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IUTAM Symposium on Hydrodynamic
Diffusion of Suspended Particles

Hydrodynamic diffusion refers to the fluctuating motion of nonBrownian particles (or
droplets or bubbles) which occurs in a dispersion due to multiparticle interactions. For
example, in a concentrated sheared suspension, particles do not move along
streamlines but instead exhibit fluctuating motions as they tumble around each other.
This leads to a net migration of particles down gradients in particle concentration and in
shear rate, due to the higher frequency of encounters of a test particle with other
particles on the side of the test particle which has higher concentration or shear rate.
As another example, suspended particles subject to sedimentation, centrifugation, or
fluidization, do not generally move relative to the fluid with a constant velocity, but
instead experience diffusion-like fluctuations in velocity due to interactions with
neighboring particles and the resulting variation in the microstructure or configuration of
the suspended particles. In flowing granular materials, the particles interact through
direct collisions or contacts (rather than through the surrounding fluid); these collisions
also cause the particles to undergo fluctuating motions characteristic of diffusion
processes.

Although the existence and importance of hydrodynamic diffusion of particles have
been embraced only in the past several years, the subject has already captured the
attention of a growing number of researchers in several diverse fields (e.g., suspension
mechanics, fluidization, materials processing, and granular flows). Nevertheless, there
has not previously been a conference or symposium devoted to this subject. The
purpose of this symposium is to bring active researchers and students together for the
first time from the diverse fields in which hydrodynamic diffusion of particles is
important. The expected achievements of this symposium are (i) the identification of
hydrodynamic diffusion as a new paradigm which governs a wide variety of phenomena
in suspension and granular flows, and (i) cross-fertilization by key researchers in fields
such as granular flows, composite materials processing, rheology, drop and bubble
dispersions, and suspension transport.
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[UTAM Symposium on Hydrodynamic Diffusion
of Suspended Particles, 22-25 July 1995,
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Saturday 22 July 1995
6:00 pm  Dinner

Session 1. Opening Session
7:00 pm  Opening Remarks by Session Chair: R. Davis

7:10pm 1.1

*D. Koch, Cornell University, What is so puzzling about hydrodynamic diffusion?

8:00 pm  Welcoming Reception

Sunday 23 July 1995
7:30am  Breakfast

Session 2. Hydrodynamic Diffusion During Sedimentation and Fluidization
8:30am  Opening Remarks by Seéssion Chair: F. Feuillebois

g8:35am 2.1
9:10 am 2.2
9:30am 2.3

*E. Guazzelli, ESPC|, Experiments on sedimentation: Particle velocity fluctuations -

and hydrodynamic self-diffusion of sedimenting non-Brownian spheres

F. Da Cunha, University of Brasilia, and E. Hinch, University of Cambridge,
Hydrodynamic dispersion in a sedimenting suspension of non-Brownian particles

H. Brenner, MIT, L. Mondy, Sandia National Labs, and J. Abbott and A. Graham,
Los Alamos National Lab, Dispersion in concentrated suspensions

9:50am  Break

10:20am 2.4

10:40am 2.5

11:00am 2.6

H. Nicolai, Y. Peysson, and E. Guazzelli, ESPCI, Settling of a heavy sphere in the
midst of a suspension of lighter spheres

J. Martin, N. Rakotomalala, and D. Salin, Universit¢ Pierre et Marie Curie,
Hydrodynamic dispersion of non-colloidal suspensions: Measurement from
Einstein’s argument \ .

B. Felderhof, Aachen, Germany, Mean velocity in a suspension of droplets due to
the thermocapillary effect

11:20am  Discussion
11:45am Lunch

Session 3. Shear-induced Particle Migration and Diffusion
1:00 pm  Opening Remarks by Session Chair: D. Leighton

1:.05pm 3.1
1:40pm 3.2
2.00pm 3.3

*J, Brady, California Institute of Technology, Shear-induced diffusion and particle
migration

D. Leighton, University of Notre Dame, Shear-induced migration in colloidal hard-
sphere suspensions

F. Da Cunha, University of Brasilia, and E. Hinch, University of Cambridge, The
effect of surface roughness in shearing suspension
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2:20 pm

2:40 pm
3:00 pm

3.4 L. Nitsche, University of lllinois, and J. Nitsche, SUNY at Buffalo, Collision

properties of non-simple bodies and their influence on hydrodynamic dispersion

Discussion
Break

Session 4. Applications of Hydrodynamic Diffusion in Suspension Flows

3:30 pm  Opening Remarks by Session Chair: R. Phillips

3:35pm 4.1 *A. Acrivos, City College of CUNY, Shear-induced diffusion and its effects on the
rheology of concentrated suspensions

4:10pm 4.2 U. Schaflinger, Technical University, Vienna, Motion of a sediment layer due to a
laminar, stratified flow

4:30pm 4.3 | Miskin, L. Eliott, and D. Ingham, University of Leeds, and P. Hammond,
Schlumberger Cambridge Research Limited, The shear induced diffusion of
particles in a rectangular fracture channel

450pm 4.4 P. Nott, Indian Institute of Science, A model for suspension flow accounting for
shear-induced migration

510pm 4.5 A. Chow and R. Hamlin, Lockheed Palo Aito Research Lab, and C. Yilitalo, 3M
Corporate Research Technology Development Lab, Size segregation of
concentrated, bidisperse and polydisperse suspensions during tube drawing

5:30 pm  Discussion

6:30 pm  Barbecue Dinner -

Monday 24 July 1995
7:30 am  Breakfast

Session 5. Particle Migration and Segregation in Granular Flows

8:30 am
8:35 am

8:10 am

9:30 am

9:50 am
10:20 am

10:40 am

11:00 am

11:30 am

Opening Remarks by Session Chair: J. Jenkins

5.1 *H. Buggisch, Universitat Karlsruhe, Germany, On mixing and demixing phenomena
in granular shear flow

5.2 M. Hunt, California institute of Technology, The effect of particle diffusion on heat
transfer for flows of granular materials

5.3 J. Jenkins, Cornell University, Fick’s law and species separation for a binary mixture
of frictionless, nearly elastic spheres

Break

5.4 Y. Lan and A. Rosato, New Jersey Institute of Technology, Particle transport in
vibrated granular beds .

5.5 M. Nakagawa, Sandia National Laboratories, and S. Altobelli, A. Caprihan, and E.
Fukushima, The Lovelace Institutes, Unexpected behavior of particles in a
horizontal rotating cylinder

Discussion

Lunch
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Session 6. Computer Simulation Techniques for Suspensions and Dispersions
2:00 pm  Opening Remarks by Session Chair: J. Brady
2:.05pm 6.1 *A.Ladd, Cornell University, Numerical simulations of hydrodynamic dispersion
2:40pm 6.2 A. Sangani, Syracuse University, and D. Koch, Cornell University, Sedimentation at

finite Stokes numbers

3:.00pm 6.3 G. Ristow, Philipps-Universitat, Numerical predictions for elastohydrodynamic
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3:20pm  Discussion
3:30 pm  Break

Session 7. Orientational and Configurational Dispersion
4:.00 pm  Opening Remarks by Session Chair: E. Hinch
4.05pm 7.1 *E. Shagfeh, Stanford University, Orientational and configurational diffusion in the

slow flows of particles and polymers

" 4:40 pm 7.2 R. Sundararajakumar and D. Koch, Cornell University, The dynamics of semi-dilute

and semi-concentrated fiber suspensions

5:00pm 7.3 O. Harlen, University of Leeds, and D. Koch, Cornell University, Fibre suspensions

in dilute polymer solutions

520 pm 7.4 A. Szeri, University of California-Irvine, Exploitation of Browhian motions for the

optimal control of fiber orientation distributions

5:40 pm  Discussion
6:00 pm  Dinner

Poster Session and Reception

7:00 pm  Poster Setup

7:15pm  Initial Viewing

7:45pm  Two-minute Oral Presentations

8:30 pm  Final Viewing

P.1

P.2
P.3
P.4
P.5

P.6

P.7

J. Blawzdziewicz, Polish Academy of Sciences, F. Feuillebois, ESPCI, ahd N. Lecoq, R.
Anthore, and C. Petipas, URA, Theoretical and experimental study of hydrodynamic
interactions between several spheres

V. Kumaran, Indian Institute of Science, Diffusion and coalescence due to pair interactions in a
suspension of bubbles in potential flow

S. Zeng, T. Kems, A. Zinchenko, and R. Davis, University of Colorado, The nature of particle
contacts in sedimentation

M. Loewenberg, Yale University, Deformation-induced drop dispersion

G. Krishnan, MIT, and D. Leighton, University of Notre Dame, Shear-induced structure in
bidisperse suspensions

Y. Wang, A. Acrivos, and R. Mauri, The City College of CUNY, The longitudinal shear-induced
gradient diffusivity of a monodisperse dilute suspension of spheres

A. Averbakh, A. Shauly, A. Nir, and R. Semiat, Technion, Israel, Application of laser-doppler
anemometry in highly concentrated suspensions
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P.8 S. McCaffery, L. Elliott, and D. Ingham, University of Leeds, and A. Unwin, Schiumberger
Cambridge Research Limited, A Newtonian model for proppant transport in an inclined channel

P.9 Y. Lan and A. Rosato, New Jersey Institute of Technology, Self-diffusion in vibrated granular
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P.10 W. Kalthoff, S. Schwarzer, and H. Herrmann, ESPCI, and G. Ristow, Phillipps-Universitét,
Application of a novel algorithm to hydrodynamic diffusion in sedimenting systems

P.11 S. Altobelli and E. Fukushima, The Lovelace Institutes, and L. Mondy, Sandia National Lab,
Velocity and fiuid fraction measurements in suspensions flowing through abrupt contractions
and expansions

P.12 R. Powell, J. Seymour, M. McCarthy, and K. McCarthy, University of California at Davis, NMR
imaging measurements of average and fluctuating velocity distributions in sphere suspension

flow

P.13 W. Wolthers, D. van den Ende, M. Duits, and J. Mellema, University of Twente, The viscosity
and sedimentation of aggregating colloidal dispersions in a Couette flow

P.14 J. Brady, California Institute of Technology, and J. Morris, Koninklijke/Shell-Laboratorium,
Microstructure in a strongly-sheared suspension and its impact on rheology and self-diffusivity

P.15 H.-K. Tsao and D. Koch, Cornell University, Hydrodynamic diffusion in sheared, sedimenting
suspensions at finite Reynolds numbers

P.16 V. P. Korobeinikov, Russian Academy of Sciences and Russian National Commitiee on
Theoretical and Applied Mechanics, Unsteady flows of two-phase media in tubes due to local
supply of mass and energy .

Tuesday, 25 July 1995
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8.1 *D. Salin and J. Martin, Université Pierre et Marie Curie, Expenmental techniques
for suspensions and dispersions

8.2 A. Graham and J. Abbott, Los Alamos National Lab, E. Fukushima and S. Altobelli,
The Lovelace Institutes, N. Phan-Thien, University of Sydney, L. Mondy, Sandia
National Labs, and T. Stephens, Naval Air Warfare Center, NMR imaging of particle
migration in concentrated suspensions

8.3 M. Lyon and L. Leal, University of California at Santa Barbara, Experimental studies
of the motion of concentrated suspensions in two-dimensional channel flow

Break

8.4 A. Shauly, A. Averbakh, R. Semiat, and A. Nir, Technion, Israel, Shear-induced
migration of particles in a flowing viscous concentrated suspension

8.5 E. Fukushima, S. Altobelli, A. Caprihan, M. Nakagawa, and L. Wang, The Lovelace
Institutes, NMRI studies of granular flows in a rotating horizontal cylinder

Discussion
Lunch
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1.1

What is So Puzzling about Hydrodynamic Diffusion?

Donald L. Koch
School of Chemical Engineering
Cornell University
Ithaca, NY 14853

Small particles (with diameters less than about 1 pm) diffuse due
to random impacts by the small molecules of the fluid in which they are
suspended. Larger particles lack this Brownian motion, but often exhibit
a diffusive motion which originates from their chaotic hydrodynamic
interactions with other large particles in the suspension. The
hypothesis of a diffusive motion that is independent of KT together with
dimensional analysis leads to a number of simple and powerful results
that explain greatly enhanced mixing in applications such as porous
media, blood flows and sediment transport.

Why, then, is hydrodynamic diffusion considered puzzling? One
reason is that deterministic equations for the motion of the £fluid and
particles lead to an apparently stochastic average behavior. In
addition, Stokes flow reversibility implies that any diffusion occurring
during the forward motion of a low Reynolds number suspension should (in
principle) be undone by a reversal of the flow. We will briefly discuss
these puzzles in the context of dispersion in porous media flows.

I believe, however, that the greatest obstacle to understanding
hydrodynamic diffusion is the dearth of simple example calculations
illustrating the phenomenon. Three important cases of hydrodynamic
diffusion (which we might have hoped would be simple examples) are
sedimentation and simple shear flow of dilute, monodisperse suspensions
and dispersion due to flow through a dilute fixed bed of spheres.
However, the sedimentation and fixed bed problems are complicated due to
the dominance of many-body interactions occurring over length scales much
larger than the particle diameter. The case of simple shear flow is not
as simple as hoped because symmetry and Stokes flow reversibility imply
that two-sphere interactions do not cause diffusion. Thus, one must
consider interactions between three spheres or between two non-spherical
particles.

The phenomenon of hydrodynamic diffusion is not limited to inertia-
less suspensions of spheres. Two interesting new applications are
orientational diffusion of non-spherical particles and diffusion due to
hydrodynamic interactions in suspensions where inertia plays an important
role. In the final section of the talk, we will discuss the hydrodynamic
diffusion of particle orientation in a simple shear flow. The results
will be applied to shear flow of a fiber suspension in a weakly
viscoelastic fluid, where there is a competition between the tendency of
the viscoelastic stress to align the fibers parallel to the vorticity
axis of the simple shear flow and the randomizing tendency of

orientational diffusion. A final complication to be noted for
hydrodynamic diffusivities is that their wvalues depend upon the
microstructure of the suspension. The nonlinear coupling between

diffusivity and microstructure in this fiber suspension leads to multiple
steady states for the fiber orientation distribution.




Experiments on sedimentation: Particle velocity
fluctuations and hydrodynamic self-diffusion of
sedimenting non-Brownian spheres

Elisabeth Guazzelli
Laboratoire de Physique et Mécanique des Milieux Hétérogenes,
URA 857 au CNRS, ESPCI,
10 rue Vauquelin, 75231 Paris CEDEX 05, France

Long range multibody hydrodynamic interactions play a key role in the motion
of an individual sphere settling in the midst of a suspension of like non-Brownian
spheres. Indeed, the sphere undergoes a random motion due to the fluid velocity
disturbances caused by the surrounding spheres. This randomly fluctuating
particle motion has a long time behavior characteristic of a diffusion process
which is called hydrodynamic self-diffusion.

