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Abstract

The classical Nadaraya-Watson estimator is shown to
solve a generic sensor fusion problem where the un-
derlying sensor error densities are not known but a
sample is available. By employing Haar kernels this
estimator is shown to yield finite sample guarantees
and also to be efficiently computable. Two simulation
examples, and a robotics example involving the detec-
tion of a door using arrays of ultrasonic and infrared
sensors, are presented to illustrate the performance.
Subject Terms: Sensor fusion, fusion rule estima-
tion, empirical estimation, Nadaraya-Watson estima-
tor.

1 Introduction

The area of distributed sensor fusion has witnessed a
tremendous growth over the past decade due to, at
least in part, rapidly expanding application domains
[4, 5]. Particularly in a number of robotics applica-
tions, many researchers realized several fundamental
limitations of single sensor systems [1]. By employing
multiple sensors: (a) replicated sensors can be em-
ployed for fault tolerance, and (b) sensors of different
modalities can be used to achieve tasks that cannot
be performed by a single sensor. In either case, the
fusion method must be designed carefully, for an inap-
propriate fuser can render the system worse than the
worst individual sensor.

Many existing sensor fusion methods require either
independence of sensor errors or closed-form analyti-
cal expressions for error densities. In the former case,
a general majority rule suffices, while in the latter a
fusion rule can be computed using Bayesian methods.
Most of the distributed decision fusion methods belong
to the latter class [4]. In robotics systems, however,

independence can seldom be assured, and the problem
of obtaining the required probability densities can be
more difficult than the fusion problem itself. These
problems were overcome recently in several cases by
using a “learning” method if the sensor system is avail-
able for operation [13]. In this paper, we show that
the classical Nadaraya-Watson estimator can be used
to solve a generic fusion problem that can be applied
in a number of robotics applications. This estimator,
originally proposed in the sixties, has been extensively
used in statistical applications [9], but is seldom used
for sensor fusion. Recently, we obtained finite sam-
ple results for this estimator based on Haar kernels,
and showed its relation to neural network estimators
[18]. Due to its effective performance in a number of
nonlinear function estimation problems, we are moti-
vated to investigate this estimator for the sensor fusion
problem in this paper.

Consider a system of N sensors such that corre-
sponding to input X € [0,1], the sensor Sj, j =
1,2,...,N, outputs Y € [0,1] according to an un-
known density p;j(Y()|X) (see Figure 1) 1. A train-
ing n-sample (X3,Y1),(X2,Y2),...,(Xn,Ys) is given
where ¥; = (Y, Y@, ..., ¥I™) and ¥} is the
output of S; in response to input X;. We consider the
expected square error, I(f), given by 2

/ X - F)Pp(Y|X)p(X)dyWDdy @ . dyMdXx

(1.1)
to be minimized over a family of fusion rules F
based on the given n-sample data, where ¥ =
(YW, y@, ) ¥YM). It is assumed that the func-
tions of F satisfy the required measurability condi-

IThe treatment of this paper can be generalized to X € ®¢
and Y € ®™4 under certain boundedness conditions (see [13]).

2The densities p(Y]X) and p(X) must be denoted by
Py1x(Y1X) and px(X) respectively in a strict sense, but we
retain the simpler notation since the correct density can be eas-
ily inferred from the context.
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Figure 1: Architecture of the fusion system.

tions (see Pollard [10]). The underlying densities, p;’s,
are time-invariant (and are not required to be inde-
pendent or identical). This problem was first formu-
lated in Rao [13], and several function classes such as
empirical Bayesian rules [14], nearest neighbor rules
[16], neural networks [15], etc., have been subsequently
used in special cases. The popular decision fusion
problem [4] corresponds to Y € {0,1}%.

This formulation of the sensor fusion problem is par-
ticularly suited to robotics applications (see Example
3 of Section 4) due to, in part, the following reasons:

(2) Multiple sensors are needed to accomplish several
non-trivial robotic tasks, since most single sensor
systems are of very limited functionality.

(c) The training samples can be easily obtained by
operating the sensors in laboratory environments.

(b) Bayesian fusion methods that require a complete
knowledge of error distributions of all constituent
sensors are not suitable because:

(i) such detailed probabilistic modeling of sen-
sors is very difficult, particularly so in the
case of recent complex sensor systems, and

(i) even if such knowledge is available, the com-
putational problem is intractable [17], and
hence fast computational fusion methods are
not possible.

