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Abstract

An investigation of the 2D toroidal eigenmode problem reveals the possibility of a new
consistent 2D structure, the dissipative BM-II mode. In contrast to the conventional balloon-
ing mode, the new mode is poloidally localized at 7/2 (or —m/2), and possesses significant
radial asymmetry. The radial asymmetry, in turn, allows the dissipative BM-II to generate
considerably larger Reynolds stress as compared to the standard slab drift type modes. It
is also shown that a wide class of localized dissipative toroidal modes are likely to be of the
dissipative BM-II nature, suggesting that at the tokamak edge, the fluctuation generated

Reynolds stress (a possible source of poloidal flow) can be significant.
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I. INTRODUCTION

For a tokamak-like magnetically confined plasma, the macroscopic radial equilibrium is
obtained by balancing the radial components of the outward VP force with the inward
pinching force J x B. Because the surface average of the poloidal projection of these two
forces is zero, they play no part in the poloidal force-balance. The plasma dynamics in
the poloidal direction, therefore, is controlled by the remaining terms, e.g., the inertial
(convective), the viscosity, and possibly the dissipative terms in the equation of motion.
Since the perpendicular viscosity is rather small for a strongly magnetized plasma, and the
surface averaged inertial and gyroviscosity terms are also zero (for the principal perpendicular
motion consisting of the B x B drift and the diamagnetic flow), the parallel viscosity survives
as the only significant force in the poloidal direction. The dissipative nature of this term
would then imply that a steady poloidal flow will not be sustained by a tokamak-like plasma.

This understanding of the poloidal force balance, however, is inconsistent with recent
experiments on L-H transitions, where it is seen that large poloidal flows appear along with
the onset of the transition.! There surely must exist a force which drives and sustains the
observed poloidal flows in high confinement plasma configurations. What is it?

Many theories have been devised to answer this important question. Among others,
the poloidal torque given by the radial gradients of the Reynolds stress [the inertial term
constructed from the fluctuating plasma motions (fields)] has been considered as one of the
possible forces driving the poloidal flow. While the original physical mechanism related
to this issue was investigated by Berk and Molvig,2 Diamond and Kim?® were the first to

.publish an éstir;laﬁe for the magnitude of the poloidal torque resulting from the fluctuating
slab-model drift waves. It was also claimed that this estimate was consistent with the DIII-D

experiment. Making use, of the same. slab drift wave model, however, has led us to much



smaller estimates. For comparison, the details of our calculation are presented in Sec. IL. It is
highly possible that, in their estimate, Diamond and Kim have missed that the overall radial
energy flow is vastly lowered by the ‘pairing’ mechanism — there is a major cancellation
because two waves peaking at adjacent rational surfaces contribute oppositely to the radial
energy flow in the intervening region.

For the ‘pairing’ cancellation to be negligible, the mode structure must possess substantial
radial asymmetry so that there is a net energy flow in a well defined radial (inward or
outward) direction from all the contributing modes. Notice that a simple real displacement

of the mode from the rational surface will not lead to such a desired property.

Within the framework of slab model the intrinsic asymmetry can be acquired, if and only
if the driving force (or a part of it) is odd on reflection about the rational surface. The basic
mode equation, in that case, will have mixed parity because other terms are, generally, even
on reflection. Admittedly, there are a few slab modes such as the drift-rippling mode and the
parallel flow shear driven mode, satisfying this condition. Recently, Dong et al.* calculated
the Reynolds stress of the parallel flow shear driven mode. Their manipulation of averaging
the Reynolds stress over the ‘microscopic scale’ turns out to be qualitatively equivalent to
realizing the ‘pairing’ mechanism. The analysis presented in Sec. II of the present paper
(not a trivial replica of their calculation) indicates that the Reynolds stress is indeed greatly
enhanced by the intrinsic asymmetry due to the odd-parity drive. However, by no means,
does it follow, that a significant Reynolds stress in a tokamak can arise only from modes of
mixed parity. The modes in a tokamak are intrinsically two dimensional (2D) [throughout
this paper we only consider the axisymmetric tori. The toroidal mode number n is thus
treated as a good quantum number], and an effective radial asymmetry can be ‘created’ as
a result of this 2D structure.

For the 2D toroidal mode localized at a rational surface, the eigenmode equation is

no longer invariant under ‘reflection’ with respect to the rational surface. To the lowest
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order, it may still conserve what we term the combined parity (CP) — invariance under a
simultaneous ‘reflection’ and poloidal inversion. If the mode structure has this symmetry, it
is straightforward to show that the mode envelope is radially symmetric about the rational
surface, and also possesses the up-down symmetry in the poloidal cross section. Therefore,
a radial asymmetry for the localized toroidal modes must arise from the CP violation (if
any) of mode structure. It will be shown later that the 2D mode structure is not determined
by the lowest order equation (known to conserve CP), but by higher order equations which
may or may not be invariant under CP. To determine whether these 2D structures will have
considerable radial asymmetry (and hence allow a build-up of significant Reynolds stress),
we must thoroughly investigate the very nature of the eigenmodes on an axisymmetric torus.

For historical reasons, the theoretical frameworks developed to study the structure of
the 2D localized eigenmodes are collectively called the ballooning theory. The ballooning
theory is an active area of research, and its plentiful literature is not easily accessible to
a normal reader. One of the tasks of this paper is to describe and explain crucial aspects
(some recently discovered) of the theory in simple language. Naturally, we will spend more
time on those aspects which are of direct relevance to the current effort.

The derivations and details of the theory will be dealt with in the main body of the
text (Sec. III). In the introduction, we shall give only qualitative description of the salient
features. For most of its history, the ballooning theory concentrated on a particular structure
of the 2D localized toroidal eigenmode which is localized at the poloidal angle 4 = 0 (or
¥ = 7).[5] For this structure, to be called BM-I [the ballooning mode of the first kind],
the CP is conserved making it an unlikely candidate to yield significant Reynolds stress.

