classes. The GEMGA tran-

scends these bottlenecks. It explicitly defines the
relation, class, and the sample spaces. It precisely

Table 1: Counterparts of different components of
SEARCH in natural evolution.

SEARCH Natural evolution
Relation space gene regulatory mechanism

Class space amino acid sequence in protein
Sample space DNA space

defines the relation and class comparison statis-
tics. It also provides a mechanism for controlling
the constant M. Moreover, the GEMGA is highly
suitable of distributed parallel implementation.
e The biological perspective:
The GEMGA also has a strong biological founda-
tion, which is based on a mapping from the rela-
tion, class, and sample spaces to different compo-
nents of natural evolutionary search space. Ta-
ble 1 summarizes this correspondence. It also
hypothesized a perspective of the search for ap-
propriate relations in evolution through gene ez-
pression.
Unfortunately, many of the existing computa-
tional models of evolution address only the ex-
tracellular flow of genetic information. Existing
models of evolutionary computation like genetic
algorithms (Holland, 1975), evolutionary strate-
gie (Rechenberg, 1973), and evolutionary algo-
rithms (Fogel, Owens, & Walsh, 1966) are some
examples. These existing perspectives of evo-
lutionary computation do not assign any com-
putational role to the nonlinear mechanism for
transforming the information in DNA into pro-
teins. The same DNA 1is used for different kinds
of proteins in different cells of living beings.
The development of different expression control
mechanisms and their evolutionary objectives are
hardly addressed in these models. They primar-
ily emphasize the extra-cellular flow. The main
difference among these models seems to be the
emphasis on crossover compared to mutation or
vice versa. The GEMGA emphasizes the com-
putational role of gene expression in evolution.
It makes use of transcription like operators for
detecting relations and classes.

4.2 Earlier version of the GEMGA

The gene expression messy GA (GEMGA) was intro-
duced elsewhere (Kargupta, 1996) following the need
for a BBO algorithm that properly searches for rela-
tions and pays careful attention to the fundamental
components of BBO. The main characteristic of the
GEMGA is the decomposition of the search space in

Table 2: Components of the gene data structure in
GEMGA.

Gene components

Purpose

locus position in sequence space
value sample space
weight class space

linkage set relation space

relation, class, and sample spaces. The structure of
the gene in the GEMGA played an important role in
the implementation of this decomposition. The earlier
proposed version of GEMGA used genes that defined,

e relation space in terms of weights associated with
genes;

o class and sample space together in terms of values
and loci.

Although the earlier version of GEMGA performed
well for different problems, the class of order-% delin-
eable problems for the GEMGA can be further ex-
tended by completely separating the relation, class,
and sample spaces from each other and modifying
the relation and class comparison statistics. The re-
cently proposed Goldberg-Lewei class of test func-
tions, which will be described later in this paper,
demonstrated that the such modifications are essen-
tial for making the GEMGA more widely applicable.
The following section describes the proposed version

of the GEMGA.

5 The GEMGA

This section introduces a modified version of the
GEMGA and shows that the overall sample complex-
ity is subquadratic. Section 5.1 discusses the repre-
sentation in GEMGA. Section 5.2 explains the popu-
lation sizing in GEMGA. This is followed by Section
5.3 that describes the main operators, transcription,
selection, and recombination. Section 5.4 presents of
the overall mechanisms.

