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Abstract

In a system of N sensors, the sensor S;,i=1,2..., N,
outputs Y ¢ ®, according to an unknown prob-
ability distribution Py x, corresponding to input
X € R. A training n-sample (X;,Y1), (X2,Y2), ...,
(Xn,Y,) is given where Y; = (Yz.(l),Yi(z),...,Yi(N))
such that Yi(]) is the output of S; in response to
input X;. The problem is to design a fusion rule
f : ®Y — R, based on the sample, such that the
expected square error

1) = [1X - F(Y))dPyixdPx,
where Y = (YD) vy | Y (M), is minimized over a
family of functions #. Let f* minimize /(.} over F;
in general, f* cannot be computed since the underly-
ing distributions are unknown. We consider sufficient
conditions based on smoothness and/or combinatorial
dimensions of F to ensure that an estimator f satisfies

PII(fy—I(f")>€ <

for any € > 0 and 0 < 6 < 1. We present two methods
for computing f based on feedforward sigmoidal net-
works and Nadaraya-Watson estimator. Design and
performance characteristics of the two methods are
discussed, based both on theoretical and simulation
results.

1 Introduction

Over the past decade, the area of sensor fusion has
witnessed a tremendous growth due to: (a) an expand-
ing application base that requires solutions to difficult
fusion problems, and (b) advances in computational
systems and methods that make it possible to process
large volumes of data. The sensor fusion problems
have particular relevance to engineering applications,

where researchers realized fundamental limitations of
single sensor systems. By employing multiple sensors:
(1) replicated sensors can be employed for fault tol-
erance, and (ii) sensors of different modalities can be
used to achieve tasks that cannot be performed by a
single sensor. In either case, the fusion method must
be designed carefully, since an inappropriate fuser can
make the system worse than the worst individual sen-
sor.

Several existing sensor fusion methods require ei-
ther independence of sensor errors or closed-form ana-
lytical expressions for error densities. In the former
case, a general majority rule suffices, while in the
latter a fusion rule can be computed using Bayesian
methods. Several popular distributed decision fusion
methods belong to the latter class [5]. In engineer-
ing systems, however, independence can seldom be
assured and, in fact, may not be satisfied. Also,
the problem of obtaining the probability densities re-
quired by Bayesian methods can be more difficult
than the fusion problem itself. Thus practical solu-
tions to fusion problems must exploit the empirical
data available from observation and/or experimenta-
tion. Recently, such “learning” methods that esti-
mate fusion rules based on recent advances in empir-
ical estimation and non-linear computational meth-
ods have been developed [18] within the framework
of Probably and Approximately Correct (PAC) learn-
ing [31, 29]. These methods are suited for engineering
systems where the sensor system is available for oper-
ation/experimentation.

Consider a system of N sensors such that cor-
responding to input X € R, the sensor S§;, ¢ =
1,2,..., N, outputs Y6 e R according to an un-
known distribution Py x. A training n-sample
(X1,71),(X2,Y2),...,(Xs,Yy,) is given where ¥; =
v, v®, .., Y™) and v is the output of S;
in response to input X;. We consider the expected




squa,re €error
1) = [1X= SO ORI X, (1)

where Y = (YU, Y® [ Y™) to be minimized
over a family of fusion rules F, based on the given n-
sample. For simplicity, we considered quadratic cost,
but the approach is valid for general costs if suitable
boundedness or smoothness conditions are satisfied
(see Section 3). For convenience, in some parts of this
paper, we may denote F by {f*}4eca, where A is an
abstract index set.

