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ABSTRACT

The primary purpose of this paper is to provide a careful
evaluation of the diffusion velocity concept with regard to
its ability to predict the diffusion of vorticity near a moving
wall. A computer code BDIF has been written which sim-
ulates the evolution of the vorticity field near a wall of in-
finite length which is moving in an arbitrary fashion. The
simulations generated by this code are found to give excel-
lent results when compared to several exact solutions. We
also outline a two-dimensional unsteady viscous boundary
layer model which utilizes the diffusion velocity concept
and is compatible with vortex methods. A primary goal of
this boundary layer model is to minimize the number of
vortices generated on the surface at each time step while
achieving good resolution of the vorticity field near the
wall. Preliminary results have been obtained for simulating
a simple two-dimensional laminar boundary layer.

INTRODUCTION
Background

Our ultimate reason for doing this work is to be able to de-
velop a robust algorithm which is compatible with vortex
methods while at the same time yielding good resolution of
the vorticity/velocity field near the wall. Several attempts
have been made in the past to couple inviscid vortex mod-
els with classical integral boundary layer formulations.
Typical of these is the work due to Spalart and Leonard [1]
and Spalart [2]. The integral solutions were started from a
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known stagnation point and proceeded in the stream-wise
direction until separation was indicated. Slightly upstream
of the separation point, vortices were introduced to replace
the vorticity in the boundary layer and were then allowed
to convect freely in the flow. While the method gives good
results for simple boundary layer flows, it is difficult (if not
impossible) to apply to complicated unsteady flows in
which there are multiple stagnation, separation, and reat-
tachment points which are moving as a function of time.

There are several methods in which the viscous diffusion
process (not necessarily in thin boundary layers) has been
modeled using Lagrangian vortex elements. These meth-
ods include the Gaussian random walk method [3], the dif-
fusing core method [4], the particle strength exchange
(PSE) method [5], and the diffusion velocity method origi-
nally proposed by Ogami and Akamatsu [6] and improved
by Kempka and Strickland [7]. The relative merits of these
methods are discussed in [7].

Chorin [8] applied the “random walk” method to boundary
layers utilizing vortex sheets near the wall. His method pre-
dicts a zero pressure gradient laminar boundary layer quite
well but does not successfully predict separating boundary
layers. This is probably due to his use of boundary layer as-
sumptions near the separation point. For instance, the equa-
tion he used to calculate the stream-wise velocity as a func-
tion of distance from the wall neglects the stream-wise gra-
dient of the normal velocity. Near the separation point this
gradient is the same order of magnitude as the vorticity and
cannot be neglected,

Koumoutsakos, Leonard, and Pepin [9] recently applied
the PSE method to flow around both an oscillating and im-
pulsively started circular cylinder. They obtained excellent
results for the range of Reynolds numbers studied (40 to
10,000). It appears that the number of vortices Ny, used in
their work scales roughly as /Re . This scaling is consis-




tent with the assumption that the thickness of the boundary
layer &, non-dimensionalized by a length L, scales as
1/JRe and that the overlapping vortex elements are circu-
lar. The primary disadvantage of the PSE method is that the
region near the boundary must initially be flooded with
vortex elements whose size, number, and extent must be ju-
dicially chosen. As these elements convect in the flow, ad-
ditional adjustments must be made in order to maintain a
sufficient number of elements near the boundaries which
are sized to properly resolve the boundary layer.

It should be noted at this point, that a topological problem
exists if one tries to use circular vortex blobs to simulate
boundary layers at high Reynold’s Numbers. Consider a
two-dimensional unsteady flow field which contains
boundaries which are impenetrable. In order to solve the
flow field, we first discretize the boundary into a number of
curved or flat panels of length O (h) . From a knowledge
of the existing vorticity field (which may be zero initially)
and the motion of the boundaries we are then able to calcu-
late the vorticity flux which must occur during the next
time step to maintain the normal and tangential velocity
boundary conditions. Qur first inclination, in applying the
vortex method to this problem, is to model the new vortic-
ity generated at the wall by circular vortex blobs, prefera-
bly of diameter O (%) . However, for high Reynolds num-
ber flows, the vorticity will not diffuse away from the wall
by a distance O (h) . f we nevertheless persist in placing
overlapping circular blobs on the boundary at a distance
away from the wall of O (k) , we are actually obtaining a
solution for a lower local Reynolds number. In order to ac-
curately model the diffusion process using circular blobs,
we must place a large number of overlapping circular vor-
tices along the wall whose diameters will be some fraction
of the boundary layer thickness. For high Reynolds number
flows the boundary layer thickness may itself be some frac-
tion of . In such cases, the number of vortex blobs re-
quired becomes prohibitive. We note that Chorin’s use of
vortex sheets in reference {8] was motivated by this very
problem which became apparent in his earlier work [3] in
which he used circular vortex blobs with finite cores.

