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Abstract

Lattice Boltzmann (LLB) methods are ideally suited for modeling flow and transport
at intermediate scales where neither continuum models nor molecular dynamics
methods are practical, and also for modeling very large scale continuum flows where
conventional Computational Fluid Dynamics methods suffer severe difficulties. This
report documents an LDRD project that developed an advanced computational
framework based on the LB method for investigating the fundamental phenomena
characterizing micro- and macro-scale complex flows. Specific accomplishments
include: (1) Development of LB codes for modeling heat and mass transport in
complex geometries, including implementation of scaleable, distributed algorithms.
(2) Validation of the LB codes by comparison with analytic solutions, calculations
: based on other numerical methods, and laboratory experiments. (3) Development of
a distributed computational platform based on commercial off-the-shelf computer
components that is capable of production-scale LB simulations. (4) Development of
methods and computational algorithms to extract quantitative statistical descriptions
of the microgeometry of porous media from three-dimensional image data and a
computational framework (numerical pipeline) for simulating flow and transport in
experimentally determined porous microstructures.




This page intentionally left blank.

iv




Acknowledgement and Preface

This report documents work performed under the Laboratory Directed Research and
Development (LDRD) Program under a project entitled “Development, implementation, and
experimental validation of the lattice Boltzmann method for modeling three-dimensional
complex flows.” The project was funded by the Engineering Sciences Research Foundation
in fiscal years 1997 and 1998, and we thank Chuck Hartwig for his enthusiasm for our work.

We thank Steve Kempka and Charles Hickox for their contributions to this project,
and also Harlan Stockman for his initial participation. The work on cluster-based computing
benefited from discussions with Pete Wyckoff, David Greenberg, and Robert Clay, and from
our participation in the Scalable Cluster Workshop convened by David Greenberg and
Robert Clay in November 1997. Jeremy Baca and Todd Kuzior both shared some hands-on
knowledge for assembling computer components. We thank John Torczynski and Dale
Preece for reviewing an earlier draft of this report.

We have sought to write this report as a comprehensive work, and in that regard,
note that as originally-proposed, the LDRD project advantaged previous and ongoing
research sponsored by the US DOE Office of Basic Energy Sciences (Geosciences
Program), in the form of independent grants to J.T. Fredrich and W.B. Lindquist.

The work on the porous ceramic insulations was initiated originally with funding
from NASA Ames Research Center in collaboration with Jochen Marschall of NASA Ames.




This page intentionally left blank.

vi



Table of Contents

AADSETACE «vveeeeereeieseeeriess e seesesseessee e e st ssae st aene et e neaenaers s e s e s s esa s e s s et s e r st e s et et b e s aene s e ane s iii
Acknowledgement and Preface........oviiieieininnenecitsn et v
TabLe OF CONLENLS .....uvevireeereainearerasesssenserseeaaeasesessseessaersarsbesssssssessassnasssasssessssssassansssassasass vii
FAGUIES ...voveeeemeteiire ettt e bbb e a SRS st ix
TADIES - eeeeeieeeieeieeeeeetees s e e e e e e nsa s e et ee s ur e e sa s et b s s e e e a e e s s e e R e s e et e e e Rt e e s et e e bt e nrn e Xiii
1 IDETOUCHION ...eeeeeveeticetie e ecteeeteeeencecieenaeeesaeesae s sasen et e e b s e e s e b s e s s e s e s ba s st vesatananassnesssernas 1
1.1 Background to this PrOJECE .......ccevvmeuceuieireriiitirisesiete ettt 1
1.2 WOTK PIAN c.oueericeeicereeeseccrecicenecsrenae s san e s a e s st s s saa e st sn s n s s eneencenne 2
1.3 Project acCOMPUShIMENES. .....ooimeiiieie 3
1.4 Organization Of thiS TEPOTT .......cooviuiuiiiimmirerreines e 4

2 LB cOde dEVEIOPIMENL .....veuvemereriniiiieieiinieriresrenrestesssnse s ses s sse st sese e e estsencenes 5
2.1 IIETOAUCHION ceveeevereeeenteeiierrceee it seeeee s et e bt se s e s s e e n e s bt s s s e e b s s n e s et s e s asbesbeenres 5
2.2 PRYSICS..ccucrtieieiecietiiintcecsiat e e ettt 5
2.3 AIGOTIHINIC ..oveviitctirciii ettt 8
2.3.1 Moving and non-conforming obstacles......cooeeriiiinineniininiii e 9
2.3.2 Complex irregular GEOMELTIES .....ceovvruiuisisenieeteecre ettt 9
2.3.3  Stencil rePreSentation ... ...ccovmereuirmrieieririiecinissirnseeses et tensses st enesesenas 9
2.3.4  Volume VISUAlIZAtION ...cccoieveinrieciminniniiiie e essses e ae st esnessesaseeane 11
2.3.5 Parallel TO ..ottt ettt et 12

2.4 Code ArchitECIUTE ....veecveereeeeeeeieereeereeerteeneeeeesse st e ssse st s seaesanese s s s benas et eese 12

3  Aranez— A scalable system for distributed cOmMpPUtINg........cccevveeeviiimireniniiniicirnienn, 15
3.1 Space: flow modeling in reconstructed porous Media ........ccovrvenverrieicnmncncnnnnneee 15
3.2 Time: evolution to StEAQY SLALE ......cccecevrirriiiirirrreriiiteieiecr et te ettt 16
3.3 System ArChiteCtUre ....cocceueriieirirtiniiaiiistenee ettt ettt 17
3.3.1  NEtWOIKING....cocoiirtireiniiiiiieiiiiiine ettt sttt 17
33,2 COSt cetieieiecieeee et et sttt s et ab e bt s e s e h e s s e e et ns 18

3.4 Operating system and €NVIIONINENT......ccoeververierestrterrrraetetentenenteesessetseeest s esasesns 19
3.4.1 Programming MOdEl...........ccoomvrrimniiniiieiiiinninneisrae et 19
3.4.2 System defifition .......cocvereiriierineiere et 19
3.4.3 Compute node definition........ccoevvemeeiiiieiimeineereecsc s 22
344 Usefl URLS...ccccoviiieeieiieniecentcesienretecssessessesnsssssssessessnessesssssnessasssasases 22

3.5 DISCUSSION ..ecvererirreiertererrncenniseienseesestssssntssessssnssersssesssssassassessssesssasessssesassessssasasss 23

4 Validation ProDICINS .......cooviriiireciirieercastmrieimste it e e aassne s as s e sns s e ssesssassasaesassassans 24
4.1 Flow over a backward facing StEP.......cecvvmreiievrmiiniiiiieniiencrsir e 24
4.2 Three dimensional dUuct fIOW......c.coceeviiiiiiiiciiiiiiicce e 25

5  Application to a coupled thermal-hydrodynamic flow on non-uniform grids........... 27
5.1 Lattice Boltzmann model for heat transfer on a non-uniform grid............cccoeu.e.e.. 28
5.2 Simulation of mixed convection over a backward-facing Step ........ccoccoveveerennne. 32
5.3 Accuracy of the LB model for mixed convection on a non-uniform grid ............. 34

vii




6  Application to flow about moving and non-conforming obstacles...........ccceuveuennnnn. 40

6.1 Lattice Boltzmann method for partially saturated cells........cc.ccocerveiniinrnninnnnnnin. 40
6.2 Steady flow about a periodic line of cylinders ..o 43
6.3 Oscillatory flow about a periodic line of cylinders....c..c..cccocuvvenmiinciieiinncnnnnne. 46
6.4 DISCUSSION ...ueiereirrieeteriertieitreteeeeeeesseesateosseesesressteostestonsesssssssssesasossssssasssessnsenns 49

7  Experimental characterization of porous media.........cccocvuvveeeivirniecinnnennnicnennnnene. 51
7.1 Approaches for characterizing the microstructure of porous materials ................. 52
7.2 Principles of laser scanning confocal MiCTOSCOPY .....ovveeeviriceninneenneenrerinecvereeas 55
7.3 Technical and practical cOnsSiderations.........c.cccvrrieriereeveesernienieceeneciseecneeseeneenne 57
74 APPLCALIONS ..ottt e bbb s 59
7.5 Image processing and SEZMENTAION. .....ceivuririiremriecriiniteeteririestssesessseesssesessesssnesane 63
7.5.1  Anisotropic diffusion........ccecceecveeiceriiiriiiiniienineecrcen ettt 63
7.5.2  SegmENtatiOn ....cocceiiiiiiiiiiniiiiiintinire i eree e esbee et s sbe s sbsssbbaesssesons 63

7.6 n-point correlation funCtioNS .......cccvviviniviniinmi e 67
7.7 Medial axis @NALYSIS «cocecererreeiieeiieeiieet e ciee ettt et e s e e ee bt e e e e s aeeeaee e 67
7.8 Application to geometrically complex porous media........ccceeveeveeereceerccereeeranennee 70
7.9 SUMIMATY ..ooeiiiiitieeeceercee ettt e s ne s e eeent e ne e e e e s e sae e snesmnee s stesoneenas 74

8  Application to microscale flows in complex porous media .........ccocevceevreerurnrcrieennen. 75
8.1 Lattice Boltzmann method ...t 76
8.2 Distributed IMplementation..........cccevieeieriieiicecinnenceinereeeeeeeeeesreeeeeesaeeseenaes 77
8.3 Flow boundary CONAItIONS .......cccveeeriierirerieeeiteeierieesrerrtesiseseaeseeaessesssnessssensaseanes 80
8.4 Distributed COMPULINGZ ...couiiriiiieiiiieerrietteeertereert e res st eeeesreee st essreseseesseesasesanns 81
8.5 APPLCAION ...ocuiiiiiiiii ettt a e st 81
8.0 DISCUSSION ...oiiiiiiieeicceee et e s ree e et baete e s e ae e e s et e e et eaee e st e e maaeneeenses 84

O SUIMNIMATY ..eeiiiiiiiiieeet ettt ettt et ee ettt eestee s sat e st e e e s st e e s aat e s e asas e saaens 85
10 REEICIICES ..ottt st e e et et e s s e e st e saae e e e e e e me e e maeennan 86
Appendix A— List of refereed publications and presentations .............ccocceieviiniinnen. 92

viii




Figures

Figure 1.1 Flow chart illustrating the work plan for the LDRD project. ..........cccccevvvreinnnne 2

Figure 2.1 Schematic illustration of the LB method: (upper left) velocity distribution,
(upper right) collision step, showing current versus equilibrium particle distribution
along each of the eight links in two dimensions (there are a total of 18 links in three
dimensions), (lower left) translation step, showing the streaming of particles along each

of the links, and (lower right) simple boundary condition..........cccceeeivcirerecrniniiniccnneae. 6
Figure 2.2 Schematic illustration of the traditional mapping approach versus the stencil

E:Y Fo0) 31121 ¢ 1 FDUUU OO SRR 10
Figure 3.1 Schematic illustrating a scalable unit (SU) in the Arane® cluster..........c.c......... 20
Figure 3.2 Schematic illustrating the current Arane® CIUSLET. .....ccccceeeerirvienrcrnernresrensennenn 21
Figure 4.1 Hlustration of the backward facing step problem. ........cccoccecvmvvevinnecninvenueneen. 24
Figure 4.2 Convergence of LB simulation to analytical solution for 3D duct flow............. 26

Figure 5.1 Sample non-uniform computational grid for lattice Boltzmann simulations. For
clarity, the grid shown here is 61x21 whereas the actual grid used in the simulations is
241x81. Also note that the horizontal and vertical scales are not the same. Gravity, ¢,

acts in the negative X direction as indicated by arrow. ........cccccceevviccicvnvennnccccnninninnne 32
Figure 5.2 Profiles of U vs. Y at indicated X positions for Gr=0. FIDAP simulation data
taken from published tabulated data (Torczynski, 1993). ...cccooveevmeieccnveeenrcrereeenee. 34
Figure 5.3 Profiles of U vs. Y at indicated X positions for Gr=1000. FIDAP simulation
data taken from published tabulated data (Torczynski, 1993).....ccccecvveviivcienrcrieceannn, 35
Figure 5.4 Profiles of V vs. Y at indicated X positions for Gr=0. FIDAP simulation data
taken from published tabulated data (Torczynski, 1993). ..ccccovuvrerreenenceininniecccenneen 36
Figure 5.5 Profiles of V vs. Y at indicated X positions for Gr=1000. FIDAP simulation
data taken from published tabulated data (Torczynski, 1993)......cceeveverveenvenccrenennnnn 36

Figure 5.6 Profiles of dimensionless temperature, ©, vs. Y at indicated X positions
for Gr=0. FIDAP simulation data taken from published tabulated data (Torczynski,
1003 ettt ettt ettt s et et s e b e b e n b et e ne et nearas 37
Figure 5.7 Profiles of dimensionless temperature, ©, vs. Y at indicated X positions for
Gr=1000. FIDAP simulation data taken from published tabulated data (Torczynski,
1993, oo eeer et e et st s ees st et e e e e e e e e e s s e e s e et eseee e s st eeseeeeess s s e seenesseesrans 38
Figure 5.8 Profiles of the dimensionless skin friction vs. X along the walls of the channel
for Gr=0 and Gr=1000. FIDAP simulation data taken from published tabulated data
(TOrCZYNSKI, 1993)...ceeeeeeeteeceeeccrteee e e e e ceteseteeessrese st aessse s snessssasesssessanssenseessnnesnesnes 38
Figure 5.9 Profiles of the local Nusselt number vs. X along the walls of the channel for
Gr=0 and Gr=1000. FIDAP simulation data taken from published tabulated data
(TOrczYRSKE, 1993). ettt eeerte e ee e sse s e e ber e sssssaatessasssnesessrnssssesssnnanes 39




Figure 6.1 Schematic diagram (to scale) of the validation problem in the (a) moving-
cylinder reference frame and (b) fixed-cylinder reference frame. ........ccoveencnennnenn. 43
Figure 6.2 Convergence with grid refinement for lattice Boltzmann simulations of steady
flow using various boundary conditions. The circles denote method (1): non-equilibrium
reflection with viscosity-dependent weighting. The squares denote method (ii): non-
equilibrium reflection with simple solid fraction weighting. The triangles denote
method (iii): near-equilibrium superposition with simple solid fraction weighting. The
pluses denote method (iv): “bounce-back” of the non-equilibrium part of the
QISEIADULION. ..eviiieiiiiieieeteeee et sttt st e e s bbb e sae e 44
Figure 6.3 Components of velocity near the surface of the cylinder. The cylinder is moving
with a constant velocity in the positive x direction, and the velocities are expressed
relative to the velocity of the cylinder. Velocities are plotted as a function of angle for a
fixed radial distance of D/32 from the surface of the cylinder. The solid lines denote the
FIDAP predictions. The circles denote method (i): non-equilibrium reflection with
viscosity-dependent weighting. The squares denote method (ii): non-equilibrium
reflection with simple solid fraction weighting. The triangles denote method (iii): near-
equilibrium superposition with simple solid fraction weighting. The pluses denote
method (iv): “bounce-back” of the non-equilibrium part of the distribution.................. 45
Figure 6.4 FIDAP streamlines during the fifth cycle for oscillatory flow at indicated
normalized times and phases, with cylinder velocities in the fixed frame proportional to
the AITOWS. «.eeiiiiiieeit ettt et s b b s man e e s rne s 46
Figure 6.5 History of normalized horizontal velocity component «, /U, during the fifth

cycle of oscillation for the point located at r=0.75D and 6=90°". The solid line denotes
the FIDAP prediction. The circles denote method (i): non-equilibrium reflection with
viscosity-dependent weighting. The squares denote method (ii): non-equilibrium
reflection with simple solid fraction weighting. The triangles denote method (iii): near-
equilibrium superposition with simple solid fraction weighting. The pluses denote
method (iv): “bounce-back” of the non-equilibrium part of the distribution.................. 47
Figure 6.6 Spatial variation of the normalized horizontal velocity component «,/U, along

the centerline (y =0) at indicated times during the fifth cycle. The solid lines denote the
FIDAP predictions. The circles denote method (i): non-equilibrium reflection with
viscosity-dependent weighting. The squares denote method (ii): non-equilibrium
reflection with simple solid fraction weighting. The triangles denote method (iii): near-
equilibrium superposition with simple solid fraction weighting. The pluses denote
method (iv): “bounce-back” of the non-equilibrium part of the distribution. ................ 48

Figure 7.1 Scanning electron micrographs of (top) Berea sandstone (backscattered imaging
mode), and (bottom) a porous rigid fibrous refractory insulation. The sandstone has a
grain size of ~150 micron, and the pore space has been impregnated with epoxy
(black). There is no continuous path through the pore phase in the imaging plane. The
insulation is composed of ceramic fibers that occupy less than ~20% of the bulk
volume, and that have a diameter of several microns. The image reveals the complex
geometry of both the solid and pore phases, but it is unfeasible to extract a quantitative
description of the three-dimensional microstructure. (Bottom image courtesy of NASA
Ames Research Center, Thermal Protection Materials and Systems Branch). .............. 53

Figure 7.2 Schematic illustrating the principle of laser scanning confocal microscopy......55



Figure 7.3 3D volume renderings of pore space in Berea sandstone. The pore phase is
opaque whereas solid grains are translucent. Each image is 512 x 512 x 71 voxels, with
an (x X y X z) image volume equal to 0.526 x 0.526 x 0.071 1o ¢ SO 60
Figure 7.4 (Top) 3D volume rendering of crack damage in a triaxially deformed low-
porosity rock. The fine crack network in the upper right corner would not be resolvable
using conventional LM. The image is 768 x 512 x 71 voxels, with an image volume of
430 x 287 x 14.4 ym®. (Bottom) A 2D image slice from the 3D data set. The
relationship of the cracks trending NE-SW to the grain boundary (running diagonally
NW-SE) is indisputable in the 3D image, but less so in the 2D slice. ........cccccvurinennene 61
Figure 7.5 3D volume renderings of the solid phase in two rigid ceramic insulations. Each
image is 768 x 512 x 85 voxels, with cubic voxels with dimension 0.3 pm (230 x 154 x
25.2 ym’). The two insulations are composed of the same three fiber constituents, but
have been pressed to different final densities. The insulation shown at top has a bulk
density of 0.35 g/cc and bulk porosity of 0.86, whereas that shown at bottom has a bulk
density of 0.19 g/cc and bulk porosity of 0.92. ... 62
Figure 7.6 Example illustrating application of diffusion algorithm to confocal image data.
The top image shows a raw 768 x 512 image, and below that is the same image after
application of the diffusion algorithm (400 iterations, length scale k=6). ..................... 64
Figure 7.7 Example illustrating application of diffusion algorithm (400 iterations, length
scale k=6) to confocal image data and resultant enhancement of void and solid phase
discrimination. The two plots show histograms (dashed lines) of the inverted
fluorescence intensity for the raw (top) and diffused (bottom) images shown in Figure
7.6. Also shown (solid lines) is the variation in the calculated porosity as a function of
TATESROLA. ..ttt sttt cr et a e s as e s s se e ne 65
Figure 7.8 Schematic illustrating a single nodal pore body that due to its irregular
geometrical shape, has a medial axis reduction containing two, rather than one,
VETLICES. ..evierrrieriiinitresnienniesttresee st ssbba e bt s estsemeesse s be s anesrneebaesab e besrssaemne e s beesbbssatesneraneens 69
Figure 7.9 (Top) 3D volume rendering of pore space in Berea sandstone. The data set is
768 x 512 x 101 voxels in size, with cubic voxels of dimension 1 pym. (Bottom) The
corresponding medial axis calculated for the pore phase. The medial axis encodes the
distance to the pore-solid interface, so that the geometry of the original structure is
retained, and consists of a series of links (or paths) that connect and/or fork at branch
points (or clusters). For example, consider a regular 2D cubic network consisting of
nodes and bonds; in a medial axis representation, the nodes would correspond to branch
clusters and the bonds to paths. In like manner, a 3D geometrically complex porous
medium reduces to a topologically complex medial axis that consists of an irregular
network of pore paths that interconnect at branch Clusters. .......c.ccveeeereveerreereneseenenne 71
Figure 7.10 Two-point correlation function S for the data set shown in Figure 7.9. The
porosity (equal to the y-intercept) is 28%, and the specific surface area (inversely
proportional to the slope at the origin) is 23 mm*mm?>. The upper and lower curves
represent one standard deviation. The point at which §, reaches an asymptotic values
defines a characteristic length for the microstructure (~ 250 um). .....ccccevrevreerrcenrnnnene. 72
Figure 7.11 (Top) Cluster coordination for branch points in pore medial axis for
Fontainebleau sandstone with porosities as indicated. (Middle) Density of pore medial
axis clusters. (Bottom) Number of paths and branch clusters for disconnected medial
AXIES. Lererreiniieieiiesr bttt e a e bttt e s b e et e s a et e e e et et et e s sttt s et e e b e nbe e s sate b e r et eeees 73



Figure 8.1 Schematic illustrating coupled experimental-computational pipeline for studying
flow in complex porous MEAia. .......ccoevrvrriiiiiiriiiciierereeesrre et aneees 78
Figure 8.2 Example illustrating the decomposition of a two dimensional geometric domain
into four subdomains, and showing the communication between neighboring
subdomains that is accomplished using message passing. In the 3D case, each
subdomain also communicates along two shared boundaries that would lie in the plane
of the image. The implementation of periodic flow boundary conditions on the
boundary of the entire geometric domain is illustrated by the large arrows outside of the
IINAZE ATCA. ...ceveevirererieiaesiite it et a et aesneesne e e b e st sosesseobesabesasosbse st abassaeatssesenasaesanen 79
Figure 8.3 Plot showing the evolution to a steady state permeability during the simulation.
The simulation is for the reconstructed volume shown following in Figure 8.4 (top)...82
Figure 8.4 (Top) Volume rendering of the pore space in Berea sandstone used in the
simulation with results shown in Figure 8.3. The image size is 768 x 512 x 128, with
cubic voxels of dimension 1 pm. (Bottom) Three dimensional rendering of the steady
state flow field. The red color corresponds to the highest velocities, and blue to the
lowest velocities. Shown in green are intermediate VElOCIties. ...c.evereuerreerenerieeeneennne 83

Xi



Tables

Table 4.1 Comparison of LB solution with experimental data and conventional CFD
methods including finite element (FE) and finite difference (FD) for the classic
backward facing step problem. ........cocoirceieicrnericcci e 25

Table 7.1. Lateral resolution R (Eq. 7.1) and optical section thickness at A=514 nm for
various settings of the confocal aperture...........cocueevereuenrirrniercnnecntneereeeereeee e 56

Xiii




This page intentionally left blank.

