Microsoft SQL Server
6.0° Workbook

E. C. Augustenborg :

September 1996

Prepared for
the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830

Pacific Northwest Laboratory
Richland, Washington 99352

PNNL-11306

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that:
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, Or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

Introduction

This workbook was prepared for introductory training in the use of Microsoft SQL Server
Version 6.0. .

The examples are all taken from the PUBS database that microsoft distributes for training .

purposes or from the Microsoft Online Documentation.

Relational Database

Relationships are implied by data values and do not need to be predefined.
Based on tables.)

Simpler and more understandable than other models. Easier to maintain.
Has a special language (SQL) for data definition, retrieval, and update.

e Can define rules that maintain the integrity of the data.

Other types of database models:
Flat file: Application is integrated with the database record structure

Hierarchical: Each data record is linked to others through the data structure (parents
& children)

Network: Random links between records established when the data is defined

Basic Elements of Relational Model

A Table

Attributes (Columns) - describe the domain or entity (Name, Age, Height)
Domain: range of valid entries for a given column.
Instance (Row) : A group of related fields (columns) of information treated as a unit.

Relationships: In a relational database management system, relationships among data are
left unstated in the definition of a database. They become explicit when the data is
manipulated. However, when you are designing your database you need to give
considerable to thought to the relationships between the data you wish to collect.

A table : is a collection of rows that have associated columns. According to the rules of
good database design (called normalization rules), each table should describe one type of
entity: a person, place, event, or thing. When you want to present or extract information
about two or more types of entities, you use the join operation. The join operation is the
hallmark of the relational model of database management

Entity-Relationship Diagram: A graphical portrayal of entities and their relationships.

EXERCISE: Do an E-R diagram for a Training Application.

g

pp—

\ | Types of Keys

A key identifies a group of records.

Primary Key: The column(s) whose values uniquely identify a row in a table.
Composite primary key. More than one column is needed to make a unique key.

Foreign Key: A column in one table is the primary key of another tables. Foreign keys
are important when defining constraints across tables.

Contrived Key: The key is not a natural part of the data. For example: Item # is
generated for each item in an order.

In this version of SQL Server you can enforce data integrity by defining the keys when
you create the table.

Exercise: Look at some of the tables in the pubs database and describe their keys

Normalization of Tables

Normal Forms: C.F. Codd developed this in order to reduce put the database is a logically
consistent form with minimum data redundancy. Each normal form eliminates certain
imperfections in the data model. However, normalization does not guarantee that you
have the best design ! You may need to denormalize for performance considerations.

1* Normal Form: The value of any attribute in a record must be a single value from the
domain of that attribute, not a set of values.

Eg: Multiple values in the Locations field is not allowed

Dept_Name | Dept_Number | Manager Location
Research 5 333444555 | Los Alamos, Richland, Seattle
Support 6 999999999 | New York

2" Normal Form: A relationship is in this form if it is in 1* normal form and all non-key
attributes are fully dependent on the primary key.

If the key of the table below is Emp_ID + Project_Number then Employee_name is
dependent only a portion of the key.

-Emp_@_l) l-’roject_Number Employee Name
123 AS5 Mary Smith
456 K44 John Doe

3" Normal Form: A relationship is in this form if it is in the 2" normal form and all the
nonkey attributes are mutually independént and fully dependent on the primary key.

In the table below Dept_Name is dependent on Dept but the key of the table is Emp_id

Emp_ID | Name -Address -T)ept ﬁept_Name
123 Mary Smith Seattle 5 . | Research
456 John Doe Los Alamos | 6 Support

ALY PR T A0 S I e N S

SQL Preview Using ISQL/W

Titles

Title_id Title Pub_id Price Ytd_sales

B01032 Cooking with | 1389 19.99 4095
Computers

MC3021 The Gourmet | 0877 20.95 22246
Microwave

PC1035 But is it User | 1389 22.95 8780
Friendly

" USE PUBS

GO

SELECT *

FROM titles

ORDER BY title

Title_id title , type pub_id price advance royalty

ytd_sales notes

pubdate

PC1035 ButIs It User Friendly? popular_comp 1389 2295 7,000.00 16

8780 A survey of software for the naive user, focusing on the -

‘friendliness’ of each. Jun 30 1991 12:00AM

PS1372 Computer Phobic AND Non-Phobic Individuals: Behavior Variations psychology 0877 21.59

7,000,00 10 375 A must for the specialist,

this book examines the difference between those who hate and fear computers and those who

don't. Oct 21 1991 12:00AM

SELECT title_id, title, price
FROM titles
‘WHERE price < 21

title_id title price
BUI1032 The Busy Executive's Database Guide 19.99
BU1111 Cooking with Computers: Surreptitious Balance Sheets 11.95
BU2075 You Can Combat Computer Stress! 2.99
BU7832 Straight Taltk About Computers 19.99
MC2222 Silicon Valley Gastronomic Treats 19.99
MC3021 The Gourmet Microwave 2.99
PC8888 Secrets of Silicon Valley 20.00
PS2091 Is Anger the Enemy? 10.95
PS2106 Life Without Fear 7.00
PS3333 Prolonged Data Deprivation: Four Case Studies 19.99
PS7777 Emotional Security: A New Algorithm 7.99
TC3218 Onions, Leeks, and Garlic: Cooking Secrets of the Mediterranean 20.95
TC4203 Fifty Years in Buckingham Palace Kitchens 11.95
TC7777 Sushi, Anyone? 14.99