Ham and Homsy[1] were the first to investigate experimentally the diffusive
nature of the motion of a test sphere in the midst of a dilute sedimenting suspen-
sion of like spheres. Large particle velocity fluctuations, ranging up.to 46% of
the mean, were observed and hydrodynamic self-diffusivities were measured for
particle volume fraction ranging from 2.5% to 10%. Large velocity fluctuations
were also found comparable to the mean in an experiment using a fluidized bed
and a light scattering technique.[2]

Caflisch and Luke[3] and also Hinch[4] showed theoretically that for a dilute,
random suspension the velocity variance grows in proportion to the characteris-
tic length of the settling vessel. Koch and Shagfeh[5] showed that the variance
is finite if the pair probability exhibits a net deficit of one particle in the re-
gion surrounding any given particle and suggested that this screening might be
produced by hydrodynamic effects. Numerical simulations which use the point-
particle approximation or include the full hydrodynamic interactions between
the particles have also investigated the problem of hydrodynamic diffusion in a
sedimenting suspension (see for instance the work of Ladd[6], Koch[7], and Da

“Cunhal8] and references therein).

On a macroscopic scale, particle velocity fluctuations can lead to gradient-
diffusion phenomena and thus are important for the understanding of mixing
processes which inhibit separation. The spreading of the front between a sedi-
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menting suspension and the clear fluid above it has been attributed to gradient-
diffusion and gradient-diffusivities were estimated.[9, 10, 11, 12] Experiments
on the steady state concentration profile of a fluidized bed as well as sta-
tionary propagating fronts give much larger values of gradient-diffusivities.[13)
Again in the context of fluidized bed, Batchelor suggested that hydrodynamic
gradient-diffusion has a stabilizing effect against the growth of concentration
wave instabilities.[14] Stable region of fluidization were observed experimentally
and gradient-diffusivities were estimated from Batchelor’s stability criterion.[15)

This talk focuses on the hydrodynamic self-diffusivity of the particle random
walk in an uniform suspension. It describes work with H. Nicolai, B. Herzhaft,
E. J. Hinch and L. Oger on the sedimentation of non-Brownian spheres at low
Reynolds number.[16] A few silvered glass spheres were tracked in'a suspension
of unmarked glass spheres, made optically transparent by matching the index of
refraction of the suspending fluid to that of the glass spheres. Particle tracking
was undertaken with a real time digital imaging system for particle volume
fractions ranging from 0% to 40%. Mean velocity and velocity fluctuations in
the direction of gravity and along the horizontal direction of the vessel were
determined. The long time fluctuating particle motion was demonstrated to be
diffusive in nature by examining the relaxation of the particle velocity auto-
correlation functions as well as by studying the second-order moments of the
particle displacements.

The fluctuations in settling speed were found to be large, ranging between
75% and 170% of the mean. The relative fluctuations increased at low con-
centrations to reach a maximum value of 170% at a particle volume fraction
of 30% and then decrease at higher concentrations. The measured correlation
times were found to be independent of the concentration. The self-diffusivities
scaled as the product of the mean settling velocity and the particle radius below
a particle volume fraction of 30%. Above a particle volume fraction of 30%, the
self-diffusivities experienced a strong decrease. This work also showed a strong
anisotropy of the diffusion process.

Further experiments with different vessel sizes were also undertaken while
keeping the particle volume fraction constant at 5%.[17] Velocity fluctuations
and self-diffusivities were found to be independent of the size of the vessel when
the vessel width varied by a factor of four, in contradiction to the theories of
Caflisch and Luke,[3] and of Hinch.[4] But a well-stirred experimental suspension
may not be a suspension where the particles are randomly positioned as assumed
by these theories. The screening mechanism of Koch and Shagfeh is the only
presently available theory that could lead to fluctuations and self-diffusivities
that are independent of the vessel size.[5] However, the present experimental
study is unable to prove that there is a deficit of one particle in the suspension
surrounding any given particle as assumed by the screening theory. This still
leaves open the problem of the ultimate structure of the sedimenting suspension
which leads to finite values of the velocity fluctuations and self-diffusivities.




2.2

Hydrodynamic Dispersion in a Sedimenting Suspension of Non-Brownian Particles
F.R. Da Cunha! & E.J. Hinch?

Abstract

The particular problem which has been studied is the fluctuations in the sedimenting velocity
of noncolloidal particles in a monodisperse suspension at low Reynolds number. We consider a
suspension of point particles with excluded volume repulsion sedimenting in a rectangular box
with periodic sides and impenetrable bottom and top. We have observed how the positions of
the particles evolve in a finite container. We then discover that large fluctuations, which occur
in sedimentation when inertia is very small, do not decay in time. We characterize the long time
behaviour of the fluctuations by dispersion coefficients parallel and perpendicular to gravity. The
strong anisotropy observed in the diffusion process is in good agreement with recent experiments.

Introduction}

The sedimentation problem addressed in this paper concerns fluctuations and dispersion as particle
sediment. On a macroscopic scale, particle velocity fluctuations can lead to dispersion phenomenon
that are important for understanding of mixing processes which inhibit separation.

We know the mean sedimentation velocity after Batchelor (1972). However, since the relative
positions of the suspended spheres are continuously changing, the velocity of individual particles
fluctuates during the sedimentation process. Recent experiments of Nicolai & Guazzelli (1994)
disagree with the theoretical predictions of Caflish & Luke (1985) and Hinch (1988) which have
suggested a dependence of the velocity fluctuations on the box size. Te important issue is to see
whether the particles remain randomly and independently positioned as they fall. We will show
some computer simulation of this, which reproduced the experimental correlation and anisotropy,
but which had the size of the fluctuations increasing proportional to the size of the box.

Governing Equation

Consider N point-particles settling in a periodic box of dimensions L x L x 2H. Let x; denote
the position of the particle i. Suppose an external f; is exerted on particle i and let u; be its
translation velocity. In particular, we are interested in a new solution in which all components
of the velocity field (u,v,w) are periodic in z and y with period L, the horizontal components
u, v periodic in z with period H, but the vertical component w satisfying an impenetrable bottom
and top condition of vanishing vertical velocity. Then we add a image system into the problem of
solving Stokes flow in periodic box in order to obtain the complete solution of the new problem
with impenetrable bottom and top and periodic sides. The element needed to compute the motion
of the particles taking into account the hydrodynamic interaction between them is the following
dimensionless equation

N N
U= 33 M (Ra Rad) By + 3 3 S My (Ks) - Ej©,
J

-1 Ky j=1

with F; = (0,0,1). Here the elements of the mobilities matrices Mf’; (physical space) and M}
(reciprocal space) and © are defined in Cunha (1994). This equation consist of two lattice sums.
One in the real space over lattice vector R, and the other into the reciprocal space over reciprocal
lattice vector Ks. Rq,, and Rq ; are the relative position vectors associated with the source point
and the image point respectively. ‘

1University of Brasflia, Department of Mechanical Engineering, Brasflia-DF, Brazil.
2University of Cambridge, Department of Applied Mathematics and Theoretical Physics, Cambridge, UK.
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Figure 1: Results of the computer simulations for the time development of the dimensionless
variances, both perpendicular (a) and parallel to gravity (b) for different conditions of the simulated
system with the aspect ratio H/L = 3.

Numerical results

The simulation all started with the particles located randomly and independently within the im-
penetrable box. The particle dispersion statistics was obtained over ten realisations (e.g. 10)
which showed to produce meaningful statistics. The volume concentrations of the particles were
in the range of dilute suspension (< 5%) and different number of particles were simulated. Since
Npin = 25 for the aspect ratios a/L = 0.06, H/L = 3 t0 @ Npaz = 286 for a/L = 0.05 and
H/L = 3. Usually, O(100) time steps yielding a dimensionless time of 0(0.04).

Figure 1 shows that the large velocity variances, both parallel (||) and perpendicular (L) to
the gravity direction, do not decay in time. The particles instead of to adopt configurations
which would lead to finite variances in the sedimentation speed to remain nearly to the same
initial structure and so with velocity fluctuations remaining proportional to ¢L/a, as the particles
fall. The computer simulations predicted fluctuations growing with the size of the box, while the
experiments (Nicolai & Guazzelli 1995) measured fluctuations that are independent of the size of
box. One way for the theory and experiments to differ is for the positions of the particles not
be independently random. As the experiments are reproductable and the stirring is different each
time, one possibility is that the initial distribution evolves some form of fluctuations not like ¢ /a.
The important question here is what is the difference between placing the particles initially at
random in the computer simulations and stirring the suspension in laboratory.

Figures 2 compares numerical and experimental (Nicolai et al. 1994) time development of
the normalized velocity fluctuation auto-correlation functions. The simulations and experiments
both indicate that these functions decay in time as a single exponential toward zero, indicating
that particle velocity becomes uncorrelated after long time. Finally we find that the amount of
anisotropy in velocity fluctuations agrees well with results of numerical simulations by Ladd (1993)
and with the recent theory of Koch (1994) both having found an O(3). However the results of
Ladd and Koch with respect to the ratio of diffusivities and correlation times were much different
of the experiments and the present simulation. We have found Dy/Dy ~ O(10) throughout all
computations and Nicolai et al. (1994) experiments an O(5), while they suggested an O(100). This
large discrepancy can be justified by the fact that in Ladd’s numerical simulations and Koch’s
theory both obtained a large anisotropy in correlations time O(9) in contrast with the one that
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Figure 2: Normalized velocity fluctuation auto-correlation functions parallel and perpendicular to
the gravity direction. (a) Computer simulations for H/L = 3, a/L=0.05,N=114= ¢ = 2%
and (b) Computer simulations for H/L = 3, a/L = 0.05, N = 172 => ¢ = 3%. The error bars
represent experimental data from Nicolai et al. (1994) with ¢ = 5%, H/L = 4, H /w = 10 and
w/a ~ 100. The dashed lines indicates the uncertainly range of the present computer simulations.

has been found by us and Nicolai et al. (1994) measurements, i.e. ty/tL = O(2). At the same time
Koch (1994) predicted that the time scale for the two self-diffusivities becomes much close when the
influence of vertical boundary condition is removed. In this point we believe that the impenetrable
box plays a vital role in simulating a sedimentation process. When a periodic bottom is considered
the heavy part of the suspension falls indefinitely preserving the density excess. On the other hand
if it imposed an impenetrable box, then there must be a convection current down on the heavy
side, along the bottom, up the light side and cross the top. At a long time this convection decrease
density fluctuations, and so reduces the correlation time, and increases horizontal fluctuations in
velocity, producing the more realistic amount of anisotropy observed here.
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Dispersion in Concentrated Suspensions

Howard Brenner

Massachusetts Institute of Technology, Cambridge, MA 02139

Lisa. A. Mondy

Sandia National Laboratories, Albuguerque, New Mexico 87185-0834

James R. Abbott and Alan. L. Graham

Los Alamos National Laboratory, ESA-EPE, Los Alamos, New Mexico 87545

In order to probe homogeneous well-mixed suspensions with lightly intrusive probes that do not
significantly disturb the microstructure, a series of falling ball experiments were performed under
conditions such that the falling ball and the suspended particles were similar in size. Individual
falling balls were allowed to settle through well-mixed suspensions of noncolloidal, neutrally
buoyant spheres or rods of similar size in Newtonian liquids. " In the center third of the containing
cylinder, three-dimensional trajectories of the falling ball.and instantaneous pressure drops across
the falling ball were measured experimentally. The objective was to determine the effect of the
?iscrete nature of the suspension on the dispersion of the momentum and pressure drop due to the
alling ball.

In these experiments, the discrete nature of the suspension is readily apparent. A large ball will fall
relatively smoothly through a suspension of smaller particles. The passage of a smaller ball of
similar size or smaller than the suspended particles displays much larger variations. Periods of
slow motion, as the falling ball settles almost directly on a suspended spheres or packed collection
of spheres, alternate with periods of rapid motion as the ball moves between suspended particles.

The primary experimental parameters investigated were the size of the falling ball and the volume
fraction, size, and geometry (spheres vs. rods) of the suspended particles. The experimentally
measured trajectories were used to determine the variances in position of the settling sphere about
the average trajectory along the centerline of the cylinder. Whereas a statistical analysis reveals that
averages of 10-20 drops are required to produce reproducible average velocities to within a few
percentage points of one another, several hundred ball drops would sometimes be required to
obtain reproducible second moments within 20% of each other. We find that unlike the horizontal
variances, the vertical variances were affected by short-time deterministic behavior relating to the
instantaneous local configuration arrangement of the suspended particles.

For sufficiently long intervals between successive observations, the trajectories of the balls were
observed to disperse about their mean settling paths in a random manner. This points to the
existence of a Gaussian hydrodynamic dispersivity that characterizes the linear temporal growth of
the variances in position of a falling ball.

Suspensions of 0.650 and 3.18 mm spheres with solids concentrations ¢ from 0.15 to 0.50
display a non-isotropic dispersivity, with the vertical dispersivity being 10-20 times larger than the
horizontal dispersivity. The vertical dispersivity D, (made dimensionless with the diameter of the
suspended spheres and the mean settling velocity) was observed to decrease with increasing falling
ball size at ¢ of 0.15 and 0.30. While the best fit shows that D, increases with increasing ball size
at ¢ of 0.50, an error analysis shows that a constant value for D, is within 95% confidence limits
based on the error limits shown in Fig. 1. For falling balls equal in size to the suspended spheres,
D, increased linearly with increasing volume fraction ¢ of solids (Abbott, 1993).

Other experiments were performed in suspensions of neutrally buoyant rods of aspect ratio of 20.
Dispersivities observed in suspensions of rods and rendered dimensionless with the rod length,
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Figure 1: The vertical dimensionless dispersivity is shown as functions of

the relative particle size for various concentrations.
showed no statistically significant dependence upon the falling ball diameter. In addition, these
dispersivities were observed to increase approximately linearly when plotted against the specific
viscosity of the suspension of rods.

