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Shortest Path Planning for a Tethered Robot or an Anchored Cable*
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Abstract

We consider the problem of planning shortest paths for a

tethered robot with a finite length tether in a 2D environ-

ment with polygonal obstacles. We present an algorithm
that runs in time O((kl +l)2rL4) and finds the shortest path

or correctly determines that none exists that obeys the con-

straints;here n is the numberobstaclevertices,and kl is

the numberloops in the initial configurationof the tether.
The robot may cross its tether but nothing can cross ob-
stacles, which cause the tether to bend. The algorithm ap-

plies as well for planning a shortest path for the free end
of an anchored cable.

1 Introduction

1.1 Overview

While motion planning has been one of the more intensely

studied areas of robotics, motion planning for tethered
robots among obstacles has been relatively unexplored.
This paper considers the problem of planning the short-
est path for a planar mobile robot with a finite, anchored

tether. In thk problem, the robot must move from a given
position and given tether configuration to a goal position
and arbitrary tether configuration without violating the

problem constraints.

We provide an O((lq + l)2n4)algorithm, where n is the

geometriccomplexityof the planarenvironmentand kl is

the numberof loopsaroundobstaclesin the tether’sinitial
configuration. Although an infinitely flexible, automati-
cally retracting tether is assumed, we believe that our re-
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suits will have applicability in motion planning when the
tether has bounded curvature and in motion planning for
serpentine, or hyper-redundan~ robots. A more precise

complexity anrdysis is given in the body of the paper.

1.2 Previous and Related Work

A great variety of motion planning problems have been

studied extensively; for summaries, see Latombe [16]
and Halperin, et al [8]. While the only provably-good
polynomial-time algorithms for planning time-optimal
obstacle-avoiding motions are approximation algorithms

(e.g., [6]), exact and approximate polynomial-time rdgo-
rithms exist for a wide range of shortest-path problems;

see, Mitchell [17] for a summary. However, shortest path
planning for tethered robots appears to be an unexplored
domain.

Prior work on tethered robots has concentrated on gen-

erating motions for multiple robots that do not result in

their tethers getting tangled. Sinden [19] presents an algo-
rithm for scheduling the motion of multiple planar (point)
robots that each have an umbilical (rigid tether) that must
not cross the umbilicals of other robots. Pardo-Castellote

and Martins [18] consider a related run-time problem in
which the the umbilicals are perpendicular to the bound-

ary of the environment, the anchor points move on this

boundary, the robots are restricted to rectilinear paths, and

there may be non-robot obstacles.

Hert and Lumelsky considered planning trajectories for

planarrobotswith flexibletethersof finitelengththat can-
not be crossed but instead are deformed by robots pushing
them. Their first result [11] is a general exhaustive-search
algorithm for finding an optimal (e.g., minimum total ca-
ble length) robots-and-tether configuration in which the

robots reach their goals. They also developed [12] an
0(n4) algorithm for planning an efficient set of robot tra-
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jectories that results in a given target configuration of teth-

ers, assuming that each robot begins at the anchor point of

its tether. An extension [13] plans trajectories such that
each robot i visits a given series of p target points {Z’;}.
Excluding computation of the sequence of tether configu-

rations, this algorithm has complexity 0(n4 log n). More

recently, they developed an algorithm for planning tangle-
free motions [14] in three dimensions.

It is intuitive that finding a shortest path for a tethered
robot is similar to solving the same problem for the “head”
of a corresponding serpentine manipulator whose length,

shape, and curvature limits match those of the combined

robot and tether. However, generating a configuration-

space (joint-space) path that corresponds to a serpentine
robot “slithering” along a path in world space has been a

research topic itself. This was the focus of Chkikjian and

Burdick’s work on obstacle avoidance in [2], which as-

sumed that a set of safe “tunnels” had already been found

in the workspace. More recently, Choset and Burdlck have
investigated sensor-based planning methods using Gener-

alized Vomnoi Graph constructions [4,5]. Henning, Hick-
man, and Choset then developed an algorithm [9] that
combines these methods and others [3] to perform motion

planning for serpentine robots. The algorithm is fast, but

it is not complete for robots of finite length, even if they
have no curvature limits.