(14 row(s) affected)

SELECT sum(ytd_sales) Total_sales, avg(price) Avg_price
FROM titles

Total_sales Avg_price

97446 14.77

(1 row(s) affected)

SELECT
FROM
WHERE

title_id ytd_sales
BU1032 1.1095
BU7832 4095

title_id, ytd_sales
titles
ytd_sales BETWEEN 4095 AND 9000

PC1035 8780

PC8888 4095

TC7777 4095

(5 row(s) affected)

Publishers

Pub_id Pub_name City State

1389 Algodata Berkeley CA
Infosystems

0736 New Age Books Boston MA

0877 Binnett & Hardley | Washington | DC

SELECT p.pub-name, t.title

FROM publishers p , titles t

WHERE p.pub_id = tpub_id

pub_name title

Algodata Infosystems The Busy Executive's Database Guide

Algodata Infosystems Cooking with Computers: Surreptitious Balance Sheets

New Moon Books You Can Combat Computer Stress!

Algodata Infosystems Straight Talk About Computers

Binnet & Hardley Silicon Valley Gastronomic Treats

Binnet & Hardley The Gourmet Microwave

Binnet & Hardley The Psychology of Computer Cooking

* Algodata Infosystems But Is It User Friendly?

Client Server Paradigm
Client or Front-End

o Gathers data from the user

e Issues arequest to the Server

e Presents data to the user

e Many different applications can access the same data (Excel, VB, C)

e Applications may be independent of the Back-end. May start out using Access tables
and then move to SQL Server without major changes.

e CPU requirements split between client & server

. Server or Back-End

e Processes Requests
e Returns data to the client
e Data integrity can be enforced centrally.

Hardware & Software Requirements

Server

Hardware Platforms:
Alpha AXP microprocessors
Intel 32-bit microprocessors
MIPS microprocessors

O/S: Windows NT version 3.5 or later ,
Minimum memory: 16 MB.

Minimum Disk Spacei 60 MB

Client Utilities

The 32 bit client utilities can be installed on computers running NT Server, NT Workstation
or Windows 95. '

A Tour of the Tools

SQL Setup

Easy way to install (or reconfigure) SQL Server or Client Utilities. Different setup
programs are supplied for each server hardware platform and - for clients - each operating
system

SQL Service Manager

Used to start, pause, continue, and stop SQL Server.

ISQL/W

Allows you to enter Transact-SQL statements. Can also analyze queries.

SQL Security Manager

Allows you to manage user accounts for SQL Servers that are using security integration
with Windows NT. No need to create special SQL Server login IDs.

SQL Transfer Manager

Provides and easy, graphical way of transferring objects and data from one SQL Server to
another.

SQL Performance Monitor

Integrates Windows NT Performance Monitor with SQL Server providing up-to-the-minute
-activity and performance statistics. :

A Tour of the Tools (cont)
SQL_ Enterprise Manager

¢ Easy way to administer servers and create database objects.

- e Runs on server and 32 bit O/S clients

~
[]

e Some things you can do:

o Start & stop the server

create and manage devices and databases
create and manage tables, views etc
create and schedule tasks

manage replication

execute & analyze queries

back up & restore databases

generate SQL scripts

manage permissions

manage server login IDs and database users
e monitor server activity

e view the SQL Server error log

Can use Toolbar or Menus or click Right Mouse button on object

Click the (-i-) or (-) sign to expand and collapse lists

Click on the Display Legend button to find out what each icon means

First time you start SQL Enterprise Manager you must register the SQL Server you will
be managing - give the server name and type of security

et e e —

ON-LINE BOOKS

Demo how to use

e e R
N M

DATABASE

e A collection of tables and other objects
e FEach database will contains System Tables and may contain User Tables

e When SQL Server is installed, the setup program installs the following System
Databases:
1. Master (Controls user databases and the operation of SQL Server.
Keeps track of user accounts, devices, other databases etc.)
Model (template fornew User Databases. Can be customized.)
TempDB' (used for temporary storage)
Pubs (sample or training database. Installation is optional.)
MSBD (Used by SQL Executive. Provides a storage area for job
scheduling information)

PESTIS

e Users create User Databases. The Model database is the template for User Databases.
The model database contains all the system tables required for each user database. All
objects in the model database are copied to the new User Database. PUBS is an
example of a User Database

e The Data Dictionary is contained in the System Tables. The System Tables in the
Master Database are as follows:

Table Description
syscharsets Contains one row for each character set and sort order defined for use by SQL Server.
sysconfigures Contains one row for each user-settable configuration option.
syscurconfigs Contains an entry for each of the configuration options, as in sysconfigures, but contains the current
values and four entries that describe the configuration structure.
sysdatabases Contains one row for each database on SQL Server.
sysdevices Contains one row for each disk dump device, diskette dump device, tape dump device, and database
device.
syslanguages Contains one row for each language known to SQL Server. Although U.S. English is
omitted, it is always available to SQL Server.
syslocks Contains information about active locks.
syslogins Contains one row for each valid SQL Server user account.
sysmessages Contains one row for each system error or warning that can be returned by SQL Server.
sysprocesses Contains information about SQL Server processes. -
sysremotelogins Contains one row for each remote user who is allowed to call remote stored procedures
Sysservers Contains one row for each remote SQL Server on which this SQL Server can call remote
stored proc.
sysusages Contains one row for each disk-allocation piece assigned to a database.