General Methodology

We now outline a two-dimensional unsteady viscous
boundary layer model which is compatible with vortex
methods. We first define two regions, a wall region for
y < h and an outer region for y > i where y is the normal
distance away from the wall and h is the local panel length.
It is assumed that the boundary is properly paneled in order
to resolve the wall boundary conditions. In the wall region,
elements used to represent the vorticity field must be elon-
gated in the stream-wise direction as compared with their
thickness normal to the wall. In the outer region, the vortex
elements are circular with diameters of O (4) . In the wall
region, diffusion may be assumed to be unidimensional so

long as the wall curvature is not too severe while in the out-
er region diffusion will be considered as two-dimensional.
Finally, in the wall region, a Lagrangian re-map scheme is
used to obtain the evolution of the vorticity field while in
the outer region a viscous vortex blob method is used. The
vortex elements defined in each region are able to smoothly
interact with the elements of the other region or transition
from one region to the other. This method is intended to
yield good resolution of the diffusion and convection pro-
cesses for y < & without generating any “free” vortex biobs
which are smaller than O (%).

The general solution scheme for the wall region is to first
diffuse vorticity into the layer, allow diffusion of the exist-
ing vorticity to occur, convect the fiow, re-map the vortic-
ity distribution back onto lines normal to the wall which are
spaced at intervals 7, and repeat for the next time step. In
most regions of high Reynolds number boundary layer
flows only the wall region will be required since the diffus-
ing layer will not extend beyond y = % . For cases where
sufficient vorticity moves across y = h we convert the
vorticity into “free” circular vortex blobs of support
O (h) . Conversely, vortex blobs may penetrate the wall
layer in which case the vorticity from such blobs is “cap-
tured” and placed in the wall layer.

As mentioned previously, the vorticity flux which moves
through the wall during a given time step is obtained by en-
forcing the normal and tangential velocity boundary condi-
tions. A first order approach is to assume that the vorticity
is impulsively introduced into the layer at the middle of
each time step. Koumoutsakos, Leonard, and Pepin [9] de-
veloped a method which allows one to calculate the two-di-
mensional distribution of this new vorticity in the region
near the wall. For unidimensional diffusion, the distribu-
tion of new vorticity is identical with the distribution of
vorticity for an impulsively started flat plate. We will ex-
pand upon this topic in the section "Generation of Vorticity
at the Wall" on page 4.

The diffusion process is modeled by using one-dimension-
al overlapping linear vortex elements as indicated in
Figure 1. It is possible to use other one-dimensional vortex
elements in this region such as Gaussian or “skewed”
Gaussian elements (i. e. different core radii for positive and
negative positions with respect to the element center).
However, the linear elements provide a much simpler mod-
el and do not suffer from typical problems near walls of dis-
tributions which do not have compact support (i.e. part of
the distribution extends across the wall). These elements
diffuse according to the “diffusion” velocity 2, at their
edges and center. In order to conserve circulation strength,
the area of each triangle under the o, y curve remains con-
stant as a function of time. Details of the diffusion velocity
concept will be given in the section "The Diffusion Veloc-
ity Concept” on page 3.
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Figure 1. Typical Wall Layer Diffusion Elements

Our next task is to convect the flow in the wall layer. For
convection purposes we use quadrilateral Lagrangian ele-
ments as shown in Figure 2. Due to the rapid distortion of
the elements in the wall layer (especially next to the wall),
the vorticity distribution is re-mapped at each iteration
back onto lines which are normal to the wall.