For a sphere settling along the axis of a circular tube of radius Ry, filled with a pure viscous liquid,
the pressure drop AP is related to the drag D on the sphere by

2 2
CEﬂ:Z[l—(—b—-J _3(_‘1_) J (1)
D Ry) 3\R
where A is the cross sectional area of the cylinder, b is the distance from the sphere center to the
cylinder axis, and a is the radius of the falling ball (Pliskin and Brenner 1963, Feldman and
Brenner 1968). In pure Newtonian fluids at low to moderate Reynolds numbers, the value of C is
determined to by the local velocity to the average velocity in a pressure driven flow. This results in
a value of 2 for a small sphere settling at the center of a large cylinder. Equation 1 assumes that a

no-slip condition exists at the cylinder wall. If perfect slip occurred at the cylinder walls, the value
of C becomes 1. -

In these experiments, the pressure drop associated with a ball settling in suspensions of spheres

(a=3.17 mm) at $=0.30 and ¢=0.50 were examined. The settling spheres ranged in size from one-
half to two times the size of the suspended spheres. Once -again the discrete nature of the

suspension was apparent with large fluctuations in the instantaneous AP observed. The average
values of C* (C corrected for the size of the settling sphere) obtained from these experiments are
shown in Fig. 2 along with the 95% confidence limits of the 10 ball drops used to obtain each data
point.  As in Newtonian fluids, C* was found be fairly independent of the relative size of the
falling ball to the suspended particles. However, the values of C are consistently less than 2, and
in the case of the largest falling balls statistically distinguishable from 2.
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Figure 2: The relative pressure drop corrected for the size of the settling sphere as given by the
second correction term in Eqn. 1 with error bars shown as a function of the diameter of the
settling sphere to the diameter of the cylinder. The two lines represent the fitted corrections
based on the dimensionless horizontal dispersivities, assuming a minimum and maximum value
for the dimensionless dispersivities as a function of settling sphere size.

This deviation from the theoretically predicted values is possibly attributable to either of two
factors. First, as described above, the falling ball’s trajectory deviates from the centerline axis of
the cylinder due to the interactions with the suspended particles. As shown in Eq. 1, these
deviations of the trajectories would reduce the observed pressure drop. Using the dimensionless
horizontal dispersivities (Abbott, 1993), the corrections to Eq. 1 that account for the average off-
center position of the falling ball were obtained as shown in Fig. 2.

Although arguably the corrections fit all the data within the 95% confidence limits, the averages for
the larger balls consistently lie below the predicted values. An alternate or perhaps additional
correction may be attributable to the no-slip boundary condition on the containing cylinder wall that
was used to derive Eq. 1. The presence of slip would be further reduce C below the value of 2.
The determination of the appropriateness of the no-slip boundary condition in concentrated
suspensions is the subject of ongoing investigations in our laboratories.
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Settling of a heavy sphere in the midst of a
suspension of lighter spheres

Héléne Nicolai, Yannick Peysson and Elisabeth Guazzelli
Laboratoire de Physique et Mécanique des Milieux Hétérogénes,
URA 857 au CNRS, ESPCI,

10 rue Vauquelin, 75231 Paris CEDEX 05, France

In a sedimenting suspension of identical spheres, the continual change in the
configuration of neighboring spheres and the resulting hydrodynamic interac-
tions cause variations in the motion of a test sphere. After a large enough
numbers of interactions, the test sphere executes a random walk through the
suspension which has been described as a hydrodynamic self-diffusion process.
Ham and Homsy([1] were the first to measure the coefficient of self-diffusion in a
sedimenting suspension of non-Brownian spheres. These results were confirmed
and extended by Nicolai and Guazzelli[2] and by Nicolai et al.[3].

A further problem on hydrodynamic diffusion is to examine the effect of
polydispersity on the hydrodynamic diffusion process. The investigation of the
motion of a single sphere of different settling velocity falling through an other-
wise monodisperse suspension, which is an interesting problem in itself, is the
first step toward the understanding of a fully polydisperse suspension.

In order to understand this first problem, different marked test spheres of
different sizes and densities were tracked in a monodisperse suspension made
optically transparent by matching the index of refraction of the suspending fluid
to that of the glass spheres.[2, 3] The ratio, R,, between the Stokes’ velocity of
the test particle and that of an isolated sphere of the suspension was varied from
1 to 13 while the particle volume fraction of the suspension was kept constant
at 20.0%. The Reynolds number and Stokes number of the test particles were
always smaller than 10™2. Statistical analyses of the particle local velocities
yield the mean settling velocity, the vertical and horizontal velocity fluctuations
and the particle velocity auto-correlation functions.

The mean settling velocity of the test particle was found to scale with the
Stokes’ velocity of the test particle, just as if the test particle settled in a fluid of
effective viscosity. Conversely, the vertical and horizontal velocity fluctuations
scaled with the Stokes’ velocity of an isolated sphere of the suspension. Vertical
fluctuations were found to be approximately twice as large as horizontal fluctu-
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ations. The vertical and horizontal fluctuations of the test sphere were found to
be of the same order of magnitude as the vertical and horizontal, respectively,
fluctuations of the spheres of the suspension(3]. Indeed, the test sphere acted
as a tracer which probed the velocity fluctuations of the fluid. However, a small
increase of the vertical velocity fluctuations was observed as R, was increased.
Moreover, the settling speed was found to experience a slight but continuous
decrease along the vertical direction of the vessel for the fastest particles.

To analyze the long-time behavior of the test particle fluctuating motion,
the relaxation of the autocorrelation functions of the horizontal and vertical
velocity fluctuations was examined. For small values of R,, both horizontal and
vertical correlation functions decreased as a single exponential toward zero and
had a similar relaxation. This behavior is similar to that found by Nicolai at
al.[3] for the autocorrelation functions of the velocity fluctuations of the spheres
of the suspension. As R, was increased (R, > 5), the horizontal and vertical
correlation functions exhibited a very different relaxation behavior. The hori-
zontal function decayed more rapidly. It became negative and went through a
minimum before approaching zero from below. Conversely, the vertical function
decreased very slowly and still very smoothly. The vertical correlation time was
found to increase with R, while the horizontal correlation time to decrease. The
long time motion of the test sphere was shown to be diffusive in nature and the
anisotropy of the diffusion process was found to increase with R,.

An important finding of this study is the behavioral change in the motion
of the test particle for R, > 5. A plausible explanation would be that the test
particle modifies the structure of the suspension. The test particle would then
settle in a zigzag course and then build up a structure around it.
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HYDRODYNAMIC DISPERSION of NON-COLLOIDAL SUSPENSIONS: MEASUREMENT
from EINSTEIN'S ARGUMENT

J.Martin, N.Rakotomalala and D.Salin
Laboratoire Fluides, Automatique et Systémes Thermiques *
Batiment n°502 Campus Universitaire 91405 Orsay Cedex France

Hydrodynamic dispersionl-4 is responsible for the spreading of the sedimentation front in a
non-colloidal monodisperse suspension. Hindered settling has an opposed effect and leads to the self-
sharpening of the front. Following Einstein's argument® for the diffusion coefficient of colloidal
dispersions, we postulate§ that the steady-state concentration profile in a suspension of non-colloidal
monodisperse particles reflects the dynamic equilibrium resulting from a balance between gravity-
driven convection and hydrodynamic dispersion. Using an acoustic technique the steady state
concentration profile of a counterflow stabilized suspension, a fluidized bed, as well as stationary
propagating sedimentation fronts inside the bed were determined. From these profiles we can derive
the concentration dependence of the hydrodynamic dispersion coefficient.

For a suspension statistically homogeneous in each horizontal direction, the volume fraction,
C(x,t), is a function of the vertical direction x (downwards oriented) and time t. The mean velocity of
the suspension is V=CVp+(1-C)Vf, where Vp ,and Vg are the particle and fluid velocities respectively
(all velocities are algebraic quantities). In the absence of inertia and concentration gradients, the
momentum equation gives7 V,-V=U(C), which expresses the balance between viscous and buoyancy
forces. To account for the hydrodynamic dispersion, we postulate that the steady-state concentration
profile in a suspension of non-colloidal monodisperse particles reflects the dynamic equilibrium
resulting from a balance between gravity-driven convection and hydrodynamic dispersion. Therefore
we express the particle flux J=CVp as the sum of a convective and a diffusive flux, to get

CVp=C(U(C)+V)-D(C) VC 1

Substitution in the equation for the conservation of particles yields the convection-diffusion equation
leading to a steady state in the laboratory frame of reference (8C/at = 0, V= -q, where q is the volume
fraction injection velocity):

C [U(C)-q] = D(C) oC/ox ()

Eq.2 expresses the fact that the net convective flux due to an external force (gravity) through a plane
moving at the suspension velocity is counterbalanced by the diffusion flux. This is Einstein's basic
argument used to derive the diffusion coefficient of a colloidal suspensionS. This is the same
stationary shape profile which should be observed at the top of a sedimenting suspension8 if
polydispersity effects are negligible. '

Experiments were performed in a column 60 cm high of a circular cross section (4cm) .We
determine the concentration profile by measuring variations in the sound speed in several cross
sections along the bed, as the sound speed in suspensions is related to the volume fraction of
partic]es6 (accuracy in concentration measurements,

0.1%, the spatial resolution to 1 mm). The liquid used 0.3
is a water-glycerol mixture (n=2.10-3 SI). The )
spherical glass beads have diameter 2a = 68.5 um,
with 95 % particles in the range 63-74um. In the
experiments, the particle Reynolds number is less
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than 0.1 and Brownian motion is negligible. Fig.1 shows a typical concentration profile (W) C(x) and
its gradient (O0) 8C/0x, for a flow rate corresponding to an average concentration of Cg~22 %. The
profile consists of two parts, a top front of extent L, where the concentration increases from 0 to
nearly Cq and a long tail where the concentration is nearly constant to Cg. Using different flow rates
q, we can determine the relation U(C)=V(1-C)P with p~5.0£0.2. Subsequently using the measured
values of C and 8C/8x, we can deduce the hydrodynamic coefficient D(C) from (2). Note that the
smaller the flow rate, the sharper the front, making the measurements more difficult ( front width
L~D(C)/C). For C¢=10%, L is of the order of 2 cm. Thus, larger concentrations require the design of
a different experimental procedure that yield larger front widths.

We take advantage of both sedimenting suspension and fluidized bed features: the bed provides
a steady homogeneous suspension in its bulk; reducing abruptly the flow rate from q=U(C) to
q72=U(Cy), a relative sedimentation is expected to occur, from Cj to Cy, (C1<Cy) with a front
propagating from bottom to top. As the settling velocity (U(C)) is a decreasing function of
concentration, smaller concentrations fall faster than larger

ones, leading to a sharp (self-sharpening!4) shock front. 0.35
Because self-sharpening and hydrodynamic dispersion have 0,25 :ﬁg
opposing effects, this leads to a stabilised dispersed profile £

which proragates at a constant velocity Vg without changing  0-15
its shape 0,15, We can obtain travelling wave of the form -10- 0 10
C(X), X=x-Vt, where C(X) is the solution of C[U(C)-q-Vg] . X {cm)
= D(C)5C/8X+A. Fig.2 shows the concentration variation as
a function of time, versus the variable X, at two different positions in the bed for an abrupt decrease
of the flow rate from q to qy corresponding to Cj ~15 % and Cy ~33 %. It is seen that the shape of
the profiles is identical at the two different locations indicating a travelling front, the velocity of
which was determined to be constant. This is the first observation of a stationary propagating front in
a sedimenting suspension. We can then measure the diffusion coefficient.

Our data clearly show that D(C)/aU(C) increases roughly linearly with the volume fraction up
10 15% and is almost constant in the range 15-30 %; it vanishes when approaching the packing
concentration (~60%). The scattering of each data set leads to an overall accuracy of 10% on D, but
we have not used any kind of data reduction. Note that the D determination is controlled by the
knowledge of not only the flux F(C), but its derivatives (Fig:1). Thus for small concentration jumps
around initial concentration larger than 35 %, the D determination is not very precise but the trend is
there. We point out that the low concentration values of D are almost thrice as large as those
previously determined from sedimentation front broadening2a3s8. And although 'in our experiments
the Reynolds number (0.1) is larger than their (10-3), the normalized dispersion coefficient remains
the same when it was decreased, indicating that viscous forces are dominating. The values found are
twenty times larger than those reportedz based on the velocity fluctuations of a single particle or of
the whole suspension4. This supports the contention that the latter measurements only capture the
self-diffusion part of hydrodynamic dispersion.

* Associated with the Centre National de la Scientifique.

1: R. H. Davis and K. H. Birdsell, AIChE. J. 34,123 (1988). R. H. Davis and M. A. Hassen, J. Fluid.
Mech. 196, 107 (1988). :

2: J. Ham and G. M. Homsy, Int. J. Multiphase. Flow 14, 533 (1988).

3:S. Lee, Y. Jang, C. Choi and T. Lee, Phys. Fluids A 4, 2601 (1992).

4: J.Z. Xue, E. Herbolzheimer, M.A. Rutgers, W.B. Russel and P.M Chaikin, Phys. Rev. Lett. 69,
1715 (1992) and references therein.

5: A. Einstein, Ann. d. Phys. 19, 371 (1906) )

6: . Martin, N.Rakotomalala and D.Salin, Phys Rev Lett. 74, 1347 (1995) and references therein.

7: G.K. Batchelor, J.Fluid Mech. 52, 245 (1972); ibid, 193, 75 (1988).

8: J.Martin, N.Rakotomalala and D.Salin, Phys Fluids Lett. 6, 3215 (1994).

13




Mean velocity in a suspension of droplets
due to the thermocapillary effect

B.U. Felderhof
Institut fir Theoretische Physik A
RWTH Aachen
Aachen, Germany

We study a suspension of droplets in an ambient fluid subject to grav- .

ity and a uniform temperature gradient. The surface tension of the
droplets is taken to be so large that the droplets remain spherical. Due
to the temperature dependence of the surface tension a droplet in a
spatially varying temperature field experiences a force driving it in the
direction of higher temperature. Since the thermal conductivity of drop-
lets and ambient fluid differ, the temperature field is a complicated
function of position. As a consequence, the microscopic description of
the system encompasses the fluid flow field, the pressure field, the
droplet positions and velocities, as well as the temperature field.

