

DISTRIBUTION SHEET

To Distribution	From Characterization Support	Page 1 of 2				
		Date 2-21-95				
Project Title/Work Order				EDT No. 610033		
Tank 241-U-202 Tank Characterization Plan (WHC-SD-WM-TP-309), Revision 0				ECN No.		
Name	MSIN	Text With All Attach.	Text Only	Attach./ Appendix Only	EDT/ECN Only	

ONSITE

U. S. Department of Energy - Richland Field Office

C. A. Babel	S7-54	X
J. M. Clark	S7-54	X

MACTEC

J. P. Haney	S7-73	X
D. R. Lincoln	S7-73	X
J. A. Sheriff	B1-42	X

Pacific Northwest Laboratories

S. F. Bobrowski	K7-28	X
S. G. McKinley	P7-22	X

Westinghouse Hanford Company

R. Akita	T6-20	X
K. E. Bell	T6-06	X
R. N. Campeau	S7-04	X
K. K. Cutsforth	S1-57	X
T. F. Dale	T6-20	X
S. J. Eberlein	S7-31	X
R. K. Fuller	T6-31	X
V. W. Hall	H4-19	X
W. J. Kennedy	S7-03	X
J. G. Kristofzski	T6-06	X
J. S. Lee	S7-03	X
G. L. Miller	T6-06	X
P. M. Morant	H4-19	X
A. P. Mousel	S7-12	X
A. D. Olguin	S7-04	X
A. D. Rice	T6-06	X
P. Sathyaranayana (2)	R2-12	X
R. D. Schreiber (3)	R2-12	X
W. M. Smithers	T7-25	X
R. H. Stubbs	S7-12	X
C. L. Thomas	H4-19	X
T. C. Trible	S1-57	X

M. D. Webb
Central Files (2)
O.S.T.I. (2)

H4-25
L8-04
L8-07

X
X
X

EDT 610033
Page 2 of 2

OFFSITE

U. S. Department of Energy - Headquarters
Office of Environmental Restoration and
Waste Management EM-563
12800 Middlebrook Road
Germantown, MD 20874

K. T. Lang
J. A. Poppiti

X
X

Los Alamos Technical Associates
750 Swift, Suite 14
Richland, WA 99352

A. T. Dicenso
C. J. Lindquist
T. T. Tran
G. P. Westleigh

X
X
X
X

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

SIR 4
FEB 22 1995

ENGINEERING DATA TRANSMITTAL

1. EDT
Page 1 of 1
610033

2. To: (Receiving Organization) ANALYTICAL SERVICES	3. From: (Originating Organization) TWRS/CHARACTERIZATION SUPPORT	4. Related EDT No.: N/A
5. Proj./Prog./Dept./Div.: TWRS ENG/CHAR SUPPORT	6. Cog. Engr.: R. D. SCHREIBER	7. Purchase Order No.: N/A
8. Originator Remarks: FOR ORIGINAL RELEASE		9. Equip./Component No.: N/A
		10. System/Bldg./Facility: 241-U
11. Receiver Remarks:		12. Major Assm. Dwg. No.: N/A
		13. Permit/Permit Application No.: N/A
		14. Required Response Date: 2-24-95

15. DATA TRANSMITTED					(F)	(G)	(H)	(I)
(A) Item No.	(B) Document/Drawing No.	(C) Sheet No.	(D) Rev. No.	(E) Title or Description of Data Transmitted	Approval Designator	Reason for Transmittal	Originator Disposition	Receiver Disposition
1	WHC-SD-WM-TP-309		0	TANK 241-U-202 TANK CHARACTERIZATION PLAN	Q	1,2	1	

16. KEY								
Approval Designator (F)		Reason for Transmittal (G)			Disposition (H) & (I)			
E, S, Q, D or N/A (see WHC-CM-3-5, Sec.12.7)		1. Approval 4. Review 2. Release 5. Post-Review 3. Information6. Dist. (Receipt Acknow. Required)			1. Approved 4. Reviewed no/comment 2. Approved w/comment 5. Reviewed w/comment 3. Disapproved w/comment6. Receipt acknowledged			

(G)	(H)	17. SIGNATURE/DISTRIBUTION (See Approval Designator for required signatures)						(G)	(H)
Reason	Disposition	(J) Name	(K) Signature	(L) Date	(J) Name	(K) Signature	(L) Date	Reason	Disposition
1	1	Cog. Eng. R.D. SCHREIBER	<i>R.D. Schreib</i>	2/21/95	Prog. J.G. KRISTOFZSKI	<i>J.G. Kristofzski</i>	2/21/95	1	1
1	1	Cog. Mgr. S.J. EBERLEIN	<i>S.J. Eberlein</i>	2/21/95	Prog. W.J. KENNEDY	<i>W.J. Kennedy</i>	2/21/95	1	1
1	1	QA H.Y. FOUAD	<i>H.Y. Fouad</i>	2/21/95	J.S. LEE	<i>J.S. Lee</i>	2/21/95		
		Safety							
		Env.							

18.	19.	20.	21. DOE APPROVAL (if required) Ctrl. No.
R.D. SCHREIBER <i>R.D. Schreib</i> 2/21/95	V. W. HALL <i>V.W. Hall</i> 2/21/95 for CLT for VWH Authorized Representative Date for Receiving Organization	S. J. EBERLEIN <i>S.J. Eberlein</i> 2-21-95 Cognizant Manager Date	<input type="checkbox"/> Approved <input type="checkbox"/> Approved w/comments <input type="checkbox"/> Disapproved w/comments

RELEASE AUTHORIZATION

Document Number: WHC-SD-WM-TP-309, REV 0

Document Title: TANK 241-U-202 TANK CHARACTERIZATION PLAN

Release Date: 2/22/95

This document was reviewed following the procedures described in WHC-CM-3-4 and is:

APPROVED FOR PUBLIC RELEASE

WHC Information Release Administration Specialist:

Kara M. Broz

February 22, 1995

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy. Available in paper copy and microfiche. Printed in the United States of America. Available to the U.S. Department of Energy and its contractors from:

U.S. Department of Energy
Office of Scientific and Technical Information (OSTI)
P.O. Box 62
Oak Ridge, TN 37831
Telephone: (615) 576-8401

Available to the public from:

U.S. Department of Commerce
National Technical Information Service (NTIS)
5285 Port Royal Road
Springfield, VA 22161
Telephone: (703) 487-4650

SUPPORTING DOCUMENT

1. Total Pages 28

2. Title TANK 241-U-202 TANK CHARACTERIZATION PLAN	3. Number WHC-SD-WM-TP-309	4. Rev No. 0
5. Key Words CHARACTERIZATION, SAFETY SCREENING, SINGLE-SHELL TANK, SAMPLING, ANALYSIS, TANK CHARACTERIZATION PLAN, NON-WATCH LIST	6. Author Name: R. D. SCHREIBER <u>R.D.Schreiber</u> 2/21/95 Signature	
		Organization/Charge Code 71520/N4168

7. Abstract

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-U-202.

8. RELEASE STAMP

OFFICIAL RELEASE BY WHC
DATE FEB 22 1995
STAN 4

Tank 241-U-202

Tank Characterization Plan

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Prepared for the U.S. Department of Energy
Office of Environmental Restoration
and Waste Management

by

Los Alamos Technical Associates
8633 Gage Boulevard
Kennewick, Washington 99336

MASTER

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	DATA QUALITY OBJECTIVES APPLICABLE TO TANK 241-U-202	1
2.1	SAFETY SCREENING DATA QUALITY OBJECTIVES	1
3.0	TANK HISTORICAL INFORMATION	2
3.1	JANUARY 1995 TANK STATUS	2
3.2	TANK CONFIGURATION	2
3.3	TANK HISTORY	2
3.4	EXPECTED TANK CONTENTS	2
4.0	TANK U-202 SCHEDULED SAMPLING EVENTS	5
5.0	REFERENCES	6

APPENDICES

A	SAMPLING AND ANALYSIS PLAN FOR FISCAL YEAR 1995 CORE SAMPLING	A-i
---	---	-----

LIST OF TABLES

Table 1:	Composite Inventory Estimate for Tank U-202	3
Table 2:	Integrated DQO Requirements	5

LIST OF FIGURES

Figure 1:	Fill History of Tank 241-U-202	4
-----------	--------------------------------	---