'

e The User Databases contain a subset of the system tables listed above. The system
tables in the User Database keeps track of : users, tables, views, indexes, stored
procedures, triggers, rules, defaults, user-defined datatypes, permissions

P oSS ays A2 vl KSR
DI OE 5(S SR A SRR X SO SRR

DATABASE OBJECTS

Table: Collection of columns and rows

Index: O}dered set of pointers to data in a table. Allows rapid retrieval of data from a
table

View: An alternate way to look at data in one or more tables.

Default: The value that SQL Server insértsinto a column if user does not ente.:r a value
Rule: Coptrols what data can be entered into a table

Stored Procedure: Precompiled collection of SQL statements

Trigger: A special form of a stored procedure that goes into effect automatically when a
user modifies data in a table. :

To look at the objects in your database:

use pubs
go

SELECT name, type
FROM sysobjects

Object types: C = CHECK constraint; D = Default or DEFAULT constraint;
F= FOREIGN KEY constraint; K=PRIMARY KEY or UNIQUE constraint;
L= Log; P= Stored procedure; R = Rule; RF= Stored procedure for
replication;

S = System table; TR = Trigger; U = User table; V = View;
X = Extended stored procedure.

Devices

You can’t create a database until you create a device on which to store it. Devicesare
operating system files used to store databases, transaction logs, and their backups. One

device can store many databases, and.a database can be stored across more than one device.

There are two types of devices: database devices and dump devices. Database devices store
databases and transaction logs and are located on disk files. Dump devices store database
and transaction log backups. Dump devices can be stored on disks, diskettes, or tapes

Only the system administrator (SA) can create devices. As administrator, you will need to

create database devices to support databases and transaction logs, and dump devices to
support backup of those databases and transaction logs.

When you install SQL Server, these devices are created:
The MASTER database device
The MSDBDATA and MSDBLOG database devices .
Three dump devices: DISKDUMP, DISKETTEDUMPA, DISKETTEDUMPB.

Because creating and dropping devices makes changes to the system tables in the master
database, you should always dump the master database after you add or modify devices.

A database and its transaction log should be kept on separate devices.
The Master device starts out as the default device. You should change this.
Demo:

Create 2 devices - one for the class database and one for its log

a2 s L Nt D S et

CREATE DATABASE

Permission to create a database must be granted by SA.

Defines the :
e Name of the database
¢ Device(s) on which the database will reside
e Amount of space required on each device
e Amount of space required for the transaction log

Makes a copy of the Model database. If size is not specified, the database will be assigned the size of the
Model database
DEMO:

Create database on the new device and a log on the log device

TRANSACTION LOG

SQL Server makes an entry in the syslogs table each time a database page is modified.
Data modifications are always recorded in the log before the change is made to the database itself

Data pages are not written to disk until a checkpoint is issued. Log pages are written to disk when the
transaction has completed. Prior to that, data and log pages reside in cache memory.

The transaction log is used during automatic recovery. If the system crashes, SQL Server will use the
transaction log to roll forward complete transactions or roll back incomplete transactions. First you should
restore the most recent database backup (also called a-“dump’) and then all succeeding transaction log
backups. Transaction logs must be loaded in the sequence in which they were made.

To restore a database or apply a transaction log

1. From the Server Manager window, select a server.
2. From the Tools menu, choose Backup/Restore.

The transaction log should be kept on a separate device so that
e the database and the log are not competing for the same space. If lots of activity ,the log table can
become very large. ’
e the log can be backed up separately from the database. Frequent backups of the transaction log are
necessary.

Truncating a transaction log removes the inactive portion of the log. Truncate the transaction log after you
back up an entire database because a database dump does not truncate the log.

Log Size is typically 10-25% of database size but it varies according to the amount of activity and the
frequency of transaction log dumps ~ .

DEMO

1. Create two dump devices - one for database, one for log

2. Backup CLASS database .

Do the following insert in the CLASS database : INSERT INTO PUBLISHERS (pub_id,
pub_name) VALUES (‘0099’,"TEST RECORD”) :
Write Select stmt to show that record is there

Dump the transaction log

Make sure no tx are using the CLASS database (click on Current Activity icon)
Restore the CLASS database

Write Select stmt to show that record is missing

. Restore the tx log

0. Write Select stmt to show that record is there

w

SOV@Na LA

SEGMENTS

A segment is a subset of one or more database devices. Particular segments can be
allocated to specific tables or indexes.

SQL Server segments can improve SQL Server performance by giving you more control
over where you place data on database devices. However, it is better to take advantage of

Some uses for segments:
e Place a table on one physical device and its nonclustered indexes on a different
physical device
e Split a large, heavily-used table acorss databases devices on two separate disk
controllers

When a database is created, the following segments are created for the database:

SYSTEM Stores the system tables

LOGSEGMENT Stores the transaction log

DEFAULT Stores all other database objects - unless you create additional
segments.

When you add, extend, or delete a segment, you should dump the MASTER database.

