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ABSTRACT

We propose a simple, physically oriented model that ex-
plains important characteristics of cyclic combustion variations
in spark-ignited engines. A key model feature is the interaction
between stochastic, small-scale fluctuations in engine paramet-
ers and nonlinear deterministic coupling between successive en-
gine cycles. Prior-cycle effects are produced by residual cylin-
der gas which alters volume-average in-cylinder equivalence ra-
tio and subsequent combustion efficiency. The model’s simpli-
city allows rapid simulation of thousands of engine cycles, per-
mitting in-depth statistical studies of cyclic variation patterns.
Additional mechanisms for stochastic and prior-cycle effects
can be added to evaluate their impact on overall engine perform-
ance. We find good agreement with our experimental data.

INTRODUCTION

Ever since the investigations of Clerk [1], researchers have
reported apparently conflicting observations of cyclic combus-
tion variations in spark-ignition engines. With increasing em-
phasis on lean fueling and exhaust gas recirculation to minim-
ize NOxemissions, cyclic variability (CV), also known as cyc-
lic dispersion, has received renewed attention., Examples of this
recent interest can be found in [2 - 12]. In most studies, CV has
been described as either stochastic (random) or deterministic in
nature {10—12]. Furthermore, any determinism has been typ-
ically characterized in strictly linear terms (e.g., cycle-to-cycle
autocorrelation functions).

We propose a model that combines both stochastic and
nonlinear deterministic elements. We avoid complex spatial de-
tails, instead focusing on the global combustion process and how
that process evolves under the combined influence of stochastic
and deterministic processes over thousands of engine cycles.
Our objective is to produce a simple model that produces dy-
namical CV patterns similar to a real engine. In addition to dy-
namic similarity, we intend our model to be physically realistic
so that it correctly predicts CV trends with as-fed fuel-air ratio
and provides fundamental insight into the effect of the key pro-
cesses.

MODEL DEVELOPMENT

Our model is structured around the interaction between
deterministic and stochastic processes. We assume that the
primary deterministic aspect of CV arises from the presence of
retained fuel and oxidizer from one cycle to the next. We fur-
ther assume that the main stochastic element is modeled as ran-
dom fluctuations in one or more of the key deterministic para-
meters such as injected fuel-to-air ratio, residual fraction, and
the lower ignition limit. In principle, all of these parameters can
undergo effectively random perturbations due to complex pro-
cesses such as in-cylinder turbulence, fuel-droplet vaporization,
and wall deposits.

The model is discrete in time, representing each full cycle
(including intake and exhaust) as a single event. We first present
the model in dimensional quantities and then normalize it to be
nondimensional. The dynamical variables which define the two-
dimensional state space are the masses of air and fuel present in
the cylinder at the time of spark.

INTAKE PHASE ~ Total mass is residual mass from the
previous cycle plus new intake:

mln] = miesn] + Mmpew(n] 1))
afn] Qres [n] + Grew[n] 2)

The quantities m[n] and a[n] are the mass of fuel and air in the
cylinder immediately preceding spark, and mqes[n] and ayes[n)
are the masses of unreacted air and fuel remaining from the pre-
vious cycle. Our model currently ignores the inert combustion
products, although these can be easily added. The new mass
fed to the cylinder is inferred from two algebraic relationships.
First,

Mpew [n]R

anew[n]

= ¢o(1+04N(0,1)) 3

Eq. 3 reflects that the injected fuel-air ratio is assumed to have a
mean value ¢, (i.c., the mean equivalence ratio) and a Gaussian
distribution with standard deviation 0. Physically, the fluctu-
ations in ¢ arise from vaporization or turbulence effects, and our
model simulates the fluctuations using a new random number for
cach cycle. The parameter R gives the ratio of air to fuel mass




. at stoichiometric burning, so that ¢, = 1 is the nominally stoi-
chiometric fuel condition. The value of R depends only on the
fuel composition, assumed constant in our model (e.g., 14.6). A
second constraint on fuel and air injection is