2 Results

2.1 Problem Formulation

In an instance (0, L, X, u,s, g, c) of the shortest path

planning problem for a tethered robot with finite-length
tether, the robot is a point that moves in a planar environ-
ment O of disjoint simple polygons with n total vertices.
This point robot is attached to an anchor point u in the

plane by a tether that has maximum length L. The tether’s
initial configuration X is given by a path no longer than
L from u to the start positions of the robot. X does not

intersect the interior of any obstacles. For simplicity, we

will assume that the tether automatically retracts so that it

is kept taut thus, X is a sequenceof line segments. g is
the goal position the robot must move to.

c specifies the type of constraints a solution path must
obey. In its motion, the robot must not enter any of the
obstacles. The tether slides freely in obstacle-free regions

and on obstacles. It is physically prevented from enter-
ing the obstacles, which cause it to bend to maintain this
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Figure 1: Robotisats; solidlineshowstetherininitirdconfiguration,
with anchor point u. Robot must go to g. Dotted line is shortest path
without tether constraint. Dashed line is shortest path obeying semi-
pkmar erossiog eonstmirrt. Fsney line is shortest path obeying purely
planar erossing eoastmint.

condition. The tether length must never exceed L. These
constraints are called the tether and obstacle constraints.
If the robot can cross the tether, we say the robot is semi-

plana~ if it cannot, then the robot is purely plana~ and
if in addhion, it can push the tether to avoid crossing the
tether, it is a pushy planar robot. These constraints are
called the crossing constraints. For the given crossing

constraint c, a solution to the problem instance is a short-
est path froms to g such that a robot that starts with the
tether in configuration X and follows the path obeys the
tether and obstacle constraints and the crossing constraint.

We say that such a path obeys the tethe< obstacle, and

crossing constraints under the initial conditions.

Figure 1 illustrates a problem and optimal solutions un-

der semi-planar and purely planar crossing constraints.

2.2 Statement of Results

Our main result is an algorithm that solves the shortest
path planning problem for a tethered robot with a finite-
length tether under the semi-planar crossing constraint.

We introduce geometric and topological characteristics of
the initial configuration as additional measures of problem



complexity,We now give our main theorem,referringto
our algorithm as “Algorithm W“.

Theorem 2.1 Zf(0, L, X, u,s, g, semi-planar) is an in-

stance of the shortestpath planningproblemfor a tethered
robot with jinite-length tether then Algorithm SP will re-

turn a minimal-length solution path fioms to g that obeys

the constraints under the initial conditions, if such a solu-

tion exists. Otherwise, the algorithm will correctly deter-

mine that there is no solution that satisjies the constraints.
In both cases, if X has ks straight sections and kl loops,

and O has n vertices, then the algorhhrn will run in time

O((kl + l)k.n3).

Since the number of straight sections will be no greater

than the number of vertices multiplied by one more than

the number of loops, k. < (kl + l)n. Thk yields the
following corollary.

Corollary 2.2 If (0, L, X, u,s, g, semi-planar) is an in-

stance of the shortest pathplanningproblem for a tethered
robot with jinite-length tethe< then Algon.thm SP will re-

turn a minimal length solution path froms to g that obeys
the constraints under the initial conditions, if such a solu-

tion txists. Otherwise, the algorithm will correctly deter-

mine that there is no solution that satisfies the constraints.

In both cases, if X has kl loops, and O has n vertices,

then the algorithm will run in time O((kl + l)2n4).

Different, possibly more useful ways to express the
complexity of the algorithm are discussed in Section 4.

3 Algorithms

3.1 Overview and Preliminaries

We now describe our algorithm, show its correctness, and

bound its complexity. We present the main algorithm in
Section 3.2. We analyze its time complexity in Section
3.3, making much use of results from computational ge-
ometry. We show the algorithm’s correctness in Section
3.4. We first review some concepts necessary to under-
stand our results.

A pulled-taut configuration of a tether results from re-

tracting it from either end until taut, without the robot

moving, bending only around obstacle vertices. Observe
that the path following the tether in configuration X from
u to the robot along its pulled-taut configuration X is the
shortest path in its homotopy class, where the obstacles
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Figure 2: AlgorithmSP.(a) Problem instance and visibilitygraph.(b)
PathgeneratedbyconsideringshortestpathsfromverticesinsetVO =

{A, B} visiblefromSO. (c)Furtherbacktmckkg along tether finds
vertex C newly visible horn SI; VI = {C}. (d) Solution. (Paths and
tether rue shown offset from obstaeks so they can be seen.)

are regarded as holes in the domain. We note that the
minimum-length path of a homotopy type (i.e., within a
homotopy class) is sometimes called a taut string path.