Xiv




Introduction

The purpose of this project was to develop an advanced capability for modeling
complex three-dimensional (3D) flows based on the Lattice Boltzmann (LB) method. This
project was funded by the Laboratory Directed Research and Development (LDRD)
program in FY97 and FY98 under the Phenomenological Modeling and Engineering
Simulation initiative that is managed by the Engineering Sciences Research Foundation.

Our interest in LB is two-fold. First, many applications of interest to Sandia involve
time and length scales that are too small to be addressed easily by continuum models while
at the same time are too large to be addressed using molecular dynamics methods. LB has
shown particular promise for modeling phenomena at these intermediate, or mesoscopic,
scales, and is especially well suited for tracking the evolution of interfaces (such as the
boundaries between immiscible liquids), and for modeling flow, transport, and reaction in
porous media at low to moderate Reynolds numbers and Peclet numbers. '

Our second major area of interest is determining the applicability of LB to what is
generally referred to as conventional Computational Fluid Dynamics (CFD). Here, CFD is
taken to address continuum flows, and larger Reynolds numbers are of primary interest. For
very large problems, conventional CFD methods for incompressible flows become
prohibitively expensive. Considering the relative ease with which LB methods are
implemented on large parallel machines, it could be the method of choice for very large-
scale flows.

LB is a kinetic theory based method that recovers the Navier-Stokes and advection-
dispersion equations at the macroscale (Chen, Chen and Matthaeus; 1992). The principal
advantages of LB over more traditional methods are its ability to handle arbitrarily complex
geometric boundaries and the local, explicit solution algorithm which is readily
implemented on massively parallel computers. This project examines a number of
applications of LB, including classic engineering flows, coupled thermal-hydrodynamic
flows, flow about moving obstacles, and flow in realistic porous media. Particular emphasis
is placed on development of a coupled experimental-simulation framework for modeling
slow or creeping flows in complex porous microstructures.

1.1  Background to this project

LB methods typically use fixed geometric grids and a limited set of discrete particle
velocities to model transport. Macroscopic averages over many sites have been shown to
recover the Navier-Stokes and advection-dispersion equations. At the time that this project
was initiated, there were several limitations and uncertainties associated with existing LB
codes that this project sought to address.

First, there were few quantitative comparisons of LB with other numerical methods,
particularly for Re>100, and even fewer comparisons with experiments. Therefore, the




ranges of Re and Pe numbers for which the technique was practical were largely unknown.
Second, while there were LB codes to model both one-component systems as well as two
immiscible fluids, we were aware of no LB codes that could model reaction and transport in
multi-component systems. Third, existing LB codes were not designed to handle systems
with a large (>20%) fraction of solids with arbitrary geometries; this latter problem is
particularly severe for three-dimensional calculations. Fourth, the specification of boundary
conditions is critical; it is was already widely accepted that the lattice-gas “bounce-back”
condition is only first-order accurate when applied to LB, and that the error increases with
the magnitude of the pressure gradient (e.g., Noble, 1996). Yet, for problems in which there
is some degree of uncertainty regarding the specific location of the boundaries, it is not
necessary to specify extremely accurate no-slip boundaries.

This project sought to address these general questions and deficiencies, and to

develop general purpose three-dimensijonal LB codes for modeling coupled multi-physics
flows.

1.2 Work Plan

The general work plan undertaken is summarized in the flow chart below. Both high
Reynolds Number (Re) flows as well as slow, creeping flows were investigated. Also

Figure 1.1 Flow chart illustrating the work plan for the LDRD project.




investigated were various boundary condition implementations, and application to
multicomponent reactions. Some of the project’s efforts in this latter areas are summarized
: by Stockman (1999) rather than in this report.

1.3 Project accomplishments

Some specific accomplishments achieved during the course of this two-year project
include:

1) Development of numerical LB codes for modeling non-reactive transport in complex
geometries, including implementation of scalable, distributed algorithms.

2) Validation of the LB codes by comparison with analytic solutions, calculations based on
other numerical methods, and laboratory experiments.

3) Design and development of a distributed computational platform using commercial off-
the-shelf components that is capable of production-scale simulations (tens to hundreds of
millions of lattice sites).

4) Development of methods and computational algorithms to extract quantitative statistical
descriptions of the microgeometry of porous media from three-dimensional image data
and a computational framework (numerical pipeline) for simulating flow and transport in
experimentally determined porous microstructures.

Applications for this work abound in the geosciences, materials science, and
chemical, thermal, and mechanical engineering, and include for example:

1) Flows in geologic media such as the displacement of oil from the pore space during
waterflooding or enhanced oil recovery (EOR) processes, and the transport of
contaminants in the subsurface.

2) Metals solidification and processing, in which the rate of growth of sub-millimeter
dendrites controls the microstructural evolution and hence mechanical properties of the
alloy.

3) Transport processes in porous-bed chemical reactors and filters, including fuel cells.

4) Heat and mass transfer processes in fibrous, ceramic insulations and ablative tiles such
as those used on spacecraft.

5) Materials characterization and design, including evolution of physical properties during
powder compaction, sintering, and hot isostatic pressing.

6) Fluid and thermal flows in MicroElectroMechanical Systems (MEMS).

In our future work we hope to incorporate capabilities for modeling reactive flows, as
well as interfacial phenomena, including immiscible and multicomponent flows.



1.4 Organization of this report

This report is organized as follows.

Section 2 introduces LB methods, provides an overview of the basic physics, and ‘
summarizes the new algorithms that were developed in this project and that are described
further in ensuing sections. Section 2 also describes the overall architecture of the parallel .

three-dimensional LB code that is a primary product of this LDRD project.

In Section 3 we describe the design and development of a distributed computational
platform (named Aranea) that was motivated by our need for a prototyping environment for
parallel code development for application to very large scale simulations that require
massively parallel supercomputers such as the ASCI Red supercomputer, and by our need to
perform modest-sized simulations locally with rapid turnaround.

Section 4 documents validation of the numerical LB codes by comparison of LB
solutions with numerical and analytic solutions for two classic engineering flows.

Sections 5-8 describe in detail fundamentally new LB models and their application to
complex flows not amenable to solution with conventional CFD methods. Section 5
describes application to a coupled thermal-hydrodynamic flow, and also implementation of
the LB method on an irregular grid. Section 6 details development of a LB model for
simulating flow about moving and non-conforming obstacles, with applications to modeling
flow in reconstructed porous media. Section 7 describes development of experimental
methods for three-dimensional imaging and statistical characterization of complex porous
media. Section 8 then describes development and application of LB models for simulating
flow and transport in these experimentally reconstructed porous media.




2 LB code development

2.1 Introduction

The lattice Boltzmann (LB) method (McNamara and Zanetti, 1988; Higuera and
Jiménez, 1989; Chen and Doolen, 1997) is a relatively new numerical technique for solving
transport problems. The method is based on concepts from kinetic theory, but unlike
particle-based methods such as Molecular Dynamics (MD) or Direct Simulation Monte
Carlo (DSMC), LB does not simulate individual particle motion. Although detailed particle
simulations recover Navier-Stokes behavior in the continuum limit, they are too expensive
to use for simulating continuum-scale hydrodynamics. The LB method also recovers
Navier-Stokes behavior (Chen, Chen and Matthaeus, 1992) but incorporates a simpler,
probabilistic model of particle motion that is far less expensive to compute. Rather than
resolving the detailed molecular scale transport, the method provides a kinetic theory-
motivated solution technique for macroscopic transport equations.

2.2 Physics

In lattice Boltzmann, the Navier-Stokes equations are not solved directly. Instead, a
discretization of the underlying Boltzmann equation is formulated such that the velocity and
pressure fields satisfy the Navier-Stokes equations (and possibly an advection-diffusion
equation for heat or mass transfer as described in Section 5) to within the discretization error
of the method. The form of the Boltzmann equation that is solved includes discrete time,
space, and velocity. The problem is formulated in terms of the particle distribution function,

f.(x,t) . Normalized by the local density, this quantity indicates the probability of finding a
particle at location X and time t that is moving with velocity e, . Unlike the continuous

particle distribution function, this discrete equivalent is defined only for a fixed set of
(lattice) velocities (Figure 2.1). The directions of the microscopic velocity vectors are
denoted by the subscript ;.

The primary variables are calculated from moments of the particle distribution, in

direct analogy with the integral moments from kinetic theory. Thus, the density, p, and
velocity, u, are recovered by forming the first two moments

2 =p 2.1)

i
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where the sums are performed over all directions.

The particle distribution obeys the (discrete) velocity Boltzmann equation given by




| N4
\<“> B n
( s B n;
{ /
BOLTZMANN EQN. COLLIDE
SRR '
p— — e =
AV IV N
H <——~ r_> :
M INY .
= - R i
,olys sy
BOUNCE-BACK
TRANSLATE BOUNDARY CONDITION

Figure 2.1 Schematic illustration of the LB method: (upper left) velocity distribution, (upper right) collision step, showing
current versus equilibrium particle distribution along each of the eight links in two dimensions (there are a total of 18 links
in three dimensions), (lower left) translation step, showing the streaming of particles along each of the links, and (lower
right) simple boundary condition.
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where Q. (f(x,t)) is a collision term which accounts for the addition and removal of
particles moving with velocity e, due to particle collisions.

The discrete velocity Boltzmann equation (2.3) is spatially and temporally
discretized using a first-order Lagrangian discretization which yields

£(x+eAt, t+At) = £, (x,t) +Q, (F(x, t))At (2.4)

Utilizing the linearized, single time relaxation model (credited to Bhatnagar et al.
1954) applied to lattice Boltzmann (Chen et al. 1991), the collision operator is written as

Q.(f) = _% f, ~£@) 2.5)

where £ is an equilibrium distribution analogous to the Maxwellian distribution. Using
this simplification, the lattice Boltzmann evolution equation is written as
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It is useful to define a dimensionless relaxation time, T=A/At. Substituting gives the final
form of the lattice Boltzmann evolution equation

f(x +eAt, t+At) =1f,(x,t) +% €O, t-f,(x, t)) .7

Using the above formulation, the integration of the fluid momentum equations is thus
reduced to two major steps. First, in a collision and forcing step, the distributions are
modified according to right-hand-side of (2.7). Second, the particle distributions stream to
their nearest neighbors. It is noted that the collision and forcing calculation is completely
local in that all quantities are evaluated at location X. All of the non-local interaction takes
place during the streaming step and involves only the nearest neighbors.

Below is an outline of the recovery of the Navier-Stokes equations from the lattice
Boltzmann discretization. Complete derivations are given elsewhere (Chen et al. 1991; also
refer to the appendix of Hou et al. 1995). The starting point is a multi-dimensional Taylor
series expansion of the particle distribution about the point (X,t):

f[x+ Axtﬂﬂ f, (x, t)+z [(At)—a-+—ACie V] f.(x,t) (2.8)

This expansion is substituted into the lattice Boltzmann evolution equation, Eq. (2.7) to give,

31 [(At) +(Acx)e V}f(x 0=2bP6 00 9

n=1

Retaining only the first two terms in the Taylor series expansion introduces a truncation
error of o(sz, Atz) relative to the leading order term. The Chapman-Enskog expansion, an

asymptotic expansion method used in kinetic theory, is applied next. Here the expansion is
in terms of a computational Knudsen number, which is defined as the time between
collisions relative to the convective time scale of the flow:

AtU

8At= L

(2.10)

where L/U is the convective time scale with L and U as the characteristic length and
velocity scales of the flow, respectively. This quantity characterizes the degree to which the

system deviates from equilibrium. The expansion of the particle distribution and evolution
time scales are described by,

f, =f0 +8,f0 +8Lf7 +... (2.11)
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where J, = /0t is used to indicate the time derivative.

A hierarchy of evolution equations are derived by substituting these expansions into
Eq. (2.9) and collecting like powers of the Knudsen number. By substituting the equilibrium
distribution and taking the first two moments of the resulting equations, the macroscopic
conservation equations for mass and momentum are obtained. The specifics of this last step
depend somewhat on the spatial and velocity discretization. For the 2D square grid, that is
later used and described further in Sections 5 and 6, the following expressions are obtained:

3.0 +3.(pu, )= 0fax?,A¢?) (2.13)

3.0 )+ 3, (pu,uy) = -3, + 3, 0,0, + 3yu, )1+ E, + O(ax,412)2.14)

where the Einstein notation is used, and the subscripts @.B,Y are used to denote components
of the vectors. The notation d, =0/dx,, is used to indicate the spatial derivatives. The
quantity W is the viscosity and is given by

__plaxy(21-1
L=pv= (At)[ 5 (2.15)

Equation (2.13) implies that the correct form of the continuity equation is obtained to
O(Ax2’ At? ) The term E, in the momentum equation (2.14) is an error term indicating the
deviation of the LBM momentum equation from the Navier-Stokes equation:

E, =—i—\;8387(0uuuﬁuy) (2.16)

Examination of this term shows that the deviations are proportional to the square of the
Mach number of the flow.

Summarizing the results of this subsection, LBM has been shown to simulate the
Navier-Stokes equations with a truncation error proportional to the square of the
discretization parameters, Ax and At, and the square of the Mach number.

2.3 Algorithmic

In this section we summarize the essential aspects of some of the algorithms
developed in this project.




2.3.1 Moving and non-conforming obstacles

Many applications involve flow about complex geometries that are not readily fitted
with a boundary conforming grid. In addition, the obstacles in the flow may move about,
making it completely impossible to maintain such a grid. For these applications, which
include suspension and porous media flows, a method is needed to accommodate moving
and non-conforming obstacles in the flow. Section 6 focuses on this issue, and presents and
validates a LB algorithm for these complex flows. In this approach, the collision term in LB
is modified so that it shifts smoothly between regular hydrodynamics at nodes occupied
solely by fluid to rigid body motion at nodes occupied solely by particles. Thus nodes that
are only partially filled with fluid can be addressed. This extends LB capability to a wide
class of problems that previously could not be modeled accurately.

232 Complex irregular geometries

One of the project goals was the development a simulation capability for modeling
microscale flows in complex geometries, with a specific focus on complex porous
microstructures as described in Section 7. The description of a complex 3D porous medium
geometry is captured directly from the medial axis (3dma) analysis output stream. The basic
format for the streamed data is a raster-encoded description of the voxels. In the simplest
case this is a 3D array of boolean values indicating the presence of either solid or void at
that site. Other more compact encodings such as the BioRad™ (BioRad, Inc.) image file
format can also be used. This allows us to manipulate directly 3D image data recovered
using laser scanning confocal microscopy as is described further in Section 7. The 3D
geometry is mapped to a lattice in the form of either a binary mask or a stencil as
summarized below and later in Section 8. Also, alternative approaches to the partial voxel
problem, which is intrinsic to all imaging techniques, are described in Sections 6 and 7.

2.3.3 Stencil representation

The complex porous geometry can be mapped onto the lattice such that every voxel
from the imaged domain is mapped onto a fully defined lattice site. As the lattice is fully
populated (defined), the binary data thus act as a mask designating whether the fluid physics
at that site is included in the overall system and needs to be updated. However, while this
1:1 mapping is straightforward and automatically creates a mesh of the geometry, it is
exceedingly wasteful in terms of storage for materials with large solid fractions.

A fundamentally different mapping approach that we refer to as stenciling was
developed to address this problem (Figure 2.2). The essence of our method is to use the
binary data set as a stencil for memory allocation and layout, rather than as a simple mask.
By this we mean that lattice memory is allocated only for sites in the volumetric data set that
correspond to pore space. Additionally, the location of the memory associated with each
void voxel is encoded and stored in a corresponding location in a three dimensional image
map on a site-by-site basis. With this approach, the algorithm traverses the image, and only
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Figure 2.2 Schematic illustration of the traditional mapping approach versus the stencil algorithm.

when a site corresponding to a void space is encountered are the contents of the associated
memory accessed to determine the state of the physics at that location. This scheme requires
that we store a representation of the fluid state at pore sites only. Thus the storage
requirement is identically proportional to the porosity of the medium being modeled.
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2.3.4 Volume visualization

The Aranea cluster system that is described in Section 3 is utilized directly in a
number of ways to perform or facilitate visualization of simulation results. Each compute
node has access to a number of 3D graphics libraries, including Mesa, an emulation library
for OpenGL. Mesa forms the basis for all visualization performed on the cluster.

The simplest form of visualization is to direct render each subdomain on a separate
processor, in a unique window or frame, and display the results on a single monitor
accessible by all processes. The windows can be manually tiled and a reasonable depiction
of the progress of a simulation can be monitored remotely. While visually disparate, the
rendering does require a certain amount of global synchronization to apply consistent color
levels. For example, a color-coded profile of phase density requires knowledge of the global
maximum and minimum density and any normalization coefficients. When applied to data
structures such as regular lattices we find it adequate to direct render onto the viewing plane
of interest. For more complex visual analyses this can be inadequate as sufficient occlusion
(hidden line removal) and consistent lighting calculations may not be possible for accurate
rendering. :

The second general method used is to display the sub-domains in a single window on
the root process using a method referred to as compositing. The idea is to perform a full 3D
rendering of each subdomain as before and store it in a data structure we call a depth image.
The depth image is composed of a record of the 2D spatial extents of the image, a 2D RGB
image containing the color of each pixel making up the sub-image (i.e. what would be
displayed for the subdomain), and a depth buffer of equivalent extent that stores the depth of
each pixel (with respect to a common camera location). Depth images from all sub-
processes are combined logically on the root process to create a complete 3D image that is
then stored or displayed as a single frame. This operation simply compares the xy position
and depth of an incoming pixel with the one that is already stored. If the incoming pixel is
closer to the viewer then it and the corresponding RGB pixel replace those in the primary
depth image. When all depth images are combined the resulting image describes correctly
the composite 3D image with occlusion.

To better investigate physical phenomena arising in the numerical simulations that
Aranez is used to perform we have implemented a simple but useful distributed isosurface
algorithm and rendering functionality. Isosurface rendering is the mainstay of visualization
in fluid dynamics and this allows us to apply common techniques to probe the physical
systems being investigated. The basic concept is to tesselate discretizations of scalar fields
on a regular lattice and image an interpolation surface through the sample points. It should
be noted that such techniques are based on the assumption of continuity and may not be
applicable to all examinations. Specifically, if we are interested in phenomena that arise at
length scales smaller than that of the sampling mesh resolution, we can only make
statements about average properties at this scale.

The forth and final visualization method that we use to generate 3D image data sets
from the simulation results (velocity components, phase densities, etc) and visualize or



analyze them uses the hardware-supported volume visualization software called
VoxelView™ (Vital Images, Inc., Fairfield, IO) that runs on Silicon Graphics workstations.

2.3.5 Parallel I/O

I/O on distributed memory platforms is a challenging issue. This problem has been .
acute on the ASCI-RED system where we have experienced I/O latencies that have
consumed upwards of 90% of the time slot normally allocated to perform numerical
simulation. This diminishes or excludes the ability to complete a large-scale simulation
within a standard allocated time slot.

We have addressed this problem with a simple but effective approach applicable to
dedicated cluster computers such as the Araneae system described in Section 3 of this report.
The basic premise is to maintain a local disk on each node of the system with sufficient
storage to allow useful amounts of intermediate and final results to be retained for
subsequent analysis or visualisation without recourse to external media. This approach is
possible in an environment where specific nodes can be allocated on demand, such as with
small private clusters.

We have also implemented a suite of routines to facilitate the consolidation and
decomposition of very large files within the parallel environment. This allows us to collect
distributed data into a single file for archival purposes, or to decompose such large files over
differing processor allocations and layout without recourse to manual migration.

2.4 Code architecture

The primary LB code developed in this work is named POSTAL (Pore Scale Flow
and Transport on A Lattice). The code is written in C with strong typing (data
encapsulation) to provide a level of abstraction similar to that of less efficient languages
such as C++. The code architecture is based on defining data types that map to components
of the mathematical model of the problem (i.e. LB) and a supporting software framework
with which to interact with the model (I/O). Without loss of generality, the data structures
are defined with a view to being manipulated in a distributed computing environment. That
is, we define global and local descriptors for the problem in such a way that they become
synonymous when handled in a single process environment.