Therefore, the structure of BM-I will not be discussed to detail in this paper.

A few years ago, a novel structure was discovered in course of the attempts: 1) to
derive the continuum damping of toroidal Alfvén eigenmode (TAE),®~° and 2) to resolve the

difficulties associated with the BM-I structure for the dissipative systems.!°~!! There are

4



three generic features that distinguish the new structure of BM-II [the ballooning mode of the
second kind] from the earlier BM-I: (a) For a given toroidal mode number BM-II may occur
for any plasma profile and at all radii. This is in contrast to BM-I, whose occurrence is subject
to the solvability condition, and may be restricted to very limited radial locations, (b) The
2D eigenvalue is approximately given by the average of the A-parameterized eigenvalues of
the ballooning equation [the lowest order equation in the ballooning theory is called the
ballooning equation. In the ballooning equation, the angle like variable A (¥; according to
some authors), which is the Fourier conjugate of the poloidal mode number [ [see Eq. (12)],
appears only as a parameter. Higher order equations are differential equations in A.]. This is
in contrast to BM-I, for which the 2D eigenvalue is essentially the A-parameterized eigenvalue
of the ballooning equation evaluated at A = 0 (or A = ), save for some very special cases,®
(c) The poloidal structure of BM-II is not localized at ¥ = 0 (or 9 = m). [It is worth
mentioning that the BM-I and the BM-II have also been called by Dewar,'? the ‘trapped
mode’ and the ‘passing mode’ respectively]. This last feature (c¢) of the BM-II structure
is not yet fully documented in the literature. If appropriate consistency constraints can be
satisfied, the BM-II can take totally distinct forms for the dissipative and the non-dissipative
systems. For non-dissipative systems (like the TAE), there is no poloidal localization, %.e., the
mode does not balloon at all.® For this structure (requires an additional small parameter for
consistency), the CP viola,tfion is weak, and there is no obvious source for radial asymmetry.
Thus, the non-dissipative BM-II is also unlikely to be a source for generating significant
Reynoids stress.

The situation can altogether change for the dissipative systems. In Sec. III, it will
be shown that for a A-parameterized eigenvalue expressed by Q,(\) = Q, + AQ,cos A
[cf. Eq. (18)], the existence of finite (not too small) dissipation can cause BM-II to localize
at A = m/2 (or A = —m/2), and that this localization in A results in the poloidal localization

at 9 = —m/2 (or ¥ = w/2). Thus the dissipative BM-II (as distinct from the non-dissipative



mode) is a genuine ballooning mode, has no up-down symmetry in the poloidal plane, and
is characterized by strong CP-violation. It is also shown in Sec. III that the A-localization of
the dissipative BM-II (equivalent to the radial localization in the framework of the ballooning
theory) is necessary for the validity of applying the ballooning approach to a wide class of
dissipative systems that do not have an intrinsic small parameter like the inverse aspect ratio
for the TAE. Therefore, for such a wide class of dissipative systems, the radially localized
toroidal mode must possess substantial radial asymmetry, which would lead to a significant
Reynolds stress.

The explicit expression for the 2D structure of dissipative BM-II is derived in Sec. III,
where we also include a systematic and self-contained exposition of the ballooning theory
formalism in terms of the 2D ballooning transform. The derived expression can be readily
used for calculating the Reynolds stress when the solution of the ballooning equation at
A = /2 is obtained. In Sec. IV we adopt a model equation governing toroidal drift waves
for illustrating the calculation of Reynolds stress. The result is then compared with the
slab drift-wave calculation of Sec. II, indicating a great enhancement of the Reynolds stress
owing to the large radial asymmetry of the 2D mode. Section V is devoted to discussion and

concluding remarks.
II. THE REYNOLDS STRESS — SLAB MODES

The poloidal torque induced by Reynolds stress is defined by T, = p(ey - (1 - V)1i), where
p is the mass density, 1 is the fluctuating fluid velocity, ey is the unit vector in the poloidal
direction, and {---) stands for the ensemble average. Throughout this paper the standard
quasi-toroidal coordinate system (r,%,() is adopted. As an example, the fluctuating flow
i1 = (¢/B?)B x Vg will be restricted to the direction perpendicular to the equilibrium
magnetic field B, where ¢ is the fluctuating electrostatic potential, B = |B|, and c is the

speed of light. This representation corresponds to the cold ion limit, when the contribution

6



from the (warm) ion diamagnetic flow is neglected. The surface averaged torque is found to

be well approximated by

‘ __rt 8 Op Bp\ _ _pc OR(r)
Lol =152 3¢ <j$ Wesar)= "B ar (1)

where R(r) is the Reynolds stress at the radial position 7.

A similar expression also applies to the ‘magnetic Reynolds stress’ (R™), which is associ-
ated with the torque induced by the fluctuating magnetic fields, Tq(m) =-— <e19 . (f’, . V)]§> JAmw.
For B = B x V#/B, where 9 is the fluctuating magnetic flux,

10 o ow\ 1 OREM(r)
TN =g 2 (F 055 o) =~ g @

or

In this section the Reynolds stress, due to only the electrostatic slab drift waves, is
discussed.

