

ENERGY RESEARCH CENTER

LEHIGH UNIVERSITY

BETHLEHEM, PA

Cermet Composite Thermal Spray Coatings for Erosion and Corrosion Protection in Combustion Environments of Advanced Coal-Fired Boilers

**Progress Report Prepared For U.S. Department of Energy
under Grant No. DE-FG22-95PC95211**

Project Period: 7/14/95-12/31/96

*Semi Annual Technical Report For
The Period July 1995 through January 1996*

by

B. F. Levin, J.N. DuPont and A.R. Marden

*Energy Research Center
117 ATLSS Drive
Lehigh University
Bethlehem, PA 18015*

*DOE Project Officer: Sean I. Plasynski
Administered by: Cynthia Y. Mitchell*

May 2, 1996

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

EXECUTIVE SUMMARY

Research is presently being initiated to determine the optimum ceramic/metal combination in thermally sprayed metal matrix composite coatings for erosion and corrosion resistance in new coal-fired boilers. The research will be accomplished by producing model cermet composites using powder metallurgy and electrodeposition methods in which the effect of ceramic/metal combination for the erosion and corrosion resistance will be determined. These results will provide the basis for determining the optimum hard phase constituents size and volume percent in thermal spray coatings. Thermal spray coatings will be applied by our industrial sponsor and tested in our erosion and corrosion laboratories.

During the last quarter, model Ni-Al₂O₃ powder cermet composites were produced at Idaho National Engineering Laboratory by the Hot Isostatic Pressing (HIP) technique. The composite samples contained 0, 21, 27, 37, and 45 volume percent of Al₂O₃ in a nickel matrix with an average size of alumina particles of 12 um. The increase in volume fraction of alumina in the nickel matrix from 0 to 45% led to an increase in hardness of these composites from 85 to 180 HV₁₀₀₀. The experimental procedure and preliminary microstructural characterization of Ni-Al₂O₃ composites are presented in this progress report along with plans for the research in coming year.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

I. INTRODUCTION

Present coal-fired boiler environments remain hostile to the materials of choice since corrosion and erosion can be a serious problem in certain regions of the boiler. Recently, the Clean Air Act Amendment is forcing electric power plants to reduce NO_x emissions to the environment. To reduce NO_x emissions, new low NO_x combustors are utilized which burn fuel with a substoichiometric amount of oxygen (i.e., low oxygen partial pressure). In these low NO_x environments, H_2S gas is a major source of sulfur. Due to the sulfidation process, corrosion rates in reducing parts of boilers have increased significantly and existing boiler tube materials do not always provide adequate corrosion resistance. Combined attack due to corrosion and erosion is a concern because of the significantly increased operating costs which result in material failures.

One method to combat corrosion and erosion in coal-fired boilers is to apply coatings to the components subjected to aggressive environments. Thermal spray coatings, a cermet composite comprised of hard ceramic phases of oxide and/or carbide in a metal binder, have been used with some success as a solution to the corrosion and erosion problems in boilers. However, little is known on the effect of the volume fraction, size, and shape of the hard ceramic phase, on the erosion and corrosion resistance of the thermally sprayed coatings. It is the objective of this research to investigate thermally sprayed metal matrix composite (cermet) coatings in order to determine the optimum ceramic/metal combination that will give the best erosion and corrosion resistance in new advanced coal-fired boilers.

II. EXPERIMENTAL PROCEDURE

II.A Alloy System

Model Ni-Al₂O₃ powder cermet composites were produced at Idaho National Engineering Laboratory by the Hot Isostatic Pressing (HIP) technique. Alloys contained from 0 to 45 vol. % of hard phase (Al₂O₃) in a nickel matrix. The variation in alumina content in Ni-Al₂O₃ composites will provide a systematic change in their microstructure and mechanical properties. Therefore, the effect of hard second phase particles on mechanical properties and erosion resistance of metal-matrix composites can be analyzed.

II.B. Microstructural Characterization

The cermet alloys were cross-sectioned and mounted in cold curing, thermosetting epoxy and each sample was mechanically polished to a 0.04 um surface finish. The microstructure of the Ni-Al₂O₃ composites was characterized using Light Optical Microscopy (LOM). A LECO 2001 quantitative image analysis system was used to measure volume fractions and sizes of the hard phase (Al₂O₃). Hardness measurements were made on cross-sectioned surfaces of all composites using a Vickers indenter and 1000g load.