5.1 Representation

The GEMGA uses a sequence representation. Each
sequence is called a chromosome. Every member of
this sequence is called a gene. A gene is a data struc-
ture; As in the previous version of the GEMGA, it
contains the locus, value, and weight. However, in

addition to that every gene also contains a dynamic
list of integers, called the linkage set. The locus de-
termines the position of the member in the sequence.
The locus does not necessarily have to be the same as

the physical position of the gene in the chromosome.
For example, the gene with locus ¢, may not be at the
i-th position of the chromosome. When the chromo-
some is evaluated, however the gene with locus ¢ gets
the i-th slot. This positional independence in cod-
ing was introduced elsewhere (Deb, 1991; Goldberg,
Korb, & Deb, 1989) to enforce the proper consider-
ation for all relations defined by the representation.
The GEMGA does not depend on the particular se-
quence of coding. For a given £ bit representation,
the genes can be placed in arbitrary sequence. A gene
also contains the value, which determines the value of .
the gene, which could be any member of the alphabet
set, A. The weights associated with every gene take
a positive real number except at the initial stage. All
weights are initialized to -1.0. The weight space over
all the genes define the class space of the GEMGA.
The linkage set of a gene is a list of integers defining
the set of genes related with it. If the genes with loci,
{1,5,10,15} are related to each other then the gene
with locus 1 will have the linkage set {5,10,15}. Sim-
ilarly, the gene with locus 5 will have the linkage set
{1,10, 15}. The linkage set space over all genes defines
the relation space of the GEMGA. Table 2 illustrates
different components of a gene in the GEMGA. No
two genes with the same locus are allowed in the se-
quence. In other words, unlike the original messy GA
{Deb, 1991; Goldberg, Korb, & Deb, 1989) no un-
der or overspecifictions are allowed. A population in
GEMGA is a collection of such chromosomes.

5.2 Population sizing

The GEMGA requires at least one instance of the op-
timal order-k class in the population. For a sequence
representation with alphabet A, a randomly generated
population of size A* is expected to contain one in-
stance of an optimal order-k class. The population
size in GEMGA is therefore, n = cA¥, where ¢ is a
constant. When the signal from the relation space is
clear, a small value for ¢ should be sufficient. How-
ever, if the relation comparison statistic produces a
noisy signal, this constant should statistically take
care the sampling noise from the classes defined by
any order-k relation. Since the proposed version of
GEMGA uses sequence representation, the relation
space contains total 2¢ relations. However, GEMGA
processes only those relations with order bounded by
a constant, k. In practice, the order of delineability
(Kargupta, 1995) is often unknown. Therefore, the
choice of of population size in turn determines what
order of relations will be processed. For a population
size n, the order of relations processed by GEMGA
is, k = log(n/c)/log|A|. If the problem is order-k de-
lineable (Kargupta, 1995) with respect to the chosen

// pick is the currently considered gene

TranscriptionPhaseI(CHROMOSOME chrom,
int pick)

{

double phi, delta;
int dummy;
double dwt;

dwt = chrom[pick].Weight();

if(dwt > 0.0 OR dwt == -1.0) {
phi = chrom.Fitness();
dummy = chrom[pick].Value();
// Change the value randomly
chrom[pick] .PerturbValue();
// Compute new fitness
chrom[pick] .EvaluateFitness();
// Compute the change in fitness
delta = chrom[pick].Fitness() - phi;
// For minimization problem
if(delta < 0.0)

delta = 0.0;
// Set the weight
if (dwt < delta OR delta == 0.0)
chrom[pick].SetWeight(delta);

// Set the value to the original value
chrom[pick].SetValue(dummy);
// Set the original fitness
chrom[pick].SetFitness(phi);

Figure 3: Transcription Phase 1 operator for min-
imization problem. For maximization problem, if
delta< 0 absolute value of delta is taken and other-
wise delta is set to 0.

representation and class comparison statistics then
GEMGA will solve the problem otherwise not. In
that case a higher population size should be used to
consider higher order relations.

5.3 Operators

GEMGA has four primary operators, namely: (1)
transcription, (2) class selection, (3) string selection,
and (4) recombination. Each of them is described in
the following.