For the LB model we define the following data types:
Links_t - vector description of a lattice site *

LBParams_t - physical and numerical parameters used to compute the model '
system (viscosity, density, time step, etc)

IOP3D_t - I/O parameters and descriptors

12




Shomain3d_t - adescription of the computational space associated with a single
process. It forms a subset of a complete lattice.

v Lattice_t - a global description of the problem domain, including the extents
of the geometry, the number and identity of sub-domains,
. boundary conditions, bulk or average descriptors (density, flow

speed, permeability, etc), embedded data types describing the sub-
domains, physical and I/O parameters, and information to support
distributed computation

For each broad grouping of descriptive information we define a library of routines to
perform actions on the data. The functionality implemented includes:

Lattice — operations on the lattice independent of the LB algorithm:

- memory allocation for geometry, sites, state
- classification of sites (solid, void, boundary)
- statistics (porosity, surface area, etc).

- stencil operations

I/O - operations to perform I/O:

- initialize description of model I/O

- access/create buffers, files

- access 3D geometry from input stream
- generate and capture state information
- generate visualization information

params — operations to handle model parameters:

- allocate parameter storage
- form/set/retrieve parameters

mpi — message passing operations:
- set up communications patterns
- manage message buffers

- communications

viz — operations to support 3D visualization:

- windowing operations
- lighting operations
- rendering operations




- isosurface (sampling and tesselation)
LB — operations to perform the LB algorithm
- apply boundary conditions

- collision operation
- stream particles from site to site

The application of these routines and the sequence of operations used in the LB
algorithm are described in more detail in Section 8 of this report.
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3 Aranea- A scalable system for distributed computing

Aranez is a prototype distributed memory parallel computer architecture based on
interconnecting a number of dedicated processing units built from commodity components
and recently-developed high bandwidth, low latency network fabrics. Our development was
motivated by four factors:

1) A need to routinely perform large-scale numerical simulations

2) Limited access to large-scale computing resources

3) Availability of high performance computing components at commodity costs

4) Recent introduction of high bandwidth, low latency network switching technologies at or
near commodity costs

For the purposes of this report, large-scale computation refers to computing the
solution to a problem that requires resources beyond those available on a standard scientific
workstation. That is, the amount of memory required to represent the problem and/or the
amount of sustainable, uninterrupted CPU time required to complete the solution are not
feasible.

The specific problem driving our development is constructing a representation of the
geometric microstructure of a porous material using an advanced imaging technique known
as laser scanning confocal microscopy (LSCM) and a statistical characterization technique
known as Medial Axis (MA) analysis as described in Section 7. The reconstructed geometric
model forms the basis for an automatically generated mesh that is used to simulate physical
processes such as flow and transport using numerical techniques known as lattice Boltzmann
methods (LB). Further details of this specific application are provided in Section 8.

From the representation of the geometry and the specific numerical technique
applied (i.e., LB), we can isolate the two principal characteristics that constrain the
computation of the system behavior. The first is the amount of storage required to represent
numerically the system, i.e., the numerical representation of the geometry in the form of a
mesh. The second characteristic is an estimate of the CPU time required to compute
(simulate) the evolution of the system to a desired state.

3.1 Space: flow modeling in reconstructed porous media

Imaging techniques are a means to recover directly a detailed description of the two-
phase microstructure of a porous medium (i.e., a material consisting of solid and void
phases). In the work reported here, we use a high-resolution three-dimensional imaging
technique known as laser scanning confocal microscopy (Section 7). However, high-
resolution data comes at a cost that is proportional to the amount of storage required to
record the image data. As is described in detail in Section 7, we typically collect image data
at 8 bit (1 byte) resolution (equivalent to 0-255 gray levels). In our case, the image data
consists of the spatial fluorescence intensity, with data collected at regularly spaced
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locations in xyz space. The volumetric data set thus consists of a three dimensional array of
voxels (i.e., the three dimensional equivalent of a two dimensional pixel, or picture
element).

Sampling at a resolution of 1 micron (Wm) is typical for granular porous materials
where the characteristic length scale is ~100 pm (one grain dimension). Thus, several
hundred microns of coverage is required to capture the geometry of several interconnected,
cemented grains. As an example (and one that we use in practice), consider a volumetric
image containing 768 x 512 x 128 voxels. Each voxel has a volume of 1 um’ and requires 1
byte of storage to record the image data for that site. Overall, the complete data set requires
768 x 512 x 128 = 50 x 10° bytes of information. In terms of storage, this is equivalent to 50
Megabytes of disk space.

The next step is to binarize the voxels using one of several computational algorithms
whereby each voxel is interpreted as either the solid or void phase (see Section 7). The
binarized data set forms a discrete representation of the pore space that is used subsequently
in numerical simulations of flow and transport. Each voxel is directly and automatically
mapped to a site in the model domain. What then remains is to represent the physical state of
the fluid phases residing in the pore phase. The conventional implementation of the lattice
Boltzmann method requires the physical state of the fluid to be represented at each and
every site of the mesh, i.e. every voxel. For the physics of interest in our application,
approximately 100 bytes of information are required to represent the fluid state for each
lattice site. Scaling this quantity by the size of the computational domain defines a storage
requirement of approximately 50 x 10° x100 bytes, or 5 Gigabytes. Currently, this
requirement greatly exceeds the amount of storage available on a standard scientific
workstation.

3.2 Time: evolution to steady state

The second constraint on computational resources is the time required to evolve the
simulated behavior to reach a steady state condition. LB are numerically explicit as
formulated, i.e., a finite propagation time is required to transfer information about the
physical state of any one site to the neighboring sites in the model domain. And to reach a
steady state, every site must receive at least one set of information from every other site in
the model domain. As a general metric, the nurnber of update steps required is proportional
to the square of a characteristic dimension, L %, that is typically equal to the dimension of the
largest connected flow path.

While no specific measure can be given a priori, the specific implementation of LB
used in our work can update 10° sites in 4 seconds of CPU time on a standard scientific
workstation (e.g. a 200 MHz Pentium Pro running the LINUX operating system). If the
characteristic dimension is estimated conservatively at 150 lattice sites, this leads to a
requirement of at least 2.25 x 10° site updates. To update the complete system (50 X 108
sites) requires 50 X 4 = 200 CPU seconds, and to reach steady state requires 200 X (2.25 X
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10% CPU seconds. This is equal to over 50 CPU days, a result that is unacceptable for
practical application and usage.

3.3 System architecture

As discussed above, the key requirement of our application is the need to represent
large amounts of data (space) and to quickly process this data (time). And although the
supercomputing resources available at Sandia are unparalleled, routine, regular, and
uninterrupted access to such resources is generally not the case. We had a need for a local
computational environment capable of modest-sized (but still production-scale) simulations
in less than a day’s time, and also in which we could perform code prototyping for very
large-scale simulations that could only be performed using resources such as the ASCI Red
supercomputer.

By 1996, commodity components such as those used in desktop personal computers
(PCs) had reached a price-performance ratio comparable, and more often better, than those
components used in high-end scientific workstations and name-brand parallel computers
from companies such as SGI/Cray, IBM, and Intel. Simultaneously, high bandwidth low
latency network switching technologies at or near commodity costs were being introduced.
For these reasons we chose a distributed memory multiprocessing model for the system
architecture.

For the purposes of this discussion, the term node is used generically to refer to a
unit resource containing some amount of memory to store data and a processor capable of
performing some amount of computation. No distinction is made between nodes containing
single or multiple processors, dedicated or shared memory, or the activity the resource is
intended to perform. The term cluster is used to refer to a collection of nodes that are
configured so as to allow communication between nodes. The term scalable unit (SU) is
meant to connote the basic building block that is used to construct the larger system while
maintaining uniform network capacity.

The requirements of large-scale computation can be translated simply into having a
large amount of memory distributed over an appropriate number of processing nodes. What
remains is the issue of how to interconnect the processing nodes so that they work
cooperatively, sharing the data stored on each node, in a manner such that the computation is
not restricted by the requirement to share information between nodes.

3.3.1 Networking

Networking describes the general means used to connect groups of nodes together so
that they can communicate and work cooperatively. The primary techniques used are bus
and switched interconnects.




The simplest interconnect is the bus, which is a single communication channel (wire)
with taps to connect two or more processes together. A bus with multiple taps is known
collectively as a hub. When three or more processes communicate, they must time share use
of the wire. Obviously, the more processes that share use of the hub, the higher the

likelihood of simultaneous contention for use of a limited resource. A resolution strategy or Y
protocol (that forms the basis for Ethernet) is to allow a single pair of nodes to communicate
through the resource at any one time while the remaining nodes wait until the hub is clear. .

A switch consists of dedicated wires to interconnect either statically or dynamically
pairs of communicating processes. When there is a single wire available to connect
simultaneously every unique pair of processes, the switch is called a cross-bar. While
providing optimal connectivity, this form of switch does not scale well and is expensive to
implement.

Between the hub and the cross-bar are a spectrum of packet and circuit switched
networks. These are fabrics that provide a limited number of wires coupled with
sophisticated routing algorithms implemented in software and hardware to direct efficiently
messages between communicating processes. Hub and packet switched variants of Ethernet
are commercially available, ranging from 10baseT — Ethernet (10Mbit/sec) to 100baseT -
Fast Ethernet (100Mbit/sec) and up to 1000 baseT — Gigabit Ethernet (1000Mbit/sec). The
calibration of these networks refers to the peak bandwidth of wires connecting a pair of
processing nodes.

We chose to utilize a dual network system. A 100BaseT — Ethernet connectivity to
provide services, file system access, diagnostics and a portion of the I/O. The second
network is a Gigabit bandwidth, low latency, switched fabric called Myrinet™, developed
by Myricom, Inc. (Arcadia, CA). Myrinet is used exclusively for message passing.

Each SU is internally connected using a 3Com Superstack II baseline switch and a
16 port Myricom M2M-OCT-SW8 switch. Ethernet connection between SUs is provided-by
routing through the service nodes. Myrinet connectivity between SUs is provided through
inter-switch links. In this way, the Myrinet is scalable in a manner that preserves the concept
of minimum bisection bandwidth. On the other hand, the 100 baseT ethernet is restricted to a
flat communications space for groups of 16 nodes. Thus, to scale the ethernet would require
a means to uplink to a higher bandwidth fabric (for example, through a 1000 baseT packet
switch).

3.3.2 Cost

The two most common commodity based processors used in clustering are *
Intel architecture processors and clones, and Compaq Digital Alpha processors. At the time
of this writing, the cost-performance ratio for the two components is approximately equal. .

However, market factors tend to drive the Intel based components to better price-
performance ratios more rapidly than Compaq Digital products. In the past year, price
reductions in the components market have been approximately 50% when compared to
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equivalent costs at the start of this development. The effective cost of a cluster capable of 1
Gigaflop in August 1997 was approximately $25K. The same cluster can now be purchased
and constructed for approximately $12.5K. However, it should be noted that smaller

numbers of components are needed to achieve this example capability (1 Gigaflop) because
current processors are ~2X as fast as one year ago, and thus scaling is not necessarily linear.

3.4 Operating system and environment

The base operating system used to control the Aranez nodes is LINUX. LINUX is a
multi-processing operating system based on UNIX that schedules processes, controls
peripheral devices, and provides a low-level software platform on which to develop and run
applications.

LINUX implements a UNIX kernel with no proprietary code; that is, the source code
for the operating system is freely available. Red Hat Software, Inc. (Research Triangle Park,
NC) bundles LINUX with a suite of utilities that allow applications to be developed on top
of the operating system. For example, compilers (gcc, g77, g++) and editors (emacs, sed)
developed by the Free Software Foundation under the GNU project are standard issue with
the Red Hat distribution.

To use LINUX in a networked environment requires several layers of additional
operating system software, most of which are also freely available from the LINUX
community and/or bundled with Red Hat. Specifically TCP/IP networking libraries, network
interface drivers, networked file system (NFS) support and high level application libraries to
support message passing are custom installed and configured to create the necessary
environment to perform distributed computing.

3.4.1 Programming model

The application level programming interface to perform message passing is MPI
(MPI Forum, 1995). Specifically, we use the MPICH library implementation (Gropp and
Lusk, 1997) of the de facto standard MPI to ensure portability to multiple hardware
platforms and vendors. Message passing is a programming method that allows multiple
processes to communicate with one another (whether they are running on the same
processor, or on another processor connected over a network), in a way that makes the
computation appear contiguous at the shared boundaries of the subdomains.

3.4.2 System definition

As of November 1998, the Aranez system consists of 32 computational nodes that
are configured as 2 sub-clusters, or scalable units (SU) of 16 nodes each (Figure 3.1).



Compute Node

Contorl Node
/O Server/Gateway
| Inter-Switch Link
|

i Myricom SAN

| 10Mb/s Ethemet

; Backplane

Myricom 16 port switch
2M-OCT-SW8
Figure 3.1 Schematic illustrating a scalable unit (SU) in the Arane cluster.
As illustrated in Figure 3.2, the system is supported through a:
Root service node — to administer the service nodes
Hierarchy of service nodes — used to mediate I/O transactions between the file server and
a SU, administer user and application resources, etc.
File server — to maintain system and user files, binaries, libraries etc.
Compile node — to develop and link applications
Visualization node — for post-processing
Gateway node — to access the system from the internet
Each computational node (CN) is configured with:

CPU ~ 333 MHz Intel Pentium-II
Motherboard — Intel SE440BX with 100MHz memory bus
RAM —256M PC100 compliant memory
Storage — 4.3 Gigabyte local hard drive
Network interface card —3Com 3c¢905bTX 10/100 auto-negotiation
Myrinet interface card — Myricom M2MPCI32B SAN interface card
Case — ATX form factor

20



visualization server

gateway

file server

service node 5 service node

{100 baseT packet
switched ethernet
compute nod

circuit switched
gigabit Myrinet

Figure 3.2 Schematic illustrating the current Arane= cluster.

And as discussed above, each group of 16 nodes is configured with 2 networks, a 100 baseT

ethernet and a Gigabit Myrinet.

Each service node (SN) including the top level servers are configured at a minimum

as follows:

CPU — 200 MHz Intel Pentium-Pro

Motherboard — Intel 440LX

RAM — 128M, 60 ns EDO

Storage — 4.3 Gigabyte local hard drive

Network interface card — 3Com 3c905bTX 10/100 auto-negotiation
Myricom interface card — Myricom M2MPCI32B SAN interface card
Case — ATX form factor

Cumulatively, Aranez is capable of ~ 6 Gflops, with 8G of RAM, 160 GB of
combined storage, and 1 Gbit networked communications bandwidth. The system consists of
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two scalable units (SU) each of which contains 16 computational nodes that are controlled
by intermediate servers and I/O workstations.

343 Compute node definition

All compute nodes are stateless until provided with an operating system image and
access to a common file system. Compute nodes may maintain local disk storage exclusively
for intermediate computational results. While these results can be recovered as a distributed
file system, this usage is not guaranteed. A common file system is mounted from the file
system server using the network file system (NFS) protocol. This allows users to read/write
files on any compute node and provides a level, albeit minimal, of transaction management.
Users have common access to this file system on all nodes that they utilize. That is a user’s
identity (password, user id, group id, etc.) is the same on every node. This facility is not
provided through the standard networking information service (NIS) for security reasons.

To enable this, each compute node boots from a single image supplied on the
network. This requires a custom boot floppy containing a kernel with preset instructions to
broadcast a request for standard boot information from a file server using the BOOTP
protocol in the form of a client program. This information consists of the node’s designated
IP address, the location of the kernel image it should use to perform a full installation, and
the location of the file system that it should mount from the server. The kernel on the boot
floppy is configured to download the complete boot image using the trivial file transfer
protocol (TFTP).

The files mounted include a common set of system binaries /sbin, /bin, and a
slightly modified /etc. The directory /var is defined locally, and to adhere to the stateless
model for the nodes, we implement it in the form of a ramdisk, i.e. we emulate a mountable
file system in RAM. Each node then mounts the local disk to be used exclusively as scratch
space.

The nodes are configured as a private network, i.e. they cannot be accessed directly
from the internet. This is implemented using a predefined series of IP addresses. Access to
the nodes is provided through a single gateway server that connects the private networks
with the external network (internet). This requires a kernel with support for multiple NIC
drivers on the gateway node. Drivers supporting the Myrinet interface are accessed through
the mounted file system and are installed dynamically in the kernel using the LINUX
modules functionality.

3.4.4 Useful URLs

www.redhat .com — Red Hat homepage
www.sunsite.unc.edu/pub/Linux - LINUX archives
www.kernel.org — Home of the LINUX kernel source
www.Imyri.com — Myricom homepage
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3.5 Discussion

We have demonstrated the design and development of a distributed computational
platform for the performance of numerically intensive simulations such as the pore scale
flow modeling that is described later in Sections 7 and 8. While not a foreseen goal of this
project, this result has greatly extended our ability to routinely perform large-scale
simulations. Using this system, we can achieve single-phase flow simulations for ~ 0.25
billion sites for porous media with representative porosities of 25%.

Furthermore, the computational platform as developed is scalable and we envision
continued expansion. Cluster systems provide a vital and necessary bridge between the
current resource discontinuity facing the typical researcher, i.e. individual scientific
workstations versus massively parallel supercomputers such as the ASCI Red
supercomputer.

This is evidenced uniquely by the duality of the cluster. That is, the cluster also
provides the necessary post-processing platform to analyze very large simulations performed
using the ASCI Red supercomputer as described previously in Section 2.
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4 Validation problems

The accuracy of the LB method was determined quantitatively by comparing LB
simulation results with analytical solutions and published numerical results obtained using
conventional CFD methods. The two classical flows considered are flow over a backward
facing step and flow through a three-dimensional duct.

4.1 Flow over a backward facing step

Flow over a backward facing step is a classical 2D flow that involves recirculation
(Figure 4.1). Due to the presence of the step, the flow separates, creating a primary
recirculation region behind the step. At moderate Reynolds number Re (Re>400), the
downward motion behind the step causes the flow to separate along the upper wall forming a
secondary re-circulation region. Comparing LB predictions for these lengths to previously
published experimental and numerical results provides a good benchmark of LB for
moderate Reynolds number flows.

Secondary
X, Recirculatien
Region X3
l“ﬁ ﬁ /
F 1
h Umax=1 5 Uavg du _ >
k x =0 »
Primary v -
h v L@ Recirculation == o;
1 Region
1 > O\ 8
X x',
) L=32h g
Re=2h Umg'v

Figure 4.1 Illustration of the backward facing step problem.

LB simulations of flow over a backward-facing step were performed for Re equal to
200 and 450. Due to the considerable variation found among published results, quantitative
evaluation of the accuracy is difficult. Nonetheless, for these Reynolds numbers, the LB
results agree very well with previous results (Table 4.1). Simulations at Re=800 were also
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attempted, but the velocity field predicted by LB continued to oscillate in time and did not
reach a steady solution.

A number of researchers have examined this flow previously to determine if the
Navier-Stokes equations have a steady solution at this Reynolds number (Gresho et al.
1993). As the Reynolds number is increased, the flow is expected to become unstable,
eventually becoming turbulent. For a Reynolds number of 800, however, their conclusion
was that the flow does possess a steady solution. However, the flow may be termed
“convectively unstable.” At this Reynolds number, a perturbation introduced continually at
the inlet will not be damped out. Thus, a slight oscillation in the inlet boundary condition
can cause an oscillatory solution throughout the domain. This underscores the importance of
accurate boundary conditions for quantitative predictions of moderate to high Reynolds
number flows.

These simulations establish LB as a quantitative method for predicting low and
moderate Reynolds number flows and point to areas of further investigation. The application
of LB to flow over a backward-facing step with heat transfer is examined in Section 5. In
that investigation, a non-uniform grid is used to refine the region near the step. Further
boundary condition development and the application of non-uniform and adaptive grids will
enable LB simulations to resolve the sharp gradients that occur at higher Reynolds numbers.

Table 4.1 Comparison of LB solution with experimental data and conventional CFD methods including
finite element (FE) and finite difference (FD) for the classic backward facing step problem.

Re LB Armaly et al. Gartling Kim & Moin | FLOW-3D | FLUENT
(experimental) | (FE) (FD) (FE) (FE)
200 x;=5.28 5.0 5.1 4.87 4.98
450 X1=9.16 9.4 9.0 8.54 8.50
X3-Xo=3.82 | 3.7 3.03 4.89
800 Xq=? 14.4 12.20 12.0
x3-x2=7 8.2 11.26 11.5

4.2 Three dimensional duct flow

Quantitative assessment of the 3D LB code was obtained by performing simulations
of flow through a duct which is square in cross-section. The accuracy was directly evaluated
by comparing LB simulation results with the analytical solution, and the root mean square of
the error was calculated for simulations with varying grid sizes. The velocity field for this
flow is given by,

u(y,z_)=

162 3 Vo (_qyinm _oshline/2a) |coslimy/2a) ,
pe | ox |

cosh(in/2) i
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where u is the velocity component in the x direction, dp/dx is the imposed pressure
gradient,  is the viscosityand —a<y<a,—-a<z<a.