LIST OF ABBREVIATIONS

DOE	U.S. Department of Energy
DNFSB	Defense Nuclear Facilities Safety Board
DQO	Data Quality Objective
DST	Double Shell Tank
HEPA	High-Efficiency Particulate Air Filter
RCRA	Resource Conservation and Recovery Act of 1976
REDOX	reduction-oxidation waste
SST	Single Shell Tank
TCP	Tank Characterization Plan
TPA	Federal Facility Agreement and Consent Order (Tri-Party Agreement)
TWRS	Tank Waste Remediation System
U-202	Tank 241-U-202
WHC	Westinghouse Hanford Company

1.0 INTRODUCTION

The Defense Nuclear Facilities Safety Board (DNFSB) has advised the U.S. Department of Energy (DOE) to concentrate the near term sampling and analysis activities on identification and resolution of safety issues (Conway 1993). The data quality objective (DQO) process was chosen as a tool to identify sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) milestone M-44 has been made, which states that "A Tank Characterization Plan (TCP) will be developed for each double shell tank (DST) and single shell tank (SST) using the DQO process ... Development of TCPs by the DQO process is intended to allow users (e.g., Hanford Facility user groups, regulators) to ensure their needs will be met and that resources are devoted to gaining only necessary information." (Ecology et al. 1994) This document satisfies that requirement for tank 241-U-202 (U-202) sampling activities.

2.0 DATA QUALITY OBJECTIVES APPLICABLE TO TANK 241-U-202

The sampling and analytical needs associated with the Hanford Site underground storage tanks on one or more of the four Watch Lists (ferrocyanide, organic, flammable gas, and high heat) and the safety screening of all 177 tanks have been identified through the DQO process. A DQO identifies the information needed by a program group concerned with safety issues, regulatory requirements, tank waste processing, or the transport of tank waste.

As of January 1995, tank U-202 is not on a Watch List. The DQOs that have been completed and apply to tank U-202 are discussed in the following paragraphs.

2.1 SAFETY SCREENING DATA QUALITY OBJECTIVES

The *Tank Safety Screening Data Quality Objective* (Babad and Redus 1994) describes the sampling and analytical requirements that are used to screen waste tanks for unidentified safety issues. Both Watch List and non Watch List tanks will be sampled and evaluated to classify waste tanks in one of three categories (SAFE, CONDITIONALLY SAFE, or UNSAFE). The safety screening DQO identifies the guidelines to determine to which classification a tank belongs based on analyses that indicate if certain measurements are within established parameters. The primary analytical requirements for the safety screening of a tank are energetics, total alpha activity, moisture content, and flammable gas concentration. If a specified parameter is exceeded, further analyses may be required to classify a tank. A tank can be removed from a Watch List if it is classified as SAFE.

The safety screening DQO requires that a vertical profile of the tank waste be obtained from at least two widely spaced risers. This vertical profile may be obtained using core, auger, or grab samples. The safety screening analyses shall be applied to all core samples, DST Resource Conservation and Recovery Act (RCRA) samples, and auger samples, except those taken exclusively to assess the flammable gas crust burn issue.

3.0 TANK HISTORICAL INFORMATION

This section summarizes the available historical information on U-202. Included are the age of the tank, process history, and the expected contents of the tank based on the latest information. The fill history information is available in *A History of the 200 Area Tank Farms* (Anderson 1990).

3.1 JANUARY 1995 TANK STATUS

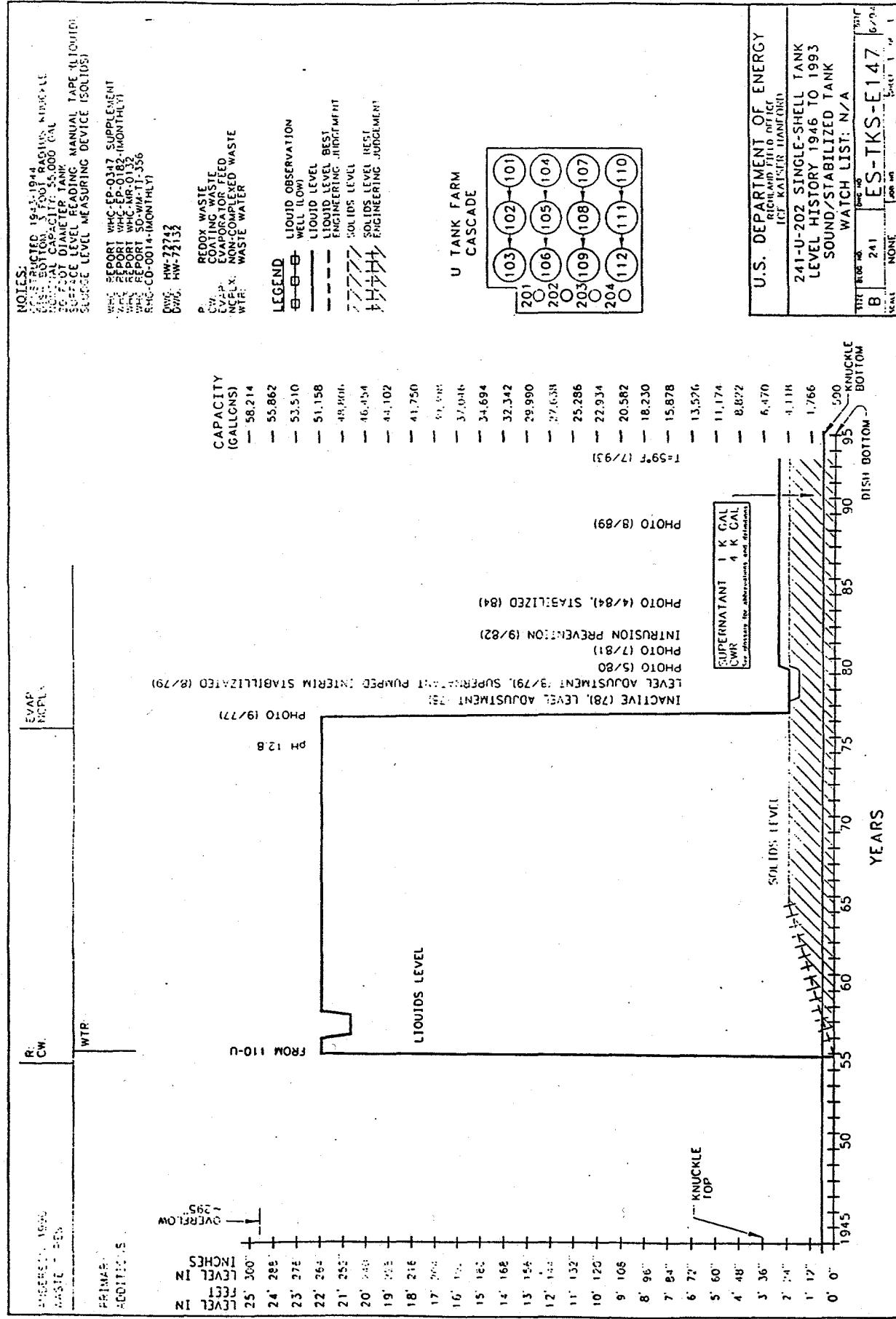
Tank U-202 is classified as sound and is passively ventilated. The tank was interim stabilized in 1979 and intrusion prevention measures were completed in 1982. Approximately 18,900 liters (5,000 gallons) of waste is contained in the tank. The waste consists of 15,100 liters (4,000 gallons) of sludge and 3,800 liters (1,000) gallons of supernatant with no liquid capable of being pumped remaining. This volume of waste corresponds to a depth of 74 centimeters (29 inches). The surface level is monitored manually each day through riser #1 and the latest photograph shows a dark yellow supernatant surface surrounded by a light yellow sludge peppered with dark material. The highest temperature as of January 1994 is 16°C (61°F) (Hanlon 1994).

3.2 TANK CONFIGURATION

Single shell tank U-202 was constructed as a type I tank between 1943 and 1944 and is located in the 200 West Area. The tank is 6 meters (20 feet) in diameter and has a design capacity of 208,000 liters (55,000 gallons). Tank U-202 is not in a cascade flow series but does cascade to a junction box. A cascade system consists of tanks connected in series by pipes. When the primary tank in the system became full, the waste would then flow to the secondary tanks in the system. The tank has 8 risers and 31 centimeter (12-inch) risers #2 and #6 are available for use.