Let f* € F minimize I{.). In general, f* cannot be
computed since the underlying distributions are un-
known. Furthermore, since no restrictions are placed
on the distributions, it will not be possible to infer f*
(with probability one) based on only a finite sample.
We show that in several cases an estimator f can be
computed, based on a sufficiently large sample, which
satisfies

PU(f)~I(f) > € <6, (1.2)

where € > 0 and 0 < § < 1. Eq. (1.2) states that the
“error” of f is within € of the optimal error (of f*) with
arbitrary high probability 1 — 6, given a sufficiently
large sample. Such criteria have been extensively used
in a number of machine learning and empirical estima-
tion problems (see Vapnik [31] for more details). We
estimate the sample size required to ensure (1.2) as a
function of ¢, 8, and the parameters of . We consider
two types of conditions on F that enable us to ensure
(1.2). The first type are based on geometric and com-
binatorial properties and the second type are based
on smoothness properties. The geometric and combi-
natorial properties are based on recent developments
in empirical processes [12, 13] and their applications
to computational learning theory [31]. The smooth-
ness conditions are the traditional ones used in non-
linear statistical estimators [15] coupled with compu-
tational properties of sigmoidal neural networks and
Haar wavelets.

To put the above formulation in perspective, we
now briefly discuss some related existing results. If
the sensor error densities are known, several cases of
the fusion rule estimation problem have been solved
by methods not requiring the samples. Earlier work
in this direction was done in the areas of pattern
recognition (Chow [3]), political economy (Grofman
and Owen [8]), and reliability (von Neumann [32]).
The distributed detection problem based on proba-
bilistic formulations has been extensively studied; see
Dasarathy [5] (also the recent special issue [6]) for a
comprehensive treatment. Most existing sensor fusion

methods are based on maximizing a posteriori prob-
abilities of hypotheses under a suitable probabilistic
model. However, when the probability densities are
unknown (or difficult to estimate) such methods are
ineffective. One alternative is to estimate the density
based on a finite sample. But, as illustrated in gen-
eral by Vapnik [30], the density estimation is more
difficult than the subsequent problem of estimating a
function chosen from a family with bounded capacity
or a suitable e-cover.

The sensor fusion problem {1.1) under criterion
(1.2) was first formulated in Rao [18] and was fur-
ther developed in Rao [17, 20, 21]. The special case
of decision fusion where ¥; € {0,1}" has been solved
using majority rules [25, 23], empirical Bayesian rules
[16, 24], and nearest neighbor rules [22].

The paper is organized as follows. Preliminaries are
summarized in Section 2. In Section 3, we show that
for a sufficiently large sample, the bound (1.2) can be
satisfied under fairly general conditions. We then con-
sider two computationally viable methods for fuser de-
sign based on neural networks and Nadaraya-Watson
estimator in Sections 4 and 5, respectively. We present
simulation examples and discussion of performance in
Sections 6 and 7, respectively.

2 Preliminaries

We first review some basic definitions of smoothness
of functions and their consequences. Let @ denote
the unit cube [0,1]" and C(Q) denote the set of all
continuous functions defined on (). The modulus of
smoothness of f € C(Q) is defined as

weo(f57) = sup [f(y) = f(2)]

ly=zllco<r, y,2€Q

where || y — 2 [|oo= max jys — 2.

.., let Q,,, denote a family of diadic
U J,JnJ =0

JEQm

for J # J’, and the N-dimensional volume of J, de-

noted by |J|, is 27¥™. Let 1;(y) denote the indicator

functionof J € @Qm: 1;(y) =1ify € J,and 1;(y) =0

otherwise. For given m, we define the map P, on

C(Q) as follows: for f € C(Q), we have Pp(f) = Pnf

defined by

Form =0,1,.
cubes (Haar system) such that @ =

Pouf(y) = ,—}—l /J f(2)dz

fory € J and J € Qn [4]. Note that Pnf : Q —
[0,1] is a discontinuous (in general) function which




takes constant values on each J € (Q,,,. Consider the
Haar kernel given by Pm(y,2) =ty ¥ 1s(y)1s(2)
JEQm

for y, z € Q. Then an estimator for a density p € C(Q)
based on n-sample is given by [4]

. 1«
pm,n(y) = ; 'lem(yayj)
]:

which can also be written in the form pp,n(y) =
JZQ n(J)hs(y) with n(J) = L|{j : ¥; € J}| and
EQm

hily) = ﬁlj(y). Note that a random variable is de-
noted by an uppercase letter {(e. g. Y) and its deter-
ministic version is denoted by the corresponding low-
ercase letter (e. g. y).