Introducing the relative coordinate to t}.1e jth rational surface by z; = —r;, and the y
coordinate by dy = rd¥, one can readily write the amplitude of the slab drift wave peaking

at the jth rational surface as
wi(z4,y,t) = @(r;) {exp [—ia:z:?/sz + ikyy — dwg,t + i6(r]-)] + c.c.} , (3)

where wy,, = (WF — iw;)/(1 + kjp; — i), & = ws/wg, = (ws /w1 = (6, — ws/w)], for
kyps < 1 and ws/w:‘ < 6, < 1, ws = pscsky/Ls, Ls is the shear length, ps is the ion Larmor
radius at the electron temperature, ¢; is the ion sound speed, w:‘ is the electron diamagnetic
frequency, 6(r;) is the random phase associated with the wave peaking at the jth rational
surface, ¢(r;) is the mode (real) amplitude at r;, and all parameters such as w¥, p;, are
associated with the radial position ;. It is then straightforward to obtain the contribution

from the jth rational surface to R,

Ry(r) = 2 () o) expliments ), @
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where 6, = — Re az?/2p? = —(ws/2w} p?)z

A few remarks on Eq. (4) are in order. First, the factor d,/dr represents the phase shift
of dp/dr with respect to @. If Jp/0r were in phase with ¢, while dp/09 is 90° phase shifted
with respect to ¢, the ensemble average of the product (9p/dr)(0¢/09) would be zero. It
indicates that not only a zero 6, but also a constant 6, would result in zero Reynolds stress.
Second, the phase shift dé,/dr(= z;) has odd parity about the rational surface. Physically,
the drift wave energy is generated at the rational surface, and propagates away on both sides
(outgoing boundary conditions). If the energy flow is positive on the right side, it is negative
on the left side. Thus, on the right side of the jth rational surface the energy flow from the
mode peaking at the jth surface will be cancelled by that coming from the mode peaking at
the (j + 1)th rational surface, if R; is antisymmetric with respect to z;. This is indeed the
case for the slab drift waves. However, this cancellation is not complete, because the wave
amplitude and the equilibria vary from one to the other rational surface. This cancellation
is named as ‘pairing’ by Berk.!?

The effect from ‘pairing’ can be calculated by summing up the contribution from all

rational surfaces. Under the approximation

SRy = / drj(ngs/r;)R; = / driky§R;, (5)
F

where 5 is the magnetic shear at r;, it yields

2A
wsk,s

R(r)= L Ry(r) ==} [ dn, (w*p2

_ VT [ R | PR whkE
~ 4 Or \Ima\|Imq] w;"pg(p(r) ’ (6)

where use is made of the assumption that the mode width A, = p;/4/|Ima|/2 is much

) (r5)(r — 75) exp [mar — 132/ 4]

smaller than the equilibrium scale lengths.



The poloidal torque corresponding to Eq. (6) is
2
pc* IR T pc - nk o
T = R A,
(") =~55 5 ~ V335 ( ) (Aky) Tz @ ™)
where L, is the density gradient length, and Ly is the scale length measuring the fastest

variation among the equilibrium and the amplitude of the mode envelope.

We can now compare our results with those of Diamond and Kim in Ref. [3]. Mak-
ing use of their estimates for § = ep/T. =~ \/ESTI; ps/Ln, and for the radial current
J, = necs(p?/L2)kyps coupled with the relation J. — cT/B, one can infer that Typx) =
(¢/B)?pky(Ln/ Ls)p?/ 2. Tt is readily seen that the torque given by Eqg. (7) is about (A,/Ly)?
times smaller than Typk] in magnitude. Because A, /L; is much smaller than unity, the
poloidal torque derived from a consistent treatment of the slab drift waves is too small to be
comparable with the DIII-D experiments.

Recently, Dong et al.* studied the Reynolds stress of the mode driven by parallel flow
shear. It is interesting to note that this mode has intrinsic asymmetry for the warm ion
scenario. In the cold ion limit, however, the mode structure reduces to a real displacement
from the rational surface, and energy flow to the right and to the left become almost the
same in magnitude. In order to illustrate the effect of the asymmetry, let us consider the

following form
wi(z,y,t) = B(r;) {exp [—z’a(a:j + 0;)?/20% +ikyy — iwr,t -+ iﬁ(rj)] + c.c.} , (8)

where A; = —ps “w/23(w+K) = (Ln/cs)dVy/dr), s = (Ln/Ls), K = (1+m)/7, 7 is the
ratio of the electron to the ion temperature, 7; is the ratio of the ion temperature gradient
to the ion density gradient, and o = ws/wk, = (ws Jw¥)/&. The Reynolds stress from the

jth rational surface is given by

k

Rj(r) =5

(%‘.5_> 2(r;) exp(Im 22/ p2), (9)




where 8, = —Rea(z; + ReA;)?/202 + Imalm Aj(z; + ReA;)/p2, and z; = z; + Re Aj +
ReaImA;/Ima, and ¢(r;) is the maximum value of the mode peaking at the jth rational
surface. The asymmetry of energy flow is obvious from Eq. (9). The leading asymmetry
arises from the factor ReaIm A;/Im «, because the contribution from ImaImA; is small.

The total stress is obtained by summing over all the rational surfaces

mp2 ImAj[Reo]?k2s
R(r>=znj(r>=§~||1mal e ). (10
7 S

Compared to Eq. (6), it is greater by the factor (¥ is the growth rate normalized to w).

-~

(ImA;Ls/p?) Rea = M, (11)
2(1+ K)?ps
which could be much greater than unity for warm ions (K =~ (1)), implying that the
intrinsic radial asymmetry due to odd-parity driving results in great enhancement of the
generated Reynolds stress. In the cold ion limit, however, K = 0, and Im A; = 0, so that the
intrinsic asymmetry vanishes, and the poloidal torque reduces to the value given by Eq. (7).
From the preceding analysis, we must not conclude that a significant poloidal torque, if
there is any in tokamaks, necessarily owes its origin to modes of this or similar description

(like the drift-rippling mode with its slab mode structure skewed around the rational surface).

This conclusion, as we shall demonstrate in the following sections, is not necessarily true.