3.3 TANK HISTORY

Tank U-202 was held as a REDOX (reduction-oxidation) tank until 1956. In 1956, water was added as the first transaction and supernate consisting mostly of coating and REDOX waste was transferred from tank U-110. From 1956 until 1977 there was no activity. In 1977 178,000 liters (47,000 gallons) were pumped out of the tank. Fill history information is available in *A History of the 200 Area Tank Farms* (Anderson 1990). Figure 1 summarizes the influx and effluent history of tank U-202.


3.4 EXPECTED TANK CONTENTS

Since the only high level waste transfer into tank U-202 was supernate from tank U-110, the contents should reflect the composition of the liquid in tank U-110 at that time. In 1956, the liquid contents of tank U-110 consisted mostly of coating waste with some high level REDOX waste. Table 1 summarizes the expected tank contents (Brevick 1994).

Table 1: Composite Inventory Estimate for Tank U-202

Physical Data	Value	
Total Solid Waste	23,300 kg	(4 kgals)
Heat Load	0	
Density	1.54	g/ml
Weight % Water	55.61	
Void Fraction	0.65	
TOC	0	
Constituents	$\mu\text{g/g}$	$\mu\text{g/ml}$
Na ⁺	17,300	26,640
Al ⁺³	101,000	155,540
OH ⁻	195,000	300,300
NO ⁻³	21,200	32,650
NO ⁻²	5,510	8,485
CO ₃ ⁻²	2,570	3,960
Radiological Constituents	$\mu\text{Ci/g}$	$\mu\text{Ci/ml}$
Pu	2.53	3.90

Figure 1: Fill History of Tank 241-U-202

4.0 TANK U-202 SCHEDULED SAMPLING EVENTS

Tank U-202 is scheduled for core sampling in 1995. No other sampling is scheduled through fiscal year 1997 (Stanton 1995). Core sampling shall be conducted following the *Tank Safety Screening Data Quality Objective* (Redus and Babad 1994). Sampling and analytical requirements from this DQO are summarized in Table 3. A comprehension list of analytical requirements is given, as an appended revision, in the appropriate sampling and analysis plan.

Table 3: Integrated DQO Requirements

Sampling Event	Applicable DQO	Sampling Requirements	Analytical Requirements
Core	Tank Safety Screening	Samples from a minimum of 2 risers separated radially to the maximum extent possible	<ul style="list-style-type: none"> ▪ Energetics ▪ Moisture Content ▪ Total Alpha ▪ Gas Composition

5.0 REFERENCES

Anderson, J. D., 1990, *A History of the 200 Area Tank Farms*, WHC-MR-0132, Westinghouse Hanford Company, Richland, WA.

Babad, H. and K. S. Redus 1994, *Tank Safety Screening Data Quality Objective*, WHC-SD-WM-SP-004, Westinghouse Hanford Company Richland, WA.

Brevick, C. H., L. A. Gaddis, and W. W. Pickett, 1994, *Historical Tank Content Estimate for the NE Quadrant of the Hanford 200 East Area*, WHC-SD-WM-ER-349, Rev. 0, ICF Kaiser Hanford Company, Richland, WA.

Conway, J. T., 1993, Letter to H. R. O'Leary, DOE, "DNFSB Recommendation 93-5 to the Secretary of Energy." 9400070, dated July 19, 1993.

Ecology, EPA, and DOE, 1994, *Hanford Federal Facility Agreement and Consent Order, Fourth Amendment*, Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy, Olympia, WA.

Hanlon, B. M., 1994, *Waste Tank Summary for Month Ending November 30, 1994*, WHC-EP-0182-80, Westinghouse Hanford Company, Richland, WA.

Stanton, G. A., 1995, *Baseline Sampling Schedule, Revision 4.1*, (Internal Memo 74320-95-01, to distribution, February 2, 1995), Westinghouse Hanford Company, Richland, WA.

APPENDIX A

SAMPLING AND ANALYSIS PLAN FOR FISCAL YEAR 1995 CORE SAMPLING

TABLE OF CONTENTS FOR APPENDIX A

A1.0	SPECIFIC TANK CHARACTERIZATION OBJECTIVES	A-1
A2.0	TANK STATUS AND SAMPLING INFORMATION	A-1
A2.1	TANK STATUS	A-1
A2.2	SAMPLING INFORMATION	A-1
A3.0	LABORATORY SAMPLE RECEIPT AND ANALYSIS INSTRUCTIONS	A-2
A3.1	TANK-SPECIFIC ANALYTICAL PROCEDURES	A-2
A3.2	INSUFFICIENT SEGMENT RECOVERY	A-9
A3.3	PRIORITIES OF REQUESTED ANALYSES	A-9
A4.0	SPECIFIC ANALYTE, QUALITY ASSURANCE, AND DATA CRITERIA	A-9
A4.1	SPECIFIC METHODS AND ANALYSES	A-9
A4.2	QUALITY ASSURANCE	A-9
A4.2.1	Laboratory Operations	A-9
A4.2.2	Sample Collection	A-10
A4.2.3	Sample Custody	A-10
A5.0	ORGANIZATION	A-13
A6.0	EXCEPTIONS, CLARIFICATIONS AND ASSUMPTIONS	A-13
A6.1	EXCEPTIONS TO DQO REQUIREMENTS	A-13
A6.2	CLARIFICATIONS AND ASSUMPTIONS	A-13
A7.0	DELIVERABLES	A-14
A7.1	PROGRESS REPORTS	A-14
A7.2	FORMAT I REPORTING	A-15
A7.3	FORMAT III REPORTING	A-15
A8.0	CHANGE CONTROL	A-15
A9.0	REFERENCES	A-16

LIST OF TABLES FOR APPENDIX A

A-1: Tank U-202 Chemical, Radiological, and Physical Analytical Requirements	A-11
A-2: Tank U-202 Project Key Personnel List	A-13

LIST OF FIGURES FOR APPENDIX A

A-1: Solid Analysis Flow Chart	A-6
A-2: Liquid Analysis Flow Chart	A-7
A-3: Sample Analysis and Reporting Flow Chart	A-8

LIST OF ABBREVIATIONS FOR APPENDIX A

ACL	Analytical Chemistry Laboratory
DOE	Department of Energy
DQO	data quality objective
DSC	differential scanning calorimetry
DST	double shell tank
GEA	gamma energy analysis
HHF	hydrostatic head fluid
HPGE/MCA	high purity germanium - multi channel analysis
IC	ion chromatography
ICP	inductively coupled plasma
LiBr	lithium bromide
NCPLX	non complex waste
PNL	Battelle Pacific Northwest Laboratory
RCRA	Resource Conservation and Recovery Act of 1976
RSST	reactive system screening tool - adiabatic calorimetry
SST	single shell tank
TCP	Tank Characterization Plan
TGA	thermogravimetric analysis
TIC	total inorganic carbon
TOC	total organic carbon
TWRS	Tank Waste Remediation System
U-202	Tank 241-U-202
USQ	unreviewed safety question
WHC	Westinghouse Hanford Company

A1.0 SPECIFIC TANK CHARACTERIZATION OBJECTIVES

This Sampling and Analysis Plan will identify characterization objectives for sample collection, hot cell sample breakdown, and laboratory analytical requirements following the *Tank Safety Screening Data Quality Objective* (Babad and Redus 1994).

The sampling criteria for safety screening require that "a vertical profile of the waste be obtained from at least two widely-spaced risers ... assuming the quality of the data obtained supports appropriate safety classifications of the tank". Such sampling can be done by core sampling, by auger sampling (for shallow waste depths), or by obtaining liquid grab samples at several levels (Babad and Redus 1994). Tank U-202 shall be sampled for safety screening purposes using the core sampling method. Samples shall be taken from two existing risers that are separated radially to the maximum extent possible (Section A2.0).

The requirements for the safety screening of a tank specify the analyses to be performed on half segments and includes the identification of the content of a common set of primary analytes and waste characteristics. These analyses are energetics, total alpha, percent moisture, and flammable gas concentrations. If notification limits are exceeded for these analyses, further analysis of a second set of properties and a possible Watch List classification would be warranted. This Sampling and Analysis Plan identifies procedures and requirements, following the safety screening DQO and the Characterization Program, for collecting and characterizing samples from tank U-202 by the core sampling method.