Let us be given a planar environment containing a
polygonal set of planar obstacles O with n vertices, and
let this environment be triangulated such that all obsta-

cle edges are triangle edges. If x is a point in the envi-

ronment, let 2“(x) denote the triangle containing x. Let

p : [0,1] + ~2 be an obstacle-free path containing the
minimal-length sequence {Xi} of m + 1 vertices lying in
the interiors of (non-obstacle) triangles in the triangula-
tion such that (a) xo = p(0) and x~ = p(l), (b) for all i,



T(xJ is edge adjacent to T(x~+l), and (c) for all i, there

is no point on the segment of p from xi to Xi+l that does

not lie in T’(xJ) U2’(X;+l). We say that the sequence {xi}
describes path pin the triangulation.

3.2 The Main Algorithm

We present a simple algorithm that takes as input an in-

stance (0, L, X, u,s, g, semi-planar)of the shortest path

planning problem for a tethered robot with finite-length
tether. The algorithmwill be givenat a fairly high level,
using well-known or easy computational geometry algo-
rithms as sub-algorithms. We give addhional detail in the

complexity analysis in Section 3.3.

Algorithm SP

Let pX : [0,1] + ~2 denote a path from u to s that
follows X, where 1 is the length of the tether in con-
figuration X. Then define the reverse path rx, where

rx(w) = px(J – w) for all w E [0,1]. We use these
functions and their restrictions to sub-ranges of [0, 1]only
to avoid geometric ambiguity in the description; imple-
mentation does not require actually constructing and ma-

nipulating these functions.

1.

2.

3.

4.

5.

Triangulate the environment such that all obstacle
edges are triangle edges, and label each triangle as

being an obstacle triangle or a freespace triangle.

Compute the visibility graph & of O U {g}, and use
it to compute the shortest path from each vertex to g.

Find the vertices of O U {g} visible froms and order
them by angle relative tos.

Compute the changes that occur in the ordered set of

vertices visible from rx (w) as w goes from O to 1,
and compute the ordered set of sections {Si} of rx

on which thk ordered set does not change. (Some

sections may have zero length if generalposition is
not assumed.)

For each Si, with corresponding interval [wi, wi+I]
such that rx : [w~,w~+l] + S~, in orde~

(a) Forsomepoint xi c S; and correspondingzi 6

[wi, wi+l] such that rX(xJ = xi, computethe
set of vertices Vi containing

i. each visible vertex if i = O;

ii. each visible vertex that was not visible in
the previous section, otherwise.

(b) For each vertex v in Vi:

i. Let path qi,v be the path that is the con-

catenation of px I[0, 1 – z~], the line seg-

ii.

...
m.

iv.

v.

ment from xi to v, and the shortest path
from v to g. @xl[O, 1 – ~i] denotes “pX

restricted to [0,1 – z~]”.

Compute the minimum length path ij~,.

that is homotopy equivalent to qi,v.

If the length of ~i,v is greater than L, then

skip the rest of this loop body, go to step
5(b)i, and consider the next vertex in Vi.

(Otherwise), let path pi,. be the path that

is the concatenation of rx I[0, ~i], the line

segment from xi to v, and the shortest path
from v to g.

Compute the minimum length path fii,v
that is homotopy equivalent to Pi,v, com-
pare the length of fii,v to that of best solu-

tion so far, and set the best solution to ~~,v

if its length is shorter.

3.3 Complexity

We now give a lemma on the complexity of Algorithm SP.

Lemma 3.1 Let(0,L, X, u,s, g, semi-planar) be an in-

stance of the semi-planar tethered robot problem with

bounded tether and static obstacles, with X being a taut

configuration. Let k8 be the number of straight sections of

X, and let kl be the number of loops in X. Then the Al-
gorithm SP will run in time O((kl + l)k,n3) on the given

problem instance.

Proofi We go through the steps of the algorithm.

Step 1 can be done in time O(n log n) using the method

of Hertel and Mehlhorn [15].

In Step 2, we use Ghosh and Mount’s algorithm [7] to
construct the visibility graph and Dijkstra’s algorithm to
find the set of shortest paths. Both algorithms take time
O(n logn + l?), in time, where l? is the number of vis-

ibility edges, which is 0(n2) but ofien less in practice.

Step 3 requires time O(n log n), since there are at most

O(n) visible vertices, and the visibility graph was previ-

ously computed.
In step 4, there are 0(n2) changes in the ordered set

of visible vertices for each straight segment of X, and
computing these changes costs 0(n2 log n) per segment.
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This can be done by considering each vertex and com-
puting the regions of the segment that are visible from it.