ITI. TOROIDAL MODE STRUCTURE — BALLOONING THE-
ORY

The ballooning theory, in a general sense, is an asymptotic theory for high toroidal mode
number (n) fluctuations in an axisymmetric torus. A proper understanding of the mode
structure necessitates going beyond the lowest order theory contained in the well-known
ballooning equation. (It is again for historic reasons that the lowest order equation of the

formulation is called the ballooning equation). We adopt here the rigorous and self-contained
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formalism based on the so-called 2D ballooning transform.83—1! This choice is dictated not
only by the abstract virtues of brevity and clarity, but also by its demonstrated success in
calculating quite sophisticated higher order effects such as the continuum damping of TAE.®

In the quasi-toroidal coordinates (r,9,(), the toroidal mode (with mode number n) as-

sociated with the rational surface 7y is represented by

on(r,9,¢) = exp(in¢ — imV) > _ ¢, (r) exp(—il®), (12)
1

where m = ngq(rg), and the integer [ labels the sidebands coupled to the central Fourier mode

m. The 2D ballooning transform z = nfg(r) — ¢(7o)),
bna(r) = § drdkexplik(z — 1) — dA@a(k, N, (13)

represents the 2D wave function ¢, (r) (with a continuous variable 7 and a discrete variable
[) in terms of the new 2D wave functions @,(k,A) labelled by the continuous variables
k(—o0, +00), and A(0,27). This transformation, Eq. (13), is mathematically sound and
invertible. In particular, the discrete variable [ has been conveniently represented by a
continuous, but periodic, variable A defined on a finite interval 0 — 2w. Because Eq. (13)
is a well-defined transformation, the original 2D equation for ¢, ;(r) can be unambiguously
transformed to a 2D equation determining @,(k, \), and vice-versa. In the large n limit, the

equation obeyed by @,(k, ) allows a formal asymptotic expansion of the form!®

Lo+%-;“6-}:+ﬁw+"'—9 Pnlk, A) =0, (14)

where Ly is the ‘ballooning operator’, i.e.,
[LO - Qn(A)]X'n(k, /\) =0 (15)

is the ballooning equation, £2,()) is the A-parameterized eigenvalue, the operators Lg, Ly, Ly . . .

usually contain 9/0k, but not 9/, and Q is the eigenvalue of the 2D system. Generally,
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tedious but straightforward algebraic manipulations are needed to derive Eq. (14) from the
full 2D original equation [the radial variable r is first transformed to z, which is then rewrit-
ten as z = (z — () + I, whereupon (z — [) is transformed to 9/8k and ! transformed to
—i0/0A]. However, for most model equations that have been used for the study of higher
order ballooning theory, the derivation of Eq. (14) is quite trivial. In all these examples,
the putative operators L;, L, ... are approximated by ¢ — numbers [for example, see the
derivation of Eq. (33) from Eq. (32) in Sec. IV].

The ballooning equation embodies two leading order basic symmetries of the original 2D
eigenmode equation. The ballooning operator Ly has the ballooning or the translational
symmetry,'® and is also invariant under the combined inversion k — —k,A — —A, which is
equivalent to the CP conservation under the simultaneous reflections r —ry — —(r — T9) and
¥ — —=9.

It is important to note that the true ‘expansion parameter’ of Eq. (14) is not a simple
numeric parameter like 1/n, but an ‘operator parameter’ (1/n)8/8\. As a result, the asymp-
totics of the system strongly depend on the mode structure in A space. In a sense, for a
consistent asymptotic analysis, the allowed wave function @(k, ) must satisfy the condition
(1/n)01n@(k,A)/OX <« 1. This understanding is particularly important for examining the
acceptability of the plausible localized mode structures.

The expansion of the 2D wave function can be written as
Qb\n(ky /\) = \Iln(/\)Xn(k) /\) + (;511,1 +ee (16)

(This expansion form is adequate for the agenda of this paper. A more sophisticated expan-
sion scheme can be found in Ref. [9]). Substituting Eq. (16) into Eq. (14) and annihilating
$n,1, one can obtain (up to second order in (1/n)8/8), the following equation for U, ()
[the ignored terms yield only quantitative corrections to the second order perturbation)]

(_ L, 8 I, 82

Z?aﬁﬁm‘[ﬂ‘gnmo Ta(A) + - =0, (17)
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which is valid if and only if the following two conditions have been satisfied: (0InX/0\)/
(0ln¥/8)A) < 1 and € = (1/n)(0In¥/0A) =~ ¢ < 1. These constraints must be verified a
posteriori [noting that dlnX/d\ = O(1)]. In Eq. (17), L; = [ dkXL;X/ [ dkX? (j = 1,2).
Equation (17) is a differential equation to be solved subject to the periodic boundary
condition: ¥,(\) = ¥,(A+2m). Notice that the A-parameterized eigenvalue Q,,()) (obtained
by solving the ballooning equation) plays the role of a ‘potential well’. Owing to the CP

conservation of the ballooning equation [Eq. (15)], 2,()) can be approximated by
Qa(A) = Qp + AQpcos A+ -+, (18)

because the symmetry forbids the mixing of the sines and cosine terms. One can certainly
have cospX (p is an integer > 2) terms without changing the essential features of the discus-
sion to follow, if their contribution is not large [for detail, see discussion (B) of Sec. V].

We are now ready to discuss the origin of the two distinct kinds of ballooning modes,
the BM-I, and the BM-II. For BM-I, or the conventional ballooning mode, one chooses only
such stationary points 7 that render L; = 0 (the so-called solvability condition), and orders
the perturbation of the eigenvalue Q — ,(}) =~ O(e?). In the large n limit, the Mathieu
equation reduces to the Weber equation for the modes localized at the extremum point Ao,
defined by d2,())/dA N 0. It is then straightforward to show that the small parameter

0

e ~ 1/+/n provides a consistent ordering, and the wave function takes the form

U,(A) ~ exp [—n\/ |AQ, /8L, (A — )\0)2] , (19)

where Mo = 0 or Ao = m, depending on the sign of Re{AQ,/L,}. Because of the highly
localized nature of the eigenfunction in X space, the eigenvalue is very close to p = Q. +
AQ,, cos A, with only a second order correction {2 = \/m /n = O(?), e, Q= Qo+
Q. The first order correction to the eigenvalue is zero for consistent ordering. Substituting

¥,()\) [Eq. (19)] back into Egs. (12) and (13), one can directly obtain the mode structure

13




in real space. It is found that BM-I is poloidally localized at ¥ = 0 (or ¥ = =), possesses
up-down symmetry in the poloidal cross-section, and is radially symmetric about ro with a
width Ar = ry//n.