A2.0 TANK STATUS AND SAMPLING INFORMATION

A2.1 TANK STATUS

Tank U-202 is classified as sound and is passively ventilated. The tank was interim stabilized in 1979 and intrusion prevention measures were completed in 1982. Approximately 18,900 liters (5,000 gallons) of waste is contained in the tank. The waste consists of 15,100 liters (4,000 gallons) of sludge and 3,800 liters (1,000) gallons of supernatant with no liquid capable of being pumped remaining. This volume of waste corresponds to a depth of 74 centimeters (29 inches). The latest photograph shows a dark yellow supernatant surface surrounded by a light yellow sludge peppered with dark material. The highest temperature as of January 1994 is 16°C (61°F) (Hanlon 1994). The tank is not in a cascade flow series but does cascade to a junction box. A cascade system consists of tanks connected in series by pipes. When the primary tank in the system became full, the waste would then flow to the secondary tanks in the system. Tank U-202 is not on any Watch List and there are no unreviewed safety questions (USQ) associated with the tank at this time.

A2.2 SAMPLING INFORMATION

Tank U-202 is currently scheduled to be sampled by the core sampling method. Samples are expected to be taken from risers #2 and #6. If a different riser is necessary to meet sampling and analysis requirements, this change must be recorded and approved by the cognizant engineer before sampling. The risers used may be recorded on a permanent data sheet or recorded directly in the work package.

Sampling shall be conducted following procedures and documentation included in tank U-202 work package WS-95-00025.

One core sample from the four inch riser and two core samples from the twelve inch riser shall be collected. Two core samples are being obtained from one riser to compare the recovery rates of two bit types. Based on current records, two segments are expected from each core. A greater or lesser number of cores may need to be taken depending on the accuracy of the available waste depth information. The first segment from each core is expected to contain 25 centimeters (10 inches) and the second segment should contain 48 centimeters (19 inches) of waste.

Hydrostatic head fluid (HHF) with a lithium bromide (LiBr) tracer shall be used to aid in the collection of core samples. A HHF blank shall be prepared as part of the sampling procedure. This blank shall consist of a container filled with HHF and the LiBr tracer from the same batch of HHF used during the core sampling. It shall be analyzed for lithium, and bromide if the lithium notification limit is exceeded, in order to determine the concentration of the tracer at the time the core was taken. Only one HHF blank per tank is required. This blank is required in addition to the field or trip blank. Section A4.2 contains specific information for sample handling, custody, and transport.

A3.0 LABORATORY SAMPLE RECEIPT AND ANALYSIS INSTRUCTIONS

A3.1 TANK-SPECIFIC ANALYTICAL PROCEDURES

A flow chart depicting the general safety screening sample breakdown and analysis scheme is presented in Figures A-1, A-2, and A-3. These steps are described in detail to provide the hot cell and laboratory chemists with guidance for the breakdown of the samples and may be altered as appropriate by the performing laboratory. As noted, several analyses listed in Table A-1 require a 45-day reporting time. The 45-day reporting format, Format III, is explained in Section A7.3.

For this sampling event, three core samples are to be obtained. Currently, all three core samples are to be analyzed. If, however, after extrusion the Characterization Program chooses not to analyze all samples, written direction will be given to the laboratory to stop or modify the analysis suite.

As a precautionary measure, the Safety and Analysis Report for Packaging (SARP) has been reviewed for any safety issues involved with transportation of tank U-202 core samples.

CAUTION

Core samples must be vented every 47 days to release any accumulated gas.

Any decisions, observations, or deviations and justifications made to this work plan or during the sample breakdown shall be documented in writing. These decisions and observations shall also be reported in the data report. The reporting

formats for analyses are contained in Table A-1.

Step 1 Receive core samples at the laboratory following approved procedures.

Step 2 Conduct the following on each extruded segment:

- ▶ Perform a visual examination of the segment.
- ▶ Record observations. This may include a sketch of the extruded segment in addition to written documentation of pertinent descriptive information such as color, texture, homogeneity, and consistency.
- ▶ Note the color and clarity of any drainable liquid.
- ▶ Report sample recovery results to the Safety Program within one working day of sample breakdown.
- ▶ Take color photographs or a color videotape to visually document the composition of the extruded segment.

Step 3 Does the segment contain drainable liquids?

Yes: Proceed to Step 4A
No: Proceed to Step 5A

Step 4A Separate any drainable liquids from the solids. Measure and record the drainable liquids volume. Retain drainable liquids for further processing.

Step 4B Is the segment 100% drainable liquids?

Yes: Proceed to Step 11
No: Proceed to Step 5

SOLIDS PATH

Step 5 Divide each extruded segment into two subsegments (i.e., half segments).

Step 6 Homogenize each half segment following the appropriate approved procedure.

Step 7 Will a homogenization test be performed?

Yes: Proceed to Step 8
No: Proceed to Step 9

NOTE: One sub sample per core, at a minimum, should be used if a homogenization test is done. Additional tests may be performed at the laboratory's discretion.

Step 8 Conduct the homogenization test by taking a 1 to 2 gram aliquot from widely separated locations of the homogenized subsegment. Conduct the homogenization test following Bell (1993).

Step 9 Collect sufficient aliquots from each homogenized subsegment to perform the appropriate preparations and analyses listed in Table A-1 in duplicate.

NOTE: If there is an insufficient amount of sample available in any subsegment to perform all required analyses on the half segment, notify the Characterization Program within one business day and follow the prioritization of analyses given in Section A3.3.

Step 10 Remove at least 20 ml and up to 40 ml of each homogenized subsegment for the archive sample (Bratzel 1994).

LIQUIDS PATH

Step 11 Closely inspect the liquid sample for the presence and approximate volume of any potential organic layers. Does the sample contain any immiscible (potentially organic) layers?

Yes: Proceed to Step 12A
No: Proceed to Step 13

Step 12A Report any visually observed immiscible (potential organic) layer immediately by the early notification system (Section A7.2).

Step 12B Separate and retain the potential organic layer for possible future analysis.

NOTE: Steps 13 through 17 shall be performed on the remaining (probable aqueous) liquid layer only.

Step 13 Filter the remaining liquid sample through a 0.45 micron filter.

Step 14 Is there greater than 1 gram of solid on the filter?

Yes: Proceed to Step 15
No: Proceed to Step 16

Step 15 Archive the solids for possible future analysis (Bratzel 1994).

Step 16 Remove sufficient aliquots from the liquid sample to perform the appropriate analyses listed in Table A-1 in duplicate.

Step 17 Archive at least 20 ml and up to 40 ml of the drainable liquid as the liquid archive (Bratzel 1994).

PRIMARY ANALYSIS PATH

Step 18 Perform primary analyses as listed in Table A-1.

Step 19 Compare the primary analysis data with notification limits.

Step 20A Do the results exceed the notification limits (Table A-1)?
Yes: Proceed to Step 20B.
No: Proceed to Step 23.

Step 20B Report results exceeding the notification limits using Format I reporting requirements as listed in Section A7.2.

SECONDARY ANALYSIS PATH

Step 21 Perform secondary analyses following Table A-1.

Step 22A Do the secondary analyses exceed the notification limits?
Yes: Proceed to Step 22B
No: Proceed to Step 23

Step 22B Report results exceeding the notification limits using Format I reporting requirements as listed in Section A7.2.

Step 23 Report results as listed in Section A7.0.