We now consider the covering properties of F. Let
S be a set equipped with a pseuodometric d. The
covering number N(e,d,S) is defined as the smallest
number of closed balls of radius ¢, and centers in S,
whose union covers S. Let Noo(6,F) = N(¢,|| . |l

,F), where | f(y) [lo=sup |f(y)l-
y€[0,1]V
The following cover size for the class of Lipschitz

functions will be used in our sample size estimates.

Lemma 2.1 [27] Let Fr = {f : [0, 1]V — R} denote
the set of Lipschitz funciions with Lipschitz constant
k, i. e. for every f € Fr, we have |f(y) — f(2)| < k||

N-—-1
¥— 2 |loo. Then Neo(€, Fi) < %2{%[(%—1) o
We now present some basic definitions from Vapnik
[30]. For family {A,}yer, Ay C A, and for a finite set
{a1,a9,...,a,} C A we define
.y (ln}) = {{al, as, ..., an} N A’Y}‘YGF’

We maximize this quantity with respect to the set
{ai,az,...,a,} to obtain

H{AV}({al, asg, ..

Mga,y(n) = o }Eaxa Ma,3({a1,a2,...,aa})}.

The following critical identity is established in [30}.

2 ifn <h
M (m) = { <15% ifn>h

Notice that for a fixed &, the right hand side increases
exponentially with n until it reaches h and then varies
as a polynomial in n with fixed power h. This quantity
h is called the VC dimension of A,.

For a set of functions, the capacity is defined as the
largest number h of pairs (z;,y;) that can be subdi-
vided in all possible ways into two classes by means of
rules of the form

{Ol(z = F* ()’ + Bl}aus

where L i 0
iz 2>
@(z)._{ 0 ifz<0.

Formally, the capacity of {f*(¥)}aeca 1s the Vapnik-
Chervonenkis dimension of the set of indicator func-
tions

{Ol(z — 1*(1))* + BlHa.p)eax®-

The following identity yields useful bounds on the
simultaneous occurrence of events that may not be
independent.

Lemma 2.2 [23] Consider events A;, i=1,2,... N
such that P(A;) > 1—6;. Then we have

1-6n =6
P(41NA2N...NAN) > Sx=1 = > 5"
i=1

It is assumed that we consider very small values of
6;’s such that the right hand side of the equation in
the above lemma is positive.

3 General Solutions for Fuser
Design

In this section, we consider general conditions under
which criterion (1.2} is met. Consider the empirical
cost given by for any f € F

Lemp(D) = 7306 — P (3)
i=1

based on the sample (X1,Y1),(X2,Y2),...,(Xn, Ys).
To approximate f* € F -that minimizes the expected
error in {1.1), we minimize instead the empirical error
in (3.1) to obtain a best empirical estimate f. In order
to ensure the (¢, é)-condition in (1.2), two types of
conditions are sufficient [30]:

(a) the capacity of F = {f*}aea Is bounded;
(b) the error I(.) is bounded, i.e., sup (z — f*(y))? <

rlyla
7 or the relative error is bounded as follows for

some p > 1

[f (2 = f*(2))? P(z, y)dedy] /"

P T - fa (@) P(z, vdedy

First we illustrate a very simple case.

Theorem 3.1 [18] Consider that x and f* take val-
wes from {0,1}.




(i} Given an n-sample, we have
~ h 2
P [I(f) - I(f*) > 25] < 9%6_” n/4
where h is the capacity of F.

(it) If the hypothesis space is finite in that F =

{F(y), fo2(y), ... f*™(y)}, given an n-sample,
we have

P [1(F) = 1(5) > 2] < 2Me™2n,

In Part (i), notice that the upperbounds on the
right hand side are products of two main factors: first
one is n" and the second one is =% */4, For a fixed
value of A, the latter decreases with the sample size
n, and thus if n is chosen large enough the right hand
side can be made equal to 6.