5.3.1 Transcription

As mentjoned before, the weight space of the pro-
posed version of the GEMGA chromosomes represents
" the class space. On the other hand the relation .space
is defined by the linkage set associated with every

// pickl, pick2 are the indices of a pair of genes

TranscriptionPhasell (CHROMOSOME chrom,
int picki, int pick2)

{

double phi, delta;
int dummyl, dummy2;

if (chrom[picki].Weight() > 0) {
dummyl = chrom[picki].Value();
phi = chrom.Fitness();
chrom[picki] .PerturbValue();
chrom.EvaluateFitness();
if (chrom[pick2].Weight() > 0.0) {
chrom[pick2] .PerturbValue();
dummy2 = chrom[pick2].Value();
chrom[pick2] .PerturbValue();
chrom.EvaluateFitness();
delta = chrom.Fitness() - phi;
// For minimization problem
if(delta < 0.0)
delta = 0.0;
if(delta == chrom[pick2].Weight()) {
chrom[picki].AddLinkageSet (pick2);
chrom[pick2].AddLinkageSet (pickl);

chrom[pick2] .SetValue(dummy2);
}
chrom[pick1].SetWeight(1.0);
// Set the value to the original value
chrom[picki].SetValue(dummy1);
// Set the original fitness
chrom.SetFitness(phi);

Figure 4: Transcription Phase II operator for mini-
mization problem.

gene. The transcription operator detects the appro-
priate order-k relations. The transcription phase I
operator determines the instances of genes contribut-
ing to the locally optimal classes. The transcription
phase II operator determines the clusters of genes pre-
cisely defining the relations among those instances of
genes. Comparing relations requires a relation com-
parison statistics. The GEMGA does not process the
relations in a centralized fashion; instead it evaluates
relations locally in a distributed manner. Every chro-
mosome tries to determine whether or not it has an
instance of a good class belonging to some relation.
The transcription phase I operator considers one gene
at a time. The value of the gene is randomly flipped to
note the change in fitness. For a minimization prob-

lem, if that change cause an improvement in the fit-
ness {i.e. fitness decreases) then the original instance
of the gene certainly do not belong to the instance of
the best class of a relation, since fitness can be fur-
ther improved. Transcription sets the corresponding
weight of the gene to zero. On the other hand if the
fitness worsens {i.e. fitness increases) then the original
gene may belong to a good class; at least that obser-
vation does not say it otherwise. The corresponding
weight of the gene is set to the absolute value of the
change in fitness. Finally, the value of that gene is set
to the original value and the fitness of the chromosome
Is set to the original fitness. In other words, ultimately
transcription phase I does not change anything in a
chromosome except the weights. For a maximization
problem the conditions for the weight change are just
reversed. The same process is continued determinis-
tically for all the £ genes in every chromosome of the
population. Figure 3 shows the Transcripton phase |
operator. Transcription phase II identifies the exact
relations among the genes and constructs the linkage
set of every gene in a choromosme. This operator per-
forms pairwise consideration of genes. The objective
is to identify the set of genes that are related with any
given gene from the chromosome. Among the () pos-
sible pair of choices only those pairs are considered in
which both the genes have non-zero weights. In other
words if a gene is identified as a possible contributor
to an instance of locally optimal set of genes then its
dependencies on other such genes in that chromosome
are tested using the transcription phase II operator.
For every gene with non-zero weight the linkage set
is constructed and the real weights are replaced by
boolean weights. Figure 4 shows the pseudo-code for
this operator, where pickl and pick2 define the loci
of the pair of genes.

For genes with higher cardinality alphabet set (A)
this process is repeated for some constant C' < |A]
times. The following section describes the two kinds
of selection operators used in GEMGA, which corre-
spond to the selective pressures in protein and DNA
spaces of natural evolution.