Using a rotational sweep algorithm, this can be done in
time O(n log n) for each vertex: we sort the edge ver-

tices in angular order about the viewing vertex, and then

we rotationally sweep a ray from this vertex, keeping

track of which edges intersect it between the vertex and
its intersection with the segment. Doing this for all ver-

tices in O U,{g} takes time 0(n2 log n), as does order-
ing the changes in the set of vertices visible from a point

traversing the segment. Therefore, this step takes time

0(k,n2 logn) and finds 0(k,n2) visibility changes. This
analysis also covers the cost of step 5(a).

Finally 5(b), since q;,v and p~,” will each be described
by O((kl + l)n) points, computing the minimum-length

homotopy equivalent paths ~i,” and &V will take time
(O(kl + l)n) using Hershberger’s and Snoeyink’s algo-

rithm [10], Therefore, the total cost of the step 5 is

O((kl + l)lc.n3), which is greater than that of any of the
other steps. This gives us the final complexity bound. ❑

3.4 Correctness

The following lemma states algorithm correctness.

Lemma 3.2 Let (0, L, X, u,s, g, semi-planar) be an in-

stance of the semi-planar tethered robot problem with

bounded tether and static obstacles, with X being a taut
configuration. Then, given this input, Algon”thm SP will

jind a shortest path so!ution that obeys the problem con-
straints l~such a solution exists.

Proofi We show that if pmin is a minimum length robot

path froms tog that obeys the constraints, then the algo-

rithm will find an equivalently good sohstion. (Figures 3
and 4 should be helpful.)

Let pX : [0,1] + ~2 be the path from u tos that fol-
lows X, where 1is the length of the tether in configuration

X. Let lsO[be the length of ~m;n. Let 1~ = 1 + 180[,

and define qmin : [0,lq] + ~ be pX * p~in, the con-
catenation of px and pm;n. Let &in : [O,/@]+ ~2 be
the minimum-length path in qmin’s homotopy class, with
length lq. Note that px and pmin are minimum length in
their homotopy classes.

Because px, Pmin, and ~m;n can only bend around

obstacle vertices and because qmin is homotopy equiva-
lent to &in, we can consider qmin in five sections. (Any
of these may have length zero.) For some Xg c [0, 1~],

s

Figure 3: Paths and vertices described in proof. pm~n is solution.

%ni. = pX * Pmin, so thatthese shortest p~ ~min in its homotopy

class is the pulled taut cm@umtion of the tether after the robot follows

path pmin. Becauseofhomotopyeqtsivatenceandbecausepx, pm~n,
sad ~min canonlybendarotmdobstaclevertices,v~ mustbe visible
frompx with respect to pmin and ~min. It follows that the algorithm
will find pm~n.

the terminal segment qminl[zg, 1~]of qmin beginning at
Vg = qmin (~g) and ending at g must be coincident
with a terminal segment ~min I[yg,11]of ~min such that

%i~(yg) = V9. similarly, for some Z. and Y., the ini-
tial segment qmin 1[0,z=] of qmin beginning ats and end-
ing at v. = qmin(~a) must be coincident with an initial
segment ~min] [0,ya] of ~min and identical to an initial
segment of px. There may be three additional segments
of interest. In the lirs~ qmin I[zc, 1], qmin is identical

to px but not coincident with any segment of ~min. In

the second, qtn~~I[i, X6]for some z~ s Zg, q~~~ back-
tracks along px. If Z6 < Zg, then in the third Segment

q~i~l[~~, ~J) qrnin is not backtracking over PX and is
not coincident with any terminal section of ~min.

Because qmjn and ~min are homotopy equivalent and

bend only around obstacle vertices except ats, the path

%rnent$ %in 1[% %] ~d qmin IIYu, Yg], must each

bend in only one direction, bend away from each other,
and not cross. Furthermore, it follows that there is some
section of px from which Vg is visible with respect to

%nirtl[~b, %], and ~minl[ya, Vg]. A Pa~ that is a concate-
nation of qmin I[i, Zb] and the path segment backtracking

over px to a point in this section and proceeding via the
visibility line segment to V9 is homotopy equivalent to

Pmin. It follows that the algorithm will find Pmin and



FigUI134: Paths from the proof, shown with obstacles.

return it if an equivalently good path was not found first.