An example of infinite hypothesis class can be given
by the set of all neural networks with a fixed number
of nodes, where f*(y) stands for a feedforward neu-
ral network with connection weight vector a (a more
precise discussion is provided in the next section).

The following two theorems for the general case f :
RN+ R [18] follow from the results of [30].

Theorem 3.2 [18] Consider that the error is bounded
as sup (z — f*(y))* <.

]

(i) Then given an n-sample, we have

(2n)"
Rl

_.2
e nn/4'

PII(f) = I(f") > 21K) < 9

(i) If the hypoihesis space is finite in that F =

{f*{y), f*2(y),..., f*M(y)}. Then given an n-
sample, we have

PI(f) = 1(5*) > 27&] < 18M1c™"/*,

Theorem 3.3 [18] Consider that the relative error be
bounded such that for some p > 1 we have

o U&= [ Pz, y)dady]
> @ () Pz, y)drdy

(i) If p > 2, we have

I(f) - I(f*) 2Ta(p)"c ne—nzn/ll
P{ 1) 1—m@m}<“

< T

where a(p) = [é{%%;} 1/p ’

(i) If 1 < p <2, we have

P{IG%—HF) 2ﬂ@w>}

I(f*) 1= 7Vp(x)

—2p2—(2/P)
< 2pe=s T P4

p=L
where Vp(k) = & [1 - m%f(—p—_—-ﬁ} ?

The above theorems are derived based on uniform
convergence of empirical measures to their expecta-
tions, which are available from the empirical process
theory [12, 13] and its applications to machine learn-
ing [31, 9]. Results of this kind are available based
on a number of characterizations of F such as pseudo-
dimension, fat VC-dimension, etc., which can be used
to obtain results along the lines of Theorems 3.1-3.3.

We now illustrate a well-known argument due to
Vapnik [30] to facilitate the discussion of performance
in Section 7. Consider a set of functions G such that
the uniform convergence holds in the following man-
ner:

Pbmmm—am@Nz4<aamm.
€G -

such that lim é(¢,n,G) = 0. Notice here that we

explicitly show the dependence of § on the precision ¢,
sample size { and the family of functions G. Recall that
¢* and § minimize I(.) and I.mp(.) respectively over
G. With probability 1 — é(¢,n,G) we have I.pp(g) <
I(g) + € and I(g) < Iemp(g9) +cforallg € G. In
particular we have I(§) < Iemp(§) + € and Lpmp(g*) <
I(g*) + €. Noting that Iemy(§) < Iemp(g™), we have

I(§) € Lemp(§) + € < Lemp(97) + € < I(g™) + 2¢
with probability 1—6(¢, n, G) or, equivalently, we have
PI(§) — I{g") > 2¢] < é(¢,n,G).

Thus, the uniform convergence of empirical measures
to their expectations implies the proximity of § to g*
in the above sense.

The results of this section do not directly yield
methods to compute the required f. However, they
provide very useful guidelines for the conditions under
which this empirical estimation procedure is a viable
option. The problem of computing f in this general
framework is computationally intractable; for example
in the special case that F is set of feedforward neural
networks with threshold hidden units, this problem
is NP-complete even for simple architectures [2]. In




the next sections, we consider more restrictive cases
where computational problems are easier to handle.
We wish to emphasize that to be practically viable
the solutions to the fusion rule must be computable
with a low computational complexity.

4 Fusers Based on Feedforward
Neural Networks

In this section we consider that F is given by feed-
forward neural networks with sigmoidal hidden nodes.
These networks have been found to perform well in
a number of difficult non-linear function estimation
problems [28]. The results of this section are valid un-
der the boundedness assumption that z € [—A, 4], for
0< A< oo,and y € [-B, B], for 0 < B < oo (see [20]
for details).