5.3.2 Selection

Once the relations are identified, selection operator
is applied to make more instances of better classes.
GEMGA uses two kinds of selections—(1) class se-
lection and (2) string selection. Each of them is de-
scribed in the following:

o Class Selection: The class selection operator is
responsible for selecting individual classes from
the chromosomes. Better classes detected by the
transcription operator are explicitly chosen and

- given more copies at the expense of bad classes

ClassSelection(chroml, chrom2)
CHROMOSOME chromi, chrom2;

{

int i;

for(i=0; i<Problem.length; i++) {
if(Rnd()<0.5 AND chromi[i].Weight()>0) {
if(chromi[i] .LinkageSet.Length() >
chrom2[i] .LinkageSet.Length()) {
// Collect linkage sets of chosen genes
SelectSet.Collect[LinkageSet[il]; }
}
}
for(i=0; i<SelectSet.Length(); i++)
chrom2[SelectSet[i]]=chromi[SelectSet[i]];

}

Figure 5: Class selection operator in GEMGA. A con-
sistent coding (where chroml[i] and chrom2[i] has
common locus) is used in place of messy coding for
the sake of illustration. Rnd() generates a random
number in between 0 and 1.

in other chromosomes. Figure 5 describes the op-
erator. Two chromosomes are randomly picked;
A set of genes with non-zero weights are chosen
from one of them, chromi; those genes with cardi-
nality of their LinkageSet strictly greater than
those of their counterparts in the other partici-
pating chromosome are collected in a list called
SelectSet. Then the genes of the chromosome
chromi corresponding to SelectSet are copied
on the corresponding genes of chrom2.

e String Selection: This selection operator gives
more copies of the chromosomes. A standard
binary tournament selection operator (Brindle,
1981; Goldberg, Korb, & Deb, 1989) is used.
Binary tournament selection randomly picks up
two chromosomes from the population, compares
their objective function values, and gives one ad-
ditional copy of the winner to the population at
the expense of the looser chromosome.

The following section describes the recombination op-
erator in GEMGA.

5.3.3 Recombination

Figure 6 shows the mechanism of the recombi-
nation operator in GEMGA. It randomly picks up
two chromosomes from the population and considers
all the genes in the chromosomes for possible swap-
ping. It randomly marks one among them. Just
like the ClassSelection operator Recombination se-
lects a set of genes called the ExchangeSet. Genes of

Recombination(chromi, chrom2)
CHROMOSOME chroml, chrom2;

{

int i;

-GENE dummy;

for(i=0; i<Problem.length; i++) {
if (Rnd()<0.5 AND chromi[i] .Weight()>0) {
if(chrom1[i] .LinkageSet.Length() >
chrom2[i] .LinkageSet.Length()) {
// Collect linkage sets of chosen genes
ExchangeSet.Collect[LinkageSet[il];

}
}
}

for(i=0; i<ExchangeSet.Length(); i++) {
dummy=chromi [ExchangeSet[il];
chrom1[ExchangeSet[i]]=
chrom2[ExchangeSet[ill;
chrom2[ExchangeSet [1]]=dumny;

}
}

Figure 6: Recombination operator in GEMGA. A con-
sistent coding (where chrom1{i] and chrom2[i] has
common {ocus) is used in place of messy coding for
the sake of illustration. Rnd() generates a random
number in between 0 and 1.

chromi and chrom?2 corresponding to the members of
ExchangeSet are exchanged.

The following section describes the overall mecha-
nism of the algorithm.

5.4 The algorithm

GEMGA has two distinct phases: (1) primordial
stage and (2} juxtapositional stage. The primordial
stage first applies the transcription phase I operator
for ¢ generations, deterministically considering every
gene in each generation. This is followed by the appli-
cation of the transcription phase II operator for each
pair of genes with non-zero weights. During this stage
the population of chromosomes remains unchanged,
except that the weights of the genes change and the
linkage sets get constructed. This is followed by the
Jjuxtapositional stage, in which the string selection,
class selection, and recombination operators are ap-
plied iteratively. Figure 7 shows the overall algorithm.
The length of the transcription phase I application is
£. The length of the application of the transcription
phase II application is £2 — £ in the worst case. The
length of the juxtapositional stage can be roughly es-
timated as follows. If ¢ be the total number of gener-

void GEMGA() {
POPULATION Pop;
int i, j, k, C, kmax;