Recall that BM-I is subject to the solvability condition I; = 0. Failure to satisfy this
condition will deprive us of a consistent ordering which allows us to determine the mode
structure by solving the second order (correct to the second order in perturbation) differential
equation in A.!° In other words, the neglected higher order terms will become equal to or
larger than the terms kept. The implication is that the BM-I type mode may not exist at
an arbitrarily chosen 7y. In particular, when the system cont: s dissipation, the solvability
condition becomes two independent constraints. It is not always possible to satisfy both of
them simultaneously.!®!* This recognition has serious consequences for applications of the
conventional ballooning mode. One may wonder whether such a localized mode ever exists

at the very radial place where it was placed for the given application.

There exists another type of solution for the system described by Egs. (17)—(18). It applies
to the radial positions where L; # 0, i.e., most of the radial positions. The requirement for a
consistent ordering is still the same (1/n)01ln¥/0\) = ¢ < 1. But now with L, # 0 one can
neglect (Ly/n?)8%/0X?, if L, is of order unity. However, one must show that the solution of
Eq. (17) does support such an ordering. Consistent modes obtained by solving the resulting

first order differential equation will be called BM-II.

It is easy to get the solution of this first order equation

A
\Ifn()\) = \Ilo exp (—Z(TL/Ll)/ d/\I[Q - Qn(/\l)]> . (20)
The periodic boundary condition on ¥,(A) leads to the determination of the eigenvalue:

Q= ?4 A () — T, (21)
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and of the eigenfunction (mode structure)

U,(A) = Yoexp {—i(nAQn /L;)sin }]. (22)
If AQ,/L, is real (non-dissipative BM-II), ¥,,(}) is an oscillatory function in the A space
with an invariant amplitude. The expansion parameter of the ballooning theory, { =
(1/n)0In ¥, (N)/OX =~ (AQn/L1)cos A, can be small only if a small parameter is inherent
in (AQ,/L;), because the factor 1/n cancels and cosA — O(1). For the TAE example
cited in the introduction, there is indeed a small parameter, namely the inverse aspect ratio
£ = r/R, that is associated with I;(L, = 2/¢&).® Thus the condition § ~ gEAQ, /2 < 1
is satisfied by the asymptotic smallness of & The radial extension of the mode can be di-
rectly calculated by making use of the standard saddle point method for integrating over A
[Egs. (13), (16), and (22)], and turns out to be

Ar  EAQ,
L (23)

To s

In some papers, this Ar is emphasized as the distance between the two Wentzel-Kramers-
Brillouin (WKB) turning points. The reason for this can be easily seen from the saddle
point calculation. The two WKB turning points correspond to the positions where the
saddle points enter into the complex plane from the real A-axis. Outside the WKB turning
points the mode falls off rapidly. In addition, the mode structure is not localized poloidally
(it does not balloon) because the amplitude of ¥,(}) is invariant.®

It ‘is clear now that if I; were not asymptotically large, that is, if L; is of order unity,
neither &, nor Ar/ro could be small, unless A, is small, which is precisely the case ap-
proaching the slab limit [cf. Eq. (18)]. Therefore, for real systems (or almost real systems
like the weakly dissipative drift wave) another small parameter additional to 1/n, is required
for ensuring a small £ — the condition for the validity of the asymptotic theory [large n is

still necessary for Eq. (17) to be valid].
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However, if AQ,/L, is complex, and its imaginary part is not very small (dissipative
BM-II), the wave function of Eq. (22) becomes localized either at /2 (Im{AQ,/L,} > 0) or
at —m/2 (Im{AQ,/L;} < 0) in the large n limit. As a result, cos A contained in &, as well as
€ become small. The ‘additional small parameter’ required for the validity of the asymptotic
theory will be shown to be 1/|Im{AQ,/L;}|n < 1 (now, it is associated with n) [see what
follows from Eq.(26)]. Notice that the localization of ¥,,(\) can be shifted from A = +7 /2 by
including even harmonics, such as cos 2), cos4), ... in Q,()) [cf. Eq. (18)]. Nonetheless, save
for very special cases, this shift is found to be small in the numerical solutions of ballooning
equation. In any case, even a sizable shift does not change the salient features of the new
structure.

Substituting Eqs. (22) and (16) into Eqgs. (13) and (12), one obtains by the standard

saddle point method for integrating over A,

on(r,9,¢) = MWA?Z—:/E—II explin¢ — imd — i¢,/2) El:yn(a: — 1, 057/2) exp[®(ay)],

il? T ir -
@(0‘,\) =0 {—m —1l (5 +0',\’l9> + —4‘ - mAQn/Ll},

oy = sgn[Im{AQ,/L,}], (24)

where ¢, is the phase of AQ,/L;,X,(z — I, o) is the Fourier transform of X, (k, \o) with
the kernel exp[ik(z — [)]. Note that the A-localization at o,m/2 results in an additional
factor ra,\l7r/2 in the phase ®(0,); this factor is responsible for the poloidal asymmetry of
the dissipative BM-IL.