We show that the macroscopic description of such a suspension can
be derived in the framework of a general scheme involving a multiple
scattering expansion. The scheme -!eads to macroscopic average
equations, as well as expressions for the transport coefficients occur-
ring in these equations. We consider in particular the thermocapillary
coefficient that relates the difference of mean droplet velocity and
mean fluid velocity to the mean local temperature gradient. The ex-
pression for this coefficient is shown to be free of long range divergen-
ces, so that it is determined by the local microstructure of the suspen-

sion.
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We calculate the thermocapillary coefficient as a function of droplet
volume fraction in a mean field approximation, with correction terms
due to pair correlations. The correction terms require the complete so-
lution of the pair droplet problem in a uniform temperature gradient.
This is obtained conveniently in terms of a series expansion in inverse
powers of the distance between droplet centers. An arbitrary number
of terms in this expansion can be evaluated by a concise matrix formu-

lation.
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Shear-induced diffusion and particle
migration

John F. Brady*

Division of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, CA 91125

Diffusion occurs in a wide variety of settings ranging from Brownian mo-
tion of submicron-sized particles to particle dispersion in high-Reynolds-
number granular flows. Kinematically, the self-diffusivity can be related
to the particle velocity-fluctuation autocorrelation function, showing quite
generally that the diffusivity scales as the magnitude of the velocity fluc-
tuations squared, (v')?, times the correlation time for velocity fluctuations,
7. Knowledge of the physical mechanisms generating velocity fluctuations
and governing the correlation time can lead to simple scaling estimates for
the self-diffusivity. In simple shear flow of nonBrownian particles at low

Reynolds number (v)2 ~ O[(%a)?], and T ~ 4!, yielding the shear-induced .

self-diffusivity D ~ O(¥a?), where 4 is the magnitude of the shear rate and
a the particle size. The above scaling is borne out by experiment and nu-
merical simulation, despite questions of flow symmetry and reversibility at
low Reynolds numbers. It is shown that the effect of weak Brownian motion
is singular and results in a shear-induced self-diffusivity that is independent
of Brownian motion as the Peclet number, Pe = a2 /2D, becomes large.
Indeed, there is a continuous variation in the self-diffusivity with Pe from
the Brownian to the hydrodynamically dominated regime. The results from
experiment and simulation will be discussed and compared.

Self diffusion describes the motion of an individually tagged particle and
is to be distinguished from diffusion of all the particles down a concentra-
tion gradient, known as the collective or gradient or mutual diffusivity. The
collective diffusivity is given by the product of the particles’ mobility and
the driving force, which in Brownian systems is the osmotic compressibility,

“This work was done in collaboration with T.N. Phung, P.R. Nott, and J.F. Morris.
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Ol1/0¢, where ¢ is the volume fraction. This concept can be generalized to
shearing flows where the osmotic pressure is now a function of concentration
and shear rate or Peclet number, II(¢, Pe).

Finally, there is particle migration, which is taken here to mean particle
flux that is not the result of concentration gradients as this has already been
included in the collective diffusivity. Migration refers to flux in a compo-
sitionally homogeneous suspension due to, for example, variations in shear
rate or shear stress and need not necessarily be a “diffusive” motion. In a
thermodynamic system variations in the thermal temperature give rise to
particle flux down gradients in temperature — the Soret effect. Similar phe-
nomena can occur in suspensions. The velocity fluctuations may be viewed
as a measure of the “temperature”, and since the velocity fluctuations are
proportional to the shear rate, variations in shear rate will give rise to a
flux analogous to the Soret effect. Alternately, noting the role played by the
osmotic pressure in driving particle flux, a simple argument based on stress
and Cauchy’s equation of motion can predict migration: In a steady unidi-
rectional flow, for example flow in a tube or channel, the variation in stress
normal to the direction of motion must be constant. By dimensional analysis
for low-Reynolds-number suspensions all stresses scale as nyF (¢), where 7 is
the viscosity of the suspending fluid and F(¢) is a nondimensional and mono-
tonically increasing function of volume fraction.t If the shear rate varies, the
volume fraction must vary so as to keep the stress constant. Where the shear
rate is large the concentration will be low, and vice versa. In channel or
tube flow this predicts migration of particles to the center. This concept
is not limited to monodisperse spherical suspensions, nor to motion at low
Reynolds number, and can predict migration in a variety of situations.}

tWe have assumed the ratio of the particle size to the length scale for variation normal
to the direction of motion is small.

}In geometrically more complex flows normal stresses and normal stress differences
must be considered.
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Shear-Induced Migration in Colloidal Hard-Sphere Suspensions
D. T. Leighton, Jr.

Department of Chemical Engineering
University of Notre Dame
‘Notre Dame, IN 46556

Shear-induced migration in non-colloidal suspensions has been

. demonstrated to cause particles to migrate across streamlines due to gradients in
concentration and in shear stress or shear rate (Leighton and Acrivos, 1986, 1987;
Chapman 1990; Chapman and Leighton, 1991; Abbot, et al., 1991). While the
experimental evidence for such migration is compelling, theoretical models
describing the migration processes have been limited to either numerical
simulations in simple flow fields (Nott and Brady, 1994) or to semi-empirical
calculations. In this paper we describe theoretically the migration behavior in a
closely related system: a dilute solution of highly charged colloidal spheres in which
the effective hard sphere radius is much greater than the actual particle radius. For
such a suspension the particles interact with the fluid through the Stokes flow
equations independent of their electrical charge, and with each other electrostatically
uninfluenced by their hydrodynamic disturbance velocities. This enables us to
calculate the trajectory followed by the two interacting spheres exactly in this limit
even for complex flow geometries, and to use these trajectories to determine the
shear-induced migration behavior.

To see how such migration takes place, consider two spheres of radius a
separated by a distance 2r interacting in a simple shear flow. The particles will be
driven together by the shear flow with a hydrodynamic force which scales as:

: Fh=6ni(ua2§—

times some function of the angle of interaction where 7y is the shear rate, 1 is the
fluid viscosity, a is the particle radius, and 2r is the separation distance between the
particles. If the spheres are charged, this force will be resisted by an electrostatic force
which scales as:

1+2xal
Fe=758€0(1;—g ‘Pﬁwxaa_exp(alca(é-j ))
a

where we have followed the notation of Russel, et al., (1989). The ratio of these two
forces is given by:

1 r
Fe _opDompad 2 *2xag exp(-2 xa (L-1))

Fn va2 (xaf (%;-)3
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which depends on the Peclet number (Dg/¥a2)! , the dimensionless ion

concentration npa3, the dimensionless surface potential ¥4, and the ratio of the .
Debye length to the sphere radius xa. For the choice of physical parameters 2a =

0.5pum, np = 1.44x106M, y=10s1,e=80,and p = 0.01p, we obtain the dimensionless
values ka=1, Dg/Ya2 = 1.4, npa3 = 13.6 and Wa = 4 (saturation potential). This leads to

the ratio of forces:

Fe_21+2%ar* oyp(-2 xalr* - 1))
Fn () 3

where A=1.9x103 and r*=r/a is the dimensionless separation.

To see how this leads to migration, consider the simple shear flow given by u;
=7 Xz 8. We define the coordinate system x1 = cos(8), X2 = sin(0) cos(¢), and x3 =1
sin(8) sin(¢). In this coordinate system, the angle ¢ is unchanged during the particle
interaction, and the radial position of the particles relative to the origin may be
found from the expression:

dr* __*cotld)+ A 1+2xar® oyn(-2 xa(r* - 1))
de ( ) sin® (G) cot (¢) (r* P

in which, subject to a posteriori justification, we have assumed the hydrodynamic
interaction between the particles to be negligible and have ignored the effects of

Brownian motion. This equation is integrated for the above value of A in figure 1.
As may be seen, the trajectories for any initial separation are closely approximated
from an effective hard-sphere trajectory with dimensionless radius b/a = 4.7.
Because the minimum separation between two particles is thus greater than 8 radii,
the assumption that hydrodynamic interactions are negligible is justified. Further,

since the ratio Do/yb2 = 0.063 << 1 we are justified in ignoring Brownian effects.
Finally, the equilibrium charge distribution assumed in obtaining the electrostatic

force balance is reasonable since D;/b2 = 145 >> 1 where D; is the ion diffusivity.

Based on this analysis it is reasonable to approximate the interaction of two
charged particles for this particular range of physical parameters as effective hard
spheres of radius b, which do not interact hydrodynamically and for which
Brownian motion is negligible. With this simplification it is possible to calculate
the rate with which particles are displaced across streamlines due to two particle
interactions in complex flow geometries. We have examined a number of

geometries:

Self-Diffusion in simple shear: Because particles are displaced from their
original streamline during each interaction, they will execute a non-Brownian

19




X2

10

Figure 1. Particle Trajectories With Electrostatic Repulsion

Effective Hard Sphere Radius

20

75




'

random walk in a shear flow. By determining the displacement during each
interaction and the rate with which such interactions occur, it is possible to calculate
the long-time random walk self-diffusion coefficients. These are:

D5d= 4 'b2 41,3
T (3 b*n)
and

Did=i—52—n?b2(4—§7£b3n)

where D59, the diffusivity in the plane of shear, is twice the diffusivity normal to the
plane of shear Did.

Drift due to gradients in concentration: In addition to a random walk,
particles also experience a deterministic drift from regions of high concentration to
low as a consequence of experiencing more particle interactions particles
approaching from regions of higher concentration. Again by looking at the rate of
particle interactions, the drift can be directly calculated:

and

where again the drift due to gradients in the number density of particles n is twice as
great in the plane of shear as normal to the plane. Note that the flux due to this
drift is six times greater than that arising from the random walk diffusivities alone.

Drift in unidirectional quadratic shear flows: In addition to migration due to
gradients in concentration, particles may also migrate due to gradients in shear rate.
This occurs because more particles approach a test particle from regions of higher
shear rate. We impose a unidirectional quadratic shear flow of the form:

oJu o%u
u; = 8i1[uly+5;i‘y( Xi-¥j) +@E\7(X1-Yj)(><k-3’k)}

We define the dyadic:
o*u
Ay=—x—
k™ axionx
which is a constant with only three independent non-zero elements. In the limit

that | IAl ] b <<y we may calculate the drift due to each element independently.
Thus:
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and

2
d-.4 du p2{4m 3
37 5n 0X20X3 (3 n)

Note that these expressions imply that migration due to gradients in shear rate will
be different in plane-Poiseuille flow than in tube-Poiseuille flow.

Drift in curved flow fields: In addition to any gradients in shear rate, particles
interacting along curved streamlines will experience a radially outward - ,
displacement during each interaction due to a radial component to the repulsive
force. For cone and plate flow, the streamlines are curved but there are no gradients
in shear rate. Provided that b/R << 1 where R is the radial position, the drift
velocity in this geometry is given by:

u?:%%b‘z(ﬁ%’—‘-b*" n)

while for parallel-plate flow the drift is given by:
do 4 Yi2(dmy3
T i

The drift in parallel-plate flow may be interpreted as the combination of drift due to
gradients in shear normal to the plane of shear, and drift due to curvature where
the latter term is the same as in cone and plate flow:

b2 (%t b3 n)

It is interesting to note that the two effects nearly cancel out. This is consistent with
recent experimental observations in concentrated non-colloidal suspensions in
parallel-plate flow.
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The effect of Surface Roughness in Sheariixg Suspension
F.R. Da Cunha! & E.J. Hinch®

Abstract

In the absence of Brownian motion, inertia and inter-particle forces, two smooth
spheres collide in a simple shear flow in a reversible way returning to their initial
gtreamlines. Because the minimum separation during the collision can be less
than 10— of the radius, quite a small surface roughness can have a significant
irreversible effect on the collision. We calculate the change between the initial
and final streamlines caused by roughness. Repeated random collisions in a
dilute suspension lead to a diffusion of the particles across the streamlines. We
calculate the shear-induced diffusivity for both self-diffusion and down-gradient
diffusion.

Introduction

Shear-induced dispersion is important in mixing particles across streamlines of
pipe and channel flows (Leighton & Acrivos 1987). Earlier Acrivos, Batche-
lor, Hinch, Koch & Mauri (1992) calculated the dispersion along, rather than
across, the streamlines, which involved a far field interaction between two pairs
of spheres. In this paper we explore the effect of surface roughness on the colli-
sions between two spheres. We will suppose that the asperities exert a normal
force between the surfaces of two spheres which resists their becoming closer
than the asperities but which does not exert any resistance as they separate.

In a dilute suspension we need only consider in detail the interaction between
two spheres. Let the centres of the two spheres be X(t) and Y (t). The relative
motion x(t) = X(t) — Y(t) is described by Batchelor & Green (1972). Non-
dimensionalising lengths with the radius of the spheres a and times with the
inverse shear-rate 1/7, they give

é=y+ez-%y, y=ey- g% i=ez,

where e = zy(B — A)/r? and r?=z?+1y?+ 2%, Expressions for the mobility
functions A(r) and B(r) and models of roughness can be found in a recent paper
by Cunha & Hinch (1995).

Numerical results

The governing equations for the trajectories of the pair of particles were inte-
grated numerically using a 4th order Runge-Kutta scheme. The time-step can

1University of Brasflia, Department of Mechanical Engineering, Brasflia-DF, Brazil.
2University of Cambridge, Department of Applied Mathematics and Theoretical Physics,
Cambridge, UK.
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Figure 1: The self-diffusivities as a function of the surface roughness; (a) for
diffusion in the direction of the gradient of velocity, and (b) for diffusion in the
direction of the vorticity.

be larger in the far-field r > 2.5, where we took ¢ = 0.005. In the intermediate
region 2.01 < r < 2.5 we reduced the time-step to § = 0.01. In the lubrication
region 2 < r < 2.01, the time-step was reduced further to ¢ = 0.001 to ensure
that the radial separation changed little in one step. The errors in the numerical
integration were then less than 1073, ,

In this paper the random walk is across the streamlines and is due to colli-
sions with other particles in the shear flow. We will calculate the diffusivities
for displacements in the y-direction and in the z-direction.

We first consider a dilute suspension with a uniform concentration. Since we
are assuming that each of these collisions is uncorrelated, we have dimensionless
self-diffusivities

s 2 3 i ® 21,,—0 —00 ,,~00 .
Di=a 7¢8_7r (AX:)*lys Idyz dy; (1=12,3).
-0 J—00

The above integral was evaluated numerically over the grid of yz ®y; ™
points using a trapezoidal rule. The spacing of 0.05 between points produced
an error less than 0.1%. Now in recent experiments Leighton (private com-
munication) has found self-diffusivities of 2.7 x 10~%a%y at a concentration of
¢ = 0.01 and 5.6 x 10~%a%y at ¢ = 0.025. From the vertical scales of figure 1,
we note that for a surface roughness of € = 0.02 our D§ = 0.008a%y¢ gives
8 x 10~%a%y at ¢ = 0.01 and 2 x 10~*a2y at ¢ = 0.025. Thus while interactions
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Figure 2: Down-gradient diffusivities. See caption to figure 1 for details.

between more than two spheres must be important at these concentrations, it
geems that surface roughness also not be neglected.