// Initialize the population at random
Initialize(Pop);
i=0;
// Primordial stage
While(i <) { // Cis a constant
=0
Repeat {
// Identify better relations
Transcription(Pop, j);
// Increment generation counter
=i+
} Until(j == Problem length)
i=1i+1;
}
TranscriptionPhaselI(Pop);
k = 0;
// Juztapositional stage
Repeat {
// Select better strings
Selection(Pop);
// Select better classes
ClassSelection(Pop);
// Produce offspring
Recombination{(Pop);
Evaluate(Pop); // Evaluate fitness
// Increment generation counter
k=k + 1;
// k_maz is of O{log{Problem_length))
} Until (kX > kmax)

}

Figure 7: Pseudo-code of GEMGA. The constant C j
|Al, where |A| is the cardinality of the alphabet set.

ations in juxtapositional stage, then for binary tour-
nament selection, every chromosome of the popula-
tion will converge to same instance of classes when
2t = n, ie. t = logn/log2. Substituting n = c|Al¥,
we get,f = logetklogiAl A constant factor of ¢ is
recommended for actual practice. Clearly the num-
ber of generations in juxtapositional stage is O(k).
Let us now compute the overall sample complexity of
GEMGA. Since the population size is O(JA|*) and the
primordial stage continues for C¢ = O(f) generations,
the overall sample complexity,

SC

O(A[F(€+ €2 — 0+ k)
O(AI*(€2 + k)

Note that the transcription phase II opetator is ap-

plied on those pair of genes that have non-zero
weights. Therefore, the complexity of this operation
is quadratic only in the worst case when all the genes
in a chromosome have non-zero weights.

GEMGA is a direct realization of the lessons from
the SEARCH framework. Now that we described the
algorithm let us take a pause and see how the different
components of GEMGA maps onto the SEARCH.

¢ Relation, class, and sample spaces: The
linkage set defines the relation space; the weights
define the class space and the (value, locus) pair
define the sample space.

¢ Class comparison statistics: The class com-
parison statistic in GEMGA is defined in two
stages. First of all, the transcription phase I op-
erator identifies the locally optimal set of genes
by bitwise perturbation. Once the transcription
phase II operation is performed to identify the
relations among these set of genes, all the genes
defining locally optimal classes are assigned a
non-zero weight 1. This makes sure that the
classes are not given any undeserved bias based
on their local evaluation. The earlier version of
GEMGA had this undue bias. The local eval-
uation was used to compare classes at a global
level.

e Relation comparison statistics: Transcrip-
tion phase II identifies the linkage set of the lo-
cally optimal set of genes. The relation and class
comparison statistics are mutually dependent in
GEMGA.

e Constant M: The value of M is controlled in
a distributed manner in GEMGA. The class se-
lection operator controls the value of M in the
gemga. As we increase the class selection proba-
bility the M value is decreased and the vice versa.

» Recombination: This implements the resolu-
tion operation of SEARCH.

The following section presents the test results.

6 Test Results

Designing a test set up requires careful considera-
tion. An ideal set up should contain problems with
different dimensions of problem difficulty, such as
multi-modality, bounded inappropriateness of rela-
tion space (BIRS), problem size, scaling, noise. The
GEMGA has been tested against problems with all
of these dimensions of difficulties (Kargupta, 1996).
However, because of limited space, in this section,

we present the performance of GEMGA for prob--

lems with only massive multimodality and controlled
amount of BIRS. For all functions the average number

Recombination probability | 1.0
Class selection probability | 1.0
String selection probability | 1.0

Table 3: GEMGA parameters.

of function evaluations per success (AFPS) is mea-
sured. For every function we choose the desired solu-
tion value (DSV) a priori. We say the algorithm was
successful if it reaches the DSV.