III. RESULTS

The composite samples contained 0, 21, 27, 37, and 45 volume percent of Al₂O₃ with an average size of alumina particles of 12 um. Microstructures of the Ni-Al₂O₃ composites with different volume fraction of hard Al₂O₃ particles (dark phase) at low and high magnifications are shown in Figures 1a-c and 2a-c, respectively. The effect of alumina volume fraction on hardness

is shown in Figure 3. An increase in volume fraction of alumina in the nickel matrix from 0 to 45% led to an increase in hardness of these composites from 85 to 180 HV₁₀₀₀. Hardness measurements show that variation in alumina volume fraction produces significant change in mechanical properties of the composites. The effect of the mechanical properties on erosion resistance will be analyzed in the following progress reports.

IV. PLANS FOR COMING YEAR:

In addition to *powder processed* Ni-Al₂O₃ composites, an *electrodeposition technique* will be used to produce cermet coatings with a nickel matrix and Al₂O₃ particles of controlled volume percent (from 0 to 40%) and size from 0.5 to 1um. Coating microstructures will be characterized using light optical microscopy, scanning electron microscopy and quantitative image analysis. Next, the powder and electrodeposited cermet alloys will be tested in our erosion simulator at different velocities. From these results we expect to determine the effect of hard phase constituents size and volume percent on the steady-state erosion rate. These results will form the basis for determining thermal spray coating hard phase constituent size and volume percent.