We finally consider a suspension which has a small gradient in the concentra-
tion in a direction across the streamlines, separately in the direction of the ve-
locity gradient and in the direction of the vorticity, i.e. n(x) = no-+ a:,--%‘; (=
2,3). This yields a net flux of particles across the streamlines which is pro-
portional to the concentration gradient, the coefficient of proportionality being
a diffusivity D§ (see Cunha & Hinch 1995 for details). Figure 2 shows down-
gradient diffusivities larger than self diffusivities by a factor of 5 for the direction
of the velocity gradient and by a factor of 10 for the direction of the vorticity.
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3.4

Collision Properties of Non-Simple Bodies and their Influence on
Hydrodynamic Dispersion

Ludwig C. Nitsche* and Johannes M. Nitsche!

*Department of Chemical Engineering
University of Illinois at Chicago
810 South Clinton Street
Chicago, Illinois 60607

tDepartment of Chemical Engineering
Clifford C. Furnas Hall
State University of New York at Buffalo
Buffalo, New York 14260

The phenomenon of shear-induced diffusion,’~7 central to the theory and practical appli-
cations of viscous suspension mechanics, depends critically on the outcome of interparticle
hydrodynamic interactions and collisions on the microscopic scale. Perfectly smooth spher-
ical particles suffer net longitudinal displacements, but no net lateral displacements, as a
result of binary encounters.? Irreversibility, produced for example by surface roughness,? can
produce net lateral movements. This talk summarizes an investigation of the collision me-
chanics of several model particles incorporating structural elements additional to the basic
two-smooth-sphere problem.

(i) Binary trajectories are calculated for spherical entities combining a hard hydrodynamic
core with a slightly-displaced steric shell, representing a simple, radially symmetric rep-
resentation of the effects of surface roughness.? This structure eliminates the lubrication
singularity (as would a thin porous layer at the surface!®) and allows interparticle con-
tact to occur, thereby bringing non-hydrodynamic forces and irreversibility into play.
For suitable initial configurations, particle interaction occurs as a three-step process
involving approach with pre-collision hydrodynamic interaction, contact and collective
rotation as a doublet until a tensile stress is experienced, and separation with post-
collision hydrodynamic interaction. Lateral and longitudinal displacements are deter-
mined as functions of the initial relative position for various values of the steric shell
thickness. Additional calculations address the influence of (non-hydrodynamic) col-
loidal forces. Approximate expressions for the Stokes resistance coefficients of spheres
interacting near a plane wall are used to study how hydrodynamic wall effects influence
the collision process.
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(ii) Slender body theory'!? is used to characterize the hydrodynamic interaction of thin
cylindrical particles. These calculations, based on detailed solution of the pertinent
coupled integral equations for the axial linear force densities, lead to an assessment of
the quantitative accuracy of the lowest-order slender body approximation used in recent
analyses of hydrodynamic dispersion.®*

(iii) To complement analyses of rigid nonspherical particlest®~1%, deformable, porous bodies
are here modeled as three-dimensional, girder-like assemblies of beads and (nonlinear)
springs — representing a discrete version of volumetrically distributed hydrodynamic
resistance. Lateral and longitudinal displacements for binary encounters are computed,
and the results are generalized for the presence of a plane wall. The potential energy
of deformation is tracked along each particle trajectory.

Averages over initial positions and (where applicable) conformations are used to estimate
the contributions of interparticle contact and configurational effects to the shear-induced
self-diffusion coefficient in the dilute limit.
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Motion of a sediment layer
due to a laminar, stratified flow

by U. Schaflinger
Institute of Fluid Mechanics and Heat Transfer, Technical University,
Vienna_, Austria

Advanced oil prospecting has become an important field in
science and engineering. Several techniques have been developed in the
last few years to increase the output of oil fields (Unwin & Hammond,
1994). In one specific method, a two-phase mixture of small solid
particles, which are either sand, porcelain or even crushed walnut
shells, and a highly viscous Newtonian fluid is pumped via the drill hole
into the cracks of the surrounding rocks. The high pressure widens the
fractures in which particles separate under gravity from the flowing
carrier fluid and the sediment eventually moves as a resuspended layer
due to viscous effects (Leighton & Acrivos, 1986). After the shut down
of the flow, the sediment of particles is supposed to keep the cracks
open, thereby increasing its void fraction and a subsequent reversed
flow of oil is possible. The whole process can be considered as a typical
practical example of viscous resuspension in a two-dimensional channel
(Schaflinger et al., 1990) since all Reynolds numbers associated with
this flow are small. In order to control the process, it is very important
to estimate the entrance region until all particles have separated from
the carrier fluid and to determine the distance the sediment layer has
traveled within the cracks (Schaflinger, 1993).

Resuspension is a process by which an initially settled layer of
heavy particles in contact with a clear fluid it is set into motion by a
laminar shear flow. When a clear fluid flows above an initially settled
bed of heavy, non-Brownian particles, at least part of the sediment layer
will resuspend, even at low Reynolds numbers. The physics of viscous
resuspension has been recently extensively investigated (Acrivos, 1993).
Several uni-directional flows such as a plane Couette flow, a plane film
flow, and a 2-D Hagen-Poiseuille channel flow were investigated based
on a theoretical model developed by Leighton & Acrivos (1986).
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For simplification, we suppose the cracks to be two dimensional
channels and average the previously obtained base-state results
(Schaflinger et al., 1990) for the flow and the volume concentration of
particles. Then, the entrance of an originally well mixed suspension
flowing into a two-dimensional channel and the subsequent propagation
of the emerging sediment layer can be investigated by applying the
theory of kinematic waves (Witham, 1974). Schaflinger et al. (1995)
have shown that at the entrance region particle separation due to gravity
is usually the dominating effect. This is because, when a well-mixed but
dilute suspénsion of heavy particles enters the channel, the flux is
negligible at first due to shear-induced diffusion and becomes important
only at a later state, i.e. when the flow has already segregated into a
pure liquid and a concentrated suspension. Thus, we assume local
equilibrium in the spatially growing sediment layer between the flux

. due to gravity and hydrodynamic diffusion. In such a case, the entrance
length is equal to the distance until the resuspended sediment layer has
reached its maximum height, i.e. when all particles have separated from
the .original suspension (fig. 1).

Re =50; ‘Ds =0.05

1
clear fluid

well mixed suspension

moving sediment

0 0.2 04 0.6 08 1 1.2
x

Figure 1. Entrance of a well mixed suspension with particle volume
concentration @ into a two-dimensional channel.

Eventually, we attain numerically a flux diagram for both the
kinematic wave velocity and the kinematic shock velocity and we show
that a sudden onset and a sudden end of a sediment layer move as a
combination of kinematic shocks and kinematic waves. Both velocities
are much smaller than the average velocity of the clear liquid.
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Therefore we are able to estimate the time until a certain amount of
particles has traveled into a given length of fracture.

Experimental observations of the motion of a sudden end of a
sediment layer in a two-dimensional channel flow correspond well with
the theory if the flow-rate of clear liquid is small, which is usually the
case in oil prospecting. If the flow-rate is increased, however, we
observe strong instabilities and eventually wave breaking at the interface
between the resuspended sediment and the clear liquid (Zhang et al.,
1992; Schaflinger, 1994). In this case, the speed of the dynamic waves is
much faster than the velocity of kinematic waves or kinematic shocks.
Thus, the observed propagation of a sudden end of sediment is
significantly larger than predictions based on a theory of kinematic
waves.
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4.3
THE SHEAR INDUCED-DIFFUSION OF PARTICLES IN A
RECTANGULAR FRACTURE CHANNEL
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Department of Applied Mathematical Studies, University of Leeds, Leeds LS2 9JT, England
*Schlumberger Cambridge Research Limited, P.O. Box 153, Cambridge, CB3 0HG, England

ABSTRACT

It .has been observed that in laminar shear flows particles within suspension migrate in the direction
of decreasing shear. This phenomena, termed ‘shear-induced diffusion’ arises from the hydrodynamic
interactions between neighbouring particles. In this paper a simple model for the flow of a particulate
suspension within a rectangular channel is studied with the effects of shear-induced difusion included.
An equation is formulated for the particle concentration which is solved initially for a fully developed
steady one-dimensional gravity driven flow down an inclihed channel. The problem is then developed
by adding a pressure driven flow perpendicularly across the gravity driven flow. The concentration,
momentum and conservation of mass equations have been solved numerically under a wide variety of
operating conditions and initial feed concentrations, and typical concentration and velocity profiles '
at various angles of inclination of the channel and strengths of cross flow are presented.

INTRODUCTION

The phenomena of viscous resuspension is of practical importance in many industrial operations.
One of the most common processes in industry involves the separation between a particulate phase
and the continuous fluid which constitute a particular slurry. Often this is achieved using gravity
settling, which is a relatively slow process when particles are small and the fluid is viscous. Thus,
the effect of viscous resuspension could significantly reduce the performance of these settling devices.
However, if properly exploited, viscous resuspension can have a positive influence on some industrial
operations, such as the process by which proppant particles are placed within a hydraulic fracture
in the hydrocarbon industry. When a fracture is created, a fluid containing proppant particles is
pumped into it. Ideally, the proppant particles should settle evenly along the entire length of the
fracture so that when pumping ceases the fracture is wedged open by the sedimented particles. By
taking advantage of viscous resuspension effects it is possible to entrain particles from a settled bed

-back into the bulk shear flow which will enable them to be convected deep into the fracture channel
and thus avoid the possibility of closure.

The purpose of this paper is to examine theoretically viscous resuspension, using a similar model
to that employed by Leighton & Acrivos (1986) and Schaflinger et al. (1990), initially for a fully
‘developed steady one-dimensional gravity-driven flow down an inclined channel and then to extend
the problem by adding a perpendicular pressure-driven flow across the inclined plane. This latter
situation is a reasonable model for proppant flows in inclined fractures provided that the angle of
inclination, ¢, is assumed to be sufficient for entrainment to occur without particles being contained
in a stagnant packed bed along the lower surface of the fracture.
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THE CONCENTRATION EQUATION

Consider the flow of a suspension, consisting of uniform spherical particles, down an inclined channel
of height 2B which is at an angle o to the horizontal when there is a constant pressure gradient
applied across the channel, i.e. in the z*-direction, see figure 1. The volume of flux of clear fluid per
unit depth flowing in the z* and y*-directions are AQ and Q, respectively, where Q is an adjustable
parameter. In this paper we take the region of interest sufficiently far from the inlet regions and
down the incline that all the components of the velocity are functions of z* alone and therefore the
z"-component of velocity is zero. The velocity components are U* and V* in the ¢ and y*-directions,
respectively.

As the suspension flows some particles within it will begin to sediment, due to the effect of gravity,
while others will resuspend because of the diffusion caused by the shear flow. If steady state is
achieved, i.e. the sedimentation flux balances the shear-induced diffusive flux of particles, the flow.
basically consists of two distinct regions, namely a region of clear fluid above a region of suspension
which has-a variable concentration, see figure 2. We consider the suspension to consist of rigid
spherical negatively buoyant particles, which are of uniform size and density and which do not
aggregate, settling at very small Reynolds numbers from a suspension comprised of an incompressible
Newtonian fluid. The particle flux due to sedimentation in the z*-direction is given by

= —¢f(¢) [ 2 (’il:@—)] cosa (1)

for a rectangular channel inclined at an angle @ to the horizontal, see figure 1, where ¢ is the local
particle concentration, g is the acceleration due to gravity, a is the particle radius, g is the viscosity,
p is the density, [-a ggf?fl-"—’)] is the dimensional Stokes settling velocity, the subscripts 1 and 2 refer
to the clear fluid and the particle properties, respectively, and f(¢) is called the hindered settling
function. In this work the hindered settling function was chosen to be the same as that used by
Leighton & Acrivos (1986), Schaflinger et al. (1990) and Zhang & Acrivos (1994), namely,

_1-9¢
f)=— , (2)

where p, is the relative viscosity between the suspension and the clear fluid and is given by Leighton
& Acrivos (1987) as
2
1.5¢
e = Em I:l + 2 :| (3)

where ¢, is the volume fraction of particles in the state of close packing and typically takes the
value 0.58, see Leighton & Acrivos (1986), and the subscript m denotes the suspension properties.
The flux due to shear-induced resuspension is given by

N, = K (#3544 28) - K4" (——) st ()

see Phillips et al. (1992), where K. and K, are constants of proportionality which have to be
determined experimentally and §*(2*) is the dimensional absolute shear rate. In our calculations,
K. and K, are taken to be 0.43 and 0.65, respectively, i.e. the values suggested by Phillips et al.
(1992). For a steady state to exist we require

N,+ N, =0 (5)
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The quantities used in the non-dimensionalisation process for the length and shear stress are 2B
and 2Bpigsina, respectively. By substituting expressions (1) and (4) into equation (5), non-
. dimensionalising and re-arranging we obtain

1
do %6(1 - ¢)C0ta+ Kc¢.;_iz. [ TT:::LZ +7_%,12}2]
- F [(KusKe), (6)
dz {T;2+T,¥,,2}2 [K -K. d“r¢+.K¢]

Mr do

where & is the modified Shields number which gives a measure of the ratio between viscous and
buoyancy forces and is given by
k=2 M@ (7)
16 B3g(p2 — p1)

and the dimensionless shear stress within the suspension layer, 7,,,, is given by

. __Tm_l x2 yZ%
7m.-—-‘;_; T +Tm] .. (8)

where the superscripts ¢ and y denote quantities in the z* and y*-directions, respectively.

RESULTS

For the case with no cross flow, it is shown that as the angle of inclination increases a constant ,
concentration profile is reached within the resuspension layer and the velocity has its maximum
value at the particle-clear fluid interface. Thus, the resuspension is restricted due to the existence of
a plane on which the shear stress vanishes and hence it is not possible to obtain solutions at larger
angles of inclination.

When A # 0, i.e. thereis a cross flow present, increasing the flow rate sufficiently in the y*-direction
at a fixed angle of inclination produces a value for the concentration within a thin layer close to the
centre of the channel that approaches the limit of maximum packing, namely, ¢ = 0.58. When the
channel is inclined at larger angles to the horizontal, the ratio of the volume of clear fluid flowing in
the z*-direction to that in the y*-direction at which this maximum packing condition is reached is
found to decrease. When the initial feed concentration, ¢; increases, the number of particle-particle
interactions increases and the value of «, a measure of the flow rate in the y*-direction, at which
the maximum packing condition is reached decreases.

Finally, it is important to point out that the analysis has been based upon the generalization of the
experimental result stating that the shear-induced diffusion coefficient is proportional to the absolute
shear rate. Since this result has only been verified for simple uni-directional flows it requires further
experimental investigation.
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Figure 1. The schematic diagram and coordinate system.