The results given in Figure 4.2 show that for this flow, the LB method incurs less
than 1% error with 8 grid points spanning the duct in each direction. In addition, for
simulations with >8 grid points, the error decreases with the square of the grid size and
exhibits second order accuracy. The boundary conditions used for this benchmark were
proposed by Chen, Martinez and Mei (1996). This demonstrates the quantitative accuracy of
the 3D LB implementation.

0.01 A

0.001 -

Error

0.0001 . T - r
8 16 32 64

Grid Points

Figure 4.2 Convergence of LB simulation to analytical solution for 3D duct flow
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5 Application to a coupled thermal-hydrodynamic flow on non-
uniform grids

In many applications in materials science and engineering, a coupled heat transfer
and fluid dynamics model is needed. In this section, a coupled thermal-hydrodynamic LB
model is developed and assessed. Recently, multiple LB models have been proposed for
solving the Navier-Stokes equations coupled with the energy equation. A LB model for
natural convection was developed by Shan (1997) using a multicomponent LB model
previously developed for simulations of partially immiscible fluids. The temperature was
approximated by the density field of the second component of the mixture, which was
shown to obey the advection-diffusion equation.

Noble, Georgiadis and Buckius (1997) developed a LB model for simulating inert
solute transport in randomly packed beds using a slightly simpler model for the advection-
diffusion equation. By analogy, these results directly apply to heat transfer as well. Using
the Chapman-Enskog expansion technique from kinetic theory, this work showed that the
scalar transport equation can be accurately simulated using a four-speed LB model as
compared to the nine-speed model used previously (Shan, 1997). More importantly, an
expression for the LB particle distribution is derived in terms of the solute concentration and
its gradients. This allows the prescription of accurate boundary and initial conditions for the
thermal particle distribution function in terms of known macroscopic quantities, such as the
temperature or heat flux. This model is extended here to the problem of mixed convection
using a Boussinesq approximation.

The majority of LB models have utilized a uniform grid. Recently, a number of
approaches have been proposed for implementing the LB method on irregular grids
(Nannelli and Succi et al., 1992; He, Luo and Dembo, 1996; Chen, Martinez and Mei,
1996). In the interpolation-supplemented LB equation (ISLBE) method proposed by He, Luo
and Dembo (1996), the normal LB algorithm is followed at all of the grid points, which do
not need to be uniformly distributed. This algorithm includes a linear advection step in
which the components of the particle distribution are uniformly shifted according to the
microscopic velocity. Then in an additional step, the updated values at each grid point are
calculated by interpolating between the shifted quantities. The method has successfully been
applied to flow about a circular cylinder using a cylindrical coordinate system. This method
is applied here to the coupled mixed convection problem. This approach is appropriate for

investigating flow past a backward facing step in light of the aspect ratio of the physical
domain.

Another topic that has drawn significant attention is the specification of accurate
hydrodynamic boundary conditions in the LB method. Several methods have been proposed
based on heuristic rules, such as the ‘bounce-back’ condition (Cornubert, d’Humiéres and
Levermore, 1991), finite difference concepts (Chen, Martinez and Mei, 1996), and analysis
of the discrete velocity Boltzmann equation (Skordos, 1993; Noble et al., 1995; Zou et al.,
1995; Ginzbourg and d’Humiéres, 1996). This list of references is not exhaustive; Chen,
Martinez and Mei (1996) give a more complete review. The goal of each method is the
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same: to formulate a boundary condition for the particle distribution function in terms of the

known velocity or pressure at the boundaries. For thermal boundary conditions, analysis of

the discrete velocity Boltzmann equation gives explicit constraints for the thermal particle

distribution in terms of macroscopic quantities (Noble, Georgiadis and Buckius, 1997).

Ginzbourg and d’Humiéres (1996) recently have performed a similar analysis for the ’
hydrodynamic LB model. The finite difference method of applying boundary conditions

(Chen, Martinez and Mei, 1996) is used here, however, for the hydrodynamics for two .
reasons. First, the method is readily applied to various types of boundary conditions and

boundary orientations. Also, the method is relatively simple to incorporate into the LB

algorithm.

In this section, the accuracy of a coupled thermal-hydrodynamic LB model applied
to a benchmark mixed convection problem is quantified. In previous work LB methods have
been shown to accurately model isothermal flows (Martinez et al., 1994, Reider and
Sterling, 1995; Hou et al., 1995; Noble, Georgiadis and Buckius, 1996) and inert solute
transport (Noble, Georgiadis and Buckius, 1997). The model used here is an extension of the
previous inert solute LB model (Noble, Georgiadis and Buckius, 1997) to coupled flows
accurately described by a Boussinesq approximation. In addition, the use of a non-uniform
grid (He, Luo and Dembo, 1996) and finite difference-based boundary conditions (Chen,
Martinez and Mei, 1996) are addressed for this problem.

5.1 Lattice Boltzmann model for heat transfer on a non-uniform grid

Using the LB method, the Navier-Stokes and advection-diffusion equations are not
solved directly. Instead, a discretization of the underlying Boltzmann equation is formulated
such that the hydrodynamics and scalar fields (i.e. temperature) satisfy the correct transport
equations to within the discretization error of the method. The problem is solved in terms of
particle distribution functions, f; and g;. The quantity f, relates to the probability of

finding a particle in the vicinity of x at time t that is moving with velocity e, . In mass
transfer problems, g, relates to the probability of finding a solute particle in the vicinity of

x attime t that is moving with velocity e, . By using a heat/mass transfer analogy, the same
method is used here to compute the heat transfer in the channel. Unlike the continuous
particle distribution function in kinetic theory, f; and g, are defined only for a fixed set of
velocities denoted by the subscript i. This discretization of the microscopic velocity space is
similar to the discrete ordinate method used for radiative transport. The LB model in this
work uses an underlying orthogonal, square lattice superimposed on the non-uniform
computational grid. The hydrodynamics are solved on a lattice in which communication
occurs over both the Cartesian directions and the diagonal directions. For two-dimensional
problems the velocity space is, therefore, discretized into the four Cartesian directions,

e = ax cos il _l),sin i - l)li =12,34 5.1
At 2 2 )

and the four diagonal directions,
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e, =42 Ax (cos 2 - 9),sin n(2i - g)li =5,6,7.8 (5.2)
At{ 4 4

where At is the time step, and Ax is the grid spacing of the underlying LB grid. Also
included is the probability that particles are at rest (e, = 0). This is called a nine-speed
model since the microscopic velocity field is discretized into nine different velocity states.
For the heat transfer, a four-speed model is sufficient for recovering the linear advection-
diffusion equation with g, being defined for the four Cartesian given in Eq. 5.1 (Noble,

- Georgiadis and Buckius, 1997). The primary variables are calculated from moments of the
particle distribution, in direct analogy with the integral moments from kinetic theory. For the
incompressible LB model (Zou et al., 1995) the hydrodynamics quantities, velocity and
pressure, are found according to

g 8
P=2fi ) Po“zzfiei (5.3)
i=0 i=0

where p, is a reference pressure. The temperature is found from the first moment of g,
given by

4
T= 2 g; 54)
i=1

The particle distributions f; and g, are governed by the discrete velocity Boltzmann
equation expressed as

of,

SoreVE =0, If,(x, )]+ E (5.5)
and
ag,
a—tl"'ei Vg, =Q, [gi (X’ t)] (5.6)

where €, is a collision operator that accounts for the increase or decrease of particles
moving with velocity e; due to interparticle collisions. The quantity F, is a forcing term

used to implement a body force. This quantity is related to the imposed body force, F,
according to

F=Y Fe, (5.7)

F =—F-e, . (5.8)




where ¢ = Ax/At is the lattice Boltzmann computational speed of sound.

Using the linearized, single time relaxation model (Bhatnagar, Gross, and Krook,
1954) from kinetic theory applied to lattice Boltzmann (Qian, 1990; Chen et al., 1991), the
collision term is written as

Q,ffl=-—=F -£*) (5.9)

where f'” is an equilibrium distribution, and 7, is the relaxation time, which characterizes

the rate of decay toward equilibrium. The collision term in the scalar transport equation is
handled identically. Analogous to the Maxwellian distribution, the equilibrium distribution
is the distribution to which the system will evolve in the absence of forcing gradients.

Using a first-order Lagrangian discretization of the discrete velocity Boltzmann
equation, the LB equations for hydrodynamics and scalar transport are expressed as

f (x+eAt, t+At)=T (x, t)-iSl .5, 0)-£2%k, O)}+EAt  (5.10)
T

f

g (x +eAt,t+At)=g (x,t)- A [gi (x,t)-g® (X',t)] (5.11)
T |

g

Examination of these equations reveals that the solution of the transport problem is
reduced to two major steps. First, in a collision and forcing step, the right hand sides of Eqgs.
(5.10-5.11) are computed, modifying the distributions at location x. Then, a streaming step
occurs in which the particle distributions stream to their nearest neighbors. In the case of a
uniform spatial grid, this produces the particle distribution at each location for the new time
step. It is noted that the collision and forcing step is entirely local since all quantities are
evaluated at location x. The non-local communication occurs during the streaming step and
involves only the nearest neighbors.

For the case of the non-uniform grid, the information is shifted according to the
displacement vector e;At, but this does not generally correspond to the location of the

nearest neighbor. The values of the particle distribution at the neighbors can be computed
however by interpolating between these post-streaming values. He, Luo and Dembo (1996)
first proposed this method of implementing lattice Boltzmann on a non-uniform grid. The
method has successfully been applied to flow about a circular cylinder using a grid that
conformed to the cylindrical geometry (He and Doolen, 1997). The interpolation scheme
proposed by He, Luo and Dembo (1996) is used here for the coupled hydrodynamics and
scalar transport on the non-uniform grid.
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The remaining step in the LB algorithm is the calculation of boundary conditions for
the particle distributions. For the hydrodynamics, the finite difference-based method
proposed by Chen, Martinez, and Mei (1996) is used bere. The particle distribution, f;, is
extrapolated from the values at the interior using second order extrapolation. For the thermal
particle distribution, g, , local boundary conditions are used. For isothermal conditions, Eq.
(5.4) is used to calculate an unknown component on the boundary from the known

components and the temperature on the boundary. For flux conditions, the constraint
developed by Noble, Georgiadis and Buckius (1997) is used:

igi i=Tu——%§’i/m)VT (512

This allows an unknown component of the distribution to be calculated from the known
components and the temperature gradient at the boundary.

The selection of the equilibrium distribution determines the macroscopic partial
differential equation solved by the LB method. For the two-dimensional, square grid, the

equilibrium distribution for the incompressible LB hydrodynamics (Zou et al., 1995) is
given by

fi(°)=wi{p+poii w2 uf o u)}} (5.13)

where w, is given by

4 =0
w,={1  i=1234 (5.14)
L i=5678

For the coupled scalar transport, the equilibrium distribution is given by

© _
i

T T
=2 +—2?(ei ‘u) (5.15)

These equilibrium distributions are selected such that the incompressible Navier-
Stokes equations and advection-diffusion equations are recovered to within the second-order
accuracy of the method. The derivations of these distributions are more thoroughly
described elsewhere (Appendix of Hou et al., 1995; Noble, 1997), but a short summary is
given here. In order to determine the equilibrium distributions, a form of the distribution
must be assumed. Typically, a power series in velocity is assumed (which approximates the
exponential found in the Maxwell-Boltzmann distribution). The coefficients of the series are
determined by comparing the desired transport equation to the near equilibrium behavior of
the LB equation. This is accomplished by performing a Taylor series expansion of the
particle distribution about the location x and time t. This is followed by a near equilibrium
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expansion, called the Chapman-Enskog expansion, in which the particle distribution is
assumed to be equal to the equilibrium distribution plus higher order terms. The expansion is
in terms of a Knudsen number that compares the mean free collision time to the time scale
of the flow. Substituting the assumed form of the equilibrium distribution (which is defined
in terms of macroscopic quantities) into the expanded LB equation gives the macroscopic
equations. Comparison to the desired transport equations yields the coefficients for the
equilibrium distribution along with the definition of the transport coefficients.

The transport coefficients, kinematic viscosity and thermal diffusivity, are controlled
by the relaxation times. The Taylor series and Chapman-Enskog analysis of the LB models
given above yield

ve 2(z, /At)—1(Ax)
6 At

(5.16)

and

_ 2(7:g /At)—l (axY

4 At

o (5.17)

for the kinematic viscosity and thermal diffusivity respectively.

5.2 'Simulation of mixed convection over a backward-facing step

To evaluate the accuracy of the non-uniform grid implementation of the mixed
convection LB algorithm, the steady, two-dimensional flow of a laminar Newtonian fluid in
a heated vertical channel with a backward facing step is simulated. A coarse version of the
non-uniform grid used in the LB simulations is shown in Fig. 5.1. Note that the horizontal
and vertical scales of the figure are not the same. This problem was the focus of a recent
benchmarking study (Blackwell and Armaly, 1993) and is defined as follows. The walls
forming the step are adiabatic. The wall downstream of the step is maintained at

temperature, T, , while the wall opposite the step is held at T, . The total channel height is

twice the step height. A parabolic velocity profile of temperature T, is assumed at the inlet,
which is located five step heights upstream of the step.

«—g

-850 0.0 5.0 10.8 15.0 20.0 25.0 30.0

Figure 5.1 Sample non-uniform computational grid for lattice Boltzmann simulations. For clarity, the
grid shown here is 61x21 whereas the actual grid used in the simulations is 241x81. Also note that the
horizontal and vertical scales are not the same. Gravity, g, acts in the negative X direction as
indicated by arrow.
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given by
U oV
— 4+ =0 5.18
X dY C-18)
U _oU 9P 1(3°W 9°U), Gr
U—4+Ve—=r—+— + + © 5.19
X 9Y X Re (ax2 oY’ ) Re’ 619
2 2
U§X+V8_V=_8_P+_1_ 9 \:+a\£ (5.20)
oX oY dY Re|dX* dY
a0 © 1(9© 9@
U—+V—=— +— 521
X dY Pe (ax2 Y’ ] &-2D
Here the velocity is made dimensionless using the average inlet velocity, u:
U=u/u.V=v/u (5.22)
The spatial quantities are made dimensionless with the step height, s:
X=x/s,Y=y/s (5.23)

A dimensionless pressure and temperature are defined as

P=(p+pgx)/pu’. ©=(T-T,)/(T,~T,) (5:24)
Dimensionless parameters of interest are given as
Re =1s/v, Pe =us/a, Gr = gB(T, - T, 5° /v’ (5.25)

Of interest are the local Nusselt number and skin friction coefficient given by

s oT 00
Nu=—— | & |- 2 5.26
. k(Tw—-TO)( ayJ oY (:26)
and
C Re=—— Re=1Y (5.27)
T (1 2)pu? oY

The dimensionless governing equations for the heat transfer and hydrodynamics are



respectively, where T is the wall shear stress and the + sign is chosen to be + along Y =0
and—along Y =2.

5.3 Accuracy of the LB model for mixed convection on a non-uniform grid

LB simulation results are compared with predictions from the commercial code FIDAP v6.0
(Fluid Dynamics International) obtained by Torczynski (1993) as part of a benchmarking
study (Blackwell and Armaly, 1993). The results by Torczynski were tested for grid
independence and are in good agreement with predictions by other participants in the
benchmarking study. A grid refinement study showed the results to be accurate to three
significant digits. The tabulated data included by Torczynski (1993) therefore provide a good
method for evaluating the accuracy of the LB simulations performed here.
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Figure 5.2 Profiles of U vs. Y at indicated X positions for Gr=0. FIDAP simulation data taken from
published tabulated data (Torczynski, 1993).

Pointwise velocity profile comparisons are made for X =0, X=2,and X=30.In
addition, the local Nusselt number and skin friction coefficient along the boundaries of the
channel are compared. Figures 5.2-5.3 show profiles of U at the three streamwise locations
for Gr =0 and Gr =1000, respectively. The Grashof number is controlled by varying the
coefficient of thermal expansion, B, while keeping the temperature difference across the
channel and the viscosity fixed. For Gr =0 the agreement is very good with the LB curves
passing through the FIDAP data points. At Gr =1000 the agreement is still good, but some
disparity is apparent in the maximum U velocity predicted at X =0 and X =2. This is due

to the fact that the boundary condition used at the inlet does not succeed in setting the
prescribed condition.
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Figure 5.3 Profiles of U vs. Y at indicated X positions for Gr=1000. FIDAP simulation data taken
from published tabulated data (Torczynski, 1993),

In the finite-difference method for hydrodynamic boundary conditions, the particle
distribution at the boundary is obtained by extrapolating from the interior of the
computational domain. This extrapolation may cause wiggles in the solution, however, that
may remain in the final solution or lead to the simulation becoming unstable. The desired
macroscopic conditions (velocity or pressure) are imposed by using them to calculate the
equilibrium distribution. It should be noted that during the collision step, the system decays
toward the equilibrium distribution, but in the presence of forcing gradients, the equilibrium
condition is never fully attained. Consequently, the desired conditions are not prescribed
exactly. There may be a small steady-state difference between the desired boundary
conditions and the resulting velocity or pressure at the boundary. For the case of Gr =1000,
the effect is apparent in the approximately 1.5% error in the maximum velocity. Although
the effect is small, it pervades far into the domain, with an approximately 1% error in the
maximum U velocity at X = 2. This shows the importance of the development of accurate
hydrodynamic boundary conditions for LB models.

The plots of the V velocity component given in Figs. 5.4-5.5 also show that LB
accurately models the fluid dynamics in the bulk of the fluid but that small wiggles and
errors are present near the corners of the computational domain. Although the agreement is
good for both Gr =0 and Gr =1000 at X =2, significant disagreement is found at X =0
and X =30. It should be noted, however, that the magnitudes of the errors are less than
1.5% of the average velocity u. The relative error appears large because of the small
magnitude of the V velocity component. The errors at X =0 and X =30 are also significant
because both of these locations involve corners of the computational domain. The comner of
the step (at X =0, Y =1) produces wiggles in the solution where the velocity gradient is
discontinuous. Corners provide particular challenges in LB simulations because a large
number of the components of the particle distribution are unknown and must be extrapolated
from the fluid interior. At X =30 the exit boundary condition and bounding walls also meet
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Figure 5.4 Profiles of V vs. Y at indicated X positions for Gr=0. FIDAP simulation data taken from

published tabulated data (Torczynski, 1993).
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from published tabulated data (Torczynski, 1993).

These results show that further work is needed to develop boundary conditions for
LB methods that avoid generating unphysical wiggles at corners of the computational
domain. One possible improvement might be to use a method similar to that proposed by
Ginzbourg and d’Humiéres (1996), in which the velocity gradient information is extracted
from the local particle distribution rather than from a finite difference approximation. This
may eliminate the error associated with extrapolating the particle distribution from the
interior of the computational domain.

The combination of the irregular grid and finite difference-based boundary
conditions increases the boundary condition error. When extrapolation is necessary, it is
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desirable to have the extrapolation distance be small compared to the data spacing on the
interior. However, the grid spacing near the boundary is typically decreased in order to
resolve the steep gradients. The extrapolation distance is equal to the LB grid spacing, Ar,
(based on the magnitude of the microscopic velocities), and this quantity is constant. Thus,
the relative distance of the extrapolation is increased near the boundary. As shown in Figs.
5.6-5.7, the temperature field is accurately modeled using LB methods. For both Gr =0
and Gr =1000, the LB and FIDAP predictions for the dimensionless temperature are in
close agreement over the entire width of the channel at each of the streamwise positions
examined.

Comparisons of the skin friction and local Nusselt number shown in Figs. 5.8-5.9
show very good agreement between the LB and FIDAP predictions by Torczynski (1993).
From the skin friction along the heated side of the channel, the flow reattachment locations
are calculated. For Gr =0 and Gr =1000, the LB simulations predict reattachment at
X =5.05 and X =3.08 respectively. These predictions differ from the FIDAP predictions
of X=4.984 and X =2.977 by 1.3% and 3.5%, respectively. The larger error for
Gr =1000 is likely due to the inlet boundary condition error for this case which gives a
larger inlet velocity than prescribed.

1.8 ®  FIDAP,X=0 |
A FIDAP, X=2
B FIDAP, X=30

—— LBMResults | |

Figure 5.6 Profiles of dimensionless temperature, ©, vs. Y at indicated X positions for Gr=0. FIDAP
simulation data taken from published tabulated data (Torczynski, 1993).
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Figure 5.7 Profiles of dimensionless temperature, ©, vs. Y at indicated X positions for Gr=1000.
FIDAP simulation data taken from published tabulated data (Torczynski, 1993).