We consider a feedforward network with a single
hidden layer of [ nodes and a single output node. The
output of the jth hidden node is a(bfy + t;), where
y € [-B,B]% b; e ¢, t; € R, and the nondecreasing
o : % — [—1,+1] is called the activation function.
The output of the network corresponding to input y
is given by

i
fu(y) = ajo(d] y+15)

i=1

where w = (wi,wa,..., wyq42)) 1s the weight vec-
tor of the network conmsisting of ai, a2, ..., a,
by11,b12,.--, 014, -, b1, ... 0q, and #1,¢2,..., 7. Let
the set of sigmoidal feedforward networks with bounded
wetghts be denoted by

Foy = {fu :w € [-W, W]HHD} (4.1)

where 0 < v < 00, and o(z) = tanh(yz),0 < W < co.
The function class F has an envelope F if f(y) <
F(y) for all y and every f € F. Let u be a probability
measure on [~B, BYY, and u(f) = [ |F(»)ldu
y€[~B,B}¢
for a measurable function f. For a measure p such
that u(F!) < oo, we define the covering number
Ni(e, u, F, F) to be the smallest cardinality for a sub-
class F* of F such that

Jmin w(lf = £11) < en(F)
for each f € F. Due to the boundedness of F we have
Nu(e/ () F, F) < Neo(e/@B)S, F) since pu[f —
S = FXdp < @BV = llo -

We show that the solutions to problem (1.1) can
be found under requirement (1.2) by obtaining esti-
mates for the required sample size. These estimates
are based on three different parameters of the neural
network. The first and second bounds are based on the
Lipschitz properties of f,(y) with respect to w and y
respectively. The third bound is based on the cover
size estimate for FJ, derived by Lugosi and Zeger [10].

Lemma 4.1 [20] For the class of feedforward neural
networks Fy, of Eq. (4.1), we have

d-1
2 :ﬁa[ :vg_%_l +1]}
27v6V ’e{ ( ) .

Ify €[-B,B}? for 0 < B < o0, then we have
Noo(e, Fy) < LD (1/€)( 42

where L, = max(1, WB~2/4, Wy?%/4). For v =1, we
have

Noo(faj:;v) <

de(l + I)IW) H(2d+3)+1
—— i

Nl(f,ﬂyf;v,lw) S (

Since f,(y) < IW for all f,, € F}),, we have
sup lz — f(y)| < A+ 1W
r’y

which enables us to convert a cover for F7), into a cover
for the class functions of the form (z — f(y))?, for f €
F},. Based on these cover sizes, we can estimate the
sample sizes required to ensure condition (1.2). Here
fz and f, denote a neural network that minimizes
I(.) and I.mp(.), respectively, over the set Foy-

Theorem 4.1 [20] Consider the class of feedforward
neural networks Fy, of Eq (4.1) Let Gy, = {(z —
fu@)? : fu € Fw} and R = 8(A +1W)%. Given
a sample of size at least

16R
€2

(In(18/8) + 2In(8R/e?) + In(2y*W2IR/e)

2 d—1
<7W lR—l) +1D,
€

the empirically best neural network fw in Fy approz-
imates the best expected f;, in Fw such that

P [I(fw) —I(f3) > e] <6

The same condilion can also be ensured under the
sample size

W2IR
47 -

16R

€2

(In(18/6) + 2In(8R/€%) + I(d + 2) In(Ly R/e)))




where Ly, = max(1, WBy2/4, Wy%/4), or, fory =1,

128R { (8) (166(1 + I)R) }
s—maxsln| =}, In{ ————]>.
€ 6 €

The three estimates in Theorem 4.1 provide three
different means for controlling the sample size depend-
ing on the available information and intrinsic charac-
teristics of the neural network class F3,. For example,
the sample size in the first bound is easier to modify
by changing the parameter 4. In practice, it could
be useful to compute all three bounds and choose the
smallest one.

In statistics and control theory literature dealing
with general function estimation problems (to which
the present sensor fusion problem is closely related),
asymptotic results are more common. The results in
Theorem 4.1 can be used in Borel-Cantelli Lemma [1]
to show that I(f)—I(f*) — 0 as n — 0 almost surely,
thereby providing the asymptotic consistency result
for the sensor fusion design problem.

