RenizoS Deeersae Cooe |

5AN099-045% C

Shortest Path Planning for a Tethered Robot or an Anchored Cable* R Eprops
ey

Patrick G. Xavier

Sandia National Laboratories
Albuquerque, NM 87185-1008

Abstract

We consider the problem of planning shortest paths for a
tethered robot with a finite length tether in a 2D environ-
ment with polygonal obstacles. We present an algorithm
that runs in time O((k; +1)2n*) and finds the shortest path
or correctly determines that none exists that obeys the con-
straints; here n is the number obstacle vertices, and & is
the number loops in the initial configuration of the tether.
The robot may cross its tether but nothing can cross ob-
stacles, which cause the tether to bend. The algorithm ap-
plies as well for planning a shortest path for the free end
of an anchored cable.

1 Introduction

1.1 Overview

While motion planning has been one of the more intensely
studied areas of robotics, motion planning for tethered
robots among obstacles has been relatively unexplored.
This paper considers the problem of planning the short-
est path for a planar mobile robot with a finite, anchored
tether. In this problem, the robot must move from a given
position and given tether configuration to a goal position
and arbitrary tether configuration without violating the
problem constraints.

We provide an O((k; + 1)?n*)algorithm, where n is the
geometric complexity of the planar environment and k; is

the number of loops around obstacles in the tether’s initial
configuration. Although an infinitely flexible, automati-
cally retracting tether is assumed, we believe that our re-
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sults will have applicability in motion planning when the
tether has bounded curvature and in motion planning for
serpentine, or hyper-redundant, robots. A more precise
complexity analysis is given in the body of the paper.

1.2 Previous and Related Work

A great variety of motion planning problems have been
studied extensively; for summaries, see Latombe [16]
and Halperin, et al [8]. While the only provably-good
polynomial-time algorithms for planning time-optimal
obstacle-avoiding motions are approximation algorithms
(e.g.,[6]), exact and approximate polynomial-time algo-
rithms exist for a wide range of shortest-path problems;
see, Mitchell [17] for a summary. However, shortest path
planning for tethered robots appears to be an unexplored
domain.

Prior work on tethered robots has concentrated on gen-
erating motions for multiple robots that do not result in
their tethers getting tangled. Sinden [19] presents an algo-
rithm for scheduling the motion of multiple planar (point)
robots that each have an umbilical (rigid tether) that must
not cross the umbilicals of other robots. Pardo-Castellote
and Martins [18] consider a related run-time problem in
which the the umbilicals are perpendicular to the bound-
ary of the environment, the anchor points move on this
boundary, the robots are restricted to rectilinear paths, and
there may be non-robot obstacles.

Hert and Lumelsky considered planning trajectories for
planar robots with flexible tethers of finite length that can-
not be crossed but instead are deformed by robots pushing
them. Their first result [11] is a general exhaustive-search
algorithm for finding an optimal (e.g., minimum total ca-
ble length) robots-and-tether configuration in which the
robots reach their goals. They also developed [12] an
O(n*) algorithm for planning an efficient set of robot tra-
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jectories that results in a given target configuration of teth-
ers, assuming that each robot begins at the anchor point of
its tether. An extension [13] plans trajectories such that
each robot 1 visits a given series of p target points {T7}.
Excluding computation of the sequence of tether configu-
rations, this algorithm has complexity O(n* logn). More
recently, they developed an algorithm for planning tangle-
free motions [14] in three dimensions.

It is intuitive that finding a shortest path for a tethered
robot is similar to solving the same problem for the “head”
of a corresponding serpentine manipulator whose length,
shape, and curvature limits match those of the combined
robot and tether. However, generating a configuration-
space (joint-space) path that corresponds to a serpentine
robot “slithering” along a path in world space has been a
research topic itself. This was the focus of Chirikjian and
Burdick’s work on obstacle avoidance in [2], which as-
sumed that a set of safe “tunnels” had already been found
in the workspace. More recently, Choset and Burdick have
investigated sensor-based planning methods using Gener-
alized Voronoi Graph constructions [4, 5]. Henning, Hick-
man, and Choset then developed an algorithm [9] that
combines these methods and others [3] to perform motion
planning for serpentine robots. The algorithm is fast, but
it is not complete for robots of finite length, even if they
have no curvature limits.