Figure 2. Typical Wall Layer Convection Elements

The tangential convection velocity may be obtained from
the following equation which is based upon the definition

of vorticity in terms of velocity.
y ya
u=uw—jmdy+ja—:dy. (1)

The normal component of the convection velocity may be
obtained from the continuity equation as:

3—“dy. (2)

v=v -
4 X

£ Sy

For most regions of the wall layer (away from separation or
reattachment points) the last integral in Equation 1 is neg-
ligible. This allows one to obtain solutions to Equations 1
and 2 in a very simple manner, solving first for # in terms
of the known vorticity distribution normal to the wall and
then for v in terms of the local stream-wise gradient of u.
For regions where the last integral in Equation 1 cannot be
neglected, several options have been examined which will
be presented in a future paper. In each of the options, we
plan to use local information in the formulation which ne-
gates the need to perform calculations in this layer which
requires information directly from all of the other vortex el-
ements and vortex blobs in the global flow field.

In the outer region (y > & ), the flow is modeled by two-di-
mensional vortex blobs. The centers of the vortices are con-
vected at a velocity which is the sum of the local diffusion
velocity and the local fluid velocity. In addition, the core
radii of the vortices expand to account for the non-solenoi-
dal nature of the diffusion velocity (see reference [7]). We
thus invoke the Biot-Savart law and the diffusion velocity
concept to obtain the velocity and core expansion rate of
eazch vortex. To reduce the computation time from order
Ny, to order Ny, or N,InN,,, where N, is the number of
free vortices, we use the fast adaptive multipole method
due to Carrier, Greengard, and Rokhlin [10].

In closing this section, we acknowledge that the above out-
line which we have given for the solution of two-dimen-
sional boundary layers using a vortex method is very
sketchy. As stated earlier, the primary work presented in
this report concerns the simulation of viscous diffusion in
the wall layer using the diffusion velocity concept. Our
purpose for including the above outline is to orient the
reader to the role which the diffusion sub-model will play
in a more general scheme. In the following sections, we
will describe in some detail the method of solution associ-
ated with the diffusion process in the wall layer.

METHOD OF SOLUTION
The Diffusion Velocity Concept

In order to illustrate the diffusion velocity concept, consid-
er the two-dimensional viscous flow field depicted in Fig-
ure 3. The diffusion velocity is specified such that the cir-
culation within a given boundary remains constant if that
boundary moves at the diffusion velocity plus the local flu-
id velocity. In order to formulate the diffusion velocity we
first note that the circulation around a curve enclosing an
area A is:

1“=:[6°ﬁdA. (3




Taking the time derivative of Equation 3 and setting it
equal to zero yields:

or (4

I[%(‘i‘)+ (ke V)B+D(Vei) - (o"SOV)i't] eadA =0

where # is the velocity at which the area A is moving. We
now let # = I+ %, , where the local fluid velocity is 2 and
the local diffusion velocity is 2.
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Figure 3. Diffusion Velocity Concept

Equation 4 is satisfied when the integrand is equal to zero;

28+ (e V)B+B(Voi) - BeWi=0. (5

We also have at our disposal the vorticity form of the Navi-
er-Stokes equation:

%@+ ReV)B+B(Ved) - (BeV)2 = vWd. (6)

Subtracting Equation 6 from Equation 5 yields the govern-
ing equation for the diffusion velocity in terms of the vor-
ticity field and kinematic viscosity:

(B e V)D+D (Vo) - (DeV)Y, = vV, (7)
Using the vector identities,

Vx(Vxd) = V(Ved)-V28 ,Vex =0,and

Vx (,x®) = (@V)2,- (2o V)D+2,(Ve D)
-@ (V¢ &) ,Equation 7 can be written in a form in which
the diffusion velocity appears only once,

-V x (8,x8) = vV x (Vx). (8)
This equation implies that to within an arbitrary constant:
B,xd = -vVx®. (9

The arbitrary constant can be shown to be equal to zero. We
now restrict ourselves to two dimensions and rewrite Equa-
tion 9 as:

h, = —OX)VQ) , (10)

where ® is the vorticity which is perpendicular to the two-
dimensional plane. In order to determine the time rate of
change of the vorticity as we move along at the velocity #

(denoted by D/Dt) we write Equation 5 for the two-dimen-
sional case:

= -D(Veid) = -d(Ved). (1D

S

We see from this equation that the time rate of change of
vorticity is a function of the divergence of the diffusion ve-
locity since V e # = 0 for incompressible flow.

Since we are dealing with boundary layers, the diffusion in
the direction tangential to the wall (the x direction) may be
ignored. Thus we only concern ourselves with the diffusion
velocity in the direction normal to the wall (the y direction)
which will be denoted by U ;.