5 Fusers Based on Nadaraya-
Watson Estimator

We now present a polynomial-time (in sample size n)
estimator which guarantees the criterion (1.2) under
additional conditions listed in Theorem 5.1.

Given an n-sample, the Nadaraya-Watson estima-
tor based on Haar kernels is defined by

j=1

f: Xj Pm(y,Y;) YZéJ X;j
i (4) = 2= = = 3.
fram(y) & P 1)) szejh(}g) (34)
]:

for y € J [15] (see also Engel [7]) 1. The second expres-
sion indicates that fmn(y) is the mean of the function
values corresponding to ¥;’s in J that contains y. This
property is the key to efficient computation of the es-
timate [26].

The Nadaraya-Watson estimator based on more
general kernels is classical in statistics literature [11].
Since its introduction in the early sixties, this estima-
tor was successfully employed in a number of applica-
tions involving nonlinear regression estimation. The
classical analysis of this estimator was restricted to

1 Conventionally this estimator is used to fit functions of the
form f(X) = Y (or its regression version). Due to the form
of the present sensor fusion problem, namely fitting functions
of the form f(Y) = X, the conventional notational roles of the
variables X; and Y; are switched in this expression.

asymptotic results, and is not particularly directed to-
wards linear-time computation. This computationally
efficient version based on Haar kernels is due to Engel
[7], which was subsequently shown to yield finite sam-
ple guarantees by Rao and Protopopescu [26]. The
result of [26] requires finiteness of capacity of F in
addition to smoothness, and here we require only the
latter. The following theorem specifies the sample size
needed to ensure the condition (1.2).

Theorem 5.1 Consider a family of functions F C
C(Q) with range [0,1] such that woo(f;7r) < kr for
some 0 < k < co. We assume that: (i} there exzists
a family of densities P C C(Q); (ii) for each p € P,
Weolp;7) < kr; and (iii) there exists p > 0 such that
for each p € P, p(y) > p for all y € [0,1]". Suppose
that the sample size, n, is larger than

g+t [ (pom [ rgam NV
5 -1 +1}+m
€ €1 €1
+1 22m+6
In (2 k/€1) +ln (m‘)]
where €; = e(p—€)/4, 0< 8 < WVN-T-l_)’ m= flﬁgj\/ﬂé'l

- \ 1/N+1-1/28
and ) = b (2)/VHTP 4y (2) .
for any f € F, we have P [I(fm,n) = I(f*)| > e] < 8.

Then

The computation of fm,n(y) at a given y involves
obtaining the local sum of X;’s in J that contains y.
The range-tree (see Preparata and Shamos [14]) can
be constructed to store the cells J that contain at
least one Y;; with each such cell, we store the num-
ber of the Y;’s that are contained in J and the sum
of the corresponding X;’s. This computation can be
achieved by known methods [14] in O(n(logn)V~1)
time , and the values of J containing y can be re-
trieved in O((logn)™) time. Thus fm(y) can be
computed in O({logn)") time after a preprocessing
step in O(n(logn)¥~1) time (see [26]).

6 Simulation Results

We present two examples to illustrate the performance
of neural network and Nadaraya-Watson estimator.
For both examples we also provide results obtained
with the nearest neighbor rule, which is analyzed else-
where [18]. In the second example, we also consider
another estimate, namely, the empirical decision rule
described in [22].

Example 1: Fusion of Function Estimators: [26]
We consider five function estimators each of which




Training Set

Testing Set

Nadaraya-Watson

Nearest Neighbor

Neural Network

100 10 0.000902 0.002430 0.048654
1000 100 0.001955 0.003538 0.049281
16000 1000 0.001948 0.003743 0.050942

{a)d=3
Training Set | Testing Set | Nadaraya-Watson | Nearest Neighbor | Neural Network

100 10 0.004421 0.014400 0.018042
1000 100 0.002944 0.003737 0.021447
10000 1000 0.001949 0.003490 0.023953