The finite (not too small) Im{AQ,/L;} makes the mode fall off rapidly with increasing

! > I (a measure of the number of contributing sidebands), estimated by

% |AQ, /T |\/n/| Im{AQ, /T } < m (25)

in the large n limit. This estimate of the /-width of the mode implies a radial mode width
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(by taking z —» T = [)
é_t ~ i |AQn/z1|
o @8 \[n|In{AQ./I:}|

(26)

Comparing Eq.‘ (26) with Eq. (23), one can readily see that a more precise meaning of the
phrase ‘not too small Im{AQ,/I;}’ turns out to be the inequality | Im{AQ,/Li}| > 1/n.
When this condition is satisfied, the mode structure is essentially described by Eq. (24). It
must be emphasized that finite dissipation is crucial for a strong radial localization (small
radial width) as well as for the consistency of the dissipative BM-I1. The poloidal structure
can also be identified from Eq. (24). For Im{AQ,/L;} > 0 (< 0) the mode is localized at
¥ = —m/2 (§ = 7/2). The poloidal asymmetry is attributed to the strong CP violation
arising from the m/2-localization in .

For the reader’s con&em’ence an alternative expression for the mode structure, where the
radial dependence is more explici';;, is also presented. The new expression is derived by first

using the Poisson formula to carry out the [ sum,
(T, 9, ¢) = explin¢ — imd] > _ expliz(2rp — V)]
P

. ?{ dXNX(27p — A — 9, A) exp[—ing8(yA + Bnsin A)], (27)

where z = ng'(r — r0),y = (7 — 70)/T0, Bn = AQy/L1¢8. Then, the X integral is done by the

standard saddle point method to arrive at [Im{3,} > 0]

n(r,9,¢) = exp [—imﬂ — ingsy?/ 2,3,,] Z explil(¥ + 7/2)[Xn(z — 1, 7/2). (28)
1

It is obvious from Eq. (28) that the radial envelope is described by the exponential factor
containing %2, that yields the same radial width as given by Eq. (26). However, Eq. (28) is
not fully identical to Eq. (24). This discrepancy is probably due to the differences caused
by different approximations used to sum and to integrate. For the purpose of calculating

Reynolds stress, however, this discrepancy is unimportant.
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To conclude this section it is worth making a few remarks upon CP symmetry breaking of
the dissipative BM-II. As mentioned in the introduction, the original 2D eigenmode equation
conserves CP to the lowest order (and in fact to the lowest order only); to this order, it is
invariant under the simultaneous spatial inversion: r —rg — —(r —1¢) and ¥ — ¥ [Eq. (14)].
However, the 2D mode structure is determined by higher order terms. Thus the structure
of the complete mode may or may not conserve CP. It does for BM-I for which L; = 0
(this is the condition for BM-I to be valid) making Eq. (14) to be CP invariant to the
next nontrivial (second) order required to determine the structure of the mode. For BM-II,
however, L; # 0, and the next leading order (first, in this case) equation does not respect
CP- the CP symmetry is broken. For the non-dissipative BM-II, the CP violation merely
yields an unimportant phase shift, because AQ,/L; in Eq. (22) is real. In contrast, for the
dissipative BM-II, the CP violation results in a strong variation of the mode amplitude in A,
and consequently causes the mode to be ra-.dially asymmetric, and to be strongly localized
in the poloidal direction. The validity of the non-dissipative BM-II is guaranteed by the
condition that |AQ,/L;| < 1, while |Im{AQ,/L;:}| > 1/n is required for the dissipative
BM-II to be consistent. If neither of these conditions is satisfied, the BM-II structure cannot

provide a posstble basis for a theory of localized modes in an azisymmetric torus.

IV. REYNOLDS STRESS FOR DISSIPATIVE BALLOONING
MODES

In this section it is demonstrated that the radial asymmetry inherent in the dissipative
BM-II greatly enhances their contribution to the Reynolds stress. Treatments, which ignore
this feature, are likely to make a severe underestimate of the generated stress.

We continue to work within the framework of the quasilinear notion that the correla-
tion occurs only amongst the components of a single toroidal mode; identical approach was

followed for the slab model calculations in Sec. II. For a given rational surface r;, and a
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given toroidal mode number 7, consider a single dissipative BM-II extending over 21 > 2
[cf. Eq. (25)] rational surfaces. Since the radially extended wave is still characterized by the
equilibrium at r;, the mode can be viewed as pertaining to the rational surface r;. In what
follows, the modes pertaining to different rational surfaces will be assumed to be decorre-
lated, and so will be the modes pertaining to the same rational surface, but with different
mode number n.

Consider a single mode n pertaining to the rational surface r;. For simplicity, we drop
explicit r;-labeling before summing up the contribution from all rational surfaces. According
to Eq. (24), the physical mode can be written as

on(r,9,(,t) =%, {Yn(:c —1,0\m/2) - exp[—iwt +iB(0)] + c.c.} ,
. (29)
2¢5nf3,

where z = n[g(r) —q(r;)] = ng'(r—7;), Bn = Ba(rj), g = q(r;), m = ng(r;) etc. Upon defining

B(0y) =n¢ — (m+ 1) — 0 [ + l7r/2] ,
Xo(z — 1, 03/2) = |Xp(z — 1, 0a7/2)| exp(iS), Eq. (29) is rewritten as

0'/\l2 Im{ﬁn}

24512 ) cos (wt —Re{®(0))} - ,5') . (30)

(1,9, t) = > [Xu(z — 1, 0a7/2)| exp (—
L
The poloidal average on the Reynolds stress is given by

R, — <1 Opn %> = 3 [Ralz — 1, oxm/2) 2 exp (_a,\l2 Im{ﬁn}) (m+1) dS (31)
9 1

r o9  or qsn|B,|? 2r dr

To continue the calculation, we now invoke the standard and very important model of
the dissipative drift wave. The model equation describing the 2D drift wave [mode number

n, and localized at the rational surface 7| is

2 -2
0 we

81 oF
a2 07 W . o _ 212 o _ We
{(pskgs) 502 T o7 {mq(r) + 619] (1 + piks — 16, - )