_m'_[n_] + a_[i]. =M C))
we Wa
Eq. 4 satisfies the restriction that the total molar content of the in-
cylinder fuel-air mixture is constant. Stated simply, the amounts
of new fuel and air that can be added to the cylinder must be
reduced in proportion to the amount of residual gas retained
from the previous cycle. This constraint can be reasonably jus-
tified assuming constant input pressure and temperature and an
ideal-gas approximation. wy and w, are the average molecu-
lar weights of fuel and air. In our simulations, we use wy =
114 g/mol and w, = 29 g/mol. Eq. 3 and 4 are used togetherto
define the amount of new fuel and air injected into the cylinder
each cycle.
COMBUSTION EFFICIENCY - We model the net effi-
ciency of combustion C as a function only of the in-cylinder
fuel-to-air ratio [n] = Rm[n]/a[n] at the time of spark:

C[n] = C(2[n]) ®)

The exact functional form of the combustion efficiency is an-
other somewhat arbitrary external parameter, but its general
shape is governed by physics. Specifically, we mean here that it
is generally observed that the lean combustion limit is relatively
sharp [13]; that is, as equivalence ratio is reduced from above the
critical to below, combustion rapidly declines from nearly com-
plete to none. Such asharp drop in engine combustion efficiency
is indicated by results such as those reported in [14]. For hy-
drocarbon fuels, the critical equivalence ratio is typically about
0.5—0.6 [13). The steepness of this curve can be explained in
terms of the flame-front propagation and its sensitivity to small
changes in heat-release rate near the lean limit [13].

The particular choice of an exponential sigmoidal function
to interpolate between these physically determined limits is ar-
bitrary, but the dynamical patterns one sees with alternate func-
tional forms are nearly identical, as long as the essential physical
features are present: a plateau starting at stoichiometric condi-
tions with a sharp drop-off upon approaching the lean limit. For
& > 1, combustion is fuel rich and is limited by the amount of
air:

C(®) = 9’;,;"‘ (6)

The consideration of very fuel-rich conditions is included only
for completeness; the dynamical system almost never attains
such conditions in the situations we consider. For ® < 1, com-
bustion is fuel lean. For ease of understanding, the position of
the knee is parameterized by ¢, and ¢y, the conditions where the
efficiency is approximately 10 and 90 percent of the maximum,
respectively. Then, given ¢m = (¢1 + $u) /2,

Crmax
& —
1+ 100" %u-#

The function in Eq. 7 gives a smooth curve taking on values from
0 10 Cpmax With a knee centered at ¢, and provides the essential
nonlinearity in the dynamics. Figure 1 shows the function shape
defined by Eq. 6 and 7.
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Figure 1: Combustion-efficiency function assumed to account
for residual-gas effects. Based on typical lean-limit measure-
ments, ¢, is expected to be between 0.5 to 0.6.

COMBUSTION AND EXHAUST PHASE — The heat re-
leased in the combustion cycle (the primary experimental meas-
urement) is proportional to Q[n] = C|[n]m|n]. The principal
physical mechanism for cycle-to-cycle coupling is that a certain
fraction F of the unreacted air and fuel remains in the cylinder
for the next cycle, thus altering the next cycle’s charge. The re-
maining fuel is F times the fuel not combusted:

Mees[n + 1] = Fm[n](1 - C[n)) 8)
and the remaining air is that not used in the reaction,
res[n + 1) = F(a[n] — RC[n]m[r]) 9

We model fluctuations in F by letting it vary each cycle by a
random number:

F = Fy(1+arN(0,1)) (10)

As with ¢, Eq. 10 reflects that we allow F to vary about its nom-
inal mean value F, as a Gaussian process with standard devi-
ation or. Experimental measurements suggest that values of F,
can vary from 0 to 0.3 depending on engine design and operating
conditions {14].

NONDIMENSIONALIZATION - It is often convenient
to nondimensionalize dynamical maps of this type. Specifically,
fuel masses and air masses will be measured in units of what
the fuel and air mass (denoted m, and a,) would be at perfectly
combusting stoichiometric conditions with no residuals (C = 1,
Mres = Qres = 0): Given Rm, = a, and the gas-law equation,
we can solve

M

me = T——x (11
we T w,
a, = Rm, (12)

We now define dimensionless fuel (m*, my,,, mp,,,) and
air (a*, @}, Gneyw ) Masses by normalizing the appropriate quant-
ities with m, and a,, respectively. Note that the variables C, ¢o,
®d, F and R are already dimensionless.