Figure 2. The cross section of the channel in the y-z plane.
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4.4

A model for suspension flow accounting for
shear-induced migration

Prabhu R. Nott
Department of Chemical Engineering
Indian Institute of Science
Bangalore 560012, INDIA

The compelling experimental evidence of many recent studies (Leighton & Acrivos,
1987; Sinton & Chow, 1991; Koh et al, 1994) on the shear-induced migration of parti-
cles in suspensions when subjected to inhomogeneous flows (i.e., flows with a gradient
in the shear rate) has generated interest in formulating models that can predict parti-
cle segregation in these situations. The earliest such effort was by Leighton & Acrivos
(1987), who proposed the so-called “diffusion model” in which the migration of par-
ticles was due to diffusive fluxes driven by gradients in the interaction frequency,
concentration, effective suspension viscosity and even shear stress. The particle con-
centration field is then derived by solving the diffusion equatlon in conjunction with
the momentum equation for the suspension.

Their model was appealing due to its s1mphc1ty and the qualitative agreement
of its predictions with some experimental data (e.g., Couette flow). However, their
predictions for flow in channels or tubes departed qua.htatwely from experimental
observations. Moreover, their model predicts migration in some curvilinear flows
where no migration has been detected.

More recently, Nott & Brady (1994) proposed a model for suspension flow, dubbed
the “suspension balance model”, which implicitly takes account of inhomogeneities
in particle concentration arising due to inhomogeneities in the imposed flow. Unlike
the model of Leighton & Acrivos, there is no diffusion of particles in this descrip-
tion. Cross-stream migration of particles arises simply from the requirement that the
macroscopic “particle pressure” balances the inertial and body forces in the parti-
cle phase momentum equation. The particle temperature, which is the mean square
fluctuational velocity of particles, is a fundamental quantity in this model and is de-
termined by solving a balance equation for the fluctuational energy. Thus, balances
for mass, momentum and fluctuational energy for the particle phase determine the
concentration, velocity and the particle temperature fields. This description rests on
the analogy with that of compressible Newtonian fluids and of granular materials.

In this presentation, we focus on the suspension balance model of Nott & Brady
and compare its predictions with that of the diffusion model and with the simulations
of Nott & Brady. We also use data from the simulations to test the hypotheses of this
model. While we confine ourselves in this presentation to the creeping flow regime,
it is our intention to relax this assumption in future studies.

Steady, fully developed channel flow

We consider here the steady, fully developed flow in a semi-infinite rectangular
channel of width H. Flow is in the z- direction and all gradients are in the y-
direction. We further stipulate that the densities of the fluid and the particles are

38



equal. The governing equations in dimensionless form are:
d
& (p($)VT) =0 ‘ (1)
d du d -
2 (WO%) - £ - (e u) =0 @

m(4) (%) ~a@T + o4 (AT ) =0 @)

where ¢, u and T are the concentration, average velocity and temperature fields,
respectively, of the particle phase and u, is the bulk velocity of the entire suspension.
The parameter € = a/H is usually very small, a being the radius of the suspended
particles. Equations (1), (2) and (3) are balances for the y- and z- momenta and
fluctuational energy of the particle phase, respectively. The reader is referred to Nott
& Brady (1994) for an elaboration of the above equations and the forms chosen for
the phenomenological functions of ¢, viz. p, 7, f1, @ and k.

The similarity between this description and the treatment of compressible fluids
and granular materials is apparent: the concentration (or density) distribution arises
not from a diffusion equation, but simply from the y- momentum balance, which
holds that in the absence of a body force the gradient of “particle pressure” in the y-
direction vanishes. The particle pressure is a function of the concentration and the
particle temperature and the latter is nominally determined from (3), the balance for
fluctuational energy.

An important conclusion from (2) is that the phase slip (i.e., the difference u —u,)
is O(€?); therefore, it is sufficient to determine the average suspension velomty from
the momentum equation for the entire suspension from

7 (rode) - £ —o @

Another conclusion one can make is from (3), that the boundary condition for T will
only affect the boundary layer at the wall (at the center, symmetry is assumed).

Figure (1) compares the predictions of the model with boundary conditions "= 0
and dT'/dy = 0 at the wall with the predictions of the diffusion model (Koh et al,
1994) and the simulations of Nott & Brady. For our calculations, symmetry of v and
T is imposed at the center, no slip at the walls and the integral constraint

[ ddy=sa

specifies the average concentration of particles in the channel. It is quite apparent
that the choice of boundary condition for T does not affect the solution in the channel
interior, though it strongly determines the nature of solution in the boundary layer
at the wall. While the simulations suggest that the particle temperature vanishes
at the walls, a more detailed study on this aspect is necessary. Perhaps an energy
boundary condition of the type used in the modeling of granular flows (Hui et al,
1984) is appropriate. While the diffusion model predicts a cusp-like concentration
profile with ¢ = ¢, at the center, the present model predicts a profile that agrees
qualitatively with the simulation data.
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Figure 1: Comparison of predictions of the -suspension balance model, the diffusion
model and Stokesian Dynamics simulation for steady, fully developed flow in a rect-
angular channel for Hja = 18 and ¢4 = 0.45.

Unsteady, fully developed channel flow

We now consider the unsteady segregation of particles in a channel which is ini-
tially filled with a homogeneous suspension. We assume that the flow is always fully
developed (i.e., no variation along the z- direction). While this condition cannot
be realized in a laboratory experiment, it is satisfied in dynamic simulations where
periodic boundary conditions are employed.

The equation of continuity now determines the developing concentration field,

6¢ '
Tt 508 = ©)

and the balance for y- momentum assumes the form
0 (4 0
2 (315) = 2 (6IVT) - ulgw =0 ®)

where v is the velocity in the y- direction. The fluctuational energ}; balance acquires
two more terms,

— Ep(WT Z—;+ ?,:—e“ 1o(4) (Z—Z)zﬂp(‘ﬁ) (%)2 AT +e5 ( Dy ) ”
(7)

while the z- momentum balance remains unchanged from (4).
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While rendering the above equations in non-dimensional form, the scale one arrives
at for v is €2 ug, where up is the scale for u. The time scale (for achieving steady state)
is then 7 = H/v = € H[uq, which is exactly the conclusion that Nott & Brady arrived
at on assuming a diffusive migration of particles.

For a specified concentration profile, ¢(y), equations (6)and (7) must be solved
for the T' and v fields. The latter is substituted in (5) and time integrated to derive
#(y) at the next time step starting from the initial condition

dy)=¢4 att=0.

The development of the concentration profile with time for H/a = 18 and ¢4 = 0.45 is
shown in figure (2); the system appears to be close to steady state after a dimensionless
time of 1.

Test of the particle pressure hypothesis

An important hypothesis of this model is that the particle pressure determines the
concentration field. For creeping flow, the constitutive form of the particle pressure
must be, from dimensional grounds,

= Lp(¢)VT (®)

where 7 above is the viscosity of the fluid. In channel flow, this pressure must be
constant across the channel in the absence of body forces. In dimensionless form,
p(#)VT = po, where po is a constant and a function only of € and ¢4. The implies
that

(@) =1a () +lam o

and therefore that plots of In (:}——T) versus @, for different values of € and ¢4, will be a

family of curves parallel to each other, but with different intercepts. This hypothesis
was tested on the simulations of Nott & Brady (1994) and is shown in figure (3). The
data are for simulations four different values of €, but with a constant ¢4 of 0.4. It
appears from this plot that the curves for different values of € are not parallel to each
other, rather the slope seems to increase with decreasing e. However, it must be noted
that the simulations were performed for channels with “bumpy” walls, i.e. the channel
walls were composed of stationary particles. This could lead to a contribution to the
particle temperature that is independent of interactions between suspended particles
but depends only on particle-wall interactions. If this were the case, the “wall-effect”
would decay as ¢ decreases, which appears to be the case in figure (3).

The issues raised in this presentation point to the necessity for more experimental
evidence, particularly on the mean fluctuational velocity of particles. This would be
of help, not only in substantiating the models, but also in understanding the origins
of shear-induced diffusion and migration and the nature of partlcle interactions in
concentrated suspensions.

41




0.8

time

1]
7/
'
/
!

0.4 | -

0.8 ——t

Figure 2: Predictions of the model for unsteady, fully developed flow in a rectangular
channel for Hfa = 18 and ¢4 = 0.45.
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Figure 3: Verification of the particle pressure hypothesis on the simulations of Nott
& Brady.
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SIZE SEGREGATION OF CONCENTRATED BIDISPERSE
AND POLYDISPERSE SUSPENSIONS DURING TUBE
DRAWING

Andrea W. Chow, Richard D. Hamlin, Lockheed Missiles and Space Co., 0/93-50, B/204,
3251 Hanover Street, Palo Alto, CA 94304, and
Caroline M. Ylitalo, 3M Corporate Research, St. Paul, MN 55144 .

1. INTRODUCTION

In a non-homogeneous flow field, shear-induced particle migration causes
concentration non-uniformity in concentrated solid suspensions. For suspensions consists
of more than one narrow size distribution of particles, shear-induced migration can also
lead to size segregation due to the size dependence of the migration rate. [1] This paper
reports some experimental observations on the shear-induced size segregation phenomena
of concentrated bidisperse and polydisperse suspensions when suspensions were drawn up
atube. Our experiments are extensions of those by Chapman [2] who has examined the
accumulation of particles behind an advancing meniscus of monodisperse suspensions to
study the shear-induced migration phenomenon.

II. EXPERIMENTAL

Materials

The bidisperse suspensions consist of two sizes of glass spheres (Class SA
precision grade Microbeads, Cataphote Inc., Jackson, Mississippi) with diameters 105 -
125 um and 44 - 53 um. The two sizes have volume-average median diameters of 118 and
48 um, and number-average median diameters of 117 and 46 pm, respectively. The
specific gravity of the glass spheres is reported to be 2.42. Suspensions with solids

volume fraction (¢) of 0.30, 0.40, and 0.50 were examined. Volumetric ratios of large to
small spheres were 1:1 for the 0.30 and 0.40 volume fraction suspensions, and 1:1, 3:1,
and 1:3 for the 0.50 suspensions. The polydisperse suspensions consist of poly(methyl
methacrylate), PMMA, spheres (Lucite 47G, DuPont, Wilmington, Delaware) with sizes
ranging from 25 pim to 250 um. The volume-averaged and the number-averaged median
diameters are 128 pum and 56 pum, respectively. The specific gravity of the PMMA spheres
is 1.186.

The suspending fluid for the glass spheres was prepared from equal weights of
Ucon oil (75-H-90,000, Union Carbide, Danbury, Connecticut), water, and ethylene
glycol. It has a viscosity of 3.9 Poise and a density of 1.085 g/cm3 at 25°C. The fluid
used for the PMMA spheres consists of 0.1 weight fraction of Ucon oil, 0.45 water, and

0.45 ethylene glycol, with a viscosity of 0.25 Poise and a density of 1.070 g/cm3 at 25°C.
A few drops of Triton X-100 (Rohm and Haas, Philadelphia, Pennsylvania), a surfactant,
were added to the suspending liquids to improve wetting of the particles and hence assist
dispersion of the solids.

Tube Drawing Experiments
Semi-transparent Teflon tubes ranging in the inside diameter (ID) between 1.58 mm

and 6.26 mm were used. In the tube drawing experiments, a well-mixed suspension was
first drawn up the circular Teflon tube with the top end connected to a vacuum line. After
the suspension traveled a desired distance, the vacuum was broken and the tube was
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qmckly rotated to a horizontal position. It was placed on a flat, horizontal surface to allow
the particles to settle under the influence of gravity. After about 2 to 30 min, the packed
meniscus region could be clearly distinguished at the point where the particles filled the
entire cross section of the tube without settling away from the upper wall as shown
schematically in Figure 1.

For size analysis, several small sections were cut at different regions along the tube
(see Figure 1). The length of the cut sections varied between 1 cm for the largest tubes
(6.26 mm in diameter) to 2 cm for the smallest tubes (1.58 mm in diameter), and the
number of sections cut from each tube was between 8 and 11 depending on the total length
of the tube occupied by the suspension. Those tube sections were weighed, and the
contents of each were emptied into a small vial. The net weight of the suspension
occupying each section was determined by the difference between the total weight of the
filled tube section minus the weight of the cleaned tube section. With the known liquid and
solid densities and the suspension weight and volume, the particle concentration profile
along the tubes can be determined.

The size distribution in each cut section was analyzed using a Coulter Multisizer. A

small amount of the suspension sample (about 1 cm3) was dispersed in a large amount of
electrolyte so that the final particle concentration in the electrolyte solution was
approximately 1 ppm. The electrolyte was prepared by mixing Isotone II electrolyte
solution with 0.25 volume fraction of glycerol to increase the viscosity which suppresses
the sonic peak artifacts in the measurements. The dilute suspension was then placed in a
stirred reservoir from which the suspension could be drawn at a controlled rate through an
orifice of known size. The orifice is equipped with electrodes that measure-the change in
the electric resistance across the gap. When a particle passed through the orifice, the
change in the electric resistance was recorded and translated into particle size (with the
assumption that the particles are spherical in shape). After a statistically significant number
of particles had been counted, the number- or volume-averaged median particle diameter
can be computed.

III. RESULTS

Figure 2 illustrates the results of particle size analysis along the tube in which a

¢=0.30 bidisperse suspension with equal volumes of large to small glass spheres was
drawn. The number above each histogram corresponds to the location along the tube
illustrated in Figure 1. The histograms are presented in numbers of particles versus log
diameter, with the left and right peaks representing the 48 um and 118 pum glass beads,
respectively. Sample 1 was taken from the well-mixed bulk suspension, thereby
illustrating the size distribution right at the entrance to the tube. Sample 8 was taken from
the tip of the packed meniscus region. The plot in the bottom summarizes the size
distribution data by showing the peak area ratio of large to small particles at each location
versus the normalized distance along the tube, with the origin at the entrance of the tube.
Each data point represents an average of 4 size analysis runs using the Coulter Multisizer.
The data in Figure 2 clearly demonstrate that Jarge particles indeed migrate faster toward the
meniscus region, resulting in a net enrichment of large particles in the meniscus region and
a depletion of in the middle region. This phenomenon is a manifestation of the fact that the -
shear-induced diffusivity (D) is a strong function of the particle radius (a), D ~ a2 for
monodisperse suspensions [3], although the exact diffusivity scaling for bidisperse
suspensions is not yet established.

The effects of size segregation in bidisperse suspensions as a function of total
particle volume fraction and size distribution were examined. Figure 3 compares the size
ratio along the tube for the 0.30 and a 0.50 volume fraction bidisperse suspensions with
equal volumes of large and small spheres. We found that size segregation is more
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pronounced in the less concentrated suspension. The ratio in the meniscus region is over
three times its value in the bulk for the 0.30 bidisperse suspension compared to less than
twice the bulk value for the 0.50 volume fraction suspensions. This trend may be due to
less available free space in the suspensions with higher solids concentration, thereby
impeding the preferential migration of the large particles through the denser particles
matrix.