Wde i~ 0 _
+2 — (cosﬁ + iSsin? %) }@n(r, ¥) =0, (32)
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where wge = Tecks/eBR, ky = ng/ro = m/ro, nq(r) = m+1z, z = ng'(r —ry), @y =
¢s/qR, &F = w}(i/ng)8/09 with w¥ = T.cks/eBL,. In Eq. (32) the ballooning symmetry
[translational invariance] breaking arises only from @F. For the Fourier transformed field
$n1(z), defined by @y (r,9) = exp(—im¥) T, exp(—ild)¢n i (r), @* becomes w¥(1+1/m), in
which [/m violates the translational invariance. This form, in fact, is qualitatively equivalent
to other choice for &7, e.g., @F — wX(1 + gz/m) with g ~ O(1), because (z — {)/n is of
higher order compared to [/n. With these definitions, one can now manipulate Eq. (32) to
derive the equivalent of Eqs. (14)—(15) keeping terms only to the first order in perturbation.

The required equations are

2
Lo = iz % +n2k? — g— [cos(k + ) + Sksin(k + N)], Ly = Ls/qLa,
(33)

Q= (Ls/Ln)(1 + i, — w/w:), Qn(A) = (Ls/La)(1 + 36 — w(/\)/w:),
where 7° = wpsks3/@s (0 = psksd\/Ls/Ls). At A = o\m/2 (o5 = =£1) the ballooning

equation (leading order) becomes

[ 2L v - Q(a»] X(k, o3m/2) = (31)

where V(k) = n’k?® + ofsin k — Sk cos k], and ¢ = 0,(2¢/35). Notice that under the reflection
k — —k, the toroidal term of Eq. (34) has opposite parity to the standard ‘slab’ terms. It
is this parity violation that results in the radial asymmetry of X(z — I, oymr /2). The general
analytical solution of Eq. (34) is difficult. A few examples in restricted parameter regimes
suffice for illustration.

For V (k) expanded at ko, defined by 8V/0k| ko = 0, Eq. (34) becomes

[1 d? V(ko) + V”(ko)

o (k = ko)? - Q(ou)] X(k, ox/2) = 0, (35)

with the solution

X = Xpexp [-77 ~V"(ko)/2 (k — ko)2/2] , o) = V(ko) — /=V"(ko)/2 /7, (36)
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provided that
Re {m/—V”(ko) /2 } >1, (37)

which must be verified a posteriori. The equation
ko(2n* + o8sinky) = o(8 — 1) cos kg (38)

must be solved to find k. The solution can be easily obtained for §— 1 = A < 1. For the

Pearlstein-Berk branch!4

ko =0A3/2n* (lko| <1), +/=V"(ko)/2— —in, X = explin’(k— ko)?/2,
and
w(o2)/w)f =1+44(8e — Ln/Ls) +--- .
The self-consistent condition [Eq. (37)] is likely to be satisfied when 8, — L,/L(> 0) is not
too small, n = psks51/Ls/L, > 1, and ¢ is not too large. The Fourier transformed X is
X(z = 1,05) = exp [iko(z — 1) — i(z — )?/207)] . (39)

For the Chen-Cheng branch?!®

ko=—~2n/o (ko <1), /=V"(ke)/2—n, X = exp[-n*(k— ko)?/2,

and

w(aA)/w:‘ =1+ib,+---,

for which the shear stabilization disappears. The self-consistent condition is likely to be
satisfied in the large o limit, so that 7 > 1 and 7%/ < 1 hold simultaneously. The Fourier

transformed X is

X(z — 1,01) ~ exp [iko(z — 1) — (z — 1)?/21%] . (40)
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The leading contribution to dS/dr (therefore, to the Reynolds stress) is found to equal ng'k,
for both the branches. Because dS/dr (nq'ko) turns out to be independent of [, Eq. (31) can

be approximated by (for [ < m)

dS |~ I Im{S, s
Ry~ g g 2Tl l,m/2>|2exp(“w)=’“”§;<'%<v‘>lz>, (41)

q8n|B,|?

where use is made of Eq. (30) to show that (jpn(r)[?) is the ensemble average of 2.

At this stage it is worth comparing Eq. (41) with Eq. (4). The radial gradient of the
phase dS/dr in Eq. (41) has the same physical content as the gradient (d6,/dr) in Eq. (4). In
magnitude these two are comparable, for dS/dr = ksko < kg, and dé,/dr ~ m /ps =
1/6¢4r, where A, is the radial width of the slab drift wave. However, dS/dr possesses the
same sign on each side of the rational surface r;, in contrast to dé,/dr, which changes sign
as we cross the rational surface r;. The toroidal coupling substantially modifies the mode
structure by altering the phases of the local ‘slab’ modes in such a manner that the radial
energy flow pertaining to a single toroidal mode peaked at its appropriate rational surface
has a unique sense — it is either everywhere inward or everywhere outward from the entire

region where the mode resides.

The Reynolds stress contributed from all rational surfaces can be easily obtained.
T
R=> R~ -\2—— Kok Ari? (), (42)
J

where Ar is the radial envelope width given by Eq. (26). The summation over all mode
numbers just replaces @2 (r) in Eq. (42) by ©?(r), where (r) is the wave amplitude at r; all

other quantities are estimated for the most probable n. The corresponding poloidal torque

c

Ty (r) ~ @ (E) kokﬁ,( ) 2(r), (43)

gains a factor about (Ar)L;/A2 [for /6, kyAr > 1, it is reasonable to estimate 8.k, A, = 1, ko

has been taken to be O(1) in the estimate] over the slab-model torque Ty given by Eq. (7).
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Now, let us compare Ty with Typg). The ratio Towl/Toipk) is (Lsp2k3/La)(Ar/Ly). Since
Lp?k3/ Ly, > 1, this ratio may approach order unity.