When you restore a da.tabase with the LOAD DATABASE statement, the segments and
devices must be set up in the same way as the database that was dumped.

DATATYPES

Datatypes specify what type of information (characters, numbers, dates) the column can
hold and how the data will be stored

System supplied datatypes:

Binary binary[(n)] varbinary[(n)]

Character , char[(n)] varchar[(n)]

Date and time datetime smalldatetime

Exact numeric decimal[(p[, sD] numeric[(p[, s])]

Approximate numeric float[(n)] real

Integer int smallint tinyint

Monetary money smallmoney

Special bit timestamp user-defined datatypes

Text and image text image

User defined Datatypes’ i
¢ Built by the User J
e Defined in terms of system supplied datatypes 7

e If you create user defined datatypes in the Model database they are included i in all
new databases you create.

EXERCISE
Can add a datatype by typing in the following statement in ISQL/W
EXEC SP_ADDTYPE ZIPCODE, ‘CHAR(10)
or

Use the SQL Executive and click-on:
Database Folder
CLASS database
‘Objects
User Defined Datatypes
Right Mouse button
New UDDT

Example: age smallint

T T T R T N T ke T e e e ¢ e B T STy - e per g

DEFAULTS

Defaults specify the value that SQL Server will insert when a user does not enter a value (in
either a NULL or NOT NULL column). For example, in a table with a column called price,
if the user does not know the price of an item, you can instruct SQL Server to enter "0” .

A default can be any constant expression

The easiest way to specify defaults is to define DEFAULT constraints when you create a
table.

You can also create defaults and then bind them to columns or to user-defined datatypes so
that whenever no entry is entered into that column or whenever a column is assigned that
user-defined datatype, the default automatically takes effect.

Example ’

CREATE DEFAULT price_default as 0.00

SP_BINDEFAULT price_default ‘titles.advance’

or

Use the SQL Executive and click on:

Database Folder -
CLASS database
Objects
Defaults
Right Mouse button
New Default

Type your new default name in the DEFAULTS text box - age_default
Type the default value in the DESCRIPTION box - 25

Press the DATATYPE BINDINGS tab
Bind your default to the ‘age’ user defined datatype.
Close window

Highlight your new default
Click on Right Mouse button
Generate SQL Script
Preview

PRI MY V) A T x YA T L D st M b~ A T O S It L MR TIoN JI ooy v Yo S T s B+ AW e g T Ssem i v

RULES

A Rule object contains information that defines a domain of valid values that can be stored
in a column or datatype. A rule may be bound to a column or a user-defined datatype.

An alternative method to creating rules'is to create table- and column-level CHECK

. constraints.

Syntax: CREATE RULE [owner.]Jrule_name AS condition_expression

EXERCISE
Use the SQL Executive and click on:
‘ Database Folder
CLASS database
Objects
Rules
Right Mouse button
New Rule

Type your new rule name in the RULE text box - age_rule
Type the rule in the DESCRIPTION box - @age < 100

Press the DATATYPE BINDINGS tab
Bind your rule to the ‘age’ user defined datatype.

Other examples:
@title like ‘[a-z][a-z][0-9] [0 -91[0-9]{0-9T
@id = ‘XYZ’ or @id like ‘*_B_’ X
@city in (‘Seattle’,’New York’, ‘Moscow’)

TABLES

A Table object contains rows of data .
A Column name must be unique with in a table but may be repeated across tables.
For each column you must decide whether or not to allow NULLS.

Use Constraints to protect the integrity of your table
e PRIMARY KEY
e UNIQUE
e FOREIGN KEY
e DEFAULT
e CHECK

IDENTITY [(seed, increment)]

Generates incremental values for new rows based on the seed and increment parameters.
The IDENTITY property can be assigned to a tinyint, smallint, int, decimal(p,0), or
numeric(p,0) column that does not allow null values. Only one column per table can be
defined as an identity column. Defaults and DEFAULT constraints cannot be bound to an
identity column, and an identity value cannot be changed.

Types of Tables: System tables, user tables, temporary tables

EXERCISE: Create Table
Use the SQL Executive and click on:

Database Folder
CLASS database
Objects
Tables
Right Mouse button
New Table

1.Create a Course Table with the following columns
' Course _ID smallint ~NOT NULL
Title char(30) NOT NULL

2.Now click on the Advanced Features icon
Make Course_ID the Primary Key with a Clustered Index
(don’t forget to press ADD)
Made Course_ID an Identity column

3.Add a couple of records to the course table

insert into course (title)
values ("SQL Server”)

insert into course (title)
values ("Visual Basic")

4, Looks at the new records:
Select * from Course

6. Create a Teachers Table

ID smallint NOT NULL
First_name char(12) "NOT NULL
Last_name char(20) NOT NULL
Course_id smallint NOT NULL
Annual_salary money NULL
Phone_number char(12) NULL
Age age

7. Click on the Advanced Features icon ,
Make ID the Primary Key with a Clustered Index (don’t forget to press ADD)
Made ID an Identity column
Put a constraint of $10,000 on salary
Make course_id a Foreign Key of the Course table

8. Save the table and call it TEACHERS
9. Add some records to test your constraints

insert into teachers (first_name, last_name, course_id, annual_salary)
values ("Elsa"," Augustenborg"”,1,99999999)

insert into teachers (first_name, last_name, course_id)
values ("Fred","Jones",2)

insert into teachers (first_name, last_name, course_id,annual_salary)
values ("Fred","Smith",3, 9999)