6.1 Problems with BIRS and massive
multimodality

Deceptive trap functions {Ackley, 1987) are used as
basic building blocks for designing this test suite. A
trap function can be defined as follows:

flz) = £ if u=¥¢
= ¢ —1—u otherwise,

where u is the number of 1-s in the string z and ¢’ is
the length of the sequence used for representing the
variable z. Goldberg, Deb, and Clark (1992) showed
that such deceptive problems can be used to design
problems of bounded difficulty. In a trap function
defined over a sequence of length # the order of de-
lineability is £ with respect to the class average com-
parison statistics. Although GEMGA does not work
using the class average comparison statistic (i.e. when
classes are compared with respect to the distribution
means) this gives us a simple way to capture the main
essence. When multiple number of such functions are
concatenated with each other a problem defined over
a sequence of length ¢ with order-£' delineability can
be designed. Since the order of delineability directly
controls the BIRS, such concatenated functions can
be effectively used for designing problems with BIRS
by controlling the #. Such functions have only £/¢
proper relations among the (4) order-5 relations that
must be detected in order to find the global solution.
Therefore, searching for the appropriate relations is
not a trivial job in this class of problems. Apart
from BIRS, such functions also offer multimodality.
If we carefully observe, we shall note that a trap func-
tion has two peaks. One of them corresponds to the
string with- all 1-s and the other is the string with
all 0-s. If we design a problem by concatenating m
such functions, it will have a total of 2™ local optima
and among them only one will be the globally optimal
solution.Clearly this class of problems are massively
multimodal and has bounded inappropriateness of the
relation space, defined by the representation.

GEMGA performance ~—
Quadratic growth -»--

Funclion evalualions

L L .
250 350 400 450 500

Figure 8: Problems with BIRS and massive multi-
modality: Growth of the number of function evalua-
tions with problem size. The population size for all
problem sizes was 300. Note that the sample com-
plexity is subquadratic.

For testing the GEMGA, a test function is con-
structed by concatenating multiple numbers of trap
functions, each with ¢ = 5. Therefore the order of
delineability 1s five. As we increase the number of
functions, in other words the overall problem length
£, the degree of BIRS remains constant, but the degree
of multimodality increases exponentially. For £ = 200,
the overall function contains 40 subfunctions; there-
fore, an order-5 bounded 200-bit problem has 24° local
optima, and among them, only one is globally optimal.

The GEMGA is tested against order-5 deceptive
problems of different sizes. Table 3 shows the
GEMGA parameters used for all of them. Figure
8 shows the average number of function evaluations
from five independent runs needed to find the DSV
for different problem sizes. For all problems, the DSV
is set to the globally optimal solution, which is equal
to problem size, £. The population size is chosen as
described earlier in this paper. The chosen popula-
tion size for all the problems was 300. The sample
complexity clearly grows linearly and the population
size is constant.:

6.2 Goldberg-Lewei test functions

Following the development of the GEMGA, Gold-
berg and Lewei proposed (personal communication)
two so called weight misleading test functions that
apparently mislead the original version of GEMGA.
Let us first define those two functions.

e GL1: This function is comprised of order 5 subfunc-
tions. Each of the order 5 subfunctions are defined as
follows:

o(1###1) = 4

é1(z,v1,v2) {

int i=0;

while(x[i]==0) i++;
if((i%2) == 1)) return vi;
else return v2;

}

Figure 9:
o(1###0) = 8
o(0###1) = 10

Otherwise = 0

Character # represents don’t care values, in other
words the objective function value does depend on
those values. Such order 5 subfunctions are concate-
nated one after another for constructing problems of
larger size. The second function is defined as follows:
e GL2: This is a function of unitation, i.e. the num-
ber of 1’s in the string. Let us denote the unitation
variable by u and subfunction size by k. A subfunc-
tion of size k can be defined as follows:

olz) = 10 if u=0;
= ¢1(2,7,2) if u=1;
= ¢:1(2,4,3) if u=k-1,
= 8 if u=k;

0 Otherwise

where ¢1(z) is defined in Table 9.