In this paper, we show that sensor fusion problem
stated above can be effectively solved using the classi-
cal Nadaraya-Watson estimator f based on sample.
The advantage of f over the nearest neighbor rule
is in lower memory requirements, and the advantage

over the neural network method is in fast computa-
tion. Also, f is applicable to a more general sensor
fusion problem compared to empirical Bayesian rule
of [14] which is applicable to indicator functions only.

Let F have uniformly bounded modulus of smooth-
ness (see Section 2 for a precise definition) and f* € F
minimize I(.). In general, f* cannot be computed
since the underlying densities are unknown. Further-
more, since no restrictions are placed on the densities,
it will not be possible to infer f* (with probability
one) based on only a finite sample. If F contains the
regression function g(Y') = E(X]Y'), we show that for
Nadaraya-Watson estimator f, based on a sufficiently
large sample, we have

PI(f)-I(f)>d <6 (12)

for e > 0 and 0 < § < 1 for continuous densities.
Thus the “error” of f is within ¢ of the optimal error
(of f*) with arbitrarily high probability 1 —§ (given a
sufficiently large sample). If g(.) ¢ F, then under the
same conditions, we have P[I(f) — I(f*) > e+ ¢"] <
6 where €* = [I(g) — I(f*)|. This is a reasonable
criterion in the present formulation, and such criteria
are extensively used in a number of machine learning
and empirical estimation problems (see Vapnik [21] for
more details). We estimate the sample size required to
ensure (1.2) as a function of ¢, §, and the smoothness
parameters of 7. We present two examples, involving
fusion of (a) decision making modules, and (b) noisy
function predictors, to illustrate the applicability of
the proposed method.

We now briefly discuss some related existing for-
mulations to put the above formulation in perspec-
tive. If the sensor error densities are known, sev-
eral cases of the fusion rule estimation problem have
been solved by methods not requiring the samples.
Some of the earlier work in this direction was done
in the areas of pattern recognition (Chow [2]), polit-
ical economy (Grofman and Owen [7]), and reliabil-
ity (von Neumann [23]). The distributed detection
problem based on probabilistic formulations has been
extensively studied; see Dasarathy [4] and Varshney
[22] (also the recent special issue [5]) for comprehen-
sive treatments. Many of the existing sensor fusion
methods are based on maximizing a posteriori prob-
abilities of hypotheses under a suitable probabilistic
model. However, when the probability densities are
unknown (or difficult to estimate) such methods are
ineffective. One alternative is to estimate the density
based on a finite sample. But, as illustrated in general
by Vapnik [20], the density estimation is more difficult
than the subsequent problem of estimating a function
chosen from a family with bounded capacity or a suit-
able e-cover. The latter property is satisfied in the




present formulation as a result of smoothness of F.

The paper is organized as follows. Preliminaries are
summarized in Section 2. In Section 3, we show that
for a sufficiently large sample, the condition (1.2) can
be satisfied. We present two simulation examples and
one robotics example in Section 4.

2 Preliminaries

Let @ denote the unit cube [0,1]" and C(Q) denote
the set of all continuous functions defined on (). The
modulus of smoothness of f € C(Q) is defined as

woo(f37) = () - F(2)

sup |F
“y—z"m<rr y,ZEQ

where || ¥ — z [[c0= rél_gix ly: = 2

For m = 0,1,.... let Q,, denote a family of diadic

cubes (Haarsystem)such that Q= J J,JNJ =0
JEQm

for J # J', and the N-dimensional volume of J, de-

noted by |J], is 27¥™. Let 1;(y) denote the indicator
function of J € Qp: 15(y) =1ify € J,and 1;(y) =0
otherwise. For given m, we define the map P, on
C(Q) as follows: for f € C(Q), we have Pn(f) = Pnf
defined by

Pnf(y) = ﬁ / F(2)dz

fory € J and J € Qpn, [3]. Note that P,f : Q —

[0,1] is a discontinuous (in general) function which

takes constant values on each J € Q,,. Consider the

Haar kernel given by Pn(y,z) = I_-lf—l _,Z 1s(y)15(2)
€Qm

for y,z € Q. Then an estimator for a density p € C(Q)

based on n-sample is given by [3]

3 1<
Pm,n(y) = ;ZPm(%Yj)

i=1

which can also be written in the form pmn(y) =
Y n(J)hi(y) with n(J) = 2|{j : ¥; € J}| and
JEQ

hi(y) = ]}—IIJ(y). Note that a random variable is de-
noted by an uppercase letter (e. g. Y) and its deter-
ministic version is denoted by the corresponding low-
ercase letter (e. g. y).