10. Look at your new records:

Select * from Teachers

&

RETRIEVING DATA

The SELECT statement:
- SELECT list of columns
FROM list of tables
WHERE search conditions
Search conditions, or qualifications, in the WHERE clause include:
Comparison operators (such as =, <>, <, and >)
WHERE advance * 2 > ytd_sales * price

Ranges (BETWEEN and NOT BETWEEN)
WHERE ytd_sales between 4095 and 12000

Lists (IN, NOT IN)
WHERE state in ('CA', 'IN', ‘MD")

Pattern matches (LIKE and NOT LIKE)
WHERE phone not like '415%'

Unknown values (IS NULL and IS NOT NULL)
WHERE advance is null

Combinations of these conditions (AND, OR)
WHERE advance < $5000 or (ytd_sales > 2000 and ytd_sales < 2500)
EXERCISES : (Refer to your handout of the PUBS tables)

Show all information about every author. (Table = AUTHORS)

Show all the authors names (first, last) and ids.

Show all the authors names and cities who live in the state of California (CA)
Show all the authors names and cities who live in CA or UT

Show all the authors names who live in a city that begins with “C”

List all the cities that have authors. Each city should be listed only once.

Show titles and prices books between 5 and 10 dollars. (Table = TITLES)

Show all publisher names where the state is not known. (Table = PUBLISHERS)
Show all books where the type has a ‘p’ somewhere in the word and the books cost
more than $16.00

VPN LR LN~

10. Select book titles and publisher names for all books where the price is more than
$16.00. (Tables = TITLES and PUBLISHERS)

- omew R ZA gy IR/ SP7 POV PR AT 0 03 TR T TSIy
VAL O TR NS ST N PR (A IO I L S I i S0 S DL A NP ANI0 e U A

[,

Solutions to ‘SELECT’ Exercise

1. SELECT * FROM authors

2. SELECT au_fname, au_Iname, au_id
FROM authors ’

3. SELECT au_fname, au_lname, city,state
FROM authors :
WHERE state = ‘CA’

4. SELECT au_fname, au_lname, city, state
FROM authors
WHERE state in (‘CA’,‘UT’)

5. SELECT au_fname, au_lname, city
FROM authors
WHERE city like ‘C%’

6. SELECT distinct city
FROM authors

7. SELECT title, price
FROM titles .
WHERE price between 5 and 10

8. SELECT pub_name
FROM publishers
WHERE state is NULL

9. SELECT title
FROM titles
WHERE type like ‘%p%’
AND price > 16

10, SELECT pub_name, title
FROM publishers, titles
WHERE titles.pub_id = publishers.pub_id

FUNCTIONS

The following functions may be used in SELECT statements. Some of the functions need
arguments, others do not. See the Transact SQL manual for exact syntax.

Examples: Select Count(*) from authors
Select Upper(au_lname) from authors
Select Substrmg(au fname,1,1) +".' +au_lname from authors h
Select Round(price * royalty/ 100,0) from titles
Select pubdate, datediff (year, pubdate, "Sep 1, 1996") #_Years from titles
Select getdate()
Select "The price for " + substring(title,1,20) + " is $" +
Itrim (convert(varchar(10),price)) From titles
Select base = db_name(), login=suser_name()

Aggregate Functions
Aggregate functions return summary values.

AVG COUNT(*) MIN COUNT MAX SUM

String Functions
String functions perform operations on binary data, character strings, or expressions.

LTRIM SOUNDEX ASCI PATINDEX SPACE CHAR
REPLICATE STR CHARINDEX REVERSE STUFF DIFFERENCE
RIGHT SUBSTRING LOWER RTRIM UPPER

Date Functions

Date functions compute datetime values and their components, dataparts.
DATEADD DATENAME GETDATE DATEDIFF DATEPART

Mathematical Functions

Mathematical functions perform operations on numeric data. .
ABS DEGREES RAND ACOS EXP ROUND ASIN FLOORSIGN
ATANLOG SIN ATN2 LOGI0 SQRT CEILING PI .TAN
COS POWER COTRADIANS

System Functions
System functions return special information from the database. Some system functions
are: HOST_NAME USER_ID DB_NAME USER_NAME HOST_ ID

Text and Image Functions _
Text and image functions perform operations on text and image data.
PATINDEX TEXTPTR SET TEXTSIZE TEXTVALID

Type-conversion Function
The type-conversion function transforms expressions from one datatype into another.

CONVERT
- DATA PRESENTATION

Sorting: .
SELECT substring(title,1,40), price

FROM titles
ORDER BY price desc

Group By and Having:
Use Group By to divide a table into groups. It is almost always used with aggregate
functions. The Having clause is used to restrict results. HAVING is identical to WHERE,

except it can include aggregate functions.