(12)

tion 11 as:

(13)

We will also be interested in the flux of circulation y per
unit length of x across some point y. This flux is simply
the product of the diffusion velocity and the vorticity or:

dy _ 0o
3=

3y (14)

In summary, Equations 12, 13, and 14 form the set of equa-
tions which we will use for solution of the viscous diffusion
in the region near the wall.

Generation of Vorticity at the Wall

The circulation per unit length v which must be generated
at the wall in order to maintain the no-slip condition is




equal to the slip velocity Uy which becomes manifest at a
particular location on the wall during a time period At. A
generalized method to obtain U (or y on the wall) is giv-
en in reference [12]. In order to gain insight into the actual
distribution of vorticity, we begin by examining a point on
a moving boundary in a time dependent flow. We assume
that initially the fluid velocity is equal to zero relative to the
selected point on the wall and we examine the nature of the
slip velocity over a short period of time A¢. As fluid is con-
vected from other points in the flow over the point on the
wall there is no reason to expect that the fluid velocity rel-
ative to the point on the wall will remain zero unless we in-
troduce vorticity into the flow. For example, we may have
stream-wise pressure gradients along the wall. This causes
the circulation in the boundary layer which is convecting
from upstream to either be too high or too low to produce a
zero slip velocity at the wall. In addition, the wall itself
might be moving in an unsteady fashion. We can define the
wall slip velocity U, which will arise over a time Af (bar-
ring any flux of vorticity through the wall) as:

Us=U,,-U,, (15)
is the tangential surface velocity or tangential
velocity boundary condition and U, is the tangential fluid
velocity which are both positive in the direction of the unit
surface tangent vector T . In order to restore the no-slip
condition at the wall during the increment of time At¢, a
flux of vorticity must occur through the wall into the fluid.
This flux can be written in terms of the diffusion velocity
U, and the wall slip velocity Uy as:

where U

olU At = AU (16)
or
du
(oUd=ES. (17)

We notice that Equation 17 is simply an application of
Equation 14 with y = U, . It should be noted that if the sur-
face normal vector whlch is pointing into the flow of i mter-
est is n s» the positive direction associated with ® in
Equation 17 is given by 1:5 X n 5 - Since the diffusion veloc-
ity U, at the wall is given by:

== g‘; (18)
then the vorticity gradient at the wall is given by:
do| _ 14U
5}-’- lw - "; E . ( 19)

It should be pointed out that an interpretation of Equation
19 can be obtained directly from the two-dimensional
boundary layer form of the Navier-Stokes equations. The
two-dimensional boundary layer form of the Navier-Stokes
equations can be written as:

au au+vau 1dp+v8m
ot ax dy pdx oy

By comparing Equation 19 with Equation 20 evaluated at
the wall it can be seen that the time rate of change of the
wall slip velocity is equivalent to the combined effects of
the pressure gradient term and the wall surface motion. It is
also clear that Equation 19 is much more convenient for
calculating the normal gradient of the vorticity at the wall
when using vorticity methods as compared to Equation 20
evaluated at the wall.

We have examined several numerical models for introduc-
ing the vorticity into the flow at the wall. The simplest
method is to add all of the circulation which is generated at
the wall during a given time step to the first linear vortex
element next to the wall (the right triangle next to the wall
in Figure 1) and then allow the entire distribution to diffuse
over the time step. There are a number of variations on this
basic scheme in which the vorticity is introduced in smaller
amounts on more than one occasion during the time step. In
a recent paper by Koumoutsakos, Leonard, and Pepin [9]
concerning vorticity generation at a wall, an algorithm for
updating the particle strengths in a PSE method was pre-
sented for finite panels with curvature. In the context of the
present unidimensional model, the vorticity which would
be introduced into the domain from the wall during a time
At would have a distribution equal to:

(20)

2
“4vAt
V,
t4+ At : Uge
Ao = o -0 = ’
TivAt

(21)

where o' "% is the vorticity at the time ¢+ Af and o is
the vorticity at time ¢ . We note that Equation 21 is identical
to the exact solution for an impulsively started flat plate
[11]. Adding all of the circulation to the first element at the
beginning of the time step is roughly equivalent to using
Equation 21 at the end of the time step.

Since the diffusion equation is linear, we may obtain the
vorticity distribution associated with the flux from the wall
at the end of the time step by superimposing the impulsive
solutions via the following convolution integral.