This work shows how a lattice Boltzmann (LB) model for mixed convection is
developed and applied to flow in a vertical heated channel with a backward facing step. The
comparisons with FIDAP predictions by Torczynski (1993) validate LB as a quantitative
method for thermal problems including mixed convection. Velocity profile comparisons
show agreement between LB and FIDAP solutions to within 1.5% of the average streamwise
velocity. LB models using finite difference-based boundary conditions (Chen, Martinez and
Mei, 1996) have been show to exhibit some difficulties near the boundaries, however.
Wiggles in the solution are formed near the corners of the computational domain, and the
maximum velocity in the channel is over-predicted for the case of mixed convection due to
an error in the inlet boundary condition. This demonstrates that further boundary condition
work is warranted. LB methods are shown to provide alternate techniques for coupled heat
transfer and viscous fluid dynamics.
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Figure 5.8 Profiles of the dimensionless skin friction vs. X along the walls of the channel for Gr=0 and
Gr=1000. FIDAP simulation data taken from published tabulated data (Torczynski, 1993).
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Figure 5.9 Profiles of the local Nusselt number vs. X along the walls of the channel for Gr=0 and
Gr=1000. FIDAP simulation data taken from published tabulated data (Torczynski, 1993).
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6 Application to flow about moving and non-conforming
obstacles

One concern when modeling boundary-dominated problems like porous media and
suspension flows is the accuracy with which the geometry is represented in LB simulations.
This concern is even stronger when the boundaries between the solid and fluid phases do not
conform to the computational lattice. In this section, a LB model pertaining to non-
conforming, moving obstacles is developed and assessed. Several methods have been
proposed for applying boundary conditions including the “bounce-back” condition
(Cornubert, d’Humiéres and Levermore, 1991), finite difference-based methods (Chen,
Martinez and Mei, 1996), and techniques resulting from analysis of the discrete velocity
Boltzmann equation (Skordos, 1993; Noble, Chen, Georgiadis and Buckius, 1995;
Ginzbourg and d’Humiéres, 1996). This list of references is not exhaustive; Chen, Martinez
and Mei (1996) give a more complete review.

Below, a method is developed for simulating two-dimensional and three-dimensional
fluid flow in the presence of large numbers of arbitrary-shaped particles from dilute to dense
packing. In brief, the conventional lattice Boltzmann method is extended by modifying the
collision term so that it shifts smoothly between hydrodynamics at nodes occupied solely by
fluid and rigid body motion at nodes occupied solely by particles. The fluid and solid
volume fractions are used to weight the corresponding portions of the collision term for
nodes with both phases present. In a recently published paper, a similar method is applied to
simulations of porous media in the dilute limit. In their work, Dardis and McCloskey (1998)
modified the regular lattice Boltzmann scheme allowing for the presence of solid scatterers
that resist fluid motion. In contrast, the focus here is on the partially saturated computational
cells that appear at the interface between clear fluid and solid obstacles. The goal of this
work is to model flows about obstacles that do not conform to the computational grid and to
allow the objects to move relative to the grid. For validation purposes, simulations are
performed of the flow produced by a periodic line of cylinders moving in a straight channel.
For both steady and periodic motion of the cylinders, detailed comparisons are made with
finite element simulations in order to quantify the accuracy of the method. The capability
developed here will be applied in future work to coupled fluid-flow/particle-motion
simulations.

6.1 Lattice Boltzmann method for partially saturated cells

The LB model described here for partially saturated cells uses a two-dimensional,
square lattice. As described in previous sections, the velocity space is discretized into the
four Cartesian directions,

e, =§-(cos n(l—l),sin n(l_l)li =1,23,4 (6.1)
At 2 2,

and the four diagonal directions,
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e =42 e cos i —9),sin (2 —9)1i =5,6,7.8 6.2
At 4 4

where At is the time step, and Ax is the grid spacing of the LB grid. Also included is the
probability that particles are at rest (e0 = 0). The primary variables are calculated from
moments of the particle distribution, in direct analogy with the integral moments from
kinetic theory. The hydrodynamic quantities, density p and velocity u, are found according
to

p= ifi s pu= ifiei (6.3)
i=0

i=0

The particle distribution f; is governed by the lattice Boltzmann equation expressed

f.(x+eAt, t+A)-f (x,t)=Q [f, (x,1)] (6.4)

where Q, is a collision operator that accounts for the increase or decrease of particles
moving with velocity e, due to interparticle collisions.

Using the linearized, single time relaxation model (Bhatnagar, Gross, and Krook,
1954) from kinetic theory applied to lattice Boltzmann (Qiarn, 1990; Chen et al., 1991), the
collision term for regions completely saturated with fluid is written as

QBK[f]= —-AT—t €, -£) (6.5)

where f” is an equilibrium distribution, and 7 is the relaxation time, which characterizes
the rate of decay toward equilibrium. Analogous to the Maxwellian distribution, the
equilibrium distribution is the distribution to which the system will evolve in the absence of
forcing gradients. Substituting the BGK collision term into the lattice Boltzmann equation
gives the standard lattice Boltzmann evolution equation:

fi(x+eiAt,t+At)=fi(x,t)—%[fi(x,t)—fi“’)(x,t)] 6.6)

The goal of this study is to introduce a modification to this equation that allows for
large numbers of nonconforming, evolving boundaries but retains the advantages of the
conventional lattice Boltzmann method (i.e. a collision step that is local to nodes and a
molecular-motion step that is identical to the above). This is accomplished by introducing
additional collision terms, Q;, that account for the interactions with each solid obstacle that

lies within the computational cell. The evolution equation then becomes,




f(x+eAt, t+At)="f(x,t)+ [1 - B., t)}QiBGK +Y B(e,, TX% (6.7)

where €, is the volume fraction of each solid particle that intersects the volume surrounding
the node, and B(g,, T) is a weighting function. At its limits, B(g, =0,7)=0 and
B, =1, 7)=1, which correspond to pure fluid and pure solid, respectively. For generality

the nature of the transition is allowed to depend on T, however. Two possible forms for Q:

are investigated in this study. The first is based on the concept of “bounce-back” of the non-
equilibrium part (Zou and He, 1997) of the particle distribution and is given by,

Q=1 (x,t)-£,(x,t)+£(, U, )-£2(p,u) (6.8)

where U, is the velocity of the solid particle at time t+ At at the node and the notation f_,
is used to denote the “bounce-back” state from f; (obtained by reversing all molecular

velocities, i.e., e, — —e,). In cases where the particle velocity is unknown, it must be

calculated by a force analysis. For this investigation, however, the particle velocity is
prescribed. In the limit of pure solid, this collision term causes the non-equilibrium part of
the distribution to be “bounced-back”. A second type of solid boundary collision term is
investigated which has the form,

Q; =17, U, )-f,(x, 1)+ (1 _%Yfi (x.t)- fieq(Pau)] (6.9)

This form is designed such that the resulting particle distribution is equal to the equilibrium
distribution evaluated at the obstacle velocity plus a term that depends on the deviation of
the current distribution from its equilibrium value. This superposition method might be
expected to increase in accuracy as the distribution approaches equilibrium. Another feature
of this collision term is that it causes the distribution to match the equilibrium distribution
when the relaxation time equals the time step in the same way that this occurs in the pure
fluid case. There are many other collision terms that might be successful, but both of these
proved to give good representations of moving circular cylinders. Possible implementations
of the boundary enhanced evolution equation are distinguished by the expression used for
B(es, 7). While the near equilibrium, superposition approach given in Eq. (6.9) is found to

perform well with the simple weighting function, B(g,, )= €, , the non-equilibrium
reflection model required a more involved function. Knudsen layer effects appear when
applying reflection type boundary conditions, but it was found that very good approximation
of the cylinder surface was obtained for /At between 0.6 and 0.9 (it was not tested outside
this range) using the expression,

g (t/At—1/2)
g )+ (t/At-1/2)

Based on these concepts four different boundary conditions were tested:

B(e,,7)= i (6.10)

42



Non-equilibrium reflection with relaxation time dependent weighting [Eqgs.
(6.8, 6.10)]

ii. Non-equilibrium reflection with simple solid fraction weighting [Eq. (6.8)
and BE,,1)=¢,]

1il. Near equilibrium superposition with simple solid fraction weighting [Eq.
(6.9) and BE,,7)=¢,]

iv. Simple, binary non-equilibrium reflection (“bounce-back” of the non-

equilibrium part of the distribution) [Eq. (6.8) and B(,.t)= ROUND(,)]

The last case is used to compare the methods proposed here to an approach in which
computational cells that are more than half full of solid simply replace the regular BGK
collision term with that given in Eq. (6.8). This helps to determine the importance of a
smooth transition from fluid to solid rather than an abrupt ‘stair-step’ representation.

L=2 L=2

moving wall
Uy = -Ug OR Uy sin(et)
motionless wall V=0

no body force in fluid body force in fluid
pi=p{dUy/dt)

2 moving cylinder 2 2 2
2 = Ugq OR -U sino) 2 W 2 R )
£ v=0 g " g . . g |=
motionless cylinder
pUgD/p=5n pUpD/p =5n
y \
motionless wall moving wall
Uy = -Uy OR Uy sin(an)
V=0
-
D=1 D=1

Figure 6.1 Schematic diagram (to scale) of the validation problem in the (a) moving-cylinder reference
frame and (b) fixed-cylinder reference frame.

6.2 Steady flow about a periodic line of cylinders

The accuracy of the lattice Boltzmann method presented in the previous section is
assessed by comparing to fully resolved finite-element simulations obtained with FIDAP, a
commercially available computational fluid dynamics code produced by Fluid Dynamics
International. Figure 6.1 shows a schematic diagram (to scale) of the validation problem. A
two-dimensional situation was considered in which a linear periodic array of circular
cylinders moves with a constant or oscillating velocity in the horizontal direction without
rotation. In the lattice Boltzmann simulations, one full unit cell of the periodic array is
simulated (as in Figure 6.1), whereas only the upper half of one unit cell is simulated in the
FIDAP simulation since the centerline (y=0) is a line of symmetry. In the FIDAP
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simulation, the significant deformation of the domain would require extensive remeshing
during each oscillation if this problem were treated in the same fashion as in the lattice
Boltzmann simulation. Instead, a coordinate transformation to the fixed-cylinder frame of
reference was employed. In this reference frame, the cylinder is motionless, and the walls
travel with a velocity opposite to the original cylinder. All results herein are presented in the
fixed-cylinder reference frame. To ensure that the FIDAP solutions were grid-independent,
simulations of the oscillatory flow described below in Sect. 6.4 were performed with two
different meshes and two different time steps. The elements of the second mesh had about
half the side length of the elements of the first mesh (about four times as many elements in
the second mesh as in the first mesh). Simulations were performed with each mesh using a
fixed time step of 0.001, and an additional simulation was performed with the coarse mesh
using a time step of 0.0005. The results of all simulations were found to be virtually

indistinguishable at all times and all locations. The same fine grid was then used for the
steady state simulations.

Error in Force, AF/F

0.0001 e
0.1 01 !

Grid Size, Ax

Figure 6.2 Convergence with grid refinement for lattice Boltzmann simulations of steady flow using
various boundary conditions. The circles denote method (i): non-equilibrium reflection with viscosity-
dependent weighting. The squares denote method (ii): non-equilibrium reflection with simple solid
fraction weighting. The triangles denote method (iii): near-equilibrium superposition with simple solid
fraction weighting. The pluses denote method (iv): “bounce-back” of the non-equilibrium part of the
distribution.

The LB and FIDAP simulation results for the drag force as well as the velocity
components near the surface of a cylinder are compared. Figure 6.2 shows the relative error
in the drag force predictions as the computational grid is refined for each of the four LB
boundary conditions. For LB, the drag force per unit length on a solid s is given by,



F 1
== =—% Qe AxA 6.11
L Atzi: GRS ©.11)

where Ax = Ay is the grid spacing. From the slope of the curves on this log-log plot, it is

seen that linear convergence is obtained except for boundary condition (i) which uses the
relaxation time dependent weighting function. This boundary condition results in an order-
of-magnitude smaller error than the other methods and appears to produce quadratic
convergence. Further investigations would be useful in confirming this. The apparent
saturation of the error at 0.0005 is likely due to the fact that the FIDAP solution has an error
of this same magnitude. Thus the LB solution continues to converge toward the true solution
as the grid is refined but begins to differ from the FIDAP prediction.
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Figure 6.3 Components of velocity near the surface of the cylinder. The cylinder is moving with a
constant velocity in the positive x direction, and the velocities are expressed relative to the velocity of
the cylinder. Velocities are plotted as a function of angle for a fixed radial distance of D/32 from the
surface of the cylinder. The solid lines denote the FIDAP predictions. The circles denote method (i):
non-equilibrium reflection with viscosity-dependent weighting. The squares denote method (ii): non-
equilibrium reflection with simple solid fraction weighting. The triangles denote method (iii): near-
equilibrium superposition with simple solid fraction weighting. The pluses denote method (iv):
“bounce-back” of the non-equilibrium part of the distribution.

Figure 6.3 shows the horizontal and vertical velocity components very near the
surface of a cylinder as the line of cylinders is steadily moved. The solution at a radial
distance of D/32 from the surface of a cylinder is examined and compared to the FIDAP
predictions. The FIDAP grid has several nodal points along this radius, but the cylinder is
moving relative to the lattice Boltzmann mesh. The lattice Boltzmann solutions at this radius
are found by interpolation, evaluating cubic splines of the solutions above and below a
cylinder along lines of constant x at the desired radius. This figure shows that boundary
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condition (i) using the non-equilibrium reflection with viscosity-dependent weighting is
particularly successful in modeling the velocity field near a moving, smooth cylinder. This
explains the accuracy of the drag force calculated using this method as well. The simple
solid fraction weighting (ii) instead of the viscosity-dependent one, however, cripples the
method, causing it to smooth out the gradients near the surface of a cylinder. The near
equilibrium superposition method (iii) yields reasonable accuracy even with the simple solid
fraction weighting. The simple “bounce-back™ model (iv), which allows cells to be either
pure fluid or pure solid, shows sharp jumps in the solution due to the ‘stair-step’
representation of the surface.
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Figure 6.4 FIDAP streamlines during the fifth cycle for oscillatory flow at indicated normalized times
and phases, with cylinder velocities in the fixed frame proportional to the arrows.

6.3 Oscillatory flow about a periodic line of cylinders
To test the behavior and accuracy of the proposed boundary conditions for unsteady
flows, the case of oscillatory motion of the cylinders is examined. The horizontal velocity
component of the cylinder was taken to be
U = ~U,sin(ot) (6.12)
The Reynolds and Strouhal numbers of were given by,

Re =pU,D/u=5n=15.7 and Sr = @D/2nU, =1/ =032 (6.13)
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suggesting that eddies will form.

In the lattice Boltzmann simulation, the cylinder center undergoes a maximum peak-
to-peak displacement of one diameter. To prevent the cylinder from crossing the domain
boundaries, the cylinder and domain right edges are tangent when wt = 0,21,4x,..., and the

cylinder and domain left edges are tangent when ot = 7t,3%,57,.... Thus, the cylinder

crosses a large fraction of the nodes during each oscillation: nodes are “covered” and
“uncovered” repeatedly during the motion, which represents a stringent test of the accuracy
of the treatment of moving boundaries.

o

Horizontal Velocity, u /U

0 0.2 0.4 0.6 08 1

Time, t*

Figure 6.5 History of normalized horizontal velocity component «, /U, during the fifth cycle of
oscillation for the point located at r=0.75D and 6=90°. The solid line denotes the FIDAP prediction.
The circles denote method (i): non-equilibrium reflection with viscosity-dependent weighting. The
squares denote method (ii): non-equilibrium reflection with simple solid fraction weighting. The
triangles denote method (iii): near-equilibrium superposition with simple solid fraction weighting. The
pluses denote method (iv): “bounce-back” of the non-equilibrium part of the distribution.

As in the steady case a coordinate transformation to the fixed-cylinder frame of
reference is employed and the walls travel with a velocity opposite to the original cylinder.

U, = U,sin(at) (6.14)

Since the new frame of reference is accelerated with respect to the original frame, the fluid
in the new reference frame experiences a body force in the horizontal direction:

du,

o (6.15)

pf=p
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Since the simulations were initialized with a zero-velocity condition throughout the
domain, five cycles of the oscillation were simulated to ensure that the time-periodic
solution was obtained. This was verified by quantitative comparison of the fourth and fifth
cycles, which were found to differ by well less than 0.1%.

Figure 6.4 shows the streamlines during the first half of the fifth cycle based on the
FIDAP simulations at various normalized times t* = (t —4T)/T and phases
¢ =2m(t—4T)/T, where T =27/ is the period of the oscillation. As the particle begins to
move leftward at the beginning of the cycle, the streamlines exhibit approximate fore-and-
aft symmetry. As the particle velocity increases, an eddy appears to the right of the cylinder
at a normalized time of 0.25. This eddy grows in extent and strength and fills the domain at
0.40, detaches from the cylinder at 0.45, and has almost vanished by 0.50, when the particle
has come to rest and is ready to begin moving rightward.
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Figure 6.6 Spatial variation of the normalized horizontal velocity component u,/U, along the
centerline (y=0) at indicated times during the fifth cycle. The solid lines denote the FIDAP
predictions. The circles denote method (i): non-equilibrium reflection with viscosity-dependent
weighting. The squares denote method (ii): non-equilibrium reflection with simple solid fraction
weighting. The triangles denote method (iii): near-equilibrium superposition with simple solid fraction
weighting. The pluses denote method (iv): “bounce-back” of the non-equilibrium part of the
distribution.

Figures 6.5 and 6.6 show detailed comparisons of the lattice Boltzmann and FIDAP
solutions. Figure 6.5 shows histories of the horizontal velocity component u, normalized
by the velocity amplitude U, at the location r =0.75D and 6 = 90" . This point is midway

between the cylinder boundary and the domain boundary. This- point is a nodal location of
the FIDAP mesh but is continuously moving relative to the lattice Boltzmann mesh. The
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lattice Boltzmann solution at this location is found by interpolation, evaluating cubic splines
of the solutions along lines of constant y at the desired x values. The agreement between

the FIDAP results and the lattice Boltzmann results is excellent for all of the employed
boundary conditions for this resolution of 60x60. It is seen that at this location, which lies
outside the wake of the oscillating cylinders, the boundary condition specifics have little
effect.

Figure 6.6 shows the spatial variation of horizontal velocity u,/U, along the
centerline ( y = 0) at the indicated times throughout the cycle for LB simulations using a

60x 60 computational grid. The effect of the viscosity-dependent weighting is apparent
along the centerline due to the larger effect of the boundaries in this region. However, all of
the other boundary conditions are reasonably successful. This shows that any of the
proposed methods can be used providing reasonable accuracy even in this wake region.
Only in the vicinity very near the obstacle, shown in Fig. (6.3), and in the force calculation,
shown in Fig. (6.2), can it be seen that boundary condition (i) provides superior modeling of
the moving, non-conforming cylinder.

6.4 Discussion

In this section, a lattice Boltzmann method is developed and implemented for
simulating coupled fluid flow and particle motion. The method is successfully applied to the
flow about a periodic line of cylinders that move relative to the computational grid. To
model moving obstacles that do not conform to the grid, the collision term in the
conventional lattice Boltzmann method is modified so that it shifts smoothly between
hydrodynamics at nodes occupied solely by fluid and rigid body motion at nodes occupied
solely by particles. The modified collision operator uses the fluid and solid volume fractions
to weight the corresponding portions of the collision term for nodes with both phases
present. Various possible forms for the modified collision operator are examined and
possible weighting functions are explored. It is found that a collision operator that employs
reflection of the non-equilibrium part of the distribution is particularly successful in
modeling smooth surfaces when using the suggested weighting function. The method
appears to exhibit quadratic convergence with grid refinement suggesting that the overall
second-order convergence of the lattice Boltzmann method is maintained. This method
promises to be an economical and accurate method for modeling moving obstacles that do
not conform to the computational grid.

There are at least three types of problems in which a formulation in terms of a
smooth transition from pure liquid to pure solid is useful. One is the type of application
examined here where an obstacle is moving relative to the grid or does not conform to the
grid. The ability to accommodate partially saturated cells allows for curved and other
complex surfaces to be modeled with more integrity than a ‘stair-step’ representation. A
second application is for porous media simulations (Dardis and McCloskey, 1998). The
partial saturation concept can be used in this context to model non-uniform porous media
with prescribed porosity variation.




A third related, but distinct, application is modeling flow in reconstructed porous
media (Sections 7 and 8). The direct investigation of pore-scale flow in porous media
typically starts with reconstruction of the geometry, followed by pore-scale simulation of the
flow. One potentially ambiguous step in this process involves segmenting the geometry into
areas of void and solid. Often, the experimental reconstruction method captures intrinsically
the smooth transition from the solid to void phase, i.e. some voxels encompass both the void
and solid phase. But, in order to use a conventional lattice Boltzmann algorithm, researchers
design and apply algorithms to designate the transition zone as either solid or void so that a
binary description of the geometry is arrived at. The formulation developed in this work
provides an alternative to this approach since the experimentally measured smooth transition
can be directly employed in the fluid simulation. This allows higher fidelity modeling since
some ambiguity in the binary reconstruction is inevitable due to the intrinsic resolution of
the data. The method for partially saturated computational cells promises an accurate and
economic method for modeling each of these problems, which are difficult to handle using a
conventional lattice Boltzmann scheme.

50



7 Experimental characterization of porous media

Natural as well as many engineering materials exhibit complex pore structures which
greatly influence their bulk physical and mechanical properties, including elastic moduli,
compressibility, seismic velocity, permeability, electrical conductivity, thermal conductivity,
poroelastic parameters, strength, and failure behavior. The extent to which the macroscopic
properties of an arbitrarily complex porous medium can be predicted using a microscale
modeling approach follows directly from the sophistication of the model, which in turn
relies on the completeness of the microgeometric description available as input.