(b)yd=5

Table 1. Comparative performance.

outputs the value of an unknown function g(X) €
[0,1] at the input X € [0,1]%. In particular S;
outputs a corrupted value g;(X) of ¢(X) when pre-
sented with input X € [0,1]9. The fusion problem
is to compute a function f : [0,1]® — [0, 1] such
that f(g1(X), ..., g5(X)) closely approximates g(X).
Here g is realized by a feedforward neural network,
and, for i = 1,2,...,5, g:(X) = ¢(X)(1/2 + iZ/10)
where Z is uniformly distributed over [—1,1]; note
that 1/2 — /10 < ¢:(X)/9(X) < 1/2 4+ i/10. Table
1 corresponds to the mean square error in the esti-
mation of f for d = 3 and d = 5, respectively, us-
ing the Nadaraya-Watson estimator, nearest neighbor
rule, and a feedforward neural network with backprop-
agation learning algorithm. Note the superior perfor-
mance of the Nadaraya-Watson estimator. O

Example 2: Decision Fuston: [22, 20] We consider
a system with 5 sensors such that ¥ €& {H(),HI}S.
To each X there corresponds a “correct” decision; in
the training data the correct decision (H; or Hyp) is
generated with equal probabilities for each Xj, 1. e,
P(H4|X) = P(H1|X) = 1/2. The sensor S;, ¢ =
1,2,...,5, introduces an error as follows: the output

corresponds to the correct decision with probability of
1 —4/10, and with probability ¢/10 output is the op-
posite. The individual sensor behavior is implemented
by generating a uniform random variable in the range
{0, D] and checking whether it falls within the interval
{0,7D/10]. The sensor fusion problem is to compute a
rule that combines the outputs of the sensors to pre-
dict the correct decision. The percentage error of the
individual detectors and the fused system based on
the Nadaraya-Watson estimator is presented in Table
2. Note that the fuser is consistently better than the
best sensor S; beyond the sample sizes of the order
of 1000. Thus this example illustrates that the per-
formances exceeding the best of the individual sensors
can be achieved through fusion methods. A compar-
ative performance of the Nadaraya-Watson estimator,
empirical decision rule, nearest neighbor rule, and the
Bayesian rule based on the analytical formulae is pre-
sented in Table 3. The Bayesian rule is computed
based on the formulae used in the data generation and
is provided for comparison only (note that such formu-
lae are assumed to be not available in computing the
other estimators). O

Sample Size | Test set size Sy Sa S3 Sa Ss | Nadaraya-Watson
100 100 7.0 20.0 33.0 35.0 55.0 12.0
1000 1000 113 18.5 29.8 38.7 51.6 10.6
10000 10000 9.56 | 20.19 | 3038 | 39.82 | 49.68 8.58
50000 50000 | 10.038 | 20.136 | 29.854 | 39.904 | 50.050 8.860
Table 2: Performance of Nadaraya-Watson estimator.
Sample Size | Test set size | Bayesian Fuser | Empirical Decision | Nearest Neighbor | Nadaraya-Watson
100 100 91.01 23.00 82.83 88.00
1000 1000 91.99 82.58 90.39 89.40
10000 10000 91.11 90.15 90.81 91.42
50000 50000 91.19 90.99 91.13 91.14

Table 3: Comparative Performance.




7 Discussion of Performance

The results obtained in Sections 3-5 guarantee only
a PAC fuser design. The performance of the fuser
compared to its individual components has not been
addressed. We now investigate the conditions under
which the composite system is at least as good as the
best of the individual sensors.

Consider that we use the empirical data to obtain
a function f; € F; that maps the output of the sensor
S; to R4, The performance of f; can be measured
by using (with abuse of notation) the following cost
function

1) = / [X = £:(¥)|2dPy x)dPx

as opposed to (1.2).