The following result, due to Ciesielski [3], will be
used subsequently in the special case o = 1.

Lemma 2.1 [3] Let 0 < oo < 1 and f € C(Q) be
given. Then the condition weo(f;r) < kr®, form some
k>0 as 7 — 04 implies

| f = Pmf llos C/2°™

for some C > 0, where || f(¥) o= sup |[f(¥)]. O
yep, N

as m -0

Let S be a set equipped with a pseuodometric d.
The covering number N (e, d, S) is defined as the small-
est number of closed balls of radius €, and centers in
S, whose union covers S. Let Neo(e, F) = N(6, || - [loo

sF), where [[ f(3) [lo=sup |F(¥)]-
yG[O,l]N
The following cover size for the class of Lipschitz

functions ® will be used in our sample size estimates.

Lemma 2.2 Let Fi = {fi: [0,1]Y + R} denote the
set of Lipschitz functions with Lipschitz constant k,
i. e. for every f € Fr, we have |f(y) - f(2)| < k||

Y — 2 ||oo. Then Neo(e, Fr) < %2{%[("5-1)N"‘+1] }.D

3 Nadaraya-Watson Estimator

Given n-sample, the Nadaraya-Watson estimator
based on Haar kernels is defined by

_2 X;Pm(y,Y5)

> X
fm,n (y) = = )

3 - - @4
ng Pn(3,Y5) sze:.] IJ(YS)

fory € J [12] (see also Engel [6]) . The second expres-
sion indicates that fi, »(¥) is the mean of the function
values corresponding to Y;’s in J that contains y. This
property is the key to efficient computation of the es-
timate [18].

The Nadaraya-Watson estimator based on more
general kernels is classical in statistics literature [9].
Since its introduction in early sixties, this estimator
was successfully employed in a number of applications
involving nonlinear regression estimation. The classi-
cal analysis of this estimator was restricted to asymp-
totic results, and is not particularly directed towards
linear-time computation. This computationally effi-
cient version based on Haar kernels is due to Engel
[6], which was subsequently shown to yield finite sam-
ple guarantees by Rao and Protopopescu [18]. The
result of [18] requires finiteness of capacity of F in
addition to smoothness, and here we require only the
latter. We first present a simpler version of the result
when F contains the regression function.

Theorem 3.1 Consider ¢ family of functions F C
C(Q) with range [0,1] such that weo(f;r) < kr for

3N. S. V. Rao, V. A. Protopopescy, and H. Qiao, Function
estimation by feedforward sigmoidal networks with bounded
weights, manuscript, Oak Ridge National Laboratory, Oak
Ridge, TN, 1996.

4Conventionally this estimator is used to fit functions of the
form f(X) = Y (or its regression version). Due to the form
of the present sensor fusion problem, namely fitting functions
of the form f(Y') = X, the conventional notational roles of the
variables X; and Y; are switched in this expression.




some 0 < k < co. We assume that: (i) the regression
function g(Y) = E(X|Y) is contained F; (ii) there
exists a family of densities P C C(Q); (ii) for each
P € P, weo(p;r) < kr; and (i) there exists p > 0
such that for each p € P, p(y) > p for ally € [0,1]7.
Suppose that the sample size, n, is larger than

gmtt [ (pom [/ kom N-1
-1 +1l+m
é € ( € )
ma1 22m+6
In (2 k/El) +In (m)]

where 61 = e(p—€)/4,0< B < ﬁ, m = [l&nd]
1 1/N+1-1/28
and X = b(2)M/VHT 4y (2) . Th

en
for any f € F, we have P [I(f) = I(59) > e] < 6.