* MODEL SUMMARY - Defining £ = wg/w,, the ratio of
the molecular weights, we summarize the nondimensionalized
model equations. For the intake process,

m*(n] = mign] + mpeu(n] (13)
a*fn] = afeln] + ahewln] (14)
m*[n] + ZRa*[n] _
1+ZR =1 (15)
m;ew[n] —
rr i Po(1 + o N(0,1)) (16)

For the combustion process,

m*{n]

Wl = (17)
Cln} = C(2[n]) (18)
Q'[r] = Clnlm*[n] (19)
For the exhaust process,
F = F,(14+0rN(0,1)) (20)
m:es[n + 1] = F(l - C[ﬂ]) m‘[n] (21)

auln+1] = F(eln]-Chm'n) @2
When intake, combustion and exhaust processes are combined,

m*ln+1 = FA-Cl))m*[n]+m[n]  (23)
a’[n+1] = F(a'[n]-CnjRm* [n]) + agew(n] (24)

The overall model is thus characterized as a two-
dimensional dynamic map, taking the state variables m* and a*
one cycle forward in time:

m'n+1] = A[m*[n],a’[n],¢o,00,Fo,...] (25)
a’[n+1] = Bm*[n],a*[n],¢0,04,Fo,...] (26)

for mapping functions A and B. A crucial feature of this map-
ping is the nonlinearity produced by the sharp change in com-
bustion efficiency with ¢o. Another important feature is that the
random perturbations in € and F can augment the complexity
produced by the nonlinear mapping. In effect, the nonlinearity
amplifies stochastic perturbations.

In order to produce a mapping output that can be more dir-
ectly compared with experimental observations, we look at the
mapping of heat release from one cycle to the next:

Q'ln+1]=f(Q"[n) @

for mapping function f and Q* defined in Eq. 19. A key theorem
from nonlinear dynamics [15] holds that equivalent information
about the dynamic patterns can be obtained by using just this
single observable. Thus we consider the sequence of measured
heat releases Q*[t}, @[t + 1],...,Q"[t + n] as the principal
model output,

The sequences of plots in Fig. 2 -4 illustrate the effect of
changes in ¢o and the model parameters. The parameter changes
illustrated were selected to be within the expected ranges de-
scribed earlier. Each plot is produced by iterating the mapping
(Eq. 23 and 24) fora fixed ¢, and the indicated parameter val-
ues beginning with arbitrary initial values for m* and a®. Neg-
lecting initial transients, the heat-release values for several hun-
dred iterates are plotted, and then the process is repeated for a
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Figure 2: Model equivalence-ratio (¢,) bifurcation plots with
F, = 0.05 (top), Fo = 0.1 (middle), and F, = 0.25 (bottom).
Fixed model parameters are gy = of = 0, ¢ = 0.59, and
¢y = 0.60.

slightly different ¢o. The final result plotted over a range of ¢
is referred to as a bifurcation diagram and illustrates the expec-
ted trend in heat-release behavior for varying ¢.. See Moon{16]
for a detailed explanation of bifurcation plots.
Although the bifurcation details change with parameter
values, certain general trends are apparent:
e Near stoichiometric conditions, the amount of fuel burned
in each cycle stabilizes to a single fixed value (a fixed
point);
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Figure 3: Model equivalence-ratio (¢,) bifurcation plots with
¢ = 0.593 (top) and ¢ = 0.595 (bottom). Fixed model para-
meters are 4 = o = 0, ¢y = 0.595,and F, =0.15

e For ¢, below a critical value, the amount of fuel burned
oscillates between two distinct values (a period-2 bifurca-
tion);

o For still lower ¢,, combustion oscillations become more
complex, leading to multi-period or chaotic patterns;

¢ For ¢, below the lean limit, all combustion ceases;

e When stochastic perturbations (noise) are added to either
¢ or F or both, the detailed bifurcation structure becomes
fuzzy but still reflects the underlying sequence of period-2
bifurcations and/or chaos;

e Noise also causes the initial bifurcation to occur at a higher
¢, (i.c., higher than when no noise is added) and maintains
combustion in the extreme lean limit.