2 Results

2.1 Problem Formulation

In an instance (O, L,X,u,s,g,c) of the shortest path
planning problem for a tethered robot with finite-length
tether, the robot is a point that moves in a planar environ-
ment O of disjoint simple polygons with n total vertices.
This point robot is attached to an anchor point u in the
plane by a tether that has maximum length L. The tether’s
initial configuration X is given by a path no longer than
L from u to the start position s of the robot. X does not
intersect the interior of any obstacles. For simplicity, we
will assume that the tether automatically retracts so that it
is kept taut; thus, X is a sequence of line segments. g is
the goal position the robot must move to.

¢ specifies the type of constraints a solution path must
obey. In its motion, the robot must not enter any of the
obstacles. The tether slides freely in obstacle-free regions
and on obstacles. It is physically prevented from enter-
ing the obstacles, which cause it to bend to maintain this

u

Figure 1: Robot is at s; solid line shows tether in initial configuration,
with anchor point u. Robot must go to g. Dotted line is shortest path
without tether constraint. Dashed line is shortest path obeying semi-
planar crossing constraint. Fancy line is shortest path obeying purely
planar crossing constraint.

condition. The tether length must never exceed L. These
constraints are called the tether and obstacle constraints.
If the robot can cross the tether, we say the robot is semi-
planar; if it cannot, then the robot is purely planar; and
if in addition, it can push the tether to avoid crossing the
tether, it is a pushy planar robot. These constraints are
called the crossing constraints. For the given crossing
constraint ¢, a solution to the problem instance is a short-
est path from s to g such that a robot that starts with the
tether in configuration X and follows the path obeys the
tether and obstacle constraints and the crossing constraint.
We say that such a path obeys the tether; obstacle, and
crossing constraints under the initial conditions.

Figure 1 illustrates a problem and optimal solutions un-
der semi-planar and purely planar crossing constraints.

2.2 Statement of Results

Our main result is an algorithm that solves the shortest
path planning problem for a tethered robot with a finite-
length tether under the semi-planar crossing constraint.
We introduce geometric and topological characteristics of
the initial configuration as additional measures of problem



complexity. We now give our main theorem, referring to
our algorithm as “Algorithm SP”.

Theorem 2.1 If (O, L,X, u, s, g, semi-planar) is an in-
stance of the shortest path planning problem for a tethered
robot with finite-length tether, then Algorithm SP will re-
turn a minimal-length solution path from s to g that obeys
the constraints under the initial conditions, if such a solu-
tion exists. Otherwise, the algorithm will correctly deter-
mine that there is no solution that satisfies the constraints.
In both cases, if X has ks straight sections and k; loops,

and O has n vertices, then the algorithm will run in time
O((k: + 1)k3n3).

Since the number of straight sections will be no greater
than the number of vertices multiplied by one more than
the number of loops, ks < (ki + 1)n. This yields the
following corollary.

Corollary 2.2 If (O, L,X,u, s, g, semi-planar) is an in-
stance of the shortest path planning problem for a tethered
robot with finite-length tether, then Algorithm SP will re-
turn a minimal length solution path from s to g that obeys
the constraints under the initial conditions, if such a solu-
tion exists. Otherwise, the algorithm will correctly deter-
mine that there is no solution that satisfies the constraints.
In both cases, if X has k; loops, and O has n vertices,
then the algorithm will run in time O((k; + 1)?n?).

Different, possibly more useful ways to express the
complexity of the algorithm are discussed in Section 4.

3 Algorithms

3.1 Overview and Preliminaries

We now describe our algorithm, show its correctness, and
bound its complexity. We present the main algorithm in
Section 3.2. We analyze its time complexity in Section
3.3, making much use of results from computational ge-
ometry. We show the algorithm’s correctness in Section
3.4, We first review some concepts necessary to under-
stand our results.

A pulled-taut configuration of a tether results from re-
tracting it from either end until taut, without the robot
moving, bending only around obstacle vertices. Observe
that the path following the tether in configuration X from
u to the robot along its pulled-taut configuration X is the
shortest path in its homotopy class, where the obstacles

Figure 2: Algorithm SP. (a) Problem instance and visibility graph. (b)
Path generated by considering shortest paths from vertices in set Vp =
{A, B} visible from Sp. (c) Further backtracking along tether finds
vertex C newly visible from S1; Vi = {C}. (d) Solution. (Paths and
tether are shown offset from obstacles so they can be seen.)

are regarded as holes in the domain. We note that the
minimum-length path of a homotopy type (i.e., within a
homotopy class) is sometimes called a taut string path.