LU, © "P( mj—T))

= (22)
be IaT v (Af-71)




Defining y* = y/./Vt, Equation 22 can be integrated nu-
merically to obtain the curve shown in Figure 4 which is la-
beled as “Exact”. The resulting distribution can be fitted
with a curve given by:

AmJ%
Ae' = = 1.131e?

= (23)
ot
where
g = 0.884y" +0.161y* (24)

For comparison, the distribution given by a single impulse
at the mid time step is also plotted in Figure 4 identified in
the legend by 0.5Af. The major difference in the two
curves is their distributions near the wall. From Equation
19 it is seen that the slope of the (Ae*, y+) curve at the
wall must be equal to minus one, not zero as is given by the
impulsive start representation. We note that the proper
slope is obtained when using Equation 23.

For simulations where At = 0, the global vorticity distri-
bution will tend to be the same for the various representa-
tions of the wall flux distribution. On the other hand, we
have found that one has to sometimes take much smaller
time steps when using the impulsive representation in order
to obtain satisfactory distributions near the wall. we there-
fore recommend the use of Equation 23.

+
(:Jw+ Fit
—0, 0.5At

Figure 4. Distribution of Wall Vorticity

The Diffusion Velocity for Zero Vorticity

In order to use Equation 12, it is important to obtain an un-
derstanding of its behavior for the case where ® = 0. We
note that there are two basic zero vorticity cases which

must be considered. In the first case, the vorticity and its
slope are both approaching zero. In the second case, the
vorticity is zero but the slope is non-zero.

A° \°

a) b)

Figure 5. Zero Vorticity Cases

We first examine the case shown in Figure 5a. The diffu-
sion velocity in the region where » — 0 is indeterminate
for this case since dw/dy is also approaching zero. In order
to form a numerical model for this case, we assume a linear
vorticity distribution as shown in Figure 6. Since our pri-
mary interest is in the diffusion of this linear element, we
write an equation for the mean diffusion velocity U, at
y = hf2 and equate that to the average of the diffusion ve-
locities at the ends of the element.

U _Up+Uy, 2v( ‘”L)
M= "7 = o\T

o\ h (25)

Figure 6. Diffusion Velocity For Zero Vorticity and
Vanishing Slope.




Solving Equation 25 for U, yields:

v

U = 47

Uy- (26)
To test the applicability of Equation 26, we examine its pre-
dictive quality with regard to diffusion of vorticity in a flow
in which the wall is impulsively started from rest to a ve-
locity of U, , sometimes referred to as “Stokes’ first prob-
lem” [11]. We will model the entire vorticity field with a
single linear element, realizing that this is a very crude
model for such a flow. In an actual simulation, this linear
element would represent only a small region of the flow at
the edge of the boundary layer. In Figure 6, we place the
wall at y = 0 and let ®, be equal to the vorticity at the
wall. Recasting Equation 26 in terms of the time rate of
change of &, we obtain:

dh _
dt

In modeling an impulsively started flow, U ;, will be equal
to zero since the wall boundary condition dictates that
dw/dy = 0 for y = 0 and ¢> 0. We enforce this bound-
ary condition without regard for the fact that d /0y # 0 for
y > 0. Therefore, Equation 27 can be integrated to yield &
as a function of time with the initial condition that & = 0
whent = 0:

v
47-Uyy. (27)

h = 2J2vt. (28)
The vorticity distribution can now be written as:
odvt _ 1 1( y )]
= = —|1-=| —==]|], (29)
U, 45[ N2\2. vt

where U, = o h/2 is the velocity of the impulsively start-

ed plate. The exact solution for the vorticity distribution is
given by:

i Lol £
—l-]-e—- = J‘,_t €Xp v . ( 30)
Equations 29 and 30 are plotted in Figure 7. As may be seen
from this figure, the vorticity distribution obtained from the
one element linear approximation is surprisingly close to
that of the exact solution and in fact, fluid velocity profiles
obtained by integrating these curves would appear to be
even more similar. Based on this limited test, we conclude
that Equation 26 will probably give satisfactory results for
representing an element (in a general numerical model)
where o and dw/dy are both approaching zero.