When the volume fraction of solid is fixed at 0.50 but the volume ratio of large to
small particles is allowed to vary from 1:3 to 3:1, we observed that size fractionation is
more pronounced in the sample containing more large particles as shown in Figure 4. In
this figure, the abscissa is the measured peak ratios of the large to small particles
normalized by the ratio in the bulk sample. This normalization is necessary to facilitate a
direct comparison of the three samples. We believe that the difference in the enrichment

factor is at least partly due to the difference in the maximum packing fraction (¢max) of
these suspensions.

Size segregation have also been observed in polydisperse suspensions. Figure 5
illustrates the changes of the number-averaged mean particle diameter (normalized by the
bulk suspension value) as a function of the normalized length for a 0.30 volume fraction
PMMA suspension. The mean particle size along the tube decreases after the entrance
region to some minimum in the plateau area, then increases at the transition region to reach
a maximum value in the packed meniscus. As in the bidisperse suspensions, the meniscus
region is enriched in large particles in the expense of the middle region.

IV. CONCLUSIONS

When suspensions are drawn up a tube, the particles migrate inward away from the
high shear region near the wall toward the center. As more particles move into the faster
moving streamlines in the center, there is a net particle flux moving toward the advancing
meniscus region, resulting in a steady growth in the length of the densely-packed meniscus
region. For suspensions containing a range of particle sizes, the larger ones migrate faster
than the smaller ones, yielding an enrichment of large particles in the meniscus region as
illustrated in our results. This enrichment effect is more pronounced at lower normalized

solid volume fraction (¢/®max)-
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Fig. 2.  Size distribution of ¢=0.30 bidisperse glass sphere suspension along the tube.
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5.1

On Mixing and Demixing Phenomena in Granular Shear Flow

H. Buggisch, Karlsruhe, Germany

In shear flow the individual grains of a bulk material move relative to
each other. If the mean particle-particle distance is small and the
shear rate is high this leads to particle collisions, resulting in a
random motion of the grains, which loose their permanent contact.
Hence fast flowing granular materials behave in many respects like
gases|3,4,5,7].

In slow shear flow of closely packed granular materials the grains
remain in more or less permanent contact. Nevertheless fluctuating
motions can be observed as well, caused in this case by fluctuations of
quasi-static contact forces, particles being "squeezed” into "holes”
between the neighbouring particles.

The random motions of particles superimposed to the mean shear
deformation both in rapid and slow flow result in particle diffusion
and may result also in particle segregation [1,2,4,6,7]. This will be
the topic of the talk. In the first part of this contribution the author
will give an overwiew over some work published in the literature on
modelling mixing and gravity segregation in fast shear flow.

In the second part he will present some work of his own research
group on mixing and demixing phenomena in slow shear flow.

The basic idea, underlying the modeling of mixing by shearing. done
by the author and his coworkers [2,6] was, that in closely packed
granular systems the particles move in more or less organized
manner in "columns” (like the cars on a highway) until they meet a
gap in the neighbouring columns into which they can jump. The
frequency of jumps should be proportional to the shear rate (i.e. the
relative speed of neighbourifig columns) and inversely porportional to
the mean gap distance. The packing structure of the granular
medium is assumed to depend upon the particle size distribution, but
to be independant from the magnitude of the shear rate x inside the
shear zone (where x # 0). A similar model has been proposed by
Bridgwater [1] which differs from our model, however, by predicting
a proportionality of the diffusion intensity to the volumetric particle
density whereas we predict a proportionality to the number density.
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Experiments have been done using a Couette-apparatus and a Ring-
shear-device. The model bulk used in the Couette-experiments
consisted of cylindrical rods marked by colour, the rods being closely
packed into the gap between the walls with their axes parallel to the
axis of the Couette-apparatus. In the ring shear experiments, glass
spheres were used as model granulate.

In these experiments the predictions of the theoretical model could
be confirmed, whereby the mean gap distance was used as a fitting
parameter [2]. In recent experiments the effect of the particle size
distribution upon the mean gap distance was studied [6]. The result
‘was, that in almost monodisperse systéms the gap distance becomes
extremely large, because the grains organize themselves in crystal-
like large clusters.

During experiments with mixtures segregation of particles of
different size was found. In the Couette-apparatus this phenomenon
could not be explained by volume forces. Hence the author and his
coworkers have proposed a phenomenological model, postulating a
flux of small particles relative to the large ones driven by the gradient
of the shar rate [2]. Predictions of this theory have been confirmed by
comparison with the observed segregation effects. In the ring shear
experiments an additional downward flux of small particies could be
identified, which is due to the influence of gravity. This also has been
modelled, and the results have been compared with the observations.
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The Effect of Particle Diffusion on

Heat Transfer for Flows of Granular Materials

M.L. Hunt

Division of Engineering and Applied Science
Mail Code 104-44 '
California Institute of Technology
Pasadena, CA 91125

Heat transfer in flows of granular materials may be due to several factors: gaseous
convection, particle convection, particle-to-particle conduction, heat generation due to
shearing of the material, and thermal radiation. For different mixing processes and heat-
exchange geometries, the relative contributions of these mechanisms to the overall heat
transfer may be significantly different. However, few studies have examined heat transfer
in granular flows to assess the dominant mechanisms (Hunt, 1990). Some results can be
inferred from fluidized bed literature, especially regarding the contribution from thermal
radiation and from particle-to-particle conduction. However, the resuits from fluidized bed
studies regarding gaseous and particle convection are not readily applicable to granular
flows since the relative motion of the fluid and solid phases differ considerably in these
two flows. In fluidized beds the particles are suspended and may be convected by the gas.
In granular flows the fluid phase has a negligible effect on the movement of the particles;
instead the motion of the particles is due to gravitational acceleration (flow down a chute)
or by a motion of the bounding walls (flow in a solids mixer), and to the particle-to-
particle and particle-wall collisions. Hence for some granular flows, the contribution of the
fluid convection might be secondary to that of the particle convection.

The focus of the current work is on the contribution of particle convection to heat
transfer in granular flows. The work examines the relation between the mixing or diffusion
of the granular material and the enhancement of the effective thermal conductivity.
Recently, the work by Hsiau and Hunt (1993) and by Savage and Dai (1993) developed an
expression for the self-diffusion coefficient for a granular material flow using dense gas
kinetic theories. The diffusion coefficient, D, is shown to increase with the particle
diameter, d, the square-root of the granular temperature, v, and decrease with increasing
solid fraction v through the radial distribution function go(v), which accounts for the
increase in particle collision rate due to the finite size of the particles. By a similar analysis,
Hsiau and Hunt (1993) found a corresponding relation for the effective thermal
conductivity by analyzing the heat flux that resulted from the particle motion across a
thermodynamic temperature gradient. The analysis assumes that the particles are at a
uniform temperatures (small Biot number approximation), and that the surrounding fluid is
conductive but stationary. The result of the analysis showed that like the self-diffusion
coefficient, the effective thermal conductivity increased with granular temperature and
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decreased with increasing solid fraction. The expression for the thermal conductivity is as
follows:

kg = pye,dr™” (97 vgo(v))
where the density and specific heat, pc, are properties of the particles. This result is
consistent with the limit of small Biot-Fourier number, BiFo=A4t/o, in which the time
between particle collisions, 47, is much smaller than the thermal time constant of the
particle, o. For very large Biot-Fourier numbers, the effective thermal conductivity is
proportional to the granular temperature,

ks =p,c,voy.

The current work focuses on evaluating the effective thermal conductivity using a
two-dimensional hard-sphere molecular dynamics simulation. Computer simulations have
been used routinely in granular flow studies to investigate the mechanics of the flow, and
recently in examining the variation of the self-diffusion coefficient (Dai, 1993). The
computer simulation technique has not been used previously for heat transfer studies.

The first studies have examined the variation in the effective thermal conductivity
for a range of BiFo and for a range of solid fractions, v. Consistent with the kinetic theory
analysis, the particles are assumed to have a constant temperature. The particles exchange
heat with the surrounding fluid through a heat transfer coefficient. The granular flow has
no mean motion; however, the particles are free to move within the bed because of their
non-zero granular temperature. The particles collide elastically and no thermal energy is
exchanged during a collision. A high-temperature and a low-temperature thermal reservoir
are placed at either end of the bed. The simulation is then used to evaluate the heat flux
between the reservoirs, and this result is used to determine the effective thermal
conductivity. The limiting cases at high and low BiFo are consistent with the kinetic
theory analysis. Although the current configuration does not correspond to a physically
realistic configuration the simulation can be modified to examine flows with an overall
motion, such as the experimental studies by Wang and Campbell (1992).
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Fick’s Law and Species Separation for a Binary Mixture
of Frictionless, Nearly Elastic Spheres

James T. Jenkins
Department of Theoretical and Applied Mechanics
Cornell University
Ithaca, New York 14853-1503

We consider the kinetic theory for a binary mixture of smooth, inelastic spherical
grains that interact through binary collisions.

We first review how a relation between the relative velocity of the two species and
the spatial gradient of their number densities, the spatial gradient of the mixture fluctuation
kinetic energy, and the difference in the external force on each type of sphere is obtained
from the species momentum balances as an approximation.

Next, we consider two simple problems involving separation of the two types of
spheres associated with differences in their size, mass, and coefficients of restitution. In
the first, separation is driven by gravity in a uniform field of mixture fluctuation energy.
Here, we focus on a steady homogeneous shearing flow in which one species is dilute and,
given the sizes, masses, and coefficients of restitution, determine whether the dilute con-
stituent sinks or floats. In the second, separation is driven in the absence of gravity by the
spatial gradient of the mixture fluctuation energy. Without making any simplifying as-
sumption regarding the concentrations, and given the sizes, masses, and coefficients of
restitution, we determine when separation of the species will occur and predict its direc-
tion in relation to that of the gradient of fluctuation energy.

It is important to point out that while these two separation problems are typical of
those phrased in terms of the kinetic theory for binary mixtures of inelastic particles, other
separation mechanisms in dry systems of particles are possible. Typically, these do not
involve so simple an interparticle interaction as instantaneous binary collisions and, as a
consequence, are not so easy to describe.
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5.4

PARTICLE TRANSPORT IN VIBRATED GRANULAR BEDS

Yidan Lan and Anthony D. Rosato
Particle Technology Laboratory
Mechanical Engineering Department
New Jersey Institute of Technology
Newark, NJ 07102

The use of particulates is widespread in a host of industries (i.e., chemical, agricultural, pharmaceuticals,
ceramics, mineral processing, and advanced materials) concemed with handling and processing of granular
materials, Despite the worldwide use and applications of bulk solids, the design of efficient and reliable systems
remains highly problematic. This is essentially due to the fact that aithough the flow of particulates appears
- deceptively similar to fluids, there is no general understanding or model of even the most seemingly simple
flows capable of describing behavior over the spectrum of possible flow regimes (energetic, intermediate and
quasistatic). Often bulk granular materials are subject to vibrations in handling processes, such as in hoppers
and chutes, to promote and enhance flow. Vibrated beds exhibit a rich variety of interesting phenomena, (eg.,
fluidization [1,9,15], convection [4,5,6,8,10,12,17], arching [11,19], surface waves [11] and size segregation
[2, 13].

In this paper, we present steady state three-dimensional discrete element simulations of convective transport
in a granular bed which is energized by a flat floor sinusoidally oscillating in the vertical direction at amplitude
a and frequency @ The computational cell is a rectangular parallelopiped having flat side walls, an open top
and lateral periodic boundaries. Particles are modeled as inelastic, frictional spheres of diameter d and the
contact laws used are those developed by Walton and Braun [18]. The normal force between two such
contacting spheres, govermned by linear loading and unloading springs of stiffnesses K; and K, respectively,

produces a constant effective normal restitution coefficient e = 1/K] / K2 . The tangential force model, patterned

after Mindlin’s theory, contains a tangential contact stiffness Kt (involving a Coulomb friction coefficient p
and an initial tangential stiffness K,) which decreases with tangential displacement. Full sliding of the contact
occurs at the friction limit where X7 is reduced to zero.

In the simulations, plastic spheres of diameter d = 0.1m are used having a density p = 71200 kg/m’, and a
loading stiffness K; = 2.8 x 10° is chosen. We note that sensitivity tests showed that the use of this value
produced a maximum overlap between contacting spheres of less than one percent of the diameter. This in
accordance with the behavior of uniformly sheared granular materials, govemed by a pressure which varies as
the square of the shear rate and validated by kinetic theory models [7].

The first series of simulations are done in a cell of width W = 6d at a floor shaking acceleration T" = a&’=
10g. The normal restitution coefficient ¢ = 0.9 and p = 0.8 for the side walls and flow particles. A convective
flow occurs in which particles rise upwards in the center of the bed and move down near the side walls. This
has also been observed in experiments of Savage [16], Evesque and Rajchenbach [3], and in two-dimensional
simulations of Gallas et al. [6] and Taguchi [17]. We note that particle rotation was neglected in the latter
simulations in contrast to our studies where transfer of tangential momentum at the contact point causes
spheres to spin. Results also show clearly that low displacement amplitudes (@ < 0.25d) produce very little
convection in the cell

A change in the friction propertes of the walls and flow spheres affects the sense of the convection
field. In this study, f= 7 Hz,a = 0.5d, T = 10g, W = 6d. When smooth spheres and frictional walls are used
G.e., L = 0, v = 0.8), a downward flow appears in the center of the cell and upward along the walls, in
* contrast to the pattern observed in the case above where jt = i, = 0.8.

If the computational cell is made wider, i.e.,, W = 20d, long-term velocity field averages show a
symmetric convection pattem of two vortex-like structures (Fig. 1). It would seem that the velocity field history
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over a cycle should have the same type of symmetry as revealed in the long-term average. However, an
animation, from which several snaps are presented in Fig. 2, revealed that sections of the bed collide with the
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Fig. 1: Long-term average velocity field (W/d = 20d,
g
I'=10g,a=0.5d, e = 0.9).

floor at different instants giving rise to the long-
term field of Fig. 1. When a much wider cell is
used W = 100 d), the long-term average
velocity field in the center of the bed does not
show any pattern while two convection cells of
approximately 8 particle diameters wide appear
at the side walls. (Fig. 3). Again, an inspection
of the instantaneous velocity field shows a
behavior similar to that observed in the 20d cell.
A projecion of the rescaled sphere
configuration in the shaking plane at phase
point ¢ = 3n/2 (Fig. 4) shows regions at the
bottom which are devoid of particles, indicative
of the formation and breakup of arches within
the bed over a time scale different from the
shaking period. These simulated results support

several of the experimental observations which appear in the literature [19].
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Preliminary computations of the normal components of the pressure tensor have been done showing
that the major contribution is the collisional part. This tensor has a large gradient in the shaking direction
with a lack of symmetry in the lateral directions. Further studies are in progress to obtain a complete
picture of the phenomena.