Proof: Vapnik [20] showed that I(.) is minimized by
the regression function g(y) = f*(y) = E[X[y). Con-

sider I(fm,n) — I(f*) given by

1@ = Fnn@)? = (& = @) Plplole)p(e) vz
where the operand of the integral can be expressed as

(& = fmn(®))? = (= = F*())*]
= Ifmn(y) - f.(y)l X |2:L' - fm.n(y) - f*(y)l
< 2|f(y) - ()l
Thus the condition I( fm,n) — I(f*) < € is implied
by sup|fm.n(¥) — F*(¥)] < €/2. We prove the lat-
y
ter condition now whichj(eg_i;ablishes the theorem. We
Y
have fnn(y) = _2_le - where the denominator
* Y €J T}’T

Pmn(y) =1 YE 177 for y € J is the density estimator
J

defined in [3]. Under the conditions of the theorem,
Nadaraya [8] showed the following decomposition:

P [sup 1F*@) = fmn(®)] > f]

<P[Sup|f (¥)r(y) - fmn(y)|>6(p2 )]

e)]

We use Lemma 2.1 [3] to bound the second and third
terms by the application of the following:

+P [Sup [2(y) = Bmn(¥)| >

+P [sgp lp(y) = m,n(y)| > 6] .

P [sup o) = 501 > 2]

< P [suplo(s) ~ Pus)] > #12]

+P [st;p |Pup(y) = ram ()] > z/z] .

The first term is made zero by choosing C/2™ <
z/2 and the second term is upperbounded by
b(2/z)*/N+1-1/28 for suitable constant b (from proof
of Theorem 3.13 of [3]). Now we have the first term
of Nadaraya’s decomposition bounded by

P [sgp @) — Fa)p@)] > ]
< P [suplPno0) - S)] > /2]

+P [sgp (@) — Prfo()] > r/z] .

The first term in the right hand side can be made zero
by suitably choosing m, and the second term is esti-
mated using the cover size estimate for the function
class {f(.)15(.)} for any fixed J. For the latter we use
the following inequality:

P [1Pnfo(y) — @) > /2] <

2P | sup [IPasols) = Fmn(s@)] > r/274].
JEQm

Note that for y € J, Pnfp(y) = ]—[f F@)r(y)dy

which is the expectation of f(y)l.;(y) Then

Fam(y) = y%Jf(Y) __Elf(Y)lJ(Y)lsthesa.m-

ple mean of the the function f(y)1;(y). By noting
that f(y)1s(y) is a Lipschitz function defined on J
Lemma 2.2 yields

Neo (6 LF@)1s@)}) < Z2t (1],

From Vapnik [20] (page 190), we have for any J € Qp,

P [sx;p P f5(3)  Frun(o)] > ]
< 18N (2, F) ne~=n/4

which yields

P [supl7(s) - 7)1 > 4

—z2n

z =zia
< 2™18Neo (g, F) meTrs,
By collecting various terms together we have

P [suplinn) - )1 > 1]

—e2?

< A +2™18N,, 2m L ,.7-') nesTEr




method preprocessing storage function computation
complexity complexity complexity
nearest neighbor O(n) O(n) O(n)
feedforward threshold | NP-complete O(s) O(s)
networks
Nadaraya-Watson O(n(logn)”¥~1) [ O(2™) = O(n) | O((logn)*)
Table 1: Summary of performances of Nadaraya- O(n(logn)”¥~1) time (see [18]).

‘Watson estimator, feedforward neural network, and
nearest neighbor rule.

where A= b (%)UNH_I/zﬂ +b (—2— e

€
sample size is obtained by noting that the inequal-
ity 6§ — A > ane®" is ensured by choosing n >
Z1n(a/b%(6 — A)). O

‘We now consider the case when the regression func-
tion g(y) is not contained in F, i. e. g(y) need not
satisfy the smoothness conditions.

1/N+1-1/28
) / P

Corollary 3.1 Under the conditions of Theorem 3.1
with the exzception of (i), i. e., the regression func-
tion g(y) is not necessarily contained in F, we have

P[I(f)~I(f*) > e+¢€*] < & where ¢ = |[I(g) —I(f*)|-

Proof: Note that I(f) - I(f*) < I(f) - I(g)+|I(g) -
I(5*)| < I(f) - I(g) + ¢*. By the proof of Theorem
3.1, with probability 1 — &, we have |I(f) — I(g)] < e.
a

Computation of fm,,,(y) at a given y involves ob-
taining the local sum of X;’s in J that contains y.
The range-tree (see Preparata and Shamos {11]) can
be constructed to store the cells J that contain at
least one Y;; with each such cell; we store the num-
ber of the Y;’s that are contained in J and the sum
of the corresponding X;’s. This computation can be
achieved by known methods [11] in O(n(logn)V~1)
time , and the values of J containing y can be retrieved
in O((logn)") time. Thus, fm (y) can be computed
in O((logn)") time after a preprocessing step in

For non-linear function estimation problems, two of
the most commonly used estimators are feedforward
neural networks and nearest neighbor rules. A sum-
mary of relative performance of these two methods
compared to Nadaraya-Watson estimator is presented
in Table 1, where s denotes the size of the feedforward
neural network. A preprocessingstep is needed in neu-
ral network and proposed method, which results in a
reduced complexity for computing a function value.