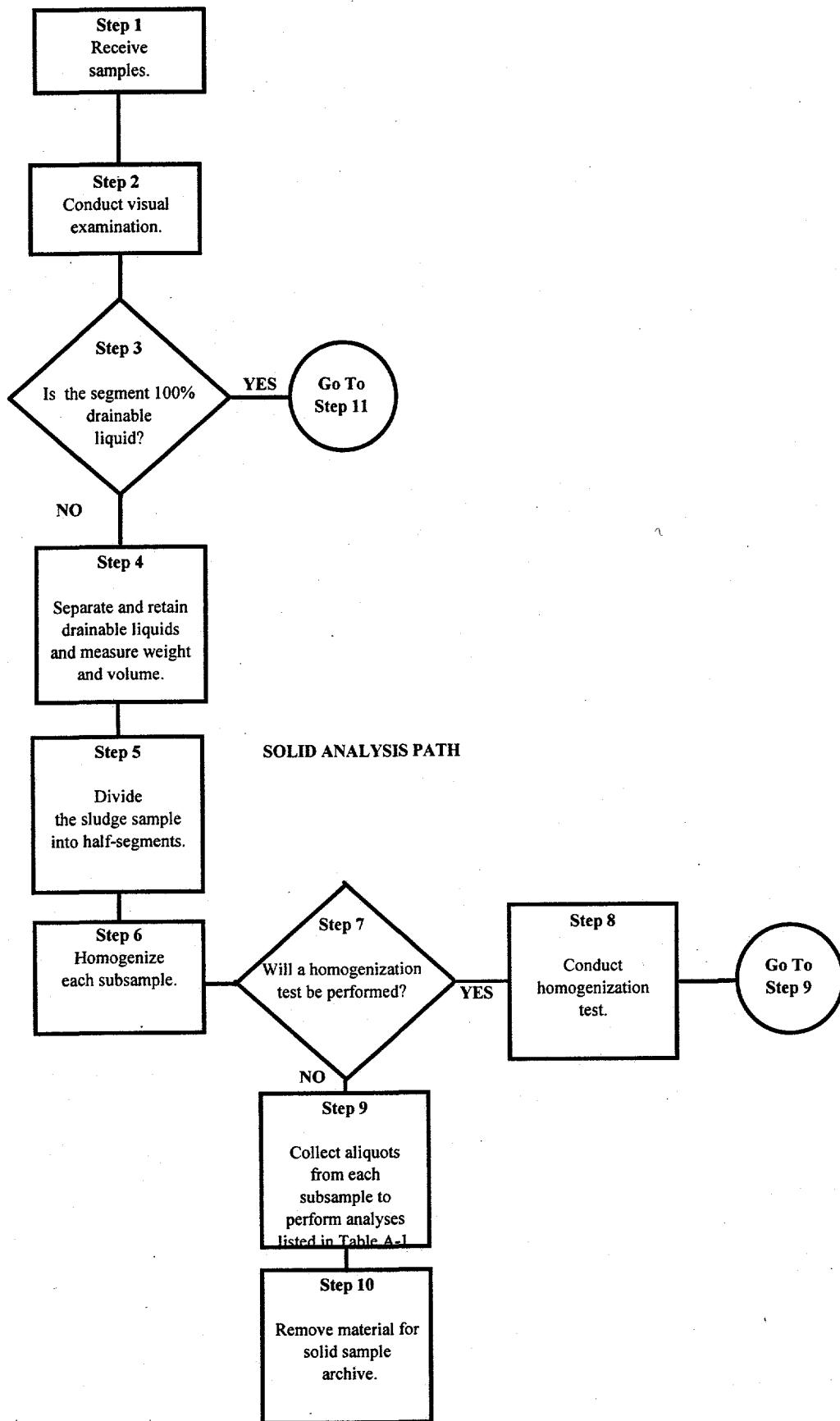


Figure A-1: Solid Analysis Flow Chart

LIQUID PATH

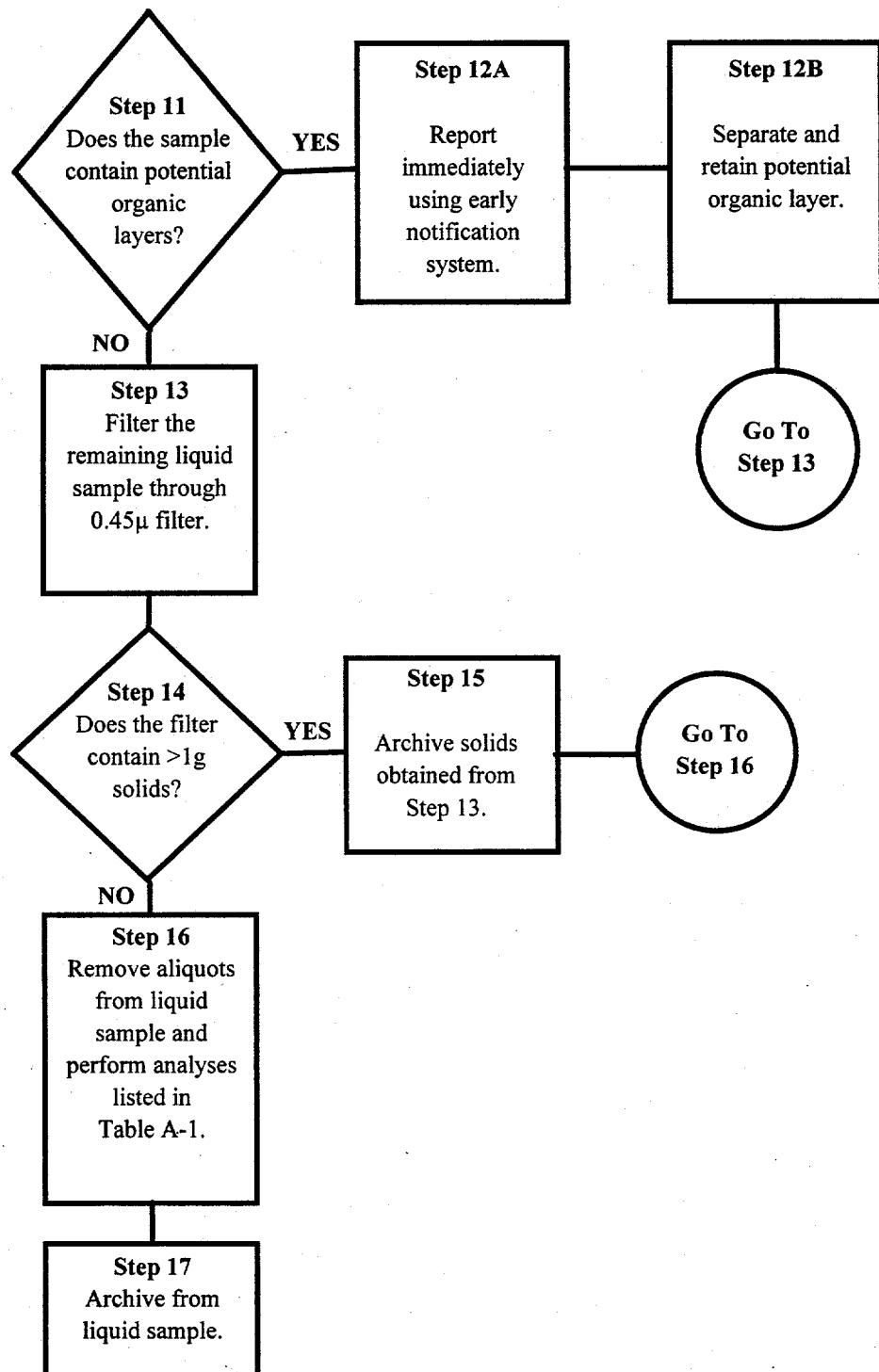


Figure A-2: Liquid Analysis Flow Chart

ANALYSIS AND REPORTING PATH

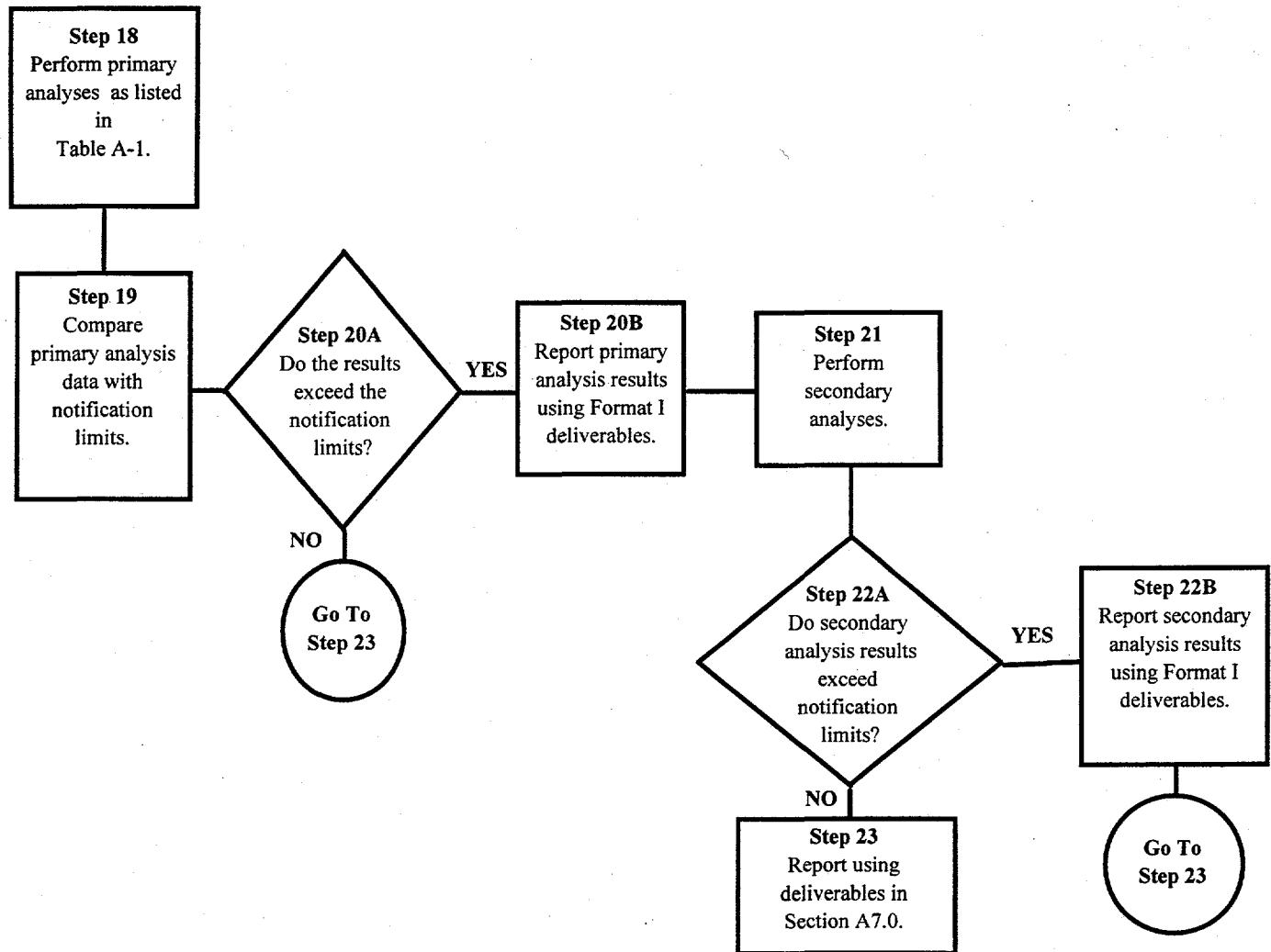


Figure A-3: Sample Analysis and Reporting Flow Chart

A3.2 INSUFFICIENT SEGMENT RECOVERY

If the amount of material recovered from the core samples taken from tank U-202 is insufficient to perform the analyses requested and permit a minimum 10 ml archive per sample, the laboratory shall notify the Tank Cognizant Engineer and the manager of Analytical Services, Program Management and Integration within one working day (See Table A-2). A ranking of the analyses requested in this document is given in Section A3.3. Any analyses prescribed by this document, but not performed, shall be identified in the appropriate data report with justification for non performance.

A3.3 PRIORITIES OF REQUESTED ANALYSES

Confirmation of the priority levels or revision of sample breakdown procedures may be provided to the laboratory based upon the sample recovery, readily observable physical properties within the sample, and the requested sample breakdown procedures provided in Section A3.1. The priority of an analysis is specified by its designation as a primary or secondary analysis. Further ranking may be determined by the program on a DQO basis.

A4.0 SPECIFIC ANALYTE, QUALITY ASSURANCE, AND DATA CRITERIA

A4.1 SPECIFIC METHODS AND ANALYSES

The analyses in Table A-1 to be performed on tank U-202 core samples are based on the safety screening DQO referenced in Section A1.1.2. The laboratory procedure numbers, which shall be used for the analyses, are included in the table.

A4.2 QUALITY ASSURANCE

A4.2.1 Laboratory Operations

The 222-S Laboratory has a quality assurance program plan (Meznarich 1994) and a quality assurance project plan (Taylor 1993) that shall provide the primary direction for quality assurance when analyzing the waste tank core samples at the 222-S Laboratory. Additionally, the *Hanford Analytical Services Quality Assurance Plan* (DOE 1994), when implemented (August 31, 1995), shall be used for quality assurance guidance.