Let us be given a planar environment containing a
polygonal set of planar obstacles O with n vertices, and
let this environment be triangulated such that all obsta-
cle edges are triangle edges. If x is a point in the envi-
ronment, let 7'(x) denote the triangle containing x. Let
p:[0,]— IR? be an obstacle-free path containing the
minimal-length sequence {x;} of m + 1 vertices lying in
the interiors of (non-obstacle) triangles in the triangula-
tion such that (a) xo = p(0) and x,,, = p(!), (b) for all ,




T(x;) is edge adjacent to T'(x;41), and (c) for all 4, there
is no point on the segment of p from x; to x;4 that does
not lie in T(3¢;) UT (X:41). We say that the sequence {x;}
describes path p in the triangulation.

3.2 The Main Algorithm

We present a simple algorithm that takes as input an in-
stance (O, L, X, u, s, g, semi-planar) of the shortest path
planning problem for a tethered robot with finite-length
tether. The algorithm will be given at a fairly high level,
using well-known or easy computational geometry algo-
rithms as sub-algorithms. We give additional detail in the
complexity analysis in Section 3.3.

Algorithm SP

Let px : [0,]] — R? denote a path from u to s that
follows X, where ! is the length of the tether in con-
figuration X. Then define the reverse path rx, where
rx(w) = px(l — w) for all w € [0,l]. We use these
functions and their restrictions to sub-ranges of [0, ] only
to avoid geometric ambiguity in the description; imple-
mentation does not require actually constructing and ma-
nipulating these functions.

1. Triangulate the environment such that all obstacle
edges are triangle edges, and label each triangle as
being an obstacle triangle or a freespace triangle.

2. Compute the visibility graph G, of O U {g}, and use
it to compute the shortest path from each vertex to g.

3. Find the vertices of OU {g} visible from s and order
them by angle relative to s.

4, Compute the changes that occur in the ordered set of
vertices visible from rx (w) as w goes from 0 to [,
and compute the ordered set of sections {S;} of rx
on which this ordered set does not change. (Some
sections may have zero length if general position is
not assumed.)

5. For each S;, with corresponding interval [w;, wiy1]
such that rx : [w;i, wiy1] — S, in order:

(a) Forsome pointx; € S; and corresponding z; €
[w;, wi41] such that rx (z;) = x;, compute the
set of vertices V; containing

i. each visible vertex if ¢ = 0;
ii. each visible vertex that was not visible in
the previous section, otherwise.

(b) For each vertex v in V;:

i. Let path q;y be the path that is the con-
catenation of px|[0,! — z;], the line seg-
ment from Xx; to v, and the shortest path
from v to g. (px|{0,! — z;] denotes “px
restricted to [0, — z;]”.

ii. Compute the minimum length path q;v
that is homotopy equivalent to q; v.

iili. If the length of q; v is greater than L, then
skip the rest of this loop body, go to step
5(b)i, and consider the next vertex in V;.

iv. (Otherwise), let path p; . be the path that
is the concatenation of rx|[0, z;], the line
segment from x; to v, and the shortest path
fromvtog.

v. Compute the minimum length path p; v
that is homotopy equivalent to p; v, com-
pare the length of P; v to that of best solu-
tion so far, and set the best solution to p; v
if its length is shorter.

3.3 Complexity

We now give a lemma on the complexity of Algorithm SP.

Lemma 3.1 Let (O, L, X, u,s, g, semi-planar) be an in-
stance of the semi-planar tethered robot problem with
bounded tether and static obstacles, with X being a taut
configuration. Let ks be the number of straight sections of
X, and let k; be the number of loops in X. Then the Al-
gorithm SP will run in time O((k; + 1)ksn3) on the given
problem instance.

Proof: We go through the steps of the algorithm.

Step 1 can be done in time O(n log n) using the method
of Hertel and Mehlhorn [15].

In Step 2, we use Ghosh and Mount’s algorithm [7] to
construct the visibility graph and Dijkstra’s algorithm to
find the set of shortest paths. Both algorithms take time
O(nlogn + E), in time, where E is the number of vis-
ibility edges, which is O(n2) but often less in practice.
Step 3 requires time O(nlogn), since there are at most
O(n) visible vertices, and the visibility graph was previ-
ously computed.

In step 4, there are O(n?) changes in the ordered set
of visible vertices for each straight segment of X, and
computing these changes costs O(n?logn) per segment.