Note: If you use ALL with Group By , the query results include all groups produced by
the GROUP BY clause, even if some of the groups don't have any rows that meet the
search conditions.
Examples:

SELECT type, 'Average Price' = AVG(price)

FROM titles

WHERE royalty = 10

GROUP BY all type

ORDER BY type

SELECT _ Title = substring(title,1,40), copies_sold = count(qty)
FROM sales, titles °

WHERE sales.title_id = titles.title_id

GROUP BY title

HAVING count(qty) > 1

ORDER BY count(qty) desc

Compute BY

COMPUTE BY with row aggregate functions produces reports that summarize values
whenever the value in a specified column changes. These summary values appear as
additional rows in the query results, unlike the aggregate function results of a GROUP BY
clause, which appear as new columns. A COMPUTE BY clause a]lows you to see both
detail and summary rows with one SELECT statement.

-

Example:’
SELECT ~ type, price, advance
FROM titles

ORDER BY type
COMPUTE SUM(price), SUM(advance) BY type

DATE MODIFICATION
Adding New Rows:

Insert: Adds new row to a table or a view.

Examples:
INSERT titles (title_id, title, type, pub_id, notes, pubdate)
VALUES ('‘BU1237', 'Get Going!', 'business’, '1389', 'great', '06/18/86")

INSERT stores
SELECT '0' + substring(au_id,6,3), au_lname, address, city, state, zip
FROM authors
WHERE state = 'UT'

Select Into: If the select into/bulkcopy database option is set, you can use the SELECT
INTO clause to create a new permanent table (without using a CREATE TABLE

statement). If select into/bulkcopy is not set, SELECT INTO can be used to create only
temporary tables.

SELECT pub_id, pub_name
INTO #newtable
FROM publishers

Note: The above statement creates a temporary table in the tempdb database.

Changing Existing Rows:

Update: Use the UPDATE statement to change single rows, groups of rows, or all rows
in a table. Note: a single update statement will never update the same row twice - so use
aggregate functions if you have multiple input rows .

UPDATE publishers
SET city = 'Atlanta’, state = 'GA'

UPDATE titles
SET price = price * 2

UPDATE authors
SET state = 'PC/, city = '‘Bay City' '
WHERE state = 'CA' AND city = 'Oakland'

The following updates the year-to-date sales amount for each title to reflect all sales that
occured from 1991 to 1996. Each row in the titles table will get updated once.

UPDATE titles
SET ytd_sales = (SELECT SUM(qty)
FROM sales
WHERE sales.title_id = titles.title_id
AND sales.ord_date between ‘01-01-91° and * 12-31-96)

FROM titleé, sales. ¢

Delete: Removes one or more rows from a table.
Examples: Delete all sales made 5 or more years ago

DELETE sales '
WHERE datediff(year,ord_date,getdate()) >=3

Delete all the books whose authors live in San Francisco
Referential integrity constraint will prevent the following delete

DELETE titles

FROM authors, titles, titleauthor :
. WHERE titles.title_id = titleauthor.title_id

AND authors.au_id = titleauthor.au_id

AND city = 'San Francisco'

Transfer Data:
Two SQL Server utilities can be used to transfer data.

e SQL Transfer Manager provides an easy, graphical way to transfer both objects and
data from one SQL Server database to another. It can export from a Microsoft-
based or non-Microsoft based SQL Server and can import into a Windows NT-
based Microsoft SQL Server.

¢ Bulk copy program (bep) is a command line utility that copies SQL Server data to
or from an operating-system file in a user-specified format.

In addition, SQL Enierprise Manager can be used to generate SQL Scripts, which are the
statements that are used to create database objects.

N RS B CE T SO AT L5 1 B R/ D i Pl s AR S~ 5.9 St i b i Pt i S e Symrio! Srios Ssme i iy D ety T

[—
.

Programming on SQL Server

Transact-SQL : SQL Server version of the SQL database language. Client applications
use Transact-SQL to communicate with SQL Server. Transact-SQL allows for creating and
manipulating database objects, and for inserting, updating, and selecting data. The
Transact-SQL enhancements include data lntegnty features and stored procedures.

Batches: One or more TRANSACT-SQL statements terminated with a ‘GO’. See
documentation for rules about which statements cannot be combined in a batch (eg cannot
drop an object & recreate it in same batch).

Secript: A group of batches.

Example: The following is a script with 2 batches

Begin Transaction
Update
Update

Commit Transaction

Go

Stored procedures are precompiled static SQL statements. They allow much of an
application's processing logic to be run on the Server machine rather than the client. Stored
procedures can contain most Transact-SQL statements, including Transact-SQL control-of-
flow statements.

Control-of-flow language : Similar to any programming language - allows you to
control the execution of SQL statements.

Keyword f)escription
BEGIN.... END Defines a statement block
GOTO Continues processing at the statement following the label as defined
by label.
IF...ELSE Defines conditional and, optionally, alternate execution when a
condition is false.
RETURN Exits unconditionally
WAITFOR Sets a delay for statement execution.
WHILE Repeats statements while a specific condition is true
BREAK Exits the innermost WHILE loop.
CONTINUE Restarts a WHILE loop.
RETURN Exits unconditionally from a query or procedure -
Example:

Declare @Msg char(30)

Select @Msg = 'No message'
Print @Msg

PR NS RN R it LT 0T T T T
N ERACNEE R LI PR R T N M S o I Voo LA AT S i

Begin

If exists (Select fname from employee

Where fname = 'Paolo’)

Begin
Delete employee
Where fname = 'Paolo’
Select @Msg = 'Paolo is no more !!!'
End
Else
Select @Msg = 'Sorry - Could not find-Paolo'
End)
Print @Msg
— £0 —
Feature Description
CASE Allows an expression to have conditional return values
Comments Inserts a comment anywhere in an SQL statement. Two commenting
styles are supported: Transact-SQL style (/* and */) and ANSI-
standard comment style (--).
DECLARE Declares local variables as well as cursors
PRINT Prints a user-defined message on the user's screen
RAISERROR Returns a sysmessages entry or a dynamically built message with

user-specified severity and state. RAISERROR also sets a system
flag (in the global variable @ @ERROR) to record that an error
condition has occurred

Stored Procedures

Advantages: Precomplled speed, syntax checked. Can be shared by many
apphcatlons Can serve as security mechanism.