Next, consider the case depicted in Figure 5b in which
® = 0 but dw/dy # 0. From Equation 12, it may be seen
that there is a jump in the value of U, from a very large

positive value to a very large negative value as one moves
from left to right across the ® axis along the y axis. This
indicates that negative vorticity is flowing to the right
while positive vorticity flows to the left across the origin.
The strength v,, of the vortex sheet between y = th is
constant with respect to time, since those boundaries are
moving at their respective diffusion velocities. The vortic-
ity sheet strength v, for the right hand layer (0<y<#h)is
decreasing, on the other hand, at a rate given by:

Hy o

E = -V El (31)

The vorticity sheet strength y, for the left hand layer
(h<y<0) is increasing (in a positive sense) at an equal
rate. Thus, we observe that positive and negative vorticity
is being destroyed in equal amounts. We also note that the
absolute values of the strengths for the left and right hand
sheets are decreasing in equal amounts as the elements col-
lapse toward the origin.
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Figure 7. One Element Linear Approximation To
“Stokes First Problem.”
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Figure 8. Zero Vorticity With Non-zero Slope




We now turn to the calculation of the velocity of the point
(y, ) = (0,0) . The approach that we take is to obtain
an average or integral value of the diffusion velocity for the
“element” between y = th and then take the limit as
h — 0. The average diffusion velocity U,, for this ele-
ment can be written as:

_ v| 29 29
Up = _Zh(mREER-Fm_LﬁLJh.

Noting that ©, = -w, and that the equality will be true as
h — 0, Equation 32 can be rewritten as:

(32

U = -2 22 —a—“1 33
4 = "ol O¥lp Oyl | (33)
h h
Taking the limit lim, |, U, yields:
(39

Uy = - = [a_z‘”_}
90 (3,2
dy Y

Equation 34 could have also been obtained by a L’Hospital
type of differentiation of the numerator and denominator of
Equation 12, although the nature of the singularities for this
case do not appear to fit the 1."Hospital rules. It should be
noted that U ;, is not, strictly speaking, a diffusion velocity
but is the velocity of the point at which ® = 0 when
da/dy=0. As noted previously, the individual strengths
of the vortex sheets on either side of this point are not con-
served and must be adjusted according to Equation 31 and
its counterpart for the left hand layer. This point moves in
response to the local curvature in the (y, @) curve and al-
ways moves in a direction so as to reduce the curvature.

In order to test the validity of Equation 34, we examined
the solution to “Stokes’ second problem™ [11] which is an
exact solution for viscous flow near a sinusoidally oscillat-
ing infinite flat plate. The velocity profile for this problem
is given by:

% = exp(—Jzzv Y)cm(nt-Jzzv }’), (35)

where U is the maximum velocity at the wall and 7 is the
frequency of oscillation. The vorticity field is given by:

03()’» t) - (36)

For ® = 0 we see that the argument of the trigonometric
functions must be equal to a constant (either /4 or 5/4n).
The velocity of the point where © = 0 is then obtained by
differentiating the argument of the trigonometric functions
to obtain:

dy

7 (37)

= J2vn.

o=0

In order to test Equation 34 against this result, we obtain
the first and second derivatives of @ from Equation 36 and
insert their values with ® = 0 into Equation 34. This
yields:

Udo = - l 82(1) 2Vﬂ, (38)
% (57)
dy y

which of course is the same result as that obtained for the
motion of the point where @ = 0.

Another way to avoid having to make calculations for the
case shown in Figure 5b, altogether, is to break the vorticity
distribution up into positive and negative distributions, dif-
fuse them independently, and then add them back together.
This is permissible since the diffusion process is linear. The
cancellation of positive and negative vorticity occurs dur-
ing the addition process and does not otherwise have to be
accounted for. We found this method to be much more ro-
bust than that of the previous sections and have used it in
all of our calculations,

The Numerical Model

The computer code BDIF simulates the vorticity and veloc-
ity field for viscous laminar flow over a moving wall of in-
finite extent with an arbitrary tangential motion. This mod-
el is also applicable to flow regions which are not too close
to the ends of a finite length oscillating plate whose time in-
tegrated tangential velocity is equal to zero.