In practice m is chosen such that 2™ < n? for some
t < 1/4 for Nadaraya-Watson estimator. In terms
of complexity, Nadaraya-Watson estimator exhibits a
trade-off in that its preprocessing complexity is poly-
nomial in n (unlike neural networks) and the estima-
tion complexity is polynomial in log » (unlike the near-
est neighbor rule).

It is also common to employ sigmoid networks for
function estimation problem which is closely related
to the present fusion problem. Finite sample results
for such method are based on computing an empir-
ically best neural network, the complexity of which
is an open problem [19]. We note that the popular
backpropagation algorithm for sigmoid networks is not
known to provide performance guarantees based on fi-
nite samples for the present problem (when F has only
the smoothness property).

4 Implementation

We first present two simulation examples to illustrate
the performance of Nadaraya-Watson estimator for
the sensor fusion problem. The first example is a spe-
cial case of the fuser problem where ¥ corresponds

Sample Size | Test set size 51 So S Sy Ss | Nadaraya-Watson
100 100 7.0 20.0 33.0 35.0 55.0 12.0

1000 1000 11.3 18.5 29.8 38.7 51.6 10.6

10000 10000 9.56 | 20.19 | 30.38 [ 39.82 [ 49.68 8.58
50000 50000 | 10.038 | 20.136 | 29.854 | 39.904 | 50.050 8.860

Table 2: Performance of Nadaraya-Watson Estimator
for decision fusion problem.




Training Set | Testing Set | Nadaraya-Watson | Nearest Neighbor | Neural Network
100 10 0.000902 0.002430 0.048654
1000 100 0.001955 0.003538 0.049281
10000 1000 0.001948 0.003743 0.050942
(2)d=3
Training Set | Testing Set | Nadaraya-Watson | Nearest Neighbor | Neural Network
100 10 0.004421 0.014400 0.018042
1000 100 0.002944 0.003737 0.021447
10000 1000 0.001949 0.003490 0.023953
(b)yd=5

Table 3: Performance of Nadaraya-Watson Estimator
for fusion of noisy function estimators.

to binary decisions. Problems of this type have been
studied under the title of distributed decision fusion
[4, 16]. In the second example each sensor is a noisy
function estimator. Then we present a robotics exam-
ple based on ultrasonic and infrared sensors. In all
examples, the training sample is used to compute the
Nadaraya-Watson estimator, f, in the first step. This
step is achieved by computing the cells of Qn,; with
each cell J of Qp,, the list of X;’s that correspond to
J is stored. Then, given the sensor output, Y, the
fuser’s output, f(Y), is computed in the second step.
In this step, the cell J that contains Y is computed
first; if no ¥;’s lie in J then f(Y) is taken to be 0,
otherwise Eq. (3.4) is used to compute the estimator.

Example 1: Decision Fusion: We consider a system
with 5 sensors such that ¥ € {Ho, H1}°. To each X
there corresponds a “correct” decision; in the train-
ing data the correct decision (H; or Hp) is generated
with equal probabilities for each Xj, i. e., P(Hp|X) =
P(H]X) = 1/2. The sensor Sj, j = 1,2,...,5, intro-
duces an error as follows: the output corresponds to
the correct decision with probability of 1 — /10, and
with probability :/10 output is the opposite. The indi-
vidual sensor behavior is implemented by generating a
uniform random variable in the range [0, D} and check-
ing whether it falls within the interval [0,7D/10]. The
sensor fusion problem is to compute a rule that com-
bines the outputs of the sensors to predict the correct
decision. Table 2 is an illustration of the percentage
error of the individual detectors and the fused system
based on an adaptation of Nadaraya-Watson estima-
tor. Here we use m = 2 and @ = {0, 1] such that Hy
and H; are represented by 0 and 1 respectively; fis
thresholded at 0.5 to generate final output. Note that
the fuser is consistently better than the best sensor
51 beyond the sample sizes of the order of 1000. Thus
this example illustrates that the performances

exceeding the best of the individual sensors can be
achieved through fusion methods. O