Method specific quality control such as calibrations and blanks is also found in the analytical procedures. Sample quality control (duplicates, spikes, standards) is identified in Table A-1. If no criteria are provided in Table A-1, the performing laboratory shall perform to its quality assurance plan(s).

A4.2.2 Sample Collection

Three core samples are to be taken from tank U-202 and shipped to the performing laboratory by Sampling Operations following work package WS-95-00025. That work package shall also initiate the chain-of-custody for the samples. Approved procedure T0-080-090 ("Load/Transport Sample Cask(s)") is to be used during the sampling event. Samples shall be identified by a unique number before being shipped to the performing laboratory. The sampling team is responsible for documenting any problems and procedural changes affecting the validity of the sample in a field notebook. Sampling Operations shall enter this information in the comment section of the chain-of-custody form for addition to the data reports.

Sampling Operations should transport each sample collected to the performing laboratory within one working day of removing the sample from the tank, but must transport each sample within three calendar days. Sampling Operations is responsible for verbally notifying the 222-S Laboratory (373-2435) at least 24 hours in advance of an expected shipment.

A4.2.3 Sample Custody

The chain-of-custody form is initiated by the sampling team as described in work package WS-95-00025. Core samples are shipped in a cask and sealed with a Waste Tank Sample Seal.

WASTE TANK SAMPLE SEAL	
Supervisor:	Sample No.:
Date of Sampling:	Time of Sampling:
Shipment No.:	Serial No.:

The sealed and labeled samples are shipped to the laboratory along with the chain-of-custody form. The receipt and control of samples in the WHC 222-S Laboratory are described in laboratory procedure L0-090-101.

Table A-1: Tank U-202 Chemical, Radiological and Physical Analytical Requirements