The transport properties in particular depend critically on the geometry of the void
space (e.g., Adler, 1992; Dullien, 1992; Sahimi, 1995). The size, shape, connectivity, and
tortuosity of the pore space can in fact affect the permeability of a porous medium more
strongly than the total void fraction available to transmit that flow. As an example, consider
a typical quartz sandstone such as Berea with a bulk porosity of ~20-25% and a permeability
of ~200-800 millidarcy. Contrast that with a sedimentary diatomaceous rock with more than
twice the porosity (~60%), but a permeability that is lower by well over two orders of
magnitude (~0.1-1 millidarcy). This dramatic inversion of the usual trend between porosity
and permeability is a direct consequence of differences in the geometry of the pore space for
the two rocks.

A variety of geoscience and engineering applications stand to benefit significantly
from an improved understanding of flow and transport processes in geometrically complex
porous media. Geoscience applications include understanding the displacement of oil from
the pore space during waterflooding or enhanced oil recovery processes, and predicting the
transport of contaminants in an underground aquifer. Understanding the physics of
microscale flow processes is likewise central to many chemical, materials, and thermal
engineering applications, including porous bed chemical reactors, powder compaction and
sintering, gas flow in thermal protection systems, heat dissipation in microelectronic
components, and fluid and thermal flows in MicroElectroMechanical Systems (MEMS).

Fundamental understanding requires both statistical characterization of the geometry
of the porous microstructure, as well as study of the geometry of the flow itself. The former
aspect can in principle be addressed experimentally; however, the geometry of the flow
through a complex porous medium is difficult to ascertain in the laboratory, but amenable to
numerical investigation. For example, using idealized two-dimensional network models,
David (1993) demonstrated the complexity of hydraulic flow paths in heterogeneous porous
media, and that the critical paths for hydraulic flow are not necessarily identical to those for
electric current.

In this section we describe our work towards developing new experimental
techniques and approaches for characterizing the three-dimensional microgeometry of
complex porous media. Following in Section 8, we describe the application of lattice
Boltzmann methods for modeling and simulating mass and heat transfer processes in
complex porous media as imaged using confocal microscopy.



7.1  Approaches for characterizing the microstructure of porous materials

The simplest geometric attribute of a porous material is its porosity, or void fraction,
¢. This property can be measured on bulk samples to high accuracy using gas porosimetry
techniques based on Boyle’s Law, although less precise imbibition (saturation) techniques
are also commonly applied. Specific surface area SA, defined as the grain-void interface
area normalized by the total volume, is the next most elementary property characterizing a
porous medium. SA as well can be readily measured on a bulk sample using gas adsorption
techniques such as the BET method (Brunauer et al., 1938). Limited additional geometric
information can be obtained from bulk samples using mercury porosimetry (e.g., Van Brakel
et al., 1981), small-angle scattering (Wong et al., 1986; Hall et al., 1986), adsorption-
desorption or other extensions of the basic gas adsorption technique (e.g., Avnir et al.,
1984), or nuclear magnetic resonance (Cohen and Mendelson, 1982; Mendleson, 1982). For
geologic materials, mercury porosimetry is probably the most commonly applied indirect
technique; information concerning “effective” pore sizes can be derived from the capillary
pressure record. However, the geometric complexity of the pore space (i.e. its
interconnectivity, geometric irregularity, etc.) leads to ambiguities in the physical
interpretation of mercury capillary data, and the other indirect methods likewise require
certain geometric assumptions that complicate their interpretation.

Imaging methods offer the possibility to characterize unambiguously, and
completely, the microstructure of a porous material. Conventional techniques include
reflected or transmitted light microscopy (LM) and scanning electron microscopy (SEM) of
planar sections. Quantitative stereological methods (Underwood, 1970; Russ, 1986) can be
applied to determine geometric parameters such as porosity and specific surface area
directly from measurements made on planar sections (e.g., Wong, 1985). Similarly,
stereological measurements of chord length can be used to infer pore and crack size
distributions (Krohn, 1988; Wong et al., 1989; Fredrich et al., 1993). Alternatively, both
porosity and specific surface area can be calculated from the 2-point probability function
(defined later) that can be measured from micrographs of polished sections that have been
processed to yield binary data (Berryman, 1985; Berryman and Blair, 1986). Methods have
also been devised to characterize the fractal properties of the pore space using measurements
made on images of polished sections (Thompson, 1991), as well as from images of rough
fracture surfaces (Krohn and Thompson, 1986).

An important handicap of these traditional imaging approaches, however, is that one
is restricted to examining a two-dimensional (2D) representation of a three-dimensional
(3D) object, which greatly complicates, if not precludes, a determination of the true three-
dimensional structure. As was pointed out by Bernabe (1991), certain pore types (such as
tubular pores) are difficult to identify in 2D images. Likewise, it is impossible to determine
the connectivity of a pore network from a 2D image. A quick examination of a 2D
micrograph (Figure 7.1, Top) from a typical sandstone shows that the pore phase is
discontinuous in the two-dimensional plane of the image; however, we know with certainty

by the presence of the epoxy that the pore phase is in actuality connected in three
dimensions.
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Figure 7.1 Scanning electron micrographs of (top) Berea sandstone (backscattered imaging mode), and
(bottom) a porous rigid fibrous refractory insulation. The sandstone has a grain size of ~150 micron,
and the pore space has been impregnated with epoxy (black). There is no continuous path through the
pore phase in the imaging plane. The insulation is composed of ceramic fibers that occupy less than
~20% of the bulk volume, and that have a diameter of several microns. The image reveals the complex
geometry of both the solid and pore phases, but it is unfeasible to extract a quantitative description of
the three-dimensional microstructure. (Bottom image courtesy of NASA Ames Research Center,
Thermal Protection Materials and Systems Branch).
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Several innovative techniques have been developed by researchers to circumvent this
limitation. Pore casts have been formed by impregnating a rock with an acid-resistant epoxy
and then dissolving away the mineral matrix with acid (Pittman and Duschatko, 1970). The
pore casts can then be imaged using SEM, and while they provide useful insight (e.g.,
Bourbie and Zinszner, 1985; Myer et al., 1992; Zinszner et al., 1997), the stereoscopic
images are difficult to quantify. The same problem arises during a SEM study of the rough
or irregular surface of a porous material itself (Figure 7.1, Bottom). Difficulties may also be
encountered in impregnating and preserving the delicate pore structure of low porosity
samples (Lin et al., 1986).

Koplik et al. (1984) made sequential optical micrographs of a planar section after
incrementally removing as little as 1 pum of material by polishing. Lin et al. (1986) coupled
such serial sectioning with image processing techniques to generate 3D images of porosity
in a tight gas sand using conventional optical microscopy. Although effective, this technique
is time consuming and tedious. '

In the past ten or so years several new approaches have emerged for imaging the 3D
structure of porous media. X-ray computed tomography (CT), originally developed by the
medical community, can be used to measure porosity and to image porosity distribution in
bulk porous samples (e.g., Wellington and Vinegar, 1987). However, quantitative
measurements are complicated greatly by the need for beam hardening corrections that arise
due to the polychromatic nature of X-ray sources, and that are particularly challenging for
heterogeneous materials (Brown et al., 1993; Fredrich et al., 1994). Moreover, the typical
resolution of 0.1-1 mm is not sufficient for detailed characterization of most porous media of
interest in the geo- and materials- sciences. Browr et al. (1993) described a gamma ray CT
system that relied on a monochromatic source, thereby obviating the need for complicated
beam hardening relationships. However, the system resolution of 1 mm again indicates that
while conventional X-ray and gamma ray CT are useful techniques for studying transport in
fractured rock, they are not generally effective for characterizing porous media.

Nuclear magnetic resonance imaging (MRI), also developed primarily for medical
uses, has seen increasing application for characterizing the structure of porous materials
(Baldwin et al., 1996; Doughty and Tomutsa, 1997). However, while significantly higher
resolution than X-ray CT, the current maximum resolution of ~25 pm is not sufficient to
capture the narrow pore throats characteristic of most geologic media. For example, even in
porous sandstone such as Berea or Fontainebleau, pore throats as narrow as a few microns
are statistically significant (Doyen, 1988; Fredrich et al., 1993). Besides being thought to
control bulk transport properties such as permeability (e.g., Yale, 1985; Doyen, 1988;
Bernabe, 1991), the compliant pore throats also impact critically the evolution of
permeability with changes in pore or confining pressure (e.g., Walsh and Brace, 1984), an
application of considerable importance in the geosciences.

3D imaging of porous media has recently been accomplished using synchrotron
computed microtomography, with data at a resolution of 10 um reported by Spanne et al.
(1994), and data at a resolution of 7.5 um reported by both Auzerais et al. (1996) and Coker
et al. (1996). This resolution is only slightly greater than the resolution of 1-3 um that is

54



probably optimal for characterizing rocks such as sandstone. The tomographic
reconstruction process favors the use of cylindrical samples and to obtain the quoted
resolutions, the above workers used epoxy-impregnated samples ranging from 3 to 3.5 mm
in diameter. While increased resolution is desirable and potentially feasible (e.g., Coker et
- al., 1996), probably the most important factor limiting routine application of this technique
is facility access and the availability of beam-line time.

7.2  Principles of laser scanning confocal microscopy

The unique optical sectioning capability of LSCM results from fundamental
differences in image formation as compared to conventional light microscopy (LM). The
essential feature of LSCM (Figure 7.2) is that both illumination and detection are confined
to a single location on the specimen at any one time. This is achieved by the use of an
hourglass-shaped beam to illuminate only a small volume at any single time, and by the
insertion of a pinhole, or confocal, aperture in the returning optical path that blocks light
emanating from planes above and below the focal plane. Because the confocal aperture
admits light from only a specific plane of interest, thin optical sections can be resolved by
varying the depth of the focal plane in the sample. (Conversely, light from both above and
below the focal plane is admitted for image formation in conventional LM; this precludes
the possibility for depth discrimination and also results in significant image degradation.)
Because each point in the focal (image) plane is examined individually in LSCM (in the
absence of light scattered from neighboring points), the lateral (in-plane, or x-y) resolution is
greatly enhanced. (In conventional LM, an object is viewed under uniform illumination and
the point to point resolution is degraded by scattering). In LSCM, imaging of a plane (or
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Figure 7.2 Schematic illustrating the principle of laser scanning confocal microscopy.
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volume) is accomplished by scanning sequentially in a point to point manner. The scanning

of the laser in the horizontal (x-y) plane is typically accomplished with a set of

mirrors,whereas the vertical position of the stage (and therefore focal plane) is controlled

with a precision stepper motor. Finally, the use of a laser light source in confocal systems

further enhances resolution because lasers offer a high degree of monochromaticity, small v
divergence, high brightness, high degree of spatial and temporal coherence and plane

polarized emission (Gratton and vandeVen, 1990).

The resultant lateral resolution R is considerably improved over conventional LM,
and has been demonstrated (Brakenhoff et al., 1979, 1989; Gard, 1993) to essentially reach
the theoretical limit set by diffraction as defined by the Rayleigh criterion:

A
R=061— 1
61— (7.1)

A

where A is the wavelength and N, the numerical aperture of the objective.

The numerical aperture also determines the “thickness™ of the optical section, with
higher Ny yielding “thinner” optical sections. In reality, the optical section does not have a
discrete thickness, and is instead typically defined as the distance z; between the focus
positions at which the collected intensity decays to one-half the peak value. As discussed
above, the function of the confocal aperture is to exclude light emitted from above and
below the focus plane, and the opening of the confocal aperture thus influences directly the
vertical resolution of the optical section. The axial resolution is always less than the lateral
resolution, and in practice (Brakenhoff et al., 1979; Gard, 1993) the maximum axial
resolution (i.e., smallest z/2 or narrowest optical section) achieved in confocal systems
varies from ~3-10 times the theoretical lateral resolution.

With an objective of sufficiently high N4, sub-micron resolution in both the lateral
and axial planes can be achieved (Wilson, 1989). Table 7.1 reproduces the optical section
thickness experimentally measured by Gard (1993) on a confocal imaging system
manufactured by Bio-Rad (MRC-600) and fitted to a Nikon Optiphot for various openings
of the confocal aperture at A=514 nm. In the MRC-600, the “closed” position corresponds to
a minimum physical opening of 0.6 mm, whereas the “open™ setting corresponds to the
maximum opening of § mm.

Table 7.1. Lateral resolution R (Eq. 7.1) and optical section thickness at A=514 nm for various settings
of the confocal aperture

Obijective R (um) Section thickness (um)

M Ny Open 1/3 2/3 Closed
x10 0.45 0.71 38 25 13 7.0
x20 0.75 0.42 14 10 6.7 5.0
x40 1.0 0.31 6.1 4.2 2.6 1.4
x60 1.4 0.22 3.7 2.0 1.0 0.7
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7.3 Technical and practical considerations

Fredrich et al. (1993, 1995) and Montoto et al. (1995) described independently a
technique for applying LSCM to image the void space of porous media. Here we provide
additional technical details and discuss practical aspects important to consider for imaging
porous materials.

Our technique consists of saturating the pore space of a bulk sample with a very low
viscosity, slow-curing epoxy that is doped with a suitable fluorochrome. The wetting
characteristics of the sample are generally improved if the sample is first flushed with a
solvent such as acetone. Following vacuum drying of the sample, either vacuum
impregnation or pressure impregnation can be used to force the epoxy into the void space.

We are partial to a four-component epoxy attributed to Spurr (1969) that has a
viscosity of ~60 cps and an extended pot-life that approaches 24 hours (available from Ted
Pella, Inc., Redding CA). Thorough mixing of the four components and dissolution of the
fluorochrome (added as a powder) may take up to an hour, and air is typically incorporated
during the process. The extended pot-life thus allows sufficient time both for complete
degassing of the epoxy under vacuum prior to sample impregnation, and for the epoxy to
penetrate completely into the void space during vacuum- or pressure- impregnation of the
sample. Typically the sample is left overnight before curing at 60°C. Finally, the sample is
slabbed using a diamond wafering saw, mounted on a glass slide, and a polished planar
surface is prepared using standard abrasive polishing techniques, typically to a final finish
with 0.05 um alumina. The thickness is irrelevant. We have verified by direct observation
that this procedure is sufficient to ensure epoxy penetration into cracks and pores at the
resolution limit of the microscope (~200 nm) for one-inch diameter cores of geologic
samples ranging from sandstone to granite.

The choice of fluorochrome is significant (Wilson, 1990), and the absorption peak of
the fluorochrome should be well matched to the imaging wavelength. Confocal systems
most commonly come equipped with either an argon ion laser with lines at 488 nm and 514
nm, or a krypton-argon mixed gas laser with lines at 488 nm, 568 nm, and 647 nm. In our
work, we have used Rhodamine B (available from Polysciences Inc., Warrington PA), a
popular fluorochrome that dissolves well in epoxy, usually at a concentration of 1:200
(rhodamine: total epoxy components) by mass. Rhodamine B is relatively resistant to
photobleaching, and although it can be excited with the 514 nm line of an argon ion laser, it
is excited more effectively with the 568 nm line of a krypton-argon mixed gas laser. The
wider separation of lines possible with the krypton-argon mixed gas laser also facilitates
dual excitation imaging. For example, one might impregnate the pore space with two
different epoxies or resins that have been doped with different fluorochromes that are then
both excited and distinguished individually using the 488 nm and 568 nm lines
simultaneously.

During image collection, the fluorescence intensity as the laser is scanned point-to-
point across the field of view is recorded. We find that data acquired at 8-bit resolution (0-
255 gray levels) is sufficient for our interests. Besides the obvious influence of



fluorochrome concentration, there are three primary factors affecting the gray level, or
brightness, of an image: the opening of the confocal aperture, the laser intensity, and the
gain of the photomultiplier. The user must balance each of these simultaneously to arrive at
an optimal solution. For example, a larger confocal aperture yields a brighter image, because
a thicker optical section is being imaged. Increasing the laser intensity likewise increases
image brightness; however, fluorochromes generally saturate at low laser intensity, and a
high laser intensity also increases the risk of photobleaching (fading) of the fluorochrome.
Finally, image brightness is improved by increasing the gain of the photomultiplier, but this
also results in increased noise.

For the applications considered here there are two additional considerations. First, a
major interest is to exploit the capability for optical sectioning, and clearly the laser is
attenuated with depth due to both absorption and scattering by the material lying above the
focal plane, so that greater laser intensity leads to greater penetration depth. Second, we are
generally interested in minimizing the optical section thickness (Table 7.1) so that it is
comparable to the lateral resolution. (As we discuss later on, subsequent image processing is
facilitated if the data are collected to yield cubic voxels, a voxel being a three-dimensional
volume element, i.e., the volumetric equivalent to the two-dimensional pixel, or picture
element.)

For the fluorochrome concentrations used in our work, filtering the laser to only 10%
transmission results in observable photobleaching (using a krypton-argon mixed gas laser
with about S mW emitted power on the 568 nm line). However, 3% transmission results in
no noticeable bleaching, and we generally operate with the laser filtered to either 3% or 1%.
To compensate for the reduced intensity that results from the minimized opening of the
confocal aperture, we increase the gain of the photomultiplier, and to compensate for the
resultant increase in noise, we perform Kalman filtering during image collection so that each
image is integrated over multiple scans (usually three).

For optimal resolution and image accuracy, data in the image plane should ideally be
collected with a pixel size equal to one-half or less the theoretical lateral resolution imposed
by the objective NA (Inoue, 1986; Gard, 1993). In confocal imaging systems, the lateral
pixel dimension can be adjusted effortlessly using the microscope’s computerized control
software. (Physically, the angle at which the laser hits the sample is changed, so that the
illuminated area is reduced. For example, with a X60 objective, one can achieve a final
magnification equivalent to that achieved with a X100 objective using conventional light
microscopy). But as noted above, the vertical resolution of confocal imaging systems is
always less than the theoretical lateral resolution, and yet we would like to gather data such
that the axial voxel dimension is equal to the lateral dimension. In our work we have
generally sought to maximize the vertical resolution and accuracy.

In our experience, the vertical depths to which optical sectioning can be performed
are variable and a function of the imaged material. For example, penetration depths of
hundreds of microns (~250 mm) can be achieved with sandstone before significant image
degradation is apparent. However, we observed penetration depths of only tens of microns
(~50 um) during our imaging of very fine fibrous insulations where the typical fiber
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dimension is only slightly larger than the excitation wavelength of the light source (see next
section).

In comparison to the alternative porous media characterization methods discussed
earlier, the confocal imaging technique has several advantages. First, confocal imaging
currently offers the highest resolution of any of the 3D imaging methods available.
Furthermore, confocal systems are relatively inexpensive and therefore more widely
available. Sample preparation is simple, and the rapid data acquisition time and absence of
facility time restrictions expedites analysis of multiple samples and/or sample sub-volumes.
Finally, post-processing is relatively straightforward since image data are acquired on a
voxel-by-voxel basis, and because the data are intrinsically binary even in multiphase rocks.
However, a significant limitation of LSCM compared to other direct imaging techniques
such as MRI and synchrotron microtomography is the limit on the z-extent of the imaged
volume due to absorption and scattering of the laser by the material overlying the optical
plane.

7.4  Applications

To illustrate some of the unique capabilities of confocal imaging, here we show
several examples of its application. All of the data sets shown were collected with a Bio-Rad
MRC-600 confocal imaging system fitted to a Nikon Diaphot, with a 568 nm excitor filter,
YHS filter block, and with the opening of the confocal aperture at or very close to its
minimal setting (0.6 mm). Collection times for the volumetric data arrays were in all cases
<1 hour. The three-dimensional reconstructions were performed using Voxel View® 2.5
(Vital Images, Inc.) on a Silicon Graphics High Impact workstation.

Figure 7.3 shows two data sets acquired from a single Berea sandstone sample with
cubic voxels with dimension 1 um. The data clearly illustrate the fine structure and
complicated topology and geometry of the pore space. Particularly conspicuous are the thin
pore necks and throats connecting the larger (nodal) pore bodies.

In Figure 7.4 we show a confocal volumetric image (top) from a low-porosity
crystalline rock stressed under deviatoric all-compressive loading conditions in a triaxial
deformation apparatus at very high confining pressure. The lateral pixel dimension is 0.56
pm, and the spacing between sections is 0.2 pm. With the addition of the third dimension it
is clearly revealed that the micromechanical response is dominated by the growth of tensile
cracks, with a remarkably fine crack spacing that is highly variable locally. The true crack
geometry is difficult to infer from a single 2D image (bottom) because of the fine crack
apertures and extremely high crack density. Moreover, using conventional LM, the sub-
micron microcrack structure in the upper right would likely yield an undulatory texture
suggestive of crystalline plasticity as opposed to brittle crack growth (e.g., Tullis and Yund,
1992).