The class comparison statistic in the original ver-
sion of GEMGA had undue reliance on the local eval-
nation of the classes. In that version, the goodness
of the class was estimated by the change in objec-
tive function value caused by local perturbation. If
the transcription phase I operator produces a posi-
tive weight for a gene, then we know that the gene
belong to a locally optimal class. The absolute value
of the fluctuation in objective function value does not
necessarily represent the relative goodness of differ-
ent classes. Moreover, the linkage set used to be im-
plicitly determined by relative similarity in weights
among different genes. These problems may lead to
fooling GEMGA for certain class of problems. This
is exactly what Goldberg and Lewei showed. Let us
now follow the construction of their test functions.

Consider function GL1. Table 4 shows the weights
of the strings corresponding to one order & subfunc-
tion and the objective function values. Irrelevant bits
are represented by # character. Clearly strings with
0 in the leftmost and 1 in the rightmost position
(04t 4#£#1) are the globally optimal solutions. How-
ever, not all the weights of these strings are greater

Strings Weights ®

GL1 O###1 600010 10
1#4##0 80004 8

1###1 30000 4

O0###0 00000 0

GL2 | 0000000000 | 3838383838 |10
1111111111 (4545454545 | 8

Table 4: Weights after primordial stage for GL1 and
GL2.

4.50+06 * T T T T
GEMGA performance ~— A
Quadratic growth -x--
40408 |]
3.50406
30406 -

2.56406 -

:i

Function Evaluations

50406 -
1e+06

Figure 10: Goldberg-Lewei test function GLI:
Growth of the number of function evaluations with
problem size. The population size for all problem
sizes was 400. Note that the sample complexity of
the GEMGA is subquadratic.

than the counterparts in other strings. For example,
strings 1###0 will have the highest weight in the
leftmost position. As a result repeated application of
weight based class selection and recombination will
produce the strings 1###1, which are suboptimal.

Function GL2 shares the same philosophy. Table 4
shows the weights and objective function values of the
top two kinds of strings. Again as we see the weights
in the odd positions of the best solution are less than
the corresponding weights of the second best solution.
Repeated application of weight based class selection
and recombination will produce the suboptimal solu-
tion, 1010101010.

The original version of GEMGA failed to solve these
problems because of the reasons noted earlier in this
section. However, the currently proposed version of
GEMGA eliminated those shortcomings. This ver-
sion of GEMGA is tested on GL1 up to the problem
size of 1000. Figure 10 shows the growth of the num-
ber of function evaluations along problem size. The
same set of parameters as given in Table 3 is used. We
also applied GEMGA on a 250-bit version of GL2. A

population size of 5000 is used, since order of deline-
ability in that instance of GL2 is 10; 2!0 = 1024; A
constant factor of b is used to make sure the presence
of all order-10 instances of good classes. The GEMGA
solved this problem with a total number of function
evaluations 1.34168¢ + 06.

The following section concludes this paper.

7 Conclusion

This paper revisited the gene expression messy ge-
netic algorithm. It proposed a further decomposed
processing of relations, classes, and samples. The un-
due reliance on local evaluation in ordering the classes
is removed. The transcription phase II operator is in-
troduced for explicitly detecting the relations. We
also showed that the worst case complexity of the al-
gorithm is quadratic. Experimental results demon-
strated that the GEMGA can solve large multimodal
problems with bounded inappropriateness of represen-
tation.

The GEMGA eliminates many problems of the pre-
vious versions of messy GAs. The main improvements
are (1) explicit processing of relations and classes, (2)
eliminating the need for a template solution, (3) re-
ducing the population size from O(JA{¥£) to O(|A[¥)
for order-k delineable problems in sequence represen-
tation of length ¢, (4) eliminating the thresholding
scheduling problem of the fmGA (Goldberg, Deb,
Kargupta, & Harik, 1993), and (4) reducing the run-
ning time by a large factor.