SOLID ANALYSES										REPORTING LEVELS							
Project Name		U-202 Push Core Sample		Comments		FORMAT I		FORMAT II		FORMAT III		FORMAT IV					
Plan Number		WHC-SD-WM-TP-309, REV. 0		Homogenization Test - Per Laboratory Discretion				Early Notify		Process Control							
PROGRAM		Field Blank - Required				Safety Screen				Safety Screen							
A. Safety Screening		Hot Cell Blank - Per Laboratory Discretion				Waste Management				Waste Management							
PROGRAM		Safety Screening		G. T. Dukelow		FORMAT IV		FORMAT V		FORMAT VI		FORMAT V					
A. Safety Screening		TWRs		R.D. Schreiber		RCRA Compliance		Special		Special		Special					
PROGRAM		TWRs		J.G. Kristofszki		# CORES		FORMAT VI		FORMAT VI		FORMAT VI					
PROGRAM		U-202		3													
PRIMARY ANALYSES										CRITERIA							
PROGRAM	METHOD	ANAL.	WHC PROCEDURE	1/2 SEG SOLID	DUP	SPK/MSD	BLK	CALIB STD	PR	AC	UNITS	NOTIFICATION LIMIT ⁴	EXPECTED RANGE ⁴				
A	DSC	Energy	LA-514-113	X	d	ea smpl	N/A	ea AB	±10	90-110	J/g ⁵	>481	unknown				
A	TGA	% H ₂ O	LA-560-112	X	d	ea smpl	N/A	ea AB	±10	90-110	wt%	<17	unknown				
A	Alpha	Total Alpha	LA-508-101	X	f or a	ea smpl	1/mtrix	ea PB	±10	90-110	µCi/g	>41	unknown				
A	ICP	Li	LA-505-151	X	f or w	ea smpl	1/mtrix	ea PB	±10	90-110	µg/g	>100	unknown				
SECONDARY ANALYSES										CRITERIA							
PROGRAM	METHOD	ANAL.	WHC PROCEDURE	1/2 SEG SOLID	DUP	SPK/MSD	BLK	CALIB STD	PR	AC	UNITS	NOTIFICATION LIMIT ⁴	EXPECTED RANGE ⁴				
A	Sep. & α	Pu-239/240	LA-503-156	X	f	ea smpl	1/mtrix ⁶	ea PB	ea AB	±10	90-110	µCi/g	>41	unknown			
A	ICP ¹¹ counting ¹¹	Fe	LA-505-151	X	f or a	ea smpl	see 9	ea PB	ea AB	±10	90-110	µg/g	none	unknown			
A	ICP ¹¹	U										none	none	unknown			
A	RSST ¹⁰	Mn	see 10 below	X	d	N/A	N/A	ea AB	±10	90-110	J/g	>481	unknown	unknown			
A	RSST ¹⁰	Energy												III			
A	Hot Persulfate ¹⁰	TOC	LA-342-100	X	d	ea smpl	1/mtrix	ea AB	ea AB	±10	90-110	µg C/g	>30,000	unknown			
A	Distillation ¹⁰	CN	LA-695-102	X	d	ea smpl	1/mtrix	ea AB	ea AB	±10	90-110	µg/g	>39,000	unknown			
A	IC ¹²	Br	LA-533-105	X	w	ea smpl	1/mtrix	ea PB	ea AB	±10	90-110	µg/g	>1200	unknown			
FOR-MAT																	
1/2 SEG SOLID-1/2 segment, solids																	
2-d-direct, f-fusion dissolution, a-acid dissolution, w-water dissolution																	
3PR-precision, AC-accuracy, ea-each, smpl-sample, DUP-duplicate, SPK/MSD-spike and matrix spike duplicate, AB-analytical batch, PB-preparation blank, N/A-not applicable, mtrix-matrix																	
4Units for notification limits and expected range are those listed in the "units" column.																	
5Dry weight basis.																	
6Direct liquid samples may be diluted in acid or water to adjust to proper sample size and/or pH.																	
7Tracer or carrier may be used in place of a spike and results corrected for recovery.																	
8Either serial dilutions or matrix spikes will be performed.																	
9This analysis required if DSC exceeds notification limits. The RSST method, yet to be formalized, may be found in WHC-SD-WM-TP-104.																	
10This analysis required if DSC exceeds notification limits.																	
11This analyses is required if the Li exceeds notification limits.																	
12This analyses is required if the Li exceeds notification limits.																	

¹1/2 SEG SOLID-1/2 segment, solids²d-direct, f-fusion dissolution, a-acid dissolution, w-water dissolution³PR-precision, AC-accuracy, ea-each, smpl-sample, DUP-duplicate, SPK/MSD-spike and matrix spike duplicate, AB-analytical batch, PB-preparation blank, N/A-not applicable, mtrix-matrix⁴Units for notification limits and expected range are those listed in the "units" column.⁵Dry weight basis.⁶Direct liquid samples may be diluted in acid or water to adjust to proper sample size and/or pH.⁷Tracer or carrier may be used in place of a spike and results corrected for recovery.⁸Either serial dilutions or matrix spikes will be performed.⁹This analysis required if DSC exceeds notification limits. The RSST method, yet to be formalized, may be found in WHC-SD-WM-TP-104.¹⁰This analysis required if DSC exceeds notification limits.¹¹Performed only if total alpha exceeds notification limit.¹²This analyses is required if the Li exceeds notification limits.

Table A-1: Tank U-202 Chemical, Radiological and Physical Analytical Requirements

LIQUID ANALYSES											
PROJECT NAME				COMMENTS				REPORTING LEVELS			
Project Name		U-202 Push Core Sample		Homogenization Test - Per Laboratory Discretion				FORMAT I		Early Notify	
Plan Number		WHC-SD-WM-TP-309, REV. 0		Field Blank - Required				FORMAT II		Process Control	
PROGRAM		PROGRAM CONTACTS				Hot Cell Blank - Per Laboratory Discretion				FORMAT III	
A. Safety Screening		Safety Screening		G. T. Dukelow				FORMAT IV		Safety Screen	
TWRS		R.D. Schreiber		TANK		# CORES		FORMAT V		Waste Management	
222-S Laboratory		J.G. Kristofczki		U-202		3		FORMAT VI		RCRA Compliance	
										Special	
PRIMARY ANALYSES											
PROGRAM		METHOD		SAMPLE ¹		PREP ²		QUALITY CONTROL ³		CRITERIA	
		ANAL.		WHC		FB & LIQUID		DUP		NOTIFICATION	
		PROCEDURE		SPK/MSD		BLK		CALIB		EXPECTED	
		LIQUID		BLK		STD		AC		RANGE ⁴	
A	DSC	Energy	LA-514-1113	X	d	ea	ea	AB	±10	90-110	J/g ⁵
A	TGA	% H ₂ O	LA-560-1112	X	d	ea	ea	AB	±10	90-110	wt%
A	Visual	Organic Layer	LA-519-1151	X	d	N/A	N/A	N/A	N/A	none	Presence
A	ICP	Li	LA-505-1151	X	d ⁶	ea	ea	AB	1/mtr	90-110	µg/ml
SECONDARY ANALYSES											
PROGRAM		METHOD		SAMPLE ¹		PREP ²		QUALITY CONTROL ³		CRITERIA	
		ANAL.		WHC		FB & LIQUID		DUP		NOTIFICATION	
		PROCEDURE		SPK/MSD		BLK		CALIB		EXPECTED	
		see 10 below		LIQUID		BLK		STD		RANGE ⁴	
A	RSST ¹⁰	Energy	LA-695-102	X	d	N/A	N/A	ea	AB	±10	90-110
A	Distillation ¹⁰	CN	LA-342-100	X	d ⁶	ea	ea	AB	1/mtr	90-110	J/g ⁵
A	Hot Persulfate ¹⁰	TOC	LA-533-105	X	d ⁶	ea	ea	AB	±10	90-110	µg C/ml
A	IC ¹²	Br	LA-533-105	X	d ⁶	ea	ea	AB	1/mtr	90-110	µg/ml
										>1200 ⁷	unknown

¹FB & LIQUID - field blank and segment level liquid²d-direct, f-fusion dissolution, a-acid dissolution, w-water dissolution³PR-precision, AC-accuracy, ea-each, smpl-sample, DUP-duplicate, SPK/MSD-spike and matrix spike duplicate, AB-analytical batch, PB-preparation blank, N/A-not applicable, mtrx-matrix⁴Units for notification limits and expected range are those listed in the "units" column.⁵Dry weight basis.⁶Direct liquid samples may be diluted in acid or water to adjust to proper sample size and/or pH.⁷Converted from weight basis to a volumetric basis assuming a liquid density of 1.0 g/ml.⁹Either serial dilutions or matrix spikes will be performed.¹⁰This analysis required if DSC exceeds notification limits. The RSST method, yet to be formalized, may be found in WHC-SD-WM-TP-104.¹²This analyses is required if the Li exceeds notification limits.

A5.0 ORGANIZATION

The organization and responsibility of key personnel involved with this tank U-202 characterization project are listed in Table A-2.

Table A-2: Tank U-202 Project Key Personnel List

Individual	Organization	Responsibility
J. G. Kristofzski	222-S Analytical Operations	Program Support Manager of Analytical Operations
R. D. Schreiber	TWRS Characterization Support	Tank U-202 Tank Characterization Plan Cognizant Engineer
H. Babad	Characterization Program	Safety Screening Point of Contact
J. L. Deichman	Analytical Services	Manager of Analytical Services Program Management and Integration
West Area Shift Operations Manager	Tank Farm Operations	West Tank Farm Point of Contact if Notification Limit is Exceeded (373-3475)

A6.0 EXCEPTIONS, CLARIFICATIONS AND ASSUMPTIONS

A6.1 EXCEPTIONS TO DQO REQUIREMENTS

It is specified in the safety screening DQO (Babad and Redus 1994) that cyanide analyses are to be run on a quarter-segment level and that the notification limit for the DSC analysis is 125 cal/g. The revised ferrocyanide DQO (Meacham et al. 1994) has changed the requirement such that the cyanide analysis is now to be run on a half segment level and the DSC notification limit is 115 cal/g (dry weight basis). The next revision to the safety screening DQO will incorporate this change. This Sampling and Analysis Plan specifies that cyanide analysis will be run on a half segment level and that notification shall be made if the DSC value exceeds 481 J/g dry weight basis (115 cal/g).