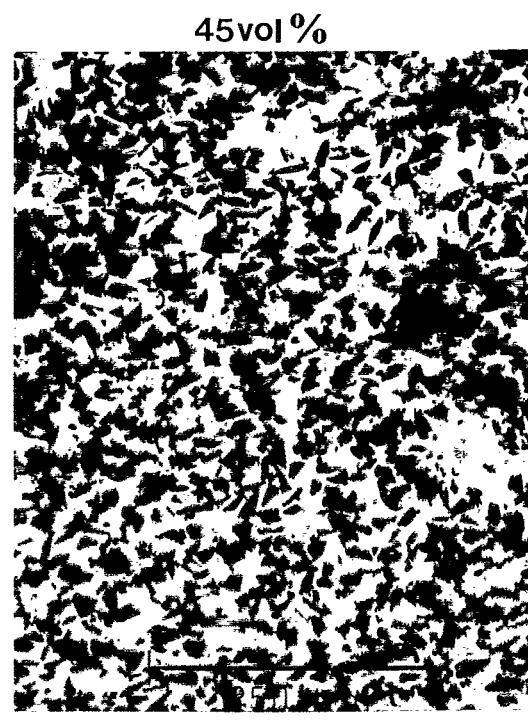
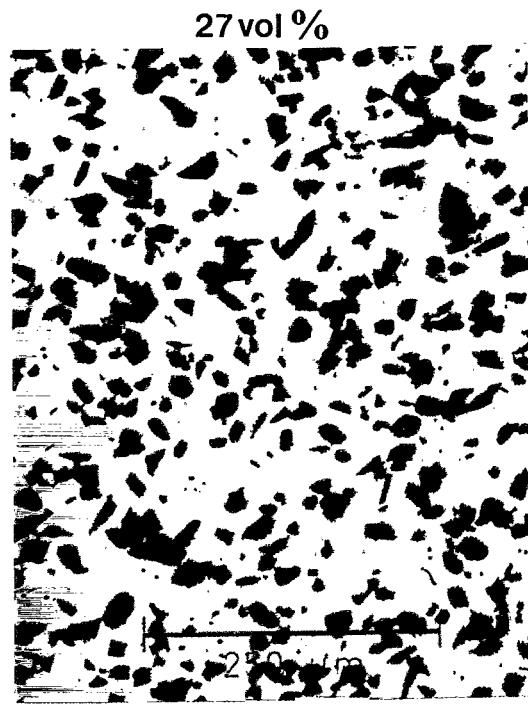
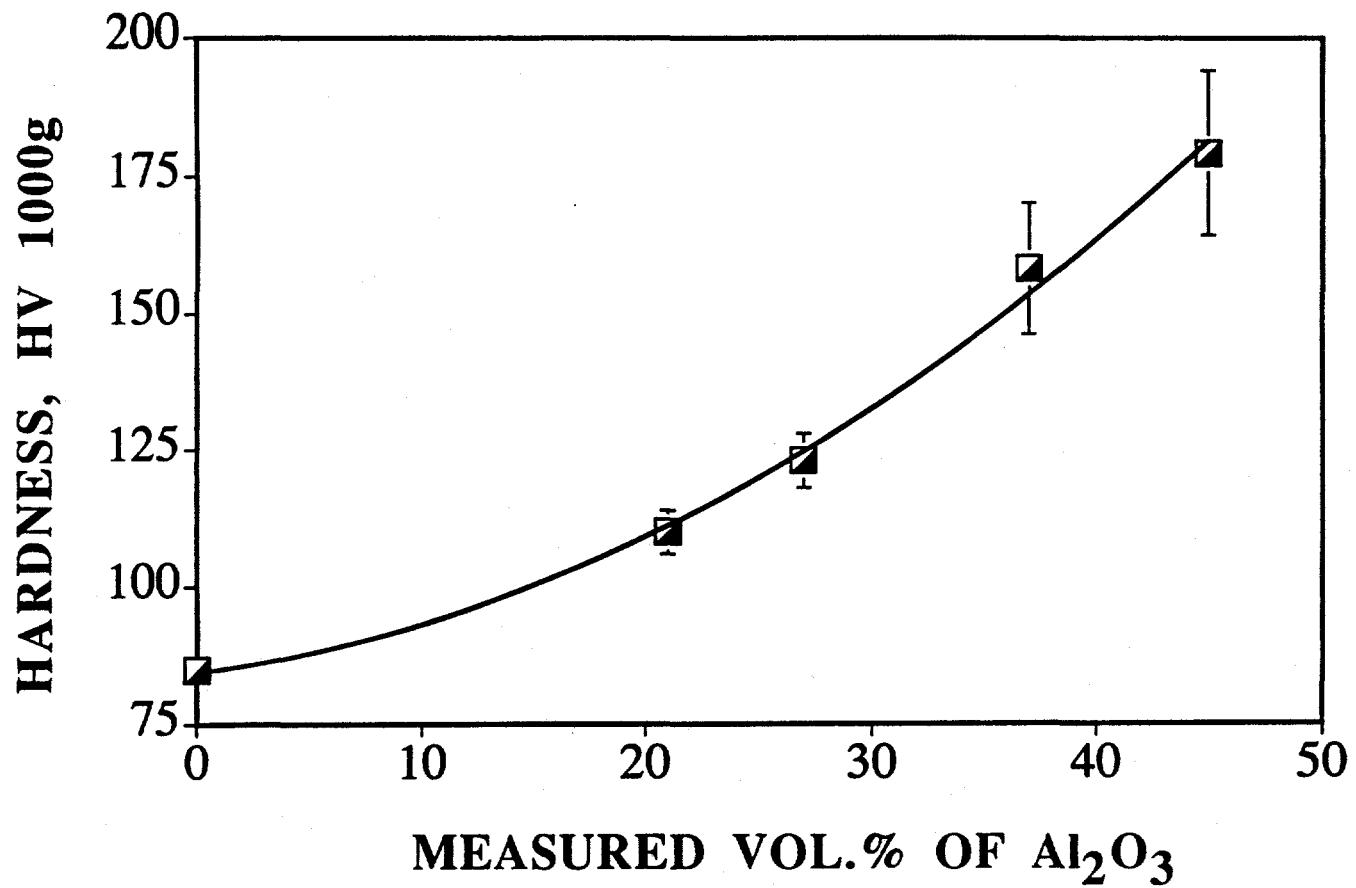




Figure 1a-c. Low magnification photomicrographs of Ni-Al₂O₃ composites
(dark particles are Al₂O₃).

Figure 2a-c. High magnification photomicrographs of Ni-Al₂O₃ composites
(dark particles are Al₂O₃).

Figure 3. The effect of volume percent of Al_2O_3 particles on hardness of Ni- Al_2O_3 composites.