Briefly stated, the model predicts that combustion becomes un-
stable near the lean limit due to the onset of period-doubling bi-
furcations arising from deterministic processes. This instabil-
ity is enhanced by random perturbations in parameters such as
as-fed equivalence ratio and residual fraction, The prediction of
a period-doubling instability is important because it provides a
unique signature that can be experimentally verified and because
it has-been extensively studied in other systems [16].

EXPERIMENTAL DATA ACQUISITION

We collected experimental data from a production V8 en-
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Figure 4: Model equivalence-ratio (¢) bifurcation plots with
oe = 0.001 (top), o4 = 0.01 (middle), and o = 0.01 (bot-
tom). Fixed model parameters are ¢ = 0.590, ¢, = 0.595, and
F, =0.15.

gine with standard port fuel injection connected to a DC mo-
toring dynamometer. Injected fuel-air ratio was decreased from
stoichiometric to very lean (where the engine was producing
little torque). The nominal operating condition was 1200 RPM,
27.1N-m brake torque, 20 degrees BTC spark. We operated the
dynamometer in speed-control mode to keep the engine running
at constant speed despite erratic combustion at very lean condi-
tions. Feedback engine controllers were engaged to achieve an
operating condition; once the condition was achieved, the feed-
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Figure 5: Model heat release frequency histograms for nearly
stoichiometric (top), moderately lean (middle), and very lean
(bottom) fueling. Dynamic noise is included by adding Gaus-
sian noise to the as-injected fuel-air ratio.

back controllers were shut off, and the engine was run in open-
loop mode, except for dynamometer speed control. This assured
that combustion was minimally influenced by feedback control-
lers while the engine ran at constant speed. We recorded com-
bustion pressure once per crank angle degree from a single cyl-
inder and nominal operating conditions at a 50 Hz rate for over
2800 contiguous cycles. Cycle-by-cycle heat release was calcu-
lated by integrating the pressure data in a manner equivalent to
the Rassweiler-Withrow method [14].
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Figure 6: Experimental heat release frequency histograms for
nearly stoichiometric (top), moderately lean (middle), and very
lean fueling (bottom). Note similarity to Fig. 5.

DISCUSSION

Ideally, it would be desirable to verify that our experi-
mental engine produces bifurcation patterns such as those illus-
trated in Fig. 2 - 4. This verification is impractical, however, be-
cause of the large number of experiments required. Instead, we
chose to use other techniques from nonlinear dynamics theory
that permit comparison of a smaller number of experimental op-
erating points with the model predictions. Our specific objective
in this case was to compare the predicted and observed trends
while the as-fed equivalence ratio is reduced from nearly stoi-
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Figure 7: Autocorrelation functions for model (top) and exper-
imental (bottom) for nearly stoichiometric and moderately lean
fueling.

chiometric to very lean. We did not intend to obtain exact “fits”
of the model with the experiemental data but rather to look for
evidence that the experiment exhibited a similar type of instabil-
ity. In particular, we sought to determine if the observed CV pat-
terns could be explained by period-doubling bifurcations that are
enhanced by stochastic perturbations in engine parameters.

To establish the predicted trends in a format more com-
parable with our experiment, we ran the model at nearly stoi-
chiometric, moderately lean, and very lean fueling conditions
for parameter values we expect to be within realistic ranges.
Output for each model condition consisted of heat-release val-
ues for 2800 consecutive cycles. Within the parameter ranges
covered in Fig. 2—4, we found that the basic trends were similar.
Thus we expected that at least qualitative similarities between
the model and experimental data could be verified.

One of the simplest comparisons that can be made between
the model and experiment is their heat-release probability histo-
grams. While such histograms do not reflect dynamics, they do
reflect the overall probability distributions that should be con-

sistent if the model is correct. Figures 5 and 6 compare model
and experimental heat-release frequency distributions for three
fueling conditions. Gaussian distributions with the same mean
and standard deviation are also depicted for each case for com-
parison. For both model and experiment, nearly stoichiometric
fueling is characterized by simple Gaussian fluctuations in heat
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Figure 8: Relative return frequency plots for model (top) and
experimental (bottom) for nearly stoichiometric and moderately
lean fueling. A strong period-2 pattern in heat release develops
for moderately lean fueling, as is seen in the peaks at multiples
of 2-cycle lag. The observation of the periodicity at longer lags
is increasingly obscured by the presence of noise.

release, reflecting the dominance of stochastic processes. De-
creasing ¢ leads to deviations from Gaussian structure, reflect-
ing an increasing influence from residual-gas effects. In effect,
the determinism nonlinearly transforms the Gaussian perturba-
tions. The relative size of the input noise is no more than 2 per-
cent, yet the size of the output fluctuations relative to the mean
magnitude can be on the order of 50 to 100 percent in physic-
ally realistic conditions. We term this behavior nonlinear noise
amplification.