---------------

. N R P PR NSRS SN
D A I R S I I AR A .nr//,o'Y
. S Lttt eetr ceissengre, vt 2ll,
. L. !
1
1]
1

Fig. 4: Projection of rescaled sphere configuration onto shaking plane at phase point ¢ = 3/2
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Unexpected Behavior of Particles in a Horizontal Rotating Cylinder

Masami Nakagawa*, Stephen A. Altobelli, Arvind Caprihan and Eiichi Fukushima

The Lovelace Institutes, 2425 Ridgecrest Dr. SE, Albuquerque, New Mexico 87108

*New Address: Sandia National Laboratories, Organization 6212, Mail Stop 0709,
P.O. Box 5800, Albuquerque, New Mexico 87185-0709

Recently, segregation phenomena of particles have gained much attention from different
disciplines of science and engineering. Studies of sand dune ripples, planetary rings and
segregation in fluidized beds are some of the examples. Here we focus our attention on
radial and axial segregation in a horizontal rotating cylinder. These phenomena have been
perceived as two independent segregation processes, however, based on our recent non-
invasive MRI- (Magnetic Resonance Imaging) measurements, we consider them as a
series of evolving events. This paper reports an experimental observation of a possible
missing link for transition mechanisms between radial segregation, which has been
extensively investigated as a two-dimensional phenomenon, and full three-dimensional
axial segregation.

In late 1930’s, Oyama (Oyama, 1939) reported results of his axial segregation experiment
and ever since reports on axial segregation have appeared sporadically (Weidenbaum,
1958; Donald and Roseman, 1962; Bridgwater et al., 1969; Rogers and Clements, 1971;
Das Guputa et al.,, 1991; Kukdma et al., 1992; Fauve et al, 1993; for example).
Nakagawa (Nakagawa, 1994) reported temporal changes of the number of bands and
random nature of the initial band formation of sand particles with continuous size
distribution. He also pointed out that the number of axial bands decreases with time and
the final configuration consisted three bands. In that experiment, sand particles were
used but due to their NMR insensitivity, it was not possible to obtain any information
about internal structures. More recently, Nakagawa repeated a similar experiment using
two different sizes of pharmaceutical pills. These particles are hard, uniform in size and
shape, and contain vitamin oil which gives excellent MRI signals. Based on MRI of
internal structures of each segregating constituent in a rotating cylinder, it was possible,
for the first time, to conjecture that three-dimensional nature of radial segregation affects
the formation of the initial axial bands and dynamics of band merging.

In the binary mixture experiment, the cylinder with length to diameter ratio of 7 was half-
filled with 50-50 volume mixture of pharmaceutical particles of 1 and 4 mm diameters.
Particles were initially well mixed. After 200 rotations, the internal structure of the
mixture was non-invasively imaged by the NMR imaging technique. An unevenly shaped
core of small particles was found to extend throughout the cylinder. This demonstrates
the three dimensional formation of radial segregation. After 3000 rotations, another NMR
image was taken which revealed three axially separated bands of small and large
particles, a band of small particles in the middle and two bands of large particles adjacent
to it. Figure 1 shows NMR images of both segregation at different slices along the axis
of the cylinder.
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In this experiment, we observed that radial segregation occurred first and was succeeded
by axial segregation. Although radial and axial segregations are usually treated
separately, they are related events occurring on different time scales, in this case. There
are many observations of axial segregation attributed to differences in dynamic angle of
repose (Savage,1993; Hill and Kakalios,1994; Zik, et al., 1994), however, the present
example suggest that there is a more complex three-dimensional mechanism which alters
a radially segregated state into an axial one. A more detailed study of this evolution
mechanism is expected to give more insights into mechanism(s) of band merging.
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200 Rotations: 3-D Radial Segregation’

3000 Rotations: 3-D Axial Segregation
Figure 1. NMR Images of Radial and Axial Segregation.

Both large and small particles contain the same vitamin oil, however, NMR signals can distinguish théem
because they have different volume fraction of liquid core. Large particles appear as white dots and small
particles appear as gray in the images. The small particles are too small to be distinguished individually for
this imaging procedure because of the average over the slice thickness of 8mm. Image 9 of axial
segregation shows large particles in the thin band immediately adjacent to the end cap.
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Numerical simulations of
hydrodynamic dispersion

A. J. C. Ladd

Department of Theoretical and Applied Mechanics,
Cornell University
Ithaca, New York 1/853.*

June 29, 1995

Abstract

Hydrodynamic dispersion and stability are often sensitive to subtle
changes in the underlying suspension microstucture, which are difficult
to observe experimentally. Numerical simulation can be used to exam-
ine these microstructural changes directly, as well as to predict their
effect on fluctuations in particle velocity. In this talk I will summarize
the results of previous simulations, and discuss their limitations. I
will also describe some more recent results and indicate directions for

future research.

*Permanent address:
Lawrence Livermore National Laboratory,
Livermore, California 94550.
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6.2

Sedimentation at finite Stokes numbers

A. S. Sangani
Department of Chemical Engineering and Materials Science
Syracuse University, Syracuse, NY 13244

D. L. Koch
School of Chemical Engineering
Cornell University, Ithaca, NY 14853

Abstract

We consider sedimentation of monodispersed spherical particles of ra-
dius a through a gas under conditions of vanishingly small Reynolds number
Re = paly/p and finite Stokes number St = (2p,/9p)Re. Here, p and p
are, respectively, the density and viscosity of the gas, p, is the density of
the particles, and U = (2p,/9x)a%g is the Stokes sedimentation speed of the
particles, g being the magnitude of the gravitational acceleration. The condi-
tions of small Reynolds number and finite Stokes number are approximately
satisfied by particles with radius of 100 gm. For such particles, the inertia
of the particles must be accounted for in predicting the sedimentation veloc-
ity, velocity variance and hydrodynamic diffusivity tensors, and the stability
criterion for the uniform state of sedimenting suspensions. In this talk, we
shall present theories for determing above quantities as a function of St and
the volume fraction ¢ of particles, and compare their predictions with the
results obtained by Stokesian simulations.

When inertia is important, the particles can overcome lubrication forces
without substantial loss in their kinetic energies, and as a result come into
physical contact with each other. In Stokesian simulations therefore we allow
for the fact that the continuum lubrication appoximations will breakdown
when a pair of particles approach each other within a distance comparable
to the mean free path of the gas molecules, thus allowing collisions to occur
between particles.

The simulations indicate that the particle velocity variance decreases with
increasing ¢ and increasing St. Also the anisotropy of velocity variance is
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found to decrese with the increasing St. These results are in agreement
with an extension of the theory of Koch(1990) to take account of effects
of finite particle volume fraction. In this theory the energy contained in
the particle velocity flucutuations results from the correlation in the force
exerted on the particles by the fluid velocity fluctuations. The anisotropy of
the velocity variance at small Stokes numbers results from the anisotropy of
the fluid velocity fluctuations, while the particle velocity variance becomes
more isotropic at high Stokes numbers due to interparticle collisions.
Our numerical simulations show that the particle velocity variance is in-
dependent of box size while the hydrodynamic diffusivity incresases with the
size of the box used in the simulations. This result can be explained quali-
tatively as follows. On a relatively small length scale, the particle velocity is
unaffected by hydrodynamic interactions and the interactions are similar to
those in fixed beds (Koch 1990). This leads to Brinkman screening of the ve-
locity disturbance which in turn yields a finite, variance that is independent
of system size. On a relatively large length scale, however, the particles relax
to the fluid velocity and thus the large length scale motion, which controls
the hydrodynamic diffusivity, is determined by a set of averaged equations in
. which the presence of particles contributes to the Reynolds stress. As shown
by Koch (1992), this leads to a system-size-dependent diffusivity.

Koch D. L. 1990 Kinetic theory for a monodisperse gas-solid suspension.
Phys. Fluids A 2, 1711.

Koch D. L. 1992 Anomalous diffusion of momentum in a dilute gas-solid
suspension. Phys. Fluids A 4, 1337.
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Numerical Predictions for Elastohydrodynamic Collisions
Gerald H. Ristow 6.3

Fachbereich Physik, Philipps-Universitdt, Renthof 6, 35032 Marburg, Germany

Granular media like grains, pills, beads, etc. are the base materials for most industrial products
or production processes. Despite their wide use no complete physical model has yet been established
to describe the different experimental findings like e.g. clogging, spontaneous heap formations,
power law distributions for wall stresses and density waves (for a review see e.g. [1]).

For dry granular media, numerical predictions of two-dimensional systems using molecular dy-
namics and other techniques have proven to give even quantitative results in a moderate amout
of computer time [2]. Even elliptical particles or arbitrary polygons can be treated efficiently and
simulations in three spatial dimensions were done as well.

But not all situations can be well approximated by dry granular materials. The effect of
the surrounding air or fluid becomes important in certain cases. To deal with such a situation,
the algorithm has to be changed completely since the time resolved evaluation of the primitive
variables of the fluid (velocity and pressure) takes far more computer time than the calculation of
the interactions between grains. In addition, the interactions between fluid and particles have to
be considered as well.

Since a full three-dimensional system with more than a few tens or hundred particles on a fine
spatial grid cannot predict long or even medium time behavior for moving fluids, my approach was
inspired by the theory of elastohydrodynamic collisions [3, 4] and with dry granular media in mind.
For granular materials, the most important physical input is the energy loss during particle-particle
or particle-wall collisions. If the surrounding fluid has a low viscosity, e.g. air, the particles will still
rebound but the restitution coefficient does depend on the fluid viscosity, the radii of the colliding
particles and other material properties. ‘

The forces acting on the particles in the fluid take into account repulsive and dissipative forces in
the normal direction and shear forces in the tangential direction during collisions. The forces of the
fluid on the particles are calculated by a full evaluation of the stress tensor for an incompressible
fluid over the particle’s surface. The time dependent motion of the fluid is calculated using an
iterative procedure on a MAC grid [5]. The boundary conditions for the numerical treatment of the
Navier-Stokes equations include the particles’ surfaces as moving boundaries having the velocity of
the corresponding solid particle.

To test the validity of the numerical algorithm, the forces on a fixed box in a two-dimensional
channel filled with water were calculated. The numerical results for the vertical force F, measured
in cgs units for different values of the maximal fluid velocity (~ Re) are indicated by circles in the
figure below. The dotted line shows the analytic prediction for the Stokes regime (Re < 1) which
states a linear dependence on Re. For Re > 1, the algorithm clearly resolves the deviations from
the Stokes regime and the grids used were sufficiently large for the grid effects to be negligible.

Using only a few spheres or cubes on a fine three-dimensional grid, I intend to obtain numerically
the dependence of the restitution coefficient on the material and fluid properties. This will be
compared to theoretical [3] and experimental [4] results available.
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Knowing the dependence of the restitution coefficient on the material and fluid properties, one
can construct an adopted numerical algorithm for granular materials in a fluid. The net effect of
the surrounding fluid will be modelled by modified contact force laws and additional long range
interactions model lubrication theory. Several thousand particles can be simulated and the results
obtained in such a manner will be compared with simulations using a different method [6] and
experiments 7] of batch settling processes. Diffusion constants can be calculated and compa.red'as
well.
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7.1

ORIENTATIONAL AND CONFIGURATIONAL DIFFUSION IN THE SLOW
FLOWS OF PARTICLES AND POLYMERS

Eric S. G. Shagfeh
Department of Chemical Engineering, Stanford, CA 94305

Although it is well known that hydrodynamic interactions between particles in suspen-
sion can cause diffusion and dispersion of the center-of-mass, less is known about the effect
of multiparticle interactions on the configuration of complex bodies - i.e. the orientation of
non-spherical bodies, the stretch of added polymers, and the deformation of drops. Initial
studies have demonstrated a wealth of interesting physics in these multi-phase flows and
the concomitant need for new theories to describe these configurational diffusion processes.
Moreover, even in dilute suspensions, the change of configuration can make an O(1) change
in the effective suspension properties, and thus theories based on “cluster expansion” ideas
can play a major role. However, the kinetic theory of configurational changes created by in-
terparticle interactions is far less developed than that involving center-of-mass diffusion even
without long-range hydrodynamic interactions. Thus, the construction of model equations
and systems has been relatively slow.

The talk will begin by reviewing the concepts and nomenclature which is unique to this
field of study via discussion of the simplest flow problem in this class — the flow of complex
liquids through fixed beds.[1, 2, 8, 6, 9, 12, 11]. We shall focus on the flows through dilute
disordered fixed beds, and examine the orientation of non-spherical particles,[1, 2, 6] the
stretch of flexible polymers,[8, 9, 12, 11] and finally the deformation of drops [11] in these
beds. The simplifying factors in this flow class include the fact that the configuration of the
bed particles is fixed in space and the Brinkman screening in the bed acts to cut-off the long
range hydrodynamic interactions. As a result of these simplifications, averaged configura-
tional diffusion equations can be developed to describe the evolution of the configuration of
these various dynamical elements.[1, 2, 8] In all cases the hydrodynamic interactions (acting
in the absence of steric effects) change the configuration of these microstructural elements,
and cause them to reach a highly anisotropic steady state — a steady state which would
remain indeterminate in the presence of the mean “plug” flow alone. The evolution of con-
figuration of polymers and drops in the flow through fixed beds is particularly interesting
as large conformation change can be engendered by these flows even though the Eulerian
mean flow is a “plug”. Thus the concept of a “stochastic strong flow” and its application to
suspensions will be developed. New computer simulations of the configuration of polymers
and drop models in these flows will be discussed. Many of the theoretical predictions have
been verified via detailed experiments and these will also be presented.[6, 9, 12]

Beyond the discussion of fixed bed flows, more complicated flow situations involving the
configuration of microstructural elements will be discussed. In particular, we turn to par-
ticle (fiber) orientation in free non-Brownian suspensions subject to extensional and shear
flows.[7, 5, 10] In these examples, the trajectories of the interacting particles may be compli-
cated, and the long-range interactions require renormalization in order to obtain convergent
results from any “collision integrals”. In extensional flows the mean flow creates a deter-
minate steady orientation distribution when the particles are acting alone, i.e. it aligns
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nonspherical particles along the principle axis of extension. In this instance the hydrody-
namic interactions act to create configurational dispersion about that axis.[5] We discuss the
theories and experiments [16] designed to predict and measure that dispersion as