At the tokamak edge, where L ¢ 1s relatively small and the nature of the modes is likely to
be dissipative, the above results indicate that the poloidal torque induced by the Reynolds
stress constructed by the dissipative BM-II may emerge as an important driving force for

the generation of poloidal flow.
V. DISCUSSIONS AND CONCLUSIONS

The principal content of the present paper is composed of the following three major parts:

(A) A calculation of Reynolds stress incorporating the ’pairing’ mechanism is given. In
this part it is shown that, for the slab drift wave, cancellations brought about by ‘pairing’
leads to a much smaller Reynolds stress than the estimate givenn by Diamond and Kim.
Therefore, the poloidal torque induced by the Reynolds stress constructed from the generic
slab drift wave is much smaller than the driving force required for the DIII-D experiments.
However, when an odd-parity driving is included in the drift wave model, the Reynolds stress
can be greatly enhanced. This has been shown for the parallel flow shear driven mode, and
is also possibly true for the drift-rippling mode. The odd-parity drive leads to an intrinsic
radial asymmetry of mode structure causing the radial energy flow of a single mode to have a
resultant component either inwards or outwards. This radial asymmetry greatly suppresses
the cancellation due to ‘péiring.’

(Bj A brief review of the theory of 2D eigenmodes (ballooning theory) is given. In addition
to presenting their rational taxonomy, we have also derived and discussed an interesting new
structure, the dissipative BM-II. It is shown that for both BM-I and the non-dissipative BM-
II, the fluctuation generated Reynolds stress is unlikely to be significant. This is because

the combined parity, CP, is either conserved (BM-]) or its violation is weak (non-dissipative
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BM-II), and it is the CP violation that leads to radial asymmetry, and ultimately to the
creation of a sizable stress. For the dissipative BM-II the CP-violation is strong. Interestingly
enough, the strong CP-violation turns out to be precisely the condition for the validity of
the asymptotic theory, i.e., the m/2-localization in A. This localization is what leads to
the localization of the mode in real space [Eq. (25) and Eq. (26)]. In fact, the broken
CP symmetry results in strong poloidal localization at ¥ = 7/2 (or ¥ = —7/2) (up-down
asymmetry on poloidal cross section) and a strong radial asymmetry with respect to the
rational surface. Because the structure of BM-II is radially highly localized, and it can occur
at all radii, its application to other topics of turbulence should also be very interesting. For
example, the transport induced by the trapped particle modes of dissipative BM-II variety,
could be quite different from that induced by the conventional trapped particle modes,
because on one hand, most trapped particles are localized at ¥ = 0, rather than ¥ = 7/2
(or ¥ = —m/2), while on the other hand, the conventional trapped particle modes are BM-I,
and may occur at very limited radial positions.

Throughout this paper our derivation of the poloidal localization for both BM-I (9 =
0,7), and the dissipative BM-II (¢ = +7/2) is based on a model ,,()\) [Eq. (18)] containing
only one harmonic term. This, indeed, is found to be a rather good approximation to many
numerical solutions of the ballooning equation [Q,()) is the eigenvalue in the ballooning
equation]. However, in some special parameter regimes there can be non-negligible contribu-
tion to ,(A) from higher harmonics such as cos2),cos3),.... Its effect on BM-I tends to
create Enew extrema besides § = 0 and 7. Its effect on dissipative BM-II tends either to shift
the localization from ¥ = /2, or to broaden the localization in A, or both. The higher
order ballooning theory for these cases deserves further investigation.

Some additional clarifying remarks are in order. Throughout this paper, CP-conservation
(violation) very often refers to the simultaneous CP behavior of the linear equation and the

modes. These two are identical within the framework of the quasilinear theory. Rigorously
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speaking, the generation of significant Reynolds stress is associated with the CP violation of
mode (amplitude) alone. In such a sense, we can not generally rule out the possible impor-
tance of BM-I with extrema in addition to (0, ) for significant consribution to the Reynold
stress, when a nonlinear symmetry breaking mechanism (if there is any) is introduced; this

discussion is not covered in this paper.

(C) Finally, we present a calculation of the Reynolds stress and the induced poloidal
torque generated by the toroidal drift wave of the dissipative BM-II type. It is shown that
the Reynolds stress is greatly enhanced by the strong radial asymmetry inherent in this new
structure associated with the dissipative BM-II. Although the calculation is restricted to
limited parameter regimes of the drift wave, its generalization to other parameter regimes
and to other waves is straightforward. From the manipulations for the drift wave in Sec. IV,
it is readily seen that the final result [Eq. (43)] is somewhat universal (with the exception of
the factor ko and the approximation § = 1) for various kinds of modes. For a rough estimate,
ko can be taken of order unity [notice that this is possible only if there is a significant toroidal
coupling term]. However, the sign of the torque is sensitive to ko, which is proportional to
oy, the signature of the poloidal localization at ¥ = —oyw/2. With these rather minor
caveats, Eq. (43) can serve as a generic or a ‘universal’ estimate for the poloidal torque
originating from the electrostatic dissipative BM-II type fluctuations. A similar formula can
be constructed to estimate the poloidal torque induced by the magnetic Reynolds stress. It
follows from Egs. (1), (2), and (43) that for the electromagnetic dissipative BM-II, the

torque should be of the form

- 1 A
TR0~ gz bk (T7) 0 (49

The above results indicate that substantial toroidal coupling induces significant Reynolds

stress for a wide class of dissipative modes at the tokamak edge.

We end this paper by putting the present work in perspective. We are, by no means,
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proposing that the turbulent Reynolds stress provides the only or even the principal drive
for the observed poloidal rotation; there could be other forces contributing to this process.
But, we have shown that significant stresses can be built up by fluctuations with a particular
2D structure (dissipative BM-1I). The poloidal torque generated by this stress (which may
enhance or oppose other forces), therefore, must be included in a serious theory on the origins

of the poloidal rotation.
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