Figure 7 illustrates similar model and experiment beha-
vior using the autocorrelation function. Figure 7 suggests that
a period-2 pattern has emerged at moderately lean fueling. The
“hidden” period 2 is revealed by a significant autocorrelation
value at multiple intervals of two. As in Fig. 24, the period-
icity is “blurred”, but the effect is present. No peaks are seen
at nearly stoichiometric fueling, where bifurcation has not oc-
curred.

We find that algorithms specifically developed for analyz-
ing nonlinear time series data also reveal period-2 bifurcations.
This is illustrated in Fig. 8, where is plotted a quantity we refer
to as relative return frequency versus lag in combustion cycles.
Relative return frequency reflects the likelihood that a combus-
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Figure 9: Model return map for nearly stoichiometric (top),
moderately lean (middle), and very lean (bottom) fueling.

tion event occurring after some specified number of cycles will
be similar to the current combustion within some specified tol-
erance. In the figure, the tolerance is approximately 20 percent
of the standard deviation in heat release over several thousand
cycles. Thus, when two combustion events separated by one
or more cycles are found to differ by no more than this toler-
ance, they are counted as repeat events. By comparing the re-
lative frequency of repeat events for different numbers of inter-
vening cycles, the presence of multiple periods can be detected
(i.e., combustion sequences that repeat over some fixed number
of cycles).

In the figure, the repeat frequency for each lag has been
normalized with the repeat frequency for a lag of one cycle,
hence the term “relative”. Atstoichiometric conditions, the like-
lihood of repeats is equal regardless of the number of interven-
ing cycles, However, at moderately lean conditions, repeat com-
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Figure 10: Experimental return maps for nearly stoichiometric
(top), moderately lean (middle), and very lean (bottom) fueling.

bustion events are much more likely after cycle intervals that
are multiples of two. This latter result thus reflects underlying
period-2 patterns in both the model predictions and the experi-
mental data. In general, linear techniques such as the autocor-
relation function are not as good at elucidating the behavior of
nonlinear and potentially chaotic dynamical systems as methods
designed for this situation.

Another analytical method which reveals more informa-
tion about nonlinear dynamic patterns is the return map. Fig-
ures 9 and 10 depict return-map sequences for the model and
experiment at three similar fueling conditions. Each return map
is constructed by plotting the heat release for cycle ¢ versus the
heat release for cycle i + 1, where i is stepped sequentially
through each time series. The resulting pattern reveals the re-
lationship between the heat releases for successive cycles. For
cycles that are completely uncorrelated, one expects to obtain an
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Figure 11: Model return map sequences for moderately lean
fueling, Dark points represent uncorrelated engine cycles that
follow similar repeating patterns organized about the noisy
period-2 fixed point. (Starting indices: 192, 403, 612, 910,
1236, 1338, 1476, 1959, 2261.)

unstructured cluster (“shotgun” pattern).

As shown in Fig. 9 and 10, the return maps for both the
model and experiment follow a trend from a small “noisy” point
to an extended “banana-shaped” pattern to a more complex ex-
tended shape with reducing equivalence ratio. This suggests that
a similar pattern of instability develops in both cases.