As we noted earlier, our immediate goal is to design
an algorithm that can effectively solve its own order-k
delineable class of problems. This paper brought us
little closer to that goal. So far, we have only used
those relations that are defined by the chosen rep-
resentation. The next step will be to introduce new
relation construction for converting non-order-k delin-
eable problems to order-k delineable problems.

8 Acknowledgement

The first author acknowledges the support from US.
Department of Energy, AFSOR Grant F49620-94-1-
0103.

References

Ackley, D. H. (1987). A connectionist machine for
genetic hill climbing. Boston: Kluwer Academic.
Brindle, A. (1981). Genetic algorithms for func-
tion optimization. Unpublished doctoral dis-
sertation, University of Alberta, Edmonton,

Canada.

Deb, K. (1991). Binary and floating-point function
optimization using messy genetic algorithms (Il-
HGAL Report No. 91004). Urbana: University
of Hlinois at Urbana-Champaign, Illinois Ge-
netic Algorithms Laboratory.

Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966).
Artificial intelligence through simulated evolu-
tion. New York: John Wiley.

Goldberg, D. E., Deb, K., & Clark, J. H. (1992).
Genetic algorithms, noise, and the sizing of pop-
ulations. Complexr Systems, 6, 333-362.

Goldberg, D. E., Deb, K., Kargupta, H., & Harik,
G. (1993). Rapid, accurate optimizaiton of dif-
ficult problems using fast messy genetic algo-
rithms. In Forrest, S. (Ed.), Proceedings of the
Fifth International Conference on Genetic Al-
gorithms (pp. 56-64). San Mateo, CA: Morgan
Kaufmann.

Goldberg, D. E., Korb, B., & Deb, K. (1989). Messy
genetic algorithms: Motivation, analysis, and
first results. Complezr Systems, 3(5), 493-530.
(Also TCGA Report 89003).

Holland, J. H. (1975). Adaptation in natural and
artificial \systems. Ann Arbor: University of
Michigan Press.

Kargupta, H. (1993, October). SEARCH, Polyno-
mial Complexity, and The Fast Messy Genetic
Algorithm. Doctoral dissertation, Department
of Computer Science, University of Illinois at
Urbana-Champaign, Urbana, IL 61801, USA.
Also available as [IIGAL Report 95008.

Kargupta, H. (1996, January). SEARCH, evolu-
tion, and the gene erpression messy genetic al-
gorithm. Los Alamos Unclassified Report LA-
UR-96-60.

Perttunen, C., & Stuckman, B. (1990). The rank
transformation applied to a multi-univariate
method of global optimization. IEEE Transac-
tions on System, Man, and Cybernetics, 20,
1216-1220.

Ratschek, H., & Voller, R. L. {1991). What can in-
terval analysis do for global optimization? Jour-
nal of Global Optimization, 1, 111-130.

Rechenberg, 1. (1973). Bionik, evolution und op-
timierung. Naturwissenschaftliche

Rundschau, 26, 465-472.
DISCLAIMER

ared as an account of work sponsored by an agency of the United Statt?s
Government. Neither the United States Govern{nent nor any agency theref)fi) ;lf:l‘ any of d:;lir.
employees, makes any warranty, express or implied, or assqmes any legal liabi tl Yy orr ;i? o
bility for the accuracy, completeness, or usefulness of any ?nformeftlon, appar:d us, ;})l o Re,f e,-
process disclosed, or represents that its use would not infringe anately owned rig d o
ence herein to any specific commercial product, process, or service by.trade name, tr:\ emam:
manufacturer, or otherwise does not necessarily constitute or imply its endommel’]['ﬂ reco
mendation, or favoring by the United States Government or any agency thex't.',ofil e }’19;\;::
and opinions of authors expressed herein do not necessarily state or reflect those o

Uhnited States Government or any agency thereof.

This report was prep