Example 2: Fusion of Function Estimators: [18] We
consider five function estimators each of which out-
puts the value of an unknown function g(X) € [0,1]
at the input X € [0,1]%. In particular S; out-
puts a corrupted value g;(X) of g(X) when pre-
sented with input X € [0,1]9. The fusion problem
is to compute a function f : [0,1]° = [0,1] such
that f(g1(X),...,95(X)) closely approximates g(X).
Here g is realized by a feedforward neural network,
and, for j = 1,2,...,5, g;(X) = ¢(X)(1/2 + jZ/10)
where Z is uniformly distributed over [—1,1]; note
that 1/2 — i/10 < g:(X)/g(X) < 1/2 +i/10. Table
3 corresponds to the mean square error in the esti-
mation of f for d = 3 and d = 5, respectively, us-
ing the Nadaraya-Watson estimator, nearest neighbor
rule and a feedforward neural network with backprop-
agation learning algorithm. Notice the superior per-
formance of Nadaraya-Watson estimator compared to
the other two methods in this example. O

Example 3: Detection of Door Using Ulirasonic and
Infrared Sensors: We consider the problem of recog-
nizing a door (an opening) wide enough for a mobile
robot to move through. The mobile robot (TRC Lab-
mate) is equipped with an array of four ultrasonic and
four infrared Boolean sensors on each of four sides as
shown in Figure 2. The sensors are periodically polled
while the robot is in motion. This example deals with
only the problem of detecting a wide enough door
when the sensor array of any side is facing it. The
ultrasonic sensors return a measurement correspond-
ing to distance to an object within a certain cone as
illustrated in Figure 2. The infrared sensors return
Boolean value based on the light reflected by an ob-
ject in the line-of-sight of the sensor; white smooth
objects are detected due to high reflectivity, and ob-
jects with black or rough surface are generally not de-
tected. Both ultrasonic and infrared sensors are unre-
liable. The ultrasonic sensors are susceptible to mul-
tiple reflections and the profiles of the edges of the




TRC Labmate Mobile Robot

ultrasonic

infrared

Figure 2: Schematic of sensory system. Front and
back sensor arrays are not shown for simplicity.

door. The infrared sensors are susceptible to surface
texture and color of the wall and edges of the door. It
is very difficult to derive accurate probabilistic models
for these sensors since it requires expertise in device
physics, statistics, and non-linear mathematics. Thus
a Bayesian solution to this problem is very hard to im-
plement. we propose to employ the proposed estimate
to derive a non-linear relationship between the width
of the door and the sensor readings. Here the training
sample is generated by actually recording the mea-
surements while the sensor system is facing the door.
Positive examples are generated if the door is wide
enough for the robot, and the sensory system is fac-
ing the door. Negative examples are generated when
the door is not wide enough or the sensory system
is not correctly facing a door (wide enough or not).
The robot is manually located in various positions to
generate the data. Consider the sensor array of a par-
ticular side of the mobile robot. Here Yi,Y2,Y3,Ys
correspond to the normalized distance measurements
from the four ultrasonic sensors, and Y5, Y3, Y7, Y3 cor-
respond to the Boolean measurements of the infrared
sensors. X is 1 if the sensor system is correctly facing
a wide enough door, and is 0 otherwise. The train-
ing data included 6 positive examples and 12 negative
examples. The test data included 3 positive examples
and 7 negative examples. The Nadaraya-Watson esti-
mator predicted the correct output in all examples of
test data. O

5 Conclusions

The classical Nadaraya-Watson estimator is shown to
solve a generic sensor fusion problem where the under-
lying sensor error densities are not known but a sample
is available. In particular, by employing Haar kernels
this estimator has been shown to yield finite sample
guarantees and also to be efficiently computable. This
sensor fusion problem is particularly useful in solving
a number of robotics problems. We presented two
simulation examples, and a robotics example involv-
ing the detection of a door using arrays of ultrasonic
and infrared sensors.

Several questions for future research arise in the
present study. First, lower bounds for the required
sample sizes will be useful in judging the tightness of
the proposed sample size. Second, it would be of inter-
est to identify other kernels for the Nadaraya-Watson
estimator that yield finite sample results and support
efficient computation. Third, the effectiveness of this
estimate for other robotics applications would be of
future interest.
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