Example.
First create the stored procedure
If Exists (Select *

From sysobjects
Where id = object_id('dbo.usp_author_info"))

Begin
drop procedure dbo.usp_author_info
End -
Go
CREATE PROCEDURE usp_author_info -
AS
SELECT ltrim(au_lname) + ', ' +substring(au_fname,1,12) Name, t1tle

pub_name
FROM authors a, titles t, publishers p, titleauthor ta
WHERE a.au_id = ta.au_id
AND t.title_id =ta.title_id
AND t.pub_id = p.pub_id
Go

Grant execute on usp_author_info to public
Go

Then execute the stored procedure

EXECUTE usp_author_info

You may view your stored procedure in SQL Executive and make changes to it there.

7 AN AT G T 3 = Al v X T T T Yy ST rey ™
AP AL G N P (N S A L T NI I R L 3 < 4 o R e MOV A ¢ S) Sy

P

Using Input and Output parameters with stored Procedures

CREATE PROCEDURE titles_sum
@title varchar(40) = '%',
@sum money OUTPUT
AS
SELECT 'Title Name' = title
FROM titles
WHERE title LIKE @title
SELECT @sum = SUM(price)
FROM titles
WHERE title LIKE @title

DECLARE @totalcost money
EXECUTE titles_sum 'The%', @totalcost OUTPUT
IF @totalcost <200
BEGIN
PRINT "'
PRINT 'All of these titles can be purchased for less than $200.'
END
ELSE
SELECT 'The total cost of these titles is $' + rtrim(convert(varchar(20),
@totalcost))

go

System Stored Procedures’ : make it easy to retrieve information from the system
tables, administer databases, and perform other tasks that involve updating system tables.
These stored procedures are less necessary with the advent of SQL Executive.

Example: sp_helpdb

With Recompile

The WITH RECOMPILE clause is helpful when the parameters you supply to the
procedure won't be typical. :

CREATE PROCEDURE titles_by_author
@Iname_pattern varchar(30) ='%'
WITH RECOMPILE

- o T e T < p ——
i R N M TN A SIS A N S A R S L B i b s S AR o S Sl ity B e~ Ao

Triggers

A Trigger is a special type of stored procedure that is automatically executed when data in a
specific table is inserted, updated, or deleted. In the past triggers were used to enforce
referential integrity. Can also use them to enforce business rules. For example - no more
than 7 students may be enrolled in a particular class. ‘

Each table can have up to 3 triggers for INSERT, UPDATE,VDELETE.

A trigger that changes data in another table will invoke triggers on that table. However, a
trigger will not call itself.

Triggers cannot return query results to the user.
Certain SQL statements such as DROP are not allowed in Triggers.

There are two special tables used by triggers:
" INSERTED: When a row is inserted into a table it is also recorded in a special
inserted table.

DELETED: When rows are deleted from a table, they are placed in a special deleted
table.

Note: An Update moves the original row in the DELETED table and puts the new row in
the INSERTED table. These tables are stored in memory not on disk - so access is very
fast. They are structurally like the table on which the trigger is defined.

The trigger is the last thing executed. If anything goes wrong the entire transaction is rolled
back. You cannot create a trigger on a view or a temporary table. A ‘Truncate table’
statement does not active the triggers on the table being truncated

To Create a New Trigger

In SQL Enterprise Manager,
Select a table from the Tables drop-down list
Click right Mouse Button)
Choose Triggers from drop-down list.

Trigger Example:

The following trigger does not allow an update on a particular column
CREATE TRIGGER u_tr_employee
ON employee
FOR UPDATE
AS
IF Update(hire_date)
Begin
Print “You may not update the employee hire date”
Rollback transaction
End

Now test your new trigger:

UPDATE employee
SET hire_date = getdate()
WHERE emp_id = 'MPA42628M' .

If several records are inserted at one time the Jollowing trigger will ensure that the good
records get inserted while the records that failed get rolled back.

CREATE TRIGGER i_tr_onlygood
ON sales
FOR INSERT AS
IF
(SELECT COUNT(*) FROM titles, inserted
WHERE titles.title_id = 1nserted title_id) <> @ @rowcount
BEGIN
DELETE sales FROM sales, inserted
WHERE sales.title_id = inserted.title_id AND
inserted.title_id NOT IN -
(SELECT title_id
FROM titles)
PRINT 'Only sales records with matching title_ids added."
END

Y T ST AT e I oy VLSO) s T, S - AR = i 3 g = > ~ Ll vy
P AR TN S BB A EVLEOEMECY R aSs i S OIT T IR AORMETED i s i N Ry Yot et TP R e~ et e s viaaia s 2 Bl e LR Tt

SECURITY CONCEPTS

Protects a server and the data stored on that server

3 Types of Security

Integrated:” uses Windows NT authentication mechanisms to validate logins. Only
trusted connections are allowed - not all network protocols have trusted connections. Can
login to SQL Server withough supplying an ID and password. After login all other
security checks are handled as normal.