This can be done by considering each vertex and com-
puting the regions of the segment that are visible from it.
Using a rotational sweep algorithm, this can be done in
time O(nlogn) for each vertex: we sort the edge ver-
tices in angular order about the viewing vertex, and then
we rotationally sweep a ray from this vertex, keeping
track of which edges intersect it between the vertex and
its intersection with the segment. Doing this for all ver-
tices in O U, {g} takes time O(n?logn), as does order-
ing the changes in the set of vertices visible from a point
traversing the segment. Therefore, this step takes time
O(k,n?logn) and finds O(k,n?) visibility changes. This
analysis also covers the cost of step 5(a).

Finally 5(b), since q; v and p;,v will each be described
by O((ki + 1)n) points, computing the minimum-Iength
homotopy equivalent paths q; and p; . will take time
(O(k; + 1)n) using Hershberger’s and Snoeyink’s algo-
rithm [10]. Therefore, the total cost of the step 5 is

O((k; + 1)k4n3), which is greater than that of any of the
other steps. This gives us the final complexity bound. O

3.4 Correctness

The following lemma states algorithin correctness.

Lemma 3.2 Let (0, L, X, u, s, g, semi-planar) be an in-
stance of the semi-planar tethered robot problem with
bounded tether and static obstacles, with X being a taut
configuration. Then, given this input, Algorithm SP will
find a shortest path solution that obeys the problem con-
straints if such a solution exists.

Proof: We show that if py,sy, is a minimum length robot
path from s to g that obeys the constraints, then the algo-
rithm will find an equivalently good solution. (Figures 3
and 4 should be helpful.)

Let px : [0,1] — RR? be the path from u to s that fol-
lows X, where [ is the length of the tether in configuration
X. Let lgo be the length of ppin. Letly = 1+ Ly,
and define qumin : [0,4,] = R? be PX * Pmin, the con-
catenation of px and Pmin. Let Amin : [0,15] = R be
the minimum-length path in q,:5’s homotopy class, with
length l5. Note that px and psi» are minimum length in
their homotopy classes.

Because px, Pmin, and Qmin can only bend around
obstacle vertices and because q,in is homotopy equiva-
lent to Qnin, We can consider qmir, in five sections. (Any
of these may have length zero.) For some z, € [0,[,],

Figure 3: Paths and vertices described in proof. pmmin is solution.
Qmin = PX * Pmin, SO that these shortest path iy, in its homotopy
class is the pulled taut configuration of the tether after the robot follows
path Pr,;y, . Because of homotopy equivalence and because px, Pmin,
and Qmin can only bend around obstacle vertices, vy must be visible

from px with respect 10 Pimin and Gumin - It follows that the algorithm
will find ppnin.-

the terminal segment Qmin|[24, ;] Of Qmin beginning at
Vy = Qmin(z,) and ending at g must be coincident
with a terminal segment Gmin|[yg,!5] Of Gmin such that
Gmin(yg) = V,. Similarly, for some z, and y,, the ini-
tial segment Quin|[0, Z4] of Qmin beginning at s and end-
ing at V4 = Qumin(%,) must be coincident with an initial
segment qmin}0,¥s) Of Qmin and identical to an initial
segment of px. There may be three additional segments
of interest. In the first, Qmin|[Za,!], Qmin is identical
to px but not coincident with any segment of Quin. In
the second, Qmin|[l, zs] for some zp < 4, Amin back-
tracks along px. If 2, < =4, then in the third segment
Qmin|[Zb, Zg)]s Amin is not backtracking over px and is
not coincident with any terminal section of Qmin.

Because qp,in and §,in, are homotopy equivalent and
bend only around obstacle vertices except at s, the path
segments Qmin|[Zs,%4] and Gminl[Ya,y,), must each
bend in only one direction, bend away from each other,
and not cross. Furthermore, it follows that there is some
section of px from which v, is visible with respect to
Amin|[Tb, Tg], and Amin|[Ya, ¥g)- A path that is a concate-
nation of Qumiys|[l, z5] and the path segment backtracking
over px to a point in this section and proceeding via the
visibility line segment to v, is homotopy equivalent to
Pmin. It follows that the algorithm will find p,,;, and



Figure 4: Paths from the proof, shown with obstacles.

return it if an equivalently good path was not found first.