In Figure 7.5 we demonstrate application to a porous engineering material that forms
part of the Thermal Protection System (TPS) of hypersonic vehicles and spacecraft. Note
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Figure 7.3 3D volume renderings of pore space in Berea sandstone. The pore phase is opaque whereas
solid grains are translucent. Each i 1mage is 512 x 512 x 71 voxels, with an (x X y X z) image volume
equal t0 0.526 x 0.526 x 0.071 mm”>.

that in these reconstructions, the solid structure is shown opaque, whereas the pore space is
translucent. The insulation is made from a slurry of ceramic fibers that are pressed and then
fired to yield a rigid material (Figure 7.1, bottom) with a bulk porosity of >80% and a
complex, anisotropic microstructure (Marschall and Milos, 1997). Central to the
performance of TPS insulations is the maximization of their insulative properties with the
minimization of their density, and quantitative characterization of the microstructure is thus
critical for TPS modeling, development, and optimization. Because of the fine
microstructure (fiber diameter of a few microns with length of tens of microns), LSCM is
the only feasible technique by which to obtain 3D data that are useful for microscale
modeling of bulk thermal and physical properties, and for materials design. The 3D image
confocal data clearly reveal the complexity of the fibrous microstructure, and in this case,
the complex topology of the solid phase.
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Figure 7.4 (Top) 3D volume rendering of crack damage in a triaxially deformed low-porosity rock. The fine
crack network in the upper right corner would not be resolvable using conventional LM. The image is 768 x
512 x 71 voxels, with an image volume of 430 x 287 x 14.4 um>. (Bottom) A 2D image slice from the 3D data
set. The relationship of the cracks trending NE-SW to the grain boundary (running diagonally NW-SE) is
indisputable in the 3D image, but less so in the 2D slice.




Figure 7.5 3D volume renderings of the solid phase in two rigid ceramic insulations. Each image is 768 x 512
x 85 voxels, with cubic voxels with dimension 0.3 wm (230 x 154 x 25.2 um®). The two insulations are
composed of the same three fiber constituents, but have been pressed to different final densities. The insulation
shown at top has a bulk density of 0.35 g/cc and bulk porosity of 0.86, whereas that shown at bottom has a bulk
density of 0.19 g/cc and bulk porosity of 0.92.
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7.5 Image processing and segmentation

Extracting statistical descriptions of the microgeometry from the volumetric image data
requires segmenting the data on a voxel-by-voxel basis into solid or pore space. Quantitative
analysis is complicated mainly by the finite voxel resolution which results in some voxels
encompassing both solid and void space. This leads to a nonbinary data distribution so that

~ the fluorescence data are distributed across the available (8-bit) range of 0-255. This “partial
voxel” problem is intrinsic to all imaging and tomographic techniques. A related difficulty
caused by the finite voxel resolution is blurring of edges. To address these issues, we apply
two independent algorithms sequentially. The first algorithm, anisotropic diffusion,
“sharpens” the image, and the second algorithm, segmentation, determines the cut-off
between the void and solid phases. We have investigated several different approaches for
segmenting the image data.

7.5.1 Anisotropic diffusion

To account for the “blurring” of edges caused by the finite voxel resolution, the
image (Figure 7.6, top) is smoothed (Figure 7.6, bottom) by a finite difference implemention
of the anisotropic diffusion equation (Perona et al., 1994). The algorithm can be
implemented in two-dimensions, that is sequentially for each 2D image, or alternatively, in
three-dimensions for the full volumetric data set. Gaussian blurring is assumed and the
isotropic diffusion equation is generalized such that the diffusion coefficient is allowed to
vary in x-y-z space, hence its ability to distinguish edges marked by large gradients in grey
level from regions within object boundaries which contain small gradients in grey level (i.e.
pore or grain interiors). Algorithmically, smoothing within a region in preference to
smoothing across boundaries is achieved by setting the spatially variable diffusion
coefficient proportional to the local gradient in intensity. The algorithm, as currently
implemented, has two free parameters: the number of iterations for which each single image
is successively smoothed, and a second parameter that sets a scale for measuring the strength
of spatial changes in the diffusion coefficient. An example illustrating the application of this
algorithm to image data a porous ceramic insulation (see Figure 7.5) is shown in Figure 7.6.

7.5.2 Segmentation

As noted above, an advantage of the confocal imaging technique compared to x-ray
microtomography is that the acquired data are intrinsically binary in nature. That is, the pore
space fluoresces whereas the solid matrix does not, and thus the distribution of fluorescence
intensity in principle contains only two peaks, one corresponding to the void phase and a
second corresponding to the solid phase. (In contrast, because each phase is characterized by
a unique attenuation coefficient, volumetric image data acquired using x-ray
microtomograpy contain multiple peaks, one each for every mineral phase plus the void
phase.)
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Figure 7.6 Example illustrating application of diffusion algorithm to confocal image data. The top image
shows a raw 768 X 512 image, and below that is the same image after application of the diffusion algorithm
(400 iterations, length scale k=6).
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Figure 7.7 Example illustrating application of diffusion algorithm (400 iterations, length scale k=6) to
confocal image data and resultant enhancement of void and solid phase discrimination. The two plots
show histograms (dashed lines) of the inverted fluorescence intensity for the raw (top) and diffused

(bottom) images shown in Figure 7.6. Also shown (solid lines) is the variation in the calculated porosity
as a function of threshold.
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To facilitate efficient processing of multiple volumetric image data sets, it is
advantageous to automate the thresholding procedure used to determine the cut-off (i.e., 0-
255 in fluorescence intensity) separating the grain from the void phase. Although a simple
thresholding procedure may be defined such that voxels above (or below) a certain cut-off
are defined as void (or solid), this approach is generally considered inadequate. .

Instead, it is desirable to determine the cut-off based on some physical characteristic
of the fluorescence intensity distribution. One approach used in our work is based on a slice-
wise analysis of the histogram of fluorescence intensity (Figure 7.8) and identification of a
local minimum between the two peaks corresponding to the solid and void phase. Because
segmentation of each two-dimensional slice is performed individually, intrinsic changes in
the fluorescence intensity distribution caused by attenuation of the laser with depth can be
taken into account. An example illustrating how the calculated porosity varies with the
threshold is shown in Figure 7.8.

We have also implemented a segmentation algorithm based upon indicator kriging.
The method has similarities to the general class of spatial thresholding algorithms developed
by Mardia and Hainsworth (1988). However the Mardia-Hainsworth (MH) method relies on
the maximization of a score function which is parameterized by the unknown means,
standard deviations, and correlation functions of the populations in the image. Additionally,
the score function is based upon an underlying assumption of Gaussian statistics. The
indicator kriging algorithm is a non-parametric formulation, requiring only the estimation of
the spatial covariance function for an indicator variable. In practice, information of the
covariance function only over a limited range of (short) length scales is required.

Implementation of the kriging method requires a-priori population identification of
some percentage of the image. In practice this is not difficult to achieve as, based upon the
flourescence intensity histogram, it is (usually) possible to identify the population type of
those voxels lying interior to objects (i.e. non-edge voxels) in the image with negligible
identification error. Thus a first pass over the image produces population assignments for
that fraction of the (in general, non-edge) voxels whose population type is, with negligible
error, determinable solely from flourescence intensity value. Minimum variance estimation
(kriging) is then used to complete the segmentation for the remaining voxels in the image.

The kriging-based segmentation algorithm has several advantages over the local
minima-based algorithm. First the kriging algorithm requires a fixed number (seven) of
passes through the data set, whereas the iterative diffusion alogrithm requires » passes,
where 7 is set by the user. Typically n is on the order of 100. Secondly, CPU efficient
implementation of the kriging algorithm can be achieved using total storage of N, where N is
the amount of storage necessary to store a single copy of the image. CPU efficient
implementation of the diffusion algorithm requires storage of at least 2 N. This is especially -
significant for 3D segmentation.

As slicewise segmentation does not take into account local variation in the third
direction, it is intrinsically poorer than volume segmentation. Consequently our efforts have
been directed towards three-dimensional segmentation, which is more memory intensive
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than segmentation of a 2D image. For images that are too large to segment as a single
volume, the image can be divided into overlapping sub-volumes. If the overlap region is
large enough, the segmented image obtained by taking the union of the sub-volumes after
discarding the overlapping regions is equivalent to that obtained by performing a single
volume segmentation.

7.6 n-point correlation functions

Once the data have been segmented (i.e., binarized), first-order descriptions of the
microgeometry, that is, the porosity ¢ and specific surface area S, can be calculated using
the n-point probability functions (e.g., Berryman, 1985). The one-point probability function
S; is the probability that a voxel is located in the void phase. It is thus equal to the volume
fraction of the void phase (¢), and can be determined by a straight voxel count. The two-
point correlation function S is the probability that any two points separated by a distance r
lie in the same phase:

S, ={f(x)f(x+r)) (7.2)

where the brackets denote volume averaging over the position vector x and where the
function f is equal to O if x lies in the void phase and 1 if x lies in the solid phase. S; has the
important attributes:

5,(0)=S8,=¢ (7.3)
d 1
— 520 = 254 (7.4)

and can be calculated in 1D, 2D, or 3D. Thus, variation in S, along the primary x, y, or z
axes can be used to test for isotropy, or conversely, to quantify anisotropy. Finally, the shape
of the function S, defines a characteristic length of the microstructure (the correlation
length).

7.7 Medial axis analysis

Geometric analysis of a three-dimensional, irregularly shaped object such as the void
phase of a porous medium is difficult. Skeletonization (or medial axis) algorithms (Lee et
al., 1994) provide a lower dimensional representation of the object which is easier to
analyze than the original object (Thovert et al., 1993, Lindquist et al., 1996). Unless the




original object has embedded cavities, its skeleton is a one-dimensional object (union of

curves) in R°. The skeleton has a strict geometrical relationship to the object’s surface and

preserves important geometric properties of the object. Thus various quantitative measures

of the geometric structure can be obtained directly from the object’s skeleton. Additionally,

the medial axis can be utilized as an embedded search structure to find specific sites in the ,
object. An example of the analysis for a confocal data set is shown in Figure 7.9.

With two minor changes, we employ the skeletonization algorithm of Lee et al.
(1994). The first is to implement conditions at the boundary of the imaged region that reflect
the fact that the shape of the object is unknown beyond the boundaries of the imaged region.
The second is a reorganization of the order in which the (current) set of surface voxels of the
eroded object are treated in order to avoid the systematic north-south, east-west, up-down
biasing present in the original algorithm.

As it is defined relative to the object’s surface, construction of the medial axis is
sensitive to surface noise; different algorithms have different levels of sensitivity. Consider
the problem of identifying the void-grain surface in a digitized image of porous (two-phase)
medium. Surface noise occurs in two forms, irregularities in an otherwise smooth digitized
void-grain surface, and disconnected clusters of void or grain voxels that occur due to voxel
misidentification. In constructing the medial axis of the void phase, irregularities in the void-
grain surface can have the same effect as ‘dead-end pores’, producing extraneous ‘branches’
on the void medial axis. These extraneous branches are generally identified and removed
before the medial axis is used to characterize the object. We employ a user set cutoff on the
length of such branches to distinguish between true dead end pore paths and those produced
by surface irregularities. If only that portion of the void space that supports fluid flow is to
be investigated, all dead-end branches can be trimmed from the void space axis.

Isolated clusters of void voxels appear as disconnected ‘objects’ each with its own
skeleton piece. Since isolated regions of void phase may indeed be physical (in the case of
laser scanning confocal microscopy such physical isolation is due to boundary effects), it is
more difficult to distinguish between small isolated void space clusters which are physical
and those which are artifacts. Since the probability of misidentifying a cluster of voxels falls
rapidly with the increase in number of voxels in the cluster, we employ a size filter; all
isolated void clusters less than a user defined size limit are re-identified as grain phase.

Isolated clusters of grain voxels appear as ‘cavities’ within the void space.
Construction of the medial axis for the void space will result in a skeleton that is not reduced
to a union of one dimensional curves but contains segments of surfaces that surround each
such embedded cavity. Except at boundaries of the imaged domain such isolated grain
voxels are clearly unphysical; we identify all such cases and re-identify the affected voxels
as void space. If an edge of the imaged region cuts through a grain, the imaged portion of v
the grain may appear to be isolated from the rest of the imaged grain phase.

Since the information on how this boundary grain segment connects is lost, the

medial axis constructed for the void phase will contain a segment of a surface around the
inward projecting segment. Since such surface segments in the medial axis are a nuisance to
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deal with algorithmically, we identify all such projections and ‘remove’ them by re-
identifying their voxels as void voxels. This produces error in the medial axis at the edges of
the imaged volume in proportion to the ratio of boundary area to volume of the imaged
region, but has the advantage of producing a medial axis for the void space that is only a
union of 1 dimensional curves.

As discussed above, the medial axis requires trimming as dangling ends (dead end
paths) can correspond either to spurious elements or to non-percolating components of the
pore space. Distinguishing between the two types of dead end paths is very difficult.
Consequently we generally trim all dead end paths from the medial axis structure; paths that
exit through the boundary of the imaged area are not considered dead ends and are not
deleted. What remains is the percolating backbone of the pore space.

AR
RN
N
X

Figure 7.8 Schematic illustrating a single nodal pore body that due to its irregular geometrical shape,
has a medial axis reduction containing two, rather than one, vertices.

The medial axis can be viewed as a graph of edges and vertices. Unfortunately, there
is not quite a 1-to-1 correspondence between the vertices and edges on the skeleton and the
nodal pores and pore pathways in the image. While every pore pathway has a corresponding
edge in the skeleton, not every edge has a corresponding pathway. Similarly, while some
vertex in the skeleton represents each nodal pore, several vertices may occur in the same
nodal pore. This problem occurs within the nodal pores and is illustrated in Figure 7.8 that
shows schematically in two dimensions a nodal pore that has a coordination number of four.
Rather than containing a single vertex with four edges, the medial axis skeleton of the nodal
pore consists of two coordination number three vertices joined by a common edge of length
L. In the usual view of the pore space this edge does not correspond to a pore pathway but is
internal to a nodal pore.

We account for this problem in the following manner. In constructing the medial axis
of an object the shortest distance between any medial axis voxel and the object’s surface (in
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this case the pore-grain surface) is computed and stored. Consider an edge, length L, which
joins two vertices, V; and V». Let L; denote the shortest distance from V; to the pore-grain
surface.

Vertex-pair merge condition: .
If L <max (L1, L,) than the edge and the two vertices it joins are considered to be a single
unit, namely a vertex V.

Iterative vertex merge:

The vertex-pair merge condition is iterated in the following manner:

if the vertex pairs V; and V; are to be merged and V, are V; are also to be merged, then the
three vertices and the two edges involved are all considered to belong to a single vertex unit.

The vertex-pair merge condition has physical interpretation. The distance L; is the
radius of the largest sphere, centered at vertex V;, that fits completely inside the pore space
surrounding L;. It is thus a measure of the smallest size of the nodal pore associated with
vertex V; . The vertex-pair merge condition thus states that if another vertex lies within this
sphere, it and the edge joining the two must be considered part of the same nodal pore.
Iterating the condition allows for the possibility that a nodal pore may, in fact, have more
than two vertices lying within it.

When statistics are gathered from the medial axis, each such merged vertex unit
identified is treated as a single object. Thus in computing a coordination number, this
section of the medial axis is treated as a vertex of coordination number 4. Further, in
computing the distribution of edge lengths of the medial axis, the edge joining V; and V; is
ignored. After use of the vertex merge conditions, the edges and (possibly merged) vertices
of the medial axis are now in 1-1 correspondence with the pore pathways and nodal pores of
the image.

Note that the vertex merge conditions provide protection against finite resolution
effects. It is entirely possible that, imaged under coarser resolution (larger voxel size), the
medial axis for the nodal pore in Fig. 7.8 would appear as a single vertex with coordination
number 4. In both cases (either the coarser resolution or the finer resolution sketched in Fig.
7.8, the statistics gathered from the medial axis after the vertex merge condition identify
correctly a nodal pore of coordination number 4.

7.8 Application to geometrically complex porous media

As an illustration of the reduction of the complex pore space of geologic mediato a r
medial axis, we show in Figure 7.9 a three dimensional rendering of the pore volume for
Berea sandstone, and the corresponding medial axis calculated for this pore volume. Shown
in Figure 7.10 is the corresponding two-point correlation function for this volumetric data
set that defines the porosity, specific surface area, and characteristic length. The sets of
surface points removed during each iteration of the thinning procedure to derive the medial
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Figure 7.9 (Top) 3D volume rendering of pore space in Berea sandstone. The data set is 768 x 512 x 101

u voxels in size, with cubic voxels of dimension 1 um. (Bottom) The corresponding medial axis calculated for
the pore phase. The medial axis encodes the distance to the pore-solid interface, so that the geometry of the
original structure is retained, and consists of a series of links (or paths) that connect and/or fork at branch
points (or clusters). For example, consider a regular 2D cubic network consisting of nodes and bonds; in a
medial axis representation, the nodes would correspond to branch clusters and the bonds to paths. In like
manner, a 3D geometrically complex porous medium reduces to a topologically complex medial axis that
consists of an irregular network of pore paths that interconnect at branch clusters.
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Figure 7.10 Two-point correlation function S; for the data set shown in Figure 7.9. The porosity (equal to the
y-intercept) is 28%, and the specific surface area (inversely proportional to the slope at the origin) is 23
mm?*mm’. The upper and lower curves represent one standard deviation. The point at which S, reaches an
asymptotic values defines a characteristic length for the microstructure (~ 250 pm).

axis contain information regarding the pore size (or grain size if the object being thinned is
the solid phase of the medium rather than the void phase) distribution. Likewise, the medial
axis itself can be probed for a variety of statistical metrics, including, coordination, pore
path lengths, minimum throat size, tortuosity, etc.

As an example of our results, Fredrich and Lindquist (1997) applied medial axis
analysis to 3D confocal image data for Fontainebleau sandstone, and showed quantitatively
that the internal connectivity of the pore space undergoes drastic evolution with decreasing
porosity. Image data were acquired for four samples of Fontainebleau sandstone with
porosities of 21%, 16%, 10%, and 4%, and following segmentation, medial axes were
calculated for the pore phase for each of the image volumes. Figure 7.11 (top) shows the
distribution of the number of discrete branches of the medial axis emanating from clusters,
which are branch points in the medial axis. The pore space of each of the four samples is
dominated by a coordination number of 3. However, when the density of clusters, which is
the number of intersections in the pore network per unit volume, is considered, it is seen that
the lowest porosity sample F1 contains a low density of pore space interconnections in
comparison to the three higher porosity samples (Figure 7.11, middle).

Finally, the medial axis was probed to examine statistically the distribution of medial
axis segments that are internally disconnected within the imaged volume (Figure 7.11,
bottom). The latter shows that the three higher porosity samples each contain a single medial
axis segment which in size dwarfs all other segments within the imaged volume (this single
largest segment corresponds to more than 99% of the pore space in the imaged volume).
However, the largest segment of the medial axis in the low porosity sample corresponds to
only ~25% of the pore space. Furthermore, this largest medial axis segment contains about
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Figure 7.11 (Top) Cluster coordination for branch points in pore medial axis for Fontainebleau
sandstone with porosities as indicated. (Middle) Density of pore medial axis clusters. (Bottom) Number
of paths and branch clusters for disconnected medial axis.
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an order of magnitude fewer branch clusters and pore paths than the largest medial axes
segments in the three higher porosity samples.

As discussed by Zhu et al. (1995), the sample with 4% porosity is in the regime where
the power law relationship (with an exponent ~3) between porosity and permeability is no
longer obeyed, and instead permeability undergoes an accelerating decline with porosity -
reduction (Fredrich et al., 1995). Furthermore, Fredrich et al. (1993) showed that the
Kozeny-Carman equivalent channel model (Walsh and Brace, 1984) over-predicts the bulk
permeability of this sample by nearly two orders of magnitude, implying that the pore phase
does not uniformly accommodate the bulk fluid flow. In turn, the medial axis analysis
reveals quantitatively the decreased connectivity of the pore space, and suggests that the
accelerated permeability reduction is due to the resultant increased tortuousity of the fluid
flow paths. '

7.9 Summary

Understanding the physics of microscale flow processes is central to many
geoscience, chemical, materials, and thermal engineering applications. Recent developments
in three-dimensional imaging offer an unprecendented opportunity to determine the
microgeometry of porous media at high resolution. In this chapter we have summarized the
technical and practical considerations for applying laser scanning confocal microscopy to
porous media, and demonstrated its application to several geologic and engineering
materials. Although confocal microcopy has limited ability to penetrate solid materials, it is
nevertheless the highest resolution technique currently available for three-dimensional
imaging. Other benefits include the wide availability of the technology, and the relatively
simple sample preparation requirements. The size of the volumetric data sets attainable
using confocal microscopy are in any event of sufficient size (~50 million voxels) that they
challenge significantly the current capabilities of high-end workstations.

We believe that besides statistical characterization of the three-dimensional geometry
of the microstructure, fundamental understanding of flow processes in complex porous
media also requires study of the geometry of the flow itself. Although MRI has been applied
successfully to image flow (local fluid velocity) in packed beds (Lebon et al., 1996a,b), the
current resolution of MRI is typically not sufficient for imaging transport processes in
complex geologic media.