Attime ¢ = 0 one may specify an initial vorticity distribu-
tion. If there is an initial vorticity distribution it is first dis-
cretized into a number of linear blob elements as shown in
Figure 1. Next, the distribution is expanded to include an
image distribution for y < 0. This symmetry insures that no
vorticity flows across the wall during the diffusion process
associated with the initial distribution. The symmetrical
distribution is then segmented into segments whose end
points are the roots (@ = 0) of the distribution. Segments
which contain a zero vorticity distribution are discarded.
Each node of the segment is moved according to either
Equation 12 or 26. The discrete form of Equation 12 at
node j is given by:




(39)

@~ O, ®; -,
U =_L( At .3 G | 1—1).
P 200 Y-V ¥imYa
The discrete forms for the left and right ends of the distri-
butions where ® = 0 are given by:

4v
Usy = - T Use
and (40)
4y
Yo = 525,75 Ven

respectively, where n is the last node in the distribution.
Each node is then transported to a new location using a sim-
ple Euler time integration of the equation given by:

dy;

E = Ui - (41)
Equation 13 is then satisfied by maintaining a constant area
with respect to time in each of the linear blobs as depicted
in Figure 1. The discrete equation is given by:

t+ At t+ At t+ At - ¢! t t
®; Yier = X1 ) T O Va1~ Vi1

Next, the segments are added back together and the sym-
metrical distribution is reduced to a one-sided distribution
(y 2 0). This then represents the distribution of the vortic-
ity which was present at the beginning of the time step in
its diffused state at the end of the time step.

(42)

Since the diffusion problem is linear, we may allow the
vorticity generated at the wall to diffuse independently
over the course of the time step. Thus, we simply add the
distribution of wall generated vorticity given by
Equation 23 to that of the diffused initial vorticity as calcu-
lated previously. The resulting vorticity distribution now
becomes the initial vorticity distribution for the next time
step.

NUMERICAL RESULTS
Initially Uniform Vorticity Sheet

An infinite plate moves at a constant velocity of U, to the
left. Initially, at time ¢ = 0, we assume that the velocity

profile is as shown in Figure 9. This profile is that of plane
Couette flow. We do not concern ourselves with how this
profile might have been generated but simply specify it as
an initial condition. The linear velocity between y = 0
andy =

h at t = 0, implies that there is a layer of vortic-

ity of thickness h next to the surface. The vorticity in this
layer is constant and has a value of ® = U /h inthe clock-
wise direction. The governing equation for the vorticity is
given by:

2

0@ o
= v —. (43)

ot ay2

For a constant plate velocity, the slip velocity at the surface

is zero. Equation 19 then yields the following boundary

condition for Equation 43:

Jm
ay

Equation 44 used in conjunction with Equation 14 implies
that no additional vorticity is being transported across the
wall for >0 which we know to be true since the circula-
tion in the boundary layer for 7> must remain constant
in order to satisfy the no-slip condition.

= Ofory = 0. (44)

t =00

Figure 9. Initial Velocity Profile (Uniform Vorticity
Sheet)

An exact analytical solution can be obtained for
Equation 43 subject to the indicated initial and boundary
conditions. This solution is given by:

o = 3feA A )

= vt/h .

(45)

where, © = o)h/Ue,y = y/h,and £

Plots of the vorticity distribution as a function of time using
the computer code BDIF are given in Figure 10, The “ex-
act” solution (Equation 45) is also plotted in Figure 10. We
have removed approximately 50% of the points calculated
by BDIF to enable one to be able to compare with the exact
solution. The results using the diffusion velocity are seen to
be in excellent agreement with the analytical results. The
biggest error occurs at the edge of the boundary layer
where o is small and the diffusion velocity is large.
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Figure 10. Vorticity Distributions as a Function of
Time (Initially Uniform Vorticity Sheet)

Impulsively Started Plate

We next examine the impulsively started plate sometimes
referred to as “Stokes” First Problem.” The exact solution
for the velocity distribution can be obtained from
Currie [11]:

u
KA 1-erf(—2’—). (46)
U, 2.t
By differentiating Equation 46 with respect to y, the vor-
ticity field is readily obtained:
oVt _ 1 ( _ _ﬁ )
U, - 5w (47)

As a matter of interest, we replot the data for ¢> 0 from
Figure 10 in Figure 11 along with the impulsive exact solu-
tion (Equation 47). As can be seen from this figure, for non-
dimensional times ¢ greater than 1.0 the vorticity profiles
begin to approach that of an impulsively started plate.
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Figure 11, Vorticity Profiles for Impulsively Started
Plate versus Initially Uniform Sheet

In order to simulate an impulsive start using the code BDIF
we could simply run the uniform vorticity sheet case to
large values of ¢ . One suspects that the exact nature of the
initial vorticity profile is unimportant at large times. In Fig-
ure 12 we show a calculation using BDIF in which the plate
was accelerated from a zero velocity to the velocity U, in
a time step that is equal to 0.001¢. The exact calculation
(Equation 47) is plotted for comparison. Again, we have re-
moved approximately 50% of the points calculated by
BDIF. These resuits show excellent agreement between the
exact solution and the BDIF calculation.