Standard: uses SQL Server’s own login validation process for all connections. User
must provide login id and password which are validated against entries in the syslogins
table in the Master database. .

Mixed: Allows login requests to be validated using either integrated or standard security.

3 Types of Special Users

SA: system administrator. Is responsible for the server as a whole, not a particular
database or application. Duties include: installation, configuration, monitoring, creating
devices & databases, granting permissions, backup and restore. SQL Server does no
permission checking for the SA. SA can do everything and does not need to have
permissions granted.

DBO: database owner. Is the user who creates a database. Only one login ID can be DBO
although other login IDs can be aliased to DBO. Can do everything in the database that
he/she created and can grant permissions to others in that database.

Database Object Owner: the user who creates the database object such as table, index,
view, trigger. The owner is automatically granted all permissions on the database object.
The database object owner can grant permissions to other users to use that object.
Ownership cannot be transferred.

< . T TR
BEAY A K T S ARONLID S A w0

CREATING.AND MANAGING INDEXES

Definition: An Index object is used to speed up access to a table. There are two types of

indexes:

¢ aclustered index, where data is stored in the same order as the index. Can have only
one per table. Retrieval is faster (especially if you are searching for a range of records)
than a nonclustered index but modifications may be slower.

e anonclustered index, where data is unordered and stored separately from the index.

When retrieving data, the optimizer considers the amount of work involved if the index is
used vs the amount of work involved if the index is not used. The decision is based on
statistics. Keep statistics up-to-date. The optimizer will do a table scan rather than use an
index when it expects to return a large % of the rows. For composite indexes, if you do
not specify all the columns, you must specify columns starting from the left - if the index is
to be used.

SQL Server automatically creates an index for the PRIMARY KEY and UNIQUE
constraints. If you want other indexes, you must create them.

To create an index

In SQL Enterprise Manager
select the appropriate table
click the right mouse button
choose Indexes.

Other Security Concepts

Username or User: . A database username is a name known to the database and assigned
to a login id for the purpose of allowing a user to have access to the database. Permissions
are granted to the username or the a group to which the user may belong.

Group: ‘A collection of database users. It is easier to manage permissions at a group level
than at a user level. Each user belongs to the ‘Public’ group by default. Each user may
belong to one other group.

Alias: Is a database username that is shared by several login IDs. A common use for alias
is to allow several users to assume the role of DBO. For example:

e assign the new username ‘vp’ to a login ID
e grant permissions in the database to ‘vp’
e assign several other login IDs to the alias ‘vp’

Permissions:

o Object Permissions - actions you are allowed to perform on an object (Select,
Update, Insert, Delete, Reference, Execute). These permissions are granted and
revoked by the object owner.

e Statement Permissions-- SQL statements that you are allowed to execute. (Create
database, create table, dump database, create view...) These permissions are granted or
revoked by the SA or DBO and apply to only 1 database.

Views & Stored Procedures: If granted access to a view or stored procedure, you
have access to all the objects that the view or stored procedure reference - even if you have
not been granted direct access to these objects.

How to Set Up Integrated Security

. Use SQL Enterprise Manager to set the Server’s security options

e Open a server group & select the server
Choose Configurations

Choose the Security Options Tab

Review and change the options as necessary
When finished choose the OK button

. Create Windows NT groups and users - using the Windows NT User Manager.

e For example: create a local group names SQLUsers that has user-level
priveleges, and another named SQLAdmins that has system administrator
priveleges. Then add individual users to these groups.

e Avoid placing NT users in more than one NT group that can access SQL
Server, because SQL Server does not allow overlapping group membership
within databases.

. Authorize selected Windows NT groups and users to access SQL Server - using the

SQL Security Manager to map the NT groups and users to SQL Server logm Ids (or the
default login ID)

e Start SQL Security Manager and log into a SQL Server

e Choose the User Privilege button

e From the Security menu, choose Grant New

* In the Grant privilege box, select the group that will have access to SQL Server

e To add users in the group to a database and make that database their default
database - select Add Users to Database box and then select the database from «
the list. ’

o Choose the Grant button.

4. Set object permissions for each databases - using SQL Enterprise Manager.

e Select a server, open its Databases folder and select a databse
e From the Object menu, select Permissions

e Select the By User tabl in the Permissions box

¢ From the User/Group list, select a user or group

¢ To limit the amount of information displayed, select or clear the Object Filters
options.

* To grant to the selected user or group all permissions for all displayed objects,
choose Grant All

e To grant or revoke specific permission for specific objects, click on the
appropriate check boxes in the object list.

e Choose Set.

BN 1 4 Y I Y R T L T AOr SR ISR 2475 M S L e SN S T \ ey

5. Set statement permissions for each database - using SQL Enterprise Manager.

e Open the Edit Database dialog box for the database that will have its statement
permissions administered.

e Choose the Permissions tab
e To assign a permission, select that box
e Choose OK