Finally, we show that for all z € [0,1,], the minimum-
length path that is homotopy equivalent to gmin|[0, z] has
length no greater than L. Let vy = Qmin(zs). Because
Qmin and §min are homotopy equivalent, the minimum-
length path that is homotopy equivalent t0 Qmin|[0, ]
has length no greater than L for z ¢ [zp,7,). To
see that this condition is also is true for € [zs,%,),
we observe that because qmin only bends around obsta-
cle vertices and qu,;n is homotopy equivalent to qmin.
Qmin|[Zs, T4) never leaves the triangle vovyvy. Since
Qmin is homotopy equivalent to Gmin and the minimum-
length paths homotopy equivalent to Qmin|[0, 23] and
Qmin|[0, 4] have length no greater than L, this implies
that the minimum-length path that is homotopy equiva-
lent t0 Qmin|[0, z] has length no greater than L for z €
[mb’ my]- o

Theorem 2.1 follows from Lemmas 3.1 and 3.2. (O)

4 Future Work Discussion

4.1 Purely Planar and Pushy Planar Cross-
ing Constraints

We expect Algorithm SP can be adapted to solve the ver-
sion of the shortest path planning problem for a tethered
robot with a finite tether and pure planar constraints and

the version with pushy planar constraints. In the most di-
rect extension, for pure planar constraints, we would treat

the segments of X as obstacle edges. As the search back-
tracks along the initial configuration X, not only would
the set of visible vertices change, but so would the edges
of the visibility graph. This implies that the shortest
paths from visible vertices to the goal could potentially be
changed. However, we conjecture that the shortest path
solution would not go through any vertex from which the
shortest path to goal would change. If this is true, the only
modifications to the current algorithm would be to rule
out candidate paths that cross X and to treat the anchor
point u as an obstacle vertex. Coping with pushy planar
crossing constraints poses additional problems. The most
obvious of these is that a new sub-algorithm to compute
pulled-taut configurations would be needed.

4.2 Observations and Conjectures

It has been noted that the number E of edges in the vis-
ibility graph is often much smaller than O(n?). Simi-
larly, when moving from s to u along X the number V.
of changes to the (ordered) set of visible vertices might be
much smaller than O(ksn?). In any case, we can write
the complexity as O((k; + 1)nV, + E). Furthermore, k;n
is a loose bound on the number of triangles visited by X.
If T is the actual bound, then the complexity obeys an
O((Tx + n)V, + E) or O((Tx + n)ksn® + E) bound.

We conjecture that the cost of computing the shortest
path homotopy equivalent to p;,v is O(n), not O(Tx +n),
because if tautness is imposed starting from the g end,
then computation after the first loop is completed will be
unnecessary. Computing each q; . individually appears
to be O(Tx +n). However, it might be possible that after
the first ;v is computed, we might be able to compute
successive ones in O(n) or amortized O(n) time. This
would resultin a O(nV, +Tx + E) or O(ksn® +Tx + E)
time bound. Finally, a radically different algorithm might
do some sort of binary search along X when considering
sets of visible vertices. Although such an algorithm might
potentially achieve a time bound of O((Tx + n)nlogn),
work remains to be done to prove such an algorithm cor-
rect.

An efficient shortest path algorithm for tethered robots
that have tethers with bounded curvature would be of sub-
stantial practical interest because a greater variety of ca-
bles would fit the model. We believe that this problem

might be easier than the bounded curvature shortest path

problem for a point robot (without a tether), for which
no exact polynomial-time algorithm exists yet. The key




observation is that while the curvature of the tether is
bounded, the curvature of the path is not.

5 Conclusions

We have presented an algorithm for solving the short-
est path planning problem for a tethered robot with
a finite length tether with semi-planar crossing con-
straints. We gave precise formulations for this prob-
lem and two closely related ones. Given an instance
(0,L,X,u,s,g,semi-planar) of the shortest path plan-
ning problem for a tethered robot with finite-length tether,
our algorithm will return a minimal-length solution path
from s to g that respects the problem constraints if such a
solution exists, or it will correctly determine that there is
no solution. The algorithm runs in time O((k; + 1)k;n3),
where n is the number of vertices in O, k; is the number
of loops in initial cable configuration X, k; is the number
of straight sections of X.

We also presented discussion about possible algorithms
for solving the problem under the purely planar and pushy
planar crossing constraints. We made observations about
what the complexity would be in practice. In this setting,
we obtain the bound O((Tx + n)V; + E), where E is the
number of edges in the visibility graph of O, T the num-
ber of triangles visited by the X in the triangulation of the
environment, and V, is the number of changes to the set of
vertices of O visible from a point moving along X from
s to anchor point u. Finally, we speculated on techniques
that would lower the running time, and on the possibil-
ity of an algorithm for tethered robots whose tethers have
bounded curvature.
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