Finally, we showthat for all z c [0,19],the minimum-
Iengthpath that is homotopyequivalentto qminl[O,z] has
length no greater than L. LetVb = q~i~(m). Because
qmin and ~min are hornotwy ewiv~en~ fie minimum-
length path that is homotopy equivalent to qrninl[oj Z]

has length no greater than L for z @ [Zb, Zg]. TO
see that thk condition is ak.o is true for z C [Zb,X9],
we observe that because qmin only bends around obsta-
cle vertices and qm~n is homotopy equivalent to ~m~n,

%nin![~~, ~g] never leaves tie ‘imgle ‘avbvg” ‘ince
qrnin is homotopy equivalent to ti~in and the minimum-
Iength paths homotopy equivalent to qmin I[0,~b] and

qmin [[0, zg] have length no greater than L, this implies
that the minimum-length path that is homotopy equiva-

lent to qm~nl[O,m]has length no greater than L for z c
[Zb,Xg]. ❑

Theorem 2.1 follows from Lemmas 3.1 and 3.2. (0)

4 Future Work Discussion

4.1 Purely Planar and Pushy Planar Cross-
ing Constraints

We expect Algorithm SP can be adapted to solve the ver-

sion of the shortest path planning problem for a tethered

robot with a finite tether and pure planar constraints and

the version with pushy planar constraints. In the most di-
rect extension, for pure planar constraints, we would treat

the segments of X as obstacle edges. As the search back-

tracks along the initial configuration X, not only would

the set of visible vertices change, but so would the edges
of the visibility graph. This implies that the shortest
paths from visible vertices to the goal could potentially be

changed. However, we conjecture that the shortest path

solution would not go through any vertex from which the

shortest path to goal would change. If this is true, the only

modhications to the current algorithm would be to rule
out candidate paths that cross X and to treat the anchor
point u as an obstacle vertex. Coping with pushy planar
crossing constraints poses additional problems. The most

obvious of these is that a new sub-algorithm to compute

pulled-taut configurations would be needed.

4.2 Observations and Conjectures

It has been noted that the number E of edges in the vis-
ibility graph is often much smaller than 0(rz2). Simi-

larly, when moving froms to u along X the number V.

of changes to the (ordered) set of visible vertices might be

much smaller than 0(kSn2). In any case, we can write
the complexity as O((kl + l)rzVc + 17). Furthermore, ktn
is a loose bound on the number of triangles visited by X.

If Tx is the actual bound, then the complexity obeys an

O((TX + n)Vc + 1?) or O((TX + n)ksn2 + E) bound.
We conjecture that the cost of computing the shortest

path homotopy equivalent to pi,~ is O(n), not O(Tx+n),
because if tautness is imposed starting from the g end,
then computation after the fist loop is completed will be
unnecessary. Computing each ~i,v individually appears
to be O(TX + n). However, it might be possible that after

the tirst Q,” is computed, we might be able to compute

successive ones in O(rL) or amortized O(n) time. This
would result in a O(nVc + TX + E) or 0(ksn3 +Tx + ~)

time bound. Finally, a radically different algorithm might
do some sort of binary search along X when considering

sets of visible vertices. Although such an algorithm might
potentially achieve a time bound of O((TX + n)n log n),
work remains to be done to prove such an algorithm cor-

rect.

An efficient shortest path algorithm for tethered robots
that have tethers with bounded curvature would be of sub-

stantial practical interest because a greater variety of ca-

bles would fit the model. We believe that this problem

might be easier than the boundedcurvatureshortestpath
problem for a point robot (without a tether), for which
no exact polynomial-time algorithm exists yet. The key
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observation is that while the curvature of the tether is
bounded,the curvatureof the path is not.

5 Conclusions

We have presented an algorithm for solving the short-
est path planning problem for a tethered robot with

a finite length tether with semi-planar crossing con-

straints. We gave precise formulations for thk prob-

lem and two closely related ones. Given an instance
(0, L, X, u,s, g, semi-planar) of the shortest path pkm-
ning problem for a tethered robot with finite-length tether,
our algorithm will return a minimal-length solution path

froms tog that respects the problem constraints if such a

solution exists, or it will correctly determine that there is
no solution. The algorithm runs in time O((kl + l)ksn3),

where n is the number of vertices in 0, kl is the number

of loops in initial cable configuration X, k~ is the number

of straight sections of X.

We also presented discussion about possible algorithms
for solving the problem under the purely planar and pushy
planar crossing constraints. We made observations about

what the complexity would be in practice. In this setting,
we obtain the bound O((TX + n)VC + E), where -E is the
number of edges in the visibility graph of 0, TX the num-
ber of triangles visited by the X in the triangulation of the
environment, and VCis the number of changes to the set of
vertices of O visible from a point moving along X from

s to anchor point u. Finally, we speculated on techniques

that would lower the running time, and on the possibil-
ity of an algorithm for tethered robots whose tethers have
bounded curvature.
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