— Exact

Figure 12. Vorticity Profile for Impulsively Started
Plate

Sinusoidally Moving Plate

We next examine the sinusoidally oscillating plate which is
sometimes referred to as “Stokes Second Problem.” We
have already noted the exact solution for the periodic state
(Equation 36). Wu et. al. [13]and Panton [14] address the
issue of transient vorticity values for this problem. By
“transient” we mean the start-up period prior to a periodic
solution.

One method of solving both the transient and periodic
problem, is to use the convolution integral given by Equa-
tion 22. It can be noted that this integral is simply the con-
volution of the time rate of change of the slip velocity with
aunit impulsive start solution. We have developed a simple
computer code to numerically integrate this equation and
refer to this method as the convolution integral method or
CIM. Vorticity profiles are given in Figure 13 for three
phase angles associated with the periodic solution. In order
to insure that a periodic state was reached, the simulation
covered about 500 cycles. The agreement between the ex-
act solution and the CIM simulation which is denoted by
the symbols is seen to be quite good.




In Figure 14 we compute the vorticity profiles in the elev-
enth cycle of oscillation. In this figure the CIM simulations
form our baseline calculations and are denoted by the solid
lines. The BDIF code was used to produce the data denoted
by the symbols. The agreement is seen to be very good. It
is interesting to note that while the character of Figure 14 is
the same as that of Figure 13, the transient effects still lin-
ger after 10 cycles.
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Figure 13. Periodic Vorticity Profiles for Sinusoidally

Oscillating Plate
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Figure 14. Vorticity Profiles after 10 Cycles for Sinuso-
idally Oscillating Plate

Blasius Solution

The last solution which we will examine is the case for flow
over a finite length flat plate. This solution was generated
by the code WALLYR which represents an exploratory im-

plementation of the boundary layer solver outlined in the
section "General Methodology™ on page 2. In this particu-
lar calculation, the size of the wall computational space and
Reynolds number were chosen to contain all of the vortici-
ty within the wall region (y < h) and, hence, there was no
need for any of the vorticity to be represented by free two-
dimensional blobs. Rather, we treat the entire boundary
layer as a wall flow in which vorticity is introduced at the
wall, diffused, and convected. The plate was descritized
into 50 elements with 2 = 1.

The solution was started with the plate moving to the left
with a velocity of U, = 1.The initial vorticity distribution
was assumed to be uniform along the length of the plate and
was computed using Equation 21 with A7 = 1. Numerical
experimentation revealed, however, that the starting solu-
tion did not affect the final results. For the results shown
here, the solution converged at a non-dimensional time
t = 200.

The results of the calculations for a Reynolds number
based on the length from the plate’s leading edge, Re_, of
1x10° are shown in Figures 15, 16, and 17 along with the
exact solution given in Schlichting [15]. Solutions at Rey-
nolds numbers of 0.8x10°, 1.6x10°, 2x10°, 2.4x10°,
and 3.2x10° were also calculated. They produced results
equivalent to those presented here and are not shown. As
can be seen from these figures, there is excellent agreement
between the calculations and the exact solution. The calcu-
lated values are accurate to within 1% of the exact values
close to the wall (y = 0). The calculated velocity profile
(Figure 16) has a maximum error of less than 2% at
yJU,/(vx) = 4. Thecalculated transverse velocity (Fig-
ure 17) has approximately a 4% error at y JU /(vx) = 4

and is less than 2% low at y,[U [ (vx) = 8.
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Figure 15. Blasius Vorticity Distribution
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* Due to the linear nature of the diffusion equations
we can treat the diffusion of oppositely signed vor-
ticity separately and thus do not have to deal with
the conceptually difficult sitnation where the vortic-

] ity is zero while the gradient of vorticity is not.

PO T TOV

. « “Diffusion boundaries™ across which existing vortic-
. ity cannot flow are easily produced by using images

. of the vorticity distribution.

» We have demonstrated that good results are obtain-

able for simple zero pressure gradient fiat plate
flows.

6 7 8 » There is a need to continue this work by investigat-
ing simple boundary layer simulations with outer
free blobs.

+ We also need to investigate more complicated
boundary layer flows such as flows with pressure
gradients and separating flows.
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