We concentrate on more specific details in the instability
patterns at moderately lean fueling in Fig. 11 and 12. Here the
return-map axes have been modified to heat release in cycle i
versus heat release in cycle i + 2. These coordinates were se-
lected because period-2 patterns are expected to appear as points
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Figure 12: Experimental return map sequences for moderately
lean fueling. Dark points represent uncorrelated engine cycles
that follow similar repeating patterns organized about the noisy
period-2 fixed point. (Starting indices: 217, 284, 357, 448, 857,
1047, 1523, 2440.)

on the diagonal. The light shaded points represent the map for
all of the observations. The darker points are from a selected
set of engine cycles that are tracked sequentially in time in the
successive frames (iterate 0, iterate 1 and so on). Indices lis-
ted in the figure captions represent the beginning cycle numbers
(for the frame marked “Iterate 0") of the dark points. The pat- -
terns followed by the dark points reveal defining characterist-
ics of deterministic chaos. Specifically, we see clear evidence
for period-2 fixed points and their associated stable and unstable
manifolds. As shown,. the darker points collapse together along
the stable manifolds (lincar point clusters with shallow slopes)




onto the fixed points, oscillate between the fixed points for sev-
eral iterates, and then diverge from the fixed points (and each
other) along unstable manifolds (lincar point clusters with steep
slopes). The occurrence of these patterns in both the model and
experimental data implies similar dynamics. The chance of find-
ing such patterns in random data is infinitesimally small.

CONCLUSIONS

The purpose of our model is to provide a physically reas-
onable hypothesis to explain the specific time-resolved patterns
observed in cyclic variability. Other investigators have observed
“prior-cycle” effects, specific observations concerning cycle-
resolved time series measurements, but these have been typic-
ally presented in a strictly linear framework, concentrating on
autocorrelation. Our mode! shows how such autocorrelation can
arise but in a more “physics-oriented” presentation, making spe-
cific predictions about the structure of the time series, which is
best resolved through nonlinear data analysis techniques. Such
evidence is the observation of similar shapes in the return maps,
and the presence of an underlying bifurcation to “noisy-period-
2" behavior at lean fueling.

All parameter values that we have chosen are well within
the range of physical plausibility, and we are currently engaged
in producing an algorithm which can determine best fits from ob-
served time series measurements. The model is specific enough
that there is little chance that the similar trends and patterns pro-
duced by the model and experiment could be caused by overfit-
ting an overly general and unrealistic mathematical function.

Chaotic data analysis confirms the presence of determ-
inistic behavior with dynamical noise in the observed engine
consistent with the model results. The ability of our model
to exhibit both stochastically and deterministically dominated
regimes may help explain apparent discrepancies in previous
observations as cyclic variation has been observed to appear
either as an independent stochastic process or one with determ-
inistic prior-cycle effects. We have not addressed the question
of whether “the engine dynamics are chaotic”. However, we see,
in mode! and experiment, dynamical behaviors that are typically
associated with “deterministic chaos” but which we believe are
distinct from classical deterministic chaos because of the exist-
ence and importance of the dynamical noise, herein modeled as
random fluctuations in the parameters. This noise is not simply
additive but is nonlinearly amplified by the physics of the com-
bustion curve and the cyclic dynamics. The ability to describe
engine fluctuations with such a simple yet physically plausible
model may aid in the development of cycle-resolved control
schemes to reduce or alter the pattern of cyclic fluctuations in
order to improve efficiency or emissions.
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NOMENCLATURE
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Mres[n], Gres[7]

Mo, Go

N(0,1)

Wr, Wa
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Dimensionless combustion efficiency curve,
a function of ®{n]

Maximum combustion efficiency, achieved at
stoichiometric fueling

Actual fraction of unreacted gas and fuel re-
maining from previous cycle

Nominal fraction of unreacted gas and fuel re-
maining in the cylinder

Actual masses of fuel and air before the nth
combustion event, including residual and new
New mass of fuel and air procured from the
intake manifold on the nth event

Residual mass of fuel and air before the nth
combustion event

Reference masses of fuel and air fed to cyl-
inder when no residual gas present, used to
nondimensionalize dynamical systern
Gaussian random number with mean zero and
standard deviation one

Molecular weights of fuel and air
Proportional to the heat released on the nth
cycle, the principal observed time series
Mass ratio of air to fuel at stoichiometric
conditions.

In-cylinder instantaneous fuel-air equival-
ence ratio before spark

Nominal as-fed equivalence ratio

Lower 10 and upper 90 percent locations of
the combustion-efficiency function

Midpoint between ¢ and ¢y

Dimensionless ratio of molecular weight of
fuel to air

Standard deviatiofi of the fluctuations in F'
Standard deviation of the noise perturbing ¢
When used as a superscript, designates a di-
mensionless quantity
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