Numerical simulation is the most promising technique at this time, and to this end,
we describe in the next section the application of Lattice Boltzmann Methods for modeling
heat and mass transport processes in these data sets. The simulations are used to predict
macroscopic properties such as permeability, and volume visualization software is used to
study the three-dimensional flow geometry in the complex geometric domains characteristic
of porous geomaterials. Laboratory measurements of bulk flow properties are also
performed for direct comparison with the numerically computed flow properties.
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8 Application to microscale flows in complex porous media

In this section we describe how three dimensional imaging techniques (Section 7),
numerical methods for simulating flow and transport (Sections 1 and 2), and emergent
computational architectures (Section 3) are combined to enable fundamental studies of
microscale fluid flow in complex porous media.

The microscale flow characteristics of most porous geologic and engineering are not
spatially uniform. In particular, the heterogeneous nature of the pore space may cause the
flow to be non-uniformly carried. That is, the flow is affected critically by the local
geometry and topology as typically there is a distribution of nodal pore and throat sizes, with
variable connectivity and coordination (David, 1993; Fredrich et al., 1993). For example,
using two-dimensional network models David (1993) found that for heterogeneous pore
systems, only a small number of preferential paths carry the majority of the fluid flow.
Earlier, Agrawal (1991) found indirectly a similar result by artificially obstructing the first
percolating path in Berea sandstone, and then measuring the resultant effect on the bulk
permeability. For coupled multi-phase or multi-physics processes, the geometry of the flow
likely becomes even more complex and potentially significant to the macroscopic behavior.

To capture and understand how the microstructural geometry affects the creation of
preferential paths and their topology, high-resolution reconstructions of pore geometry are
obtained using laser scanning confocal microscopy as described in Section 7. The high-
resolution volumetric image data of geologic and engineering materials obtained using laser
scanning confocal microscopy reduce sampling artifacts to sub-micron features, and
simultaneously capture multiple grain length scales. However, the volumetric image data
sets are extremely large, and as a result, there are significant computational challenges to
utilize this information effectively. The principal problem lies in the complexity of the
geometry and the retention of this detailed structure in subsequent numerical analyses.

The geometric complexity (quantity of detail) oftentime precludes the use of most
numerical techniques, such as finite element (FEM), finite difference (FD), molecular
dynamics (MD), or network models (NM). FEM is constrained by the quantity of storage
required to discretise consistently the pore space (in the mathematical sense) and retain
geometric detail. Smoothing (averaging) to achieve representative continuum elements (and
numerical tractability) may erase the very features that dictate the evolution of the processes
of interest. This is particularly true for multi-physics systems. While similar numerically to
LB methods both in the manner in which the domain is discretised and the explicit
numerical formulation, FD methods do not provide the mathematical framework in which to
develop the multi-physics that are sought ultimately. Discretisation using MD requires
meshing the pore geometry in the same manner as FEM, and then discretizing the fluid
phase from a molecular length scale up to multiple pore lengths. The storage requirement
alone is on the order of a terabyte of RAM per cubic micron of pore space. Using NM, it is
possible to discretise the domain in a manner that retains the topology, but idealizes the
geometry. Thus, while NM is a powerful tool for the qualitative study of flow paths in
complex networks, it is not well suited for quantitative analysis of real systems.
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Lattice Boltzmann (LB) methods are ideally suited for modeling phenomena at time
and length scales intermediate to the continuum (macro) and molecular dynamics (micro)
scales, that is, at the mesoscopic scale. LB methods do not suffer as severely from the
discretisation constraints of FEM, but still require some ingenuity to be applied to the scale
of real problems such as those considered here. To appreciate the computational obstacles
involved, consider a typical data set obtained using confocal microscopy that consists of 768
X 512 x 128 voxels (=50 million sites). In the standard LB formulation a voxel maps to a .
single lattice site, and to model the physics of interest, each site requires =100 bytes of state
information. So while the meshing can be automated as a 1:1 mapping, a total of =5
gigabytes of memory is required. Because of the numerically explicit formulation of LB, an
additional constraint is introduced in that state information from each site must be
transmitted to every other site before a steady state flow can be reached. For a data set of the
size mentioned, it is not unusual to require of order 10%-10° iterations. On a modest scientific
workstation ~0.25 x 10° sites per second might be processed, thus a data set of the above
size would require weeks to months of CPU time. Of course this assumes that the data set
can be represented in memory in the first place; in reality these spatio-temporal requirements
render this technique unfeasible for application on a single workstation.

We overcome these constraints through two distinct but complementary innovations
in the treatment of large data sets. The first is the derivation of a compression algorithm (a
stencil of the pore space) to represent the geometry and simultaneously reduce the compute
time. Further, because LB methods are numerically explicit as formulated, this characteristic
can be exploited through a mapping of the numerical domain to distributed computing
architectures. To further advantage this aspect, we designed a cost effective hardware
platform to store and compute tractably systems of this size. Combined, the two techniques
permit the simulation of transport processes in large data sets over representative length and
time scales.

Here we describe the application of these techniques to perform single-phase flow
simulations in volumetric image data sets obtained from cores of Berea sandstone using
confocal microscopy. Simulations are performed using both the purpose-built distributed
processor system described in Section 3 and the Sandia/Intel ASCI Red massively parallel
supercomputer.

8.1 Lattice Boltzmann method

As described in Sections ! and 2, LB methods are kinetic theory based techniques for
simulating fluid flow that, for appropriate choices of energy distribution at the microscale,
recover the Navier-Stokes and advection-diffusion equations at the macroscale. The
microscale (in this model) consists of populations of fluid particles, #;, associated with each
site of a regular grid or lattice. The sites are connected with their neighbors through a set of
prescribed numerical links that describe the paths for particle migration through the system.
The number and spatial orientation of these links are defined by constraints on the symmetry
and isotropy imposed by the underlying physics being modeled. In this work we use the
D3Q19 lattice (Qian, 1992).

76




The state of each site, i.e. energy distribution, evolves according to the Boltzmann
equation:

ni(x_+ei,t+1)=Q(ni(x,t))+ni(x,t) (8.1)

where x denotes a position in the lattice, €; is the direction of link i, ¢ is time, and Q is a
Boltzmann collision operator. Eq. 8.1 can be decomposed into two parts, a collision term
and a streaming (translation) term (Fig. 2.1). The collision term seeks to relax the local
population of particles to equilibrium, and the streaming term migrates any net imbalance in
the population to neighbouring sites along the set of prescribed links. Repeating these two
steps over time allows the global system to evolve to an equilibrium or steady state
condition.

In practice we use the linearised Bhatnagar, Gross and Krook (LBGK) form of the
Boltzmann equation (Bhatnagar et al., 1954):

n,x,t+)=n(x1)+ %[nf" x,2)—n,(x,0)]+F,;(x,1) (8.2)

As before r; describes the particle populations at each site Z, but the collision operator 2 has
been reduced to a linear expression in terms of the current distribution »; and a prescribed
equilibrium distribution n;*%. This linearization is described as a single time-step relaxation
where 7 is the critical time step. In this expression we also show the term F; , that describes a
forcing component used to drive the flow, e.g. gravity. Choosing a suitable equilibrium
distribution, n*?, allows one to recover Navier-Stokes flow at the macroscale, with

stability over a range of Reynolds Number, Re, that bounds the flow regimes of interest in
this work.

8.2 Distributed Implementation

The porous media simulation framework is shown schematically in the form of a
pipeline in Figure 8.1. The pipeline starts with three-dimensional volumetric image data
acquired using confocal microscopy (LSCM), statistical analysis and characterization, and
the geometric reconstruction of the porous medium as a segmented (binary) three-
dimensional image. The reconstructed volume forms the input to the flow simulation proper,
that is, the sites describing the solid and void phases that together define the geometry of the
connected pore space. These data are mapped onto the lattice in one of two ways.

In the traditional method, each binary voxel from the imaged domain is mapped onto
a fully defined lattice site. Each voxel designates whether a site is treated as solid or void
(containing fluid), but regardless of the phase, each site reserves sufficient memory to
represent the fluid state. As the lattice is fully populated (defined), the binary data act as a
mask designating whether the fluid physics at that site is included in the overall system and
needs to be updated. So while this 1:1 mapping is straightforward and creates automatically
a mesh of the geometry, it is very wasteful in terms of storage. Consider that the porosity of
engineering materials is rarely >70% and in the case of hydrocarbon-bearing sandstones,
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Figure 8.1 Schematic illustrating coupled experimental-computational pipeline for studying flow in
complex porous media.

more typically ~5-35%. That is, in many cases the majority of the domain may consist of
solid material that does not take part in the flow simulation. Yet the traditional
implementation reserves memory to represent the state of the fluid at every site. Thus, for
sandstone with porosity of say 20%, this approach wastes 80% of allocated storage.

A second mapping approach that we refer to as stenciling was developed specifically
to address this problem (Figure 2.2). Although more sophisticated, it nonetheless generates
automatically a mesh consistent with the traditional approach. The essence of our method is
to use the binary data set as a stencil for memory allocation and layout, rather than as a
simple mask. That is, lattice memory is allocated only for sites that correspond to the void
phase. Additionally, the Jocation of the memory associated with each void voxel is encoded
and stored in a corresponding location in a 3D image map on a site-by-site basis. With this
approach, the algorithm traverses the image, and only when a site corresponding to void is
encountered are the contents of the associated lattice memory accessed to determine the
physics at that location. Thus, for Berea sandstone, this method enables the storage of
models up to 5 times larger with the same memory resource as the traditional approach. In
the general case, the increase is equal to 1/¢ where ¢ is porosity. Because the stencil
representation retains the surface description of the solid phase, it does not preclude
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Figure 8.2 Example illustrating the decomposition of a two dimensional geometric domain into four
subdomains, and showing the communication between neighboring subdomains that is accomplished
using message passing. In the 3D case, each subdomain also communicates along two shared
boundaries that would lie in the plane of the image. The implementation of periodic flow boundary
conditions on the boundary of the entire geometric domain is illustrated by the large arrows outside of
the image area.

application to coupled processes such as dispersion or multiphase flow. Multi-physics flows
involving the solid phase (e.g., reactive flows such as precipitation/dissolution) clearly
require the solid geometry to be mapped explicitly.

For the distributed implementation we also developed algorithms to decompose the
geometric domain into subdomains such that each subdomain is computed as a separate
process. The decomposition was facilitated through use of a technique known as
message passing (MPI Forum, 1995). Specifically, we use the MPICH library
implementation (Gropp and Lusk, 1997) of the de facto standard MPI to ensure portability to
multiple hardware platforms and vendors. Message passing is a programming method that
allows multiple processes to communicate with one another (whether they are running on
the same processor, or on another processor connected over a network), in a way that makes
the computation appear contiguous at the shared boundaries of the subdomains. A
decomposition and communication pattern is shown schematically for a two dimensional
domain in Figure 8.2. The arrows connecting the common internal boundaries of the
decomposed domain indicate how neighbouring processes communicate. The larger arrows
connecting the outer boundaries of the domain indicate the communication pattern for
periodic flow conditions as described in the next section.
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In Figure 8.1 we show the message passing component of the pipeline as a parallel
task to indicate that the simulation framework is independent of the underlying computer
architecture. Message-passing specific operations are performed only if the system
is being run on a distributed or parallel computer.

To initialize the system, copies of the shared boundary geometry and stencil
information are sent to neighboring processes (subdomains). The state of the fluid sites on
the shared boundaries are also initialized by way of message passing so that consistent
information is used to perform the computation of the flow physics.

The flow field is calculated iteratively, with the update loop treated as two distinct
phases. First the local physics is calculated for each fluid site using the collision term of Eq.
8.2. This establishes a new distribution of particles on each of the links. The second phase is
to translate (or stream) the contents of the links to the nearest-neighbor lattice sites. This
numerical communication extends to the logical boundaries of the subdomain, at which
point an additional message passing step is performed to transmit this information to the
other subdomains.

The system is computed in this way until a steady state condition is reached. This is
typically recognized as a stabilization of the local velocity and the decay of long range
fluctuations over the domain. At this point the state of the system is analyzed for the
physical phenomena of interest, e.g. intrinsic permeability. An advantage of the coupled
experimental-simulation technique is manifest in the form of the rich data set that is derived.
For example, it is possible to resolve the flow characteristics at the sub-pore scale. Finally,
insight can be gained into the evolution and detailed behavior of the flow fields through use
of three dimensional visualization.

8.3 Flow boundary conditions

Two general forms of flow boundary conditions may be applied. The first defines
sources and sinks at the boundaries to maintain a constant flow rate through the system.
Realistic inflow conditions require a steady-state but spatially non-uniform velocity profile
to match the effects of flow emanating from and being absorbed by the neighboring pore
space. In general it is not possible to define consistently this condition without detailed a
priori knowledge of the flow conditions at the boundaries.

In the second form, the flow is defined to be periodic at the boundaries. That is, as shown
schematically in Figure. 8.2, the flow exiting the system is wrapped around to the ingress;
however, this approach is not locally consistent at the boundaries because of the inevitable
geometrical mismatch. To address this issue, the geometry is explicitly mirrored in the flow
direction (doubling the x extent of the domain). Mirroring can also be introduced in the other
two directions, either explicitly as in the flow direction, or, alternatively, by imposing
symmetry boundary conditions. In the absence of a means to define consistent inlet-outlet or
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source-sink profiles, we have implemented the latter approach. (Note that symmetry and
mirroring are not shown in Figs. 8.1.)

The remaining component of the LB implementation is the definition of a no-slip
boundary condition to describe how fluid particles to describe how fluid particles behave in
the presence of solid obstacles (e.g., at pore walls). For simplicity the “bounce-back”
boundary condition is used. This rule was derived originally for Lattice Gas Automata
(Cornubert et al., 1991) and is applied in a continuum form for LB. The premise is to reflect
fluid particles impinging upon a solid wall (Fig. 2.1). While this is sufficient for modeling
single-phase flow, a more complex treatment is necessary for modeling dispersion or
multiphase flow (e.g., Noble et al., 1995, Chen et al., 1996). (For example, for dispersion,
the carrier fluid is not characterized accurately in the boundary layer between the solid and
void phase, leading to physical anomolies in solute transport.)

8.4 Distributed computing

As discussed above, the computation is intense and it is not possible to implement
problems of the size considered here, 768 x 512 x 128 (=50 million sites), on a standard
scientific workstation. While supercomputing resources are available, regular and
uninterrupted access to such resources is not typical.

To address the latter aspect, we used commercial off-the-shelf components to
construct a 32-node distributed computer that is capable of 6 Gflops, with 8G of RAM (see
Section 3). Using the cluster, we can achieve single-phase flow simulations for =100
million sites for representative porosities. However, extending the size of the data set
further, or examining scaling properties still requires use of supercomputing resources. We
have used 1024 nodes of the ASCI Red (Teraflops) supercomputer to perform single phase
flow calculations in a data set sized (768 X 2) X (512 x 2) x (128 x 2) = 0.25 billion sites.

8.5 Application

We have applied our experimental-computational framework to model single phase
fluid flow in three dimensional reconstructed volumes of Berea sandstone. Simulations have
been performed for several data sets; however, here we show results only for the data set
shown in Figure 7.9.

The intrinsic permeability k can be calculated based on the standard Darcy
formulation as indicated in Eqgs. 8.3 and 8.4, where Up,, is the average fluid velocity over a
cross-sectional area A,, orthogonal to the pressure difference AP driving the flow, | is the
prescribed fluid viscosity, and Q is the volumetric flow rate through the medium. To drive
the flow under gravity conditions one can define an equivalence between an applied body
force F, and the pressure difference experienced using Eq. 8.5. Substituting in Eq. 8.3 yields
Eq. 8.6 that is used directly to derive &:
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Figure 8.3 Plot showing the evolution to a steady state permeability during the simulation. The
simulation is for the reconstructed volume shown in the following figure (Figure 8.4, Top).
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Note that the flow is being driven in the x-direction that corresponds to the longest
dimension in our model (i.e., 768 voxels as shown in Figure 7.8).

The results from three simulations are shown in Figure 8.3 and 8.4. The lowermost
curve in Figure 8.3 corresponds to the simulation on the basic reconstructed volume shown
in Figure 8.4 (top). The uppermost curve in Figure 8.3 corresponds to a simulation where the
volumetric domain has been reflected about the y-z plane in the direction of the flow (i.e.,
the x-axis). The middle curve in Figure 8.3 is for a simulation where the volumetric domain
has been reflected about the x-y plane, that is, doubling the minimum dimension of the
model in the z-direction.
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Figure 8.4 (Top) Volume rendering of the pore space in Berea sandstone used in the simulation with results
shown in Figure 8.3. The image size is 768 x 512 x 128, with cubic voxels of dimension 1 pm. (Bottom) Three
dimensional rendering of the steady state flow field. The red color corresponds to the highest velocities, and
blue to the lowest velocities. Shown in green are intermediate velocities.
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Figure 8.4 (bottom) shows a three-dimensional rendering of the magnitude of the
velocity field for the basic reconstructed volume (corresponding to the lowermost curve in
Figure 8.3). The velocities have been thresholding at three levels. The complexity of flow
patterns that arise in 3D “real” geometries is captured clearly: the simulation reveals
accelerated flow in localized areas within pore bodies and through some pore throats, as well -
as the presence of low-velocity or “dead” regions within pore bodies where the flow is more
than 10x slower than that observed in high velocity zones. .

The range of k exhibited is approximately a factor of 3-5x the experimentally
determined intrinisic permeability of Berea sandstone. Because the data sets used
corresponds to a original imaged volume of 0.8 mm X 0.5 mm X 0.1 mm, one may expect
the numerically derived permeability to be higher than that measured in laboratory tests
conducted on core samples (typical cylindrical dimensions of 25.4 mm X 50.8 mm). In other
words, there may be artificially connected flow paths that are either unconnected or else may
not contribute to bulk flow in a larger sample, i.e. the image volume size may not capture all
of the representative length scales.

These issues are being addressed by gathering multiple sample volumes from a
single sample, by statistical analyses of the image data, and by numerical simulations on the
imaged volumes. In addition, we are performing simulations on imaged volumes obtained
from multiple samples of Fontainebleau sandstone with porosities that vary from 5% to 25%
to compare more directly the computed versus simulated permeabilities.

8.6 Discussion

We have created a coupled experimental-computational framework to integrate 3D
imaging with numerical flow simulation techniques using approaches conducive to
distributed computing. Our preliminary simulations examine single-phase flow phenomena
in Berea sandstone, and our results, including numerical estimates of bulk permeability, are
encouraging. We achieve the tractable computation of large 3D data sets through
development of new storage algorithms to represent complex geometries, in addition to
development of a distributed hardware platform. In combination, these advances have
dramatically increased the time and length scales over which transport processes can be
simulated using commodity computer components readily available at the single-
investigator level.

The complexity of flow patterns that we observe for single-phase flow simulations in
“real” porous materials demonstrates clearly the power of the LB simulation method. The
simulations reveal the portions of the void space that are most readily accessed during
macroscopic fluid flow, and can be used to investigate the relationship between the
microcale geometry and the macroscopic flow properties. Further, ability to visualize the
flow field has great utility for studying dispersion in porous media. Likewise, we anticipate »
great utility in addressing multiphase immiscible flows, where using the methods developed
here can be used to directly determine the efficiency of an invading fluid in displacing an
original pore fluid, for example, during simulated enhanced oil recovery (EOR) processes.
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9 Summary

‘The purpose of the work described here was the development of a lattice Boltzmann
simulation capability. This LDRD project has demonstrated and validated its application to
classic engineering flows such as three-dimensional duct flow, and higher Reynolds number
flows such as the backward facing step as described in Section 4.

Our work has also included application of the lattice Boltzmann method to coupled
multiphysics flows such as the thermal hydrodynamic flow examined in Section 5. We have
also developed a method (Section 6) to consider partially saturated computational cells, with
applications towards problems with moving solid boundaries, or to modeling microscale
flows using reconstructed porous media. Both of these problems demonstrate the intrinsic
capabilities and utilities of the lattice Boltzmann method.

Significant emphasis was placed on developing a coupled experimental-
computational framework to simulate microscale transport processes in porous geologic and
engineering materials. Lattice Boltzmann methods have a unique capability in this area
because of the inherent geometric complexity of the model domain that precludes use of
conventional Computational Fluid Dynamics methods. Fundamental to this work was the
development of high-resolution three-dimensional imaging methods and analysis techniques
to characterize complex microstructures as described in Section 7.

Our intention is to use the coupled experimental-computational framework that is
described in Section 8 to gain fundamental understanding of the nature of flow and transport
in complex porous media to complement the laboratory scale experiments that we currently
rely on. While our present focus is on single phase flows, ultimately we aim to extend this
framework to simulate the multiphase flows and coupled processes that are even less
amenable to experimental investigation. Our goal is to derive new understanding of transport
and flow in complex porous media by complementary analyses of the 3D microgeometry,
laboratory transport experiments, and pore-scale numerical flow simulations. The
simulations and visualizations shown here clearly demonstrate the unique capability of LB
methods to this class of applications.

Finally, as was described in Section 3, we also demonstrated the design and
development of a distributed computational platform for the performance of numerically
intensive simulations such as the pore scale flow modeling described above. While not an
original goal of this project, this result has greatly extended our ability to routinely perform
very large-scale simulations on the order of hundreds of millions of lattice sites.
Furthermore, the computational platform as developed is scalable. As demonstrated here,
such systems can provide a vital bridge between the current resource discontinuity facing the
typical researcher, i.e. individual scientific workstations versus massively parallel
supercomputers such as the ASCI-Red supercomputer.
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