A6.2 CLARIFICATIONS AND ASSUMPTIONS

A number of clarifications and assumptions relating to the notification limits or decision thresholds identified in the applicable DQO efforts need to be made with respect to the analyses in Table A-1. Each of these issues are discussed below.

- ▶ Any exothermic reaction (in cal/g or J/g) determined by differential scanning calorimetry (DSC) must be reported on a dry weight basis as shown in equation (1) using the weight percent water determined from Thermogravimetric Analysis.

$$\text{Exotherm (dry wt)} = \frac{\text{[exotherm (wet wt) } \times 100]}{(100 - \% \text{ water})} \quad (1)$$

NOTE: A large error in the DSC value may result when converting samples containing greater than 90% water to a dry weight basis. However, this conversion is still required.

- The safety screening DQO (Babad and Redus 1994) requires that additional analyses be performed if total alpha activity is greater than 1 g/l. Total alpha is measured in $\mu\text{Ci}/\text{g}$ rather than g/l. To convert the notification limit for total alpha into a number more readily usable by the laboratory, it was assumed that all alpha decay originates from Pu-239. The notification limit may then be calculated as shown in equation (2):

$$\left(\frac{1 \text{ g}}{L} \right) \left(\frac{1 \text{ L}}{10^3 \text{ mL}} \right) \left(\frac{1}{\text{density}} \frac{\text{mL}}{\text{g}} \right) \left(\frac{0.062 \text{ Ci}}{1 \text{ g}} \right) \left(\frac{10^6 \mu\text{Ci}}{1 \text{ Ci}} \right) = \frac{61.5}{\text{density}} \frac{\mu\text{Ci}}{\text{g}} \quad (2)$$

NOTE: If a density of 1.5 g/ml is assumed for solid material, the notification limit becomes 41 $\mu\text{Ci}/\text{g}$.

- The safety screening DQO, upon which the analyses in Table A-1 are based, does not sufficiently address the analysis of any drainable liquids present. To adequately characterize the tank, all analyses performed on the solids for the safety screening DQO, with the exception of total alpha analyses, shall also be performed on any drainable liquids.

A7.0 DELIVERABLES

All analyses of tank U-202 waste material shall be reported as Formats I and/or III as indicated in Table A-1. Additional information regarding reporting formats is given in Schreiber (1994a).

A7.1 PROGRESS REPORTS

Each laboratory performing analyses on tank U-202 waste material from this sampling project shall provide a monthly status report to the Characterization Program. This report shall contain 1) an activity summary of analyses completed or started under the work package, 2) results of preliminary analyses, and 3) schedule and cost information on a DQO basis.

Monthly and cumulative costs will be compared to the budgeted costs as part of the status report. Monthly variances greater than 10% or \$10,000, and cumulative monthly variances greater than \$50,000 from the budgeted costs must be explained in the report. Cost reporting shall consist of the following:

1. budgeted cost of work scheduled
2. monthly cost (actual cost of work performed)
3. year-to-date costs (actual cost of work performed)

Schedule reporting shall consist of the following:

1. monthly schedule
2. year-to-date schedule

A7.2 FORMAT I REPORTING

Table A-1 contains the notification limits for each analyte. Any results that exceed the notification limits defined in the DQO processes shall be reported by calling the West Tank Farm Operations Shift Manager at 373-3475 and the Characterization Program Office (Schreiber 1994b). This verbal notification must be followed within one working day by written communication to Analytical Services, Characterization Support, the Characterization Program Office, the Safety Screening Representative, and Waste Tanks Process Engineering, documenting the observations. Additional analyses for verification purposes may be contracted between the performing laboratory and the contacts above either by a revision to this document or by a letter of instruction.

A7.3 FORMAT III REPORTING

A Format III report of the results of the primary safety screen analyses shall be issued to the Safety Screening Representative, Characterization Support, Waste Tanks Process Engineering, the Characterization Program Office, Los Alamos Technical Associates, the Tank Characterization Resource Center, and the Tank Characterization Database representative (Schreiber 1994c) within 45 days of receipt of the last sample at the laboratory loading dock. The DSC and TGA scans have been requested due to the interpretive nature of the analysis. If analyses for the safety screening secondary analytes are required, these results shall be provided within 90 days of receipt of the last sample at the laboratory loading dock. No calibration data are requested for these reports. Detailed information regarding the contents of this reporting format are given in (Schreiber 1994a).

A8.0 CHANGE CONTROL

Under certain circumstances, it may become necessary for the performing laboratory to make decisions concerning a sample without review of the data by the customer or the Characterization Program. These changes shall be documented through the use of internal characterization change notices or analytical deviation reports for minor low impact changes and documented in applicable laboratory notebooks. All significant changes (such as changes in scope) shall be documented by Characterization Support via an Engineering Change Notice to this Tank Characterization Plan. All changes shall also be clearly documented in the final data report.

At the request of the Characterization Program, additional analysis of sample material from this characterization project shall be performed following a revision of this Tank Characterization Plan.

A9.0 REFERENCES

Babad, H., 1992, *An Overview of Progress Made Toward Resolving Priority One Safety Issues: Fiscal Year 1992*, WHC-EP-0606, Westinghouse Hanford Company, Richland, Washington.

Babad, H., and K. S. Redus, 1994, *Tank Safety Screening Data Quality Objective*, WHC-SD-WM-SP-004, Westinghouse Hanford Company, Richland, Washington.

Bell, K. E., 1993, *Tank Waste Remediation System Tank Waste Characterization Plan*, WHC-SD-WM-PLN-047, Rev. 1, Westinghouse Hanford Company, Richland, Washington.

Bratzel, D. R., 1994, Letter to S. M. Joyce, "Archiving Requirements", 7E720-94-125, dated June 23, 1994.

DOE, 1994, *Hanford Analytical Services Quality Assurance Plan*, DOE/RL-94-55, Rev. 0, U. S. Department of Energy, Richland Field Office, Richland, Washington.

Haller, C. S., 1994, *Fiscal Year 1995 Tank Waste Remediation System Tank Waste Analysis Plan*, WHC-SD-WM-PLN-091, Rev. 0, Westinghouse Hanford Company, Richland, Washington.

Hanlon, B. M., 1994, *Waste Tank Summary for Month Ending November 30, 1994*, WHC-EP-0182-80, Westinghouse Hanford Company, Richland, Washington.

Hill, J. G., W. J. Winters, and B. C. Simpson, 1991, *Waste Characterization Plan for the Hanford Site Single-Shell Tanks*, WHC-EP-0210, Rev. 3, Westinghouse Hanford Company, Richland, Washington.

Meacham, J. E., R. J. Cash, G. T. Dukelow, H. Babad, J. W. Buck, C. M. Anderson, B. A. Pulsipher, J. J. Toth, and P. J. Turner, 1994, *Data Requirements for the Ferrocyanide Safety Issue Developed through the Data Quality Objectives Process*, WHC-SD-WM-DQO-007, Rev. 0, Westinghouse Hanford Company, Richland, Washington.

Meznarich, H. K., 1994, *Quality Assurance Program Plan for Laboratory Analysis and Process Testing*, WHC-SD-CP-QAPP-003, Rev. 1, Westinghouse Hanford Company, Richland, Washington.

Schreiber, R. D., 1994a, Letter to C. S. Haller, "Revised Interim Tank Characterization Plan Guidance", 7E720-94-121, dated May 13, 1994.

Schreiber, R. D., 1994b, Letter to J. G. Kristofzski, "Format I Reporting Requirement", 7E720-94-128, dated August 15, 1994.

Schreiber, R. D., 1994c, Letter to J. G. Kristofzski, "Point of Contact/Distribution List", 7E720-94-141, dated October 11, 1994.

Taylor, L. H., 1993, *Quality Assurance Project Plan for Chemical Analysis of Highly Radioactive Mixed Waste Samples in Support of Environmental Activities on the Hanford Site*, WHC-SD-CP-QAPP-002 Rev. 0A, Westinghouse Hanford Company, Richland, Washington.

Whelan, T. E., et al., 1994, *TWRS Characterization Program Quality Assurance Program Plan*, WHC-SD-WM-QAPP-025, Rev. 0, Westinghouse Hanford Company, Richland, Washington.