The success of the fuser design is determined by
comparing the performance of the composite system
(f,S1,...,Sn) to the individual sensor system (f;, S;).
The relative performance here depends on F and F;’s,
and also on f and f;’s. We consider that the empirical
estimation methods of Section 3 or 4 are used in ob-
taining f and f;. In particular, we normalize the per-
formance parameters by recomputing é;(¢, 7;,1) cor-
responding to ¢; = ¢ for each sensor and we also com-
pute ép{e,F,1). Then a single sensor system with
least value for §, denoted by (fmin, Smin), is called best
sensor system, i.e., min(€, Fmin,{) = miinéi(e,f,-,l).
Then the composite system will be at least as good
as the best of the individual sensor systems under the
condition [18§]

5[‘(6, F, l) < 6min(€; fminyl)~

In the present case, the error and its expectation
are related by the following equations:

BlI(f:) - I(f7)] = / PUI(f) ~ I'(f) > lde (8.1)

PU) = I(f7) > d < TBUG) - 1)) (82)

where the former follows from the definition of expec-
tation and the latter is the well-known Chebyshev’s
inequality. Based on (8.2), the smaller the expected
error, the smaller will be the corresponding & for fixed
€.

We now consider a specific class of fusion rules F =
{wifi+.. . +wnfn}, for (wy,...,wn) € RY such that
N

S~ w; =1, and 0 < w; < 1. The first consequence is
=1

that f; € F, which implies that

min Lemp(f) < min min Lemp(f:)-

Thus the empirical error of the fuser is no greater than
that of the best sensor. An analogous property is valid
for I(.) as stated in the next theorem. Let II be a
permutation of {1,2,..., N}, and define

1- 5[‘1(1\]) = 5H(i)
(61,82, ) = max | —5xme = - <A ]

i=1

Let A; denote the event I(f,) < e such that P(4;) >
1 —é;. Then by Lemma 2.1 we have

P(A1 nAgn...ﬂAN)ZT(51,62,...,5N).

Theorem 7.1 [18] With probability Y(8,,...,6n), we
have 6p(e, F,1) < miné;(e, Fi, 1), where
2

Lmp(f) = 0 Lemp (), Lomp(fe) = it Ty (1)

and F = {wifi +wafo+...+wnfn}, such that w; €
N
[0,1] and fi € Fi, i=1,2,...,N, and 3 w; = 1.

i=1

The above theorem illustrates that if no other in-
formation is available, the fuser hypothesis space can
be easily constructed using weighted sums of functions
from individual hypotheses classes.

There are a number of related methods for fu-
sion rule estimation under different types of typically
stronger conditions. Three methods based on classi-
cal Robbins-Monroe algorithms, potential functions,
and kernel regression methods are proposed in [17] for
the fusion rule estimation. These methods are algo-
rithmic (in contrast with general solutions of Section
3) but are guaranteed to satisfy criterion (1.2) under
various smoothness and martingale conditions. These
conditions are very difficult to verify in typical appli-
cations.

From a computational point of view, the class of
linearly separable systems of [19] constitute a non-
trivial example where the empirical risk minimization
of Section 3 can be solved in polynomial time (using
quadratic programming methods).

8 Conclusions

We presented a review of solutions to the general sen-
sor fusion problem, where the underlying sensor error
distributions are not known but a sample is available.
Based on the smoothness and/or combinatorial prop-
erties of the class of fusion rules, general solutions to
the problem are provided based on empirical risk min-
imization. Two computationally viable methods are




presented based on feedforward sigmoidal networks
and Nadaraya-Watson estimator. An assessment of
these methods was carried out as to their intrinsic
characteristics and overall performance.

Several computational issues of the fusion rule es-
timation are open problems. It would be interesting
to obtain general conditions under which polynomial-
time algorithms can be used to solve the fusion rule
estimation problem under the criterion (1.2). It would
also be interesting to investigate the utility of com-
putational methods based on bootstrap and cross-
validation in the fusion rule estimation problem. Also,
conditions under which the composite system is “sig-
nificantly” better than best sensor would be extremely
useful. Finally, lower bound estimates for various sam-
ple sizes will be very important in judging the optimal-
1ty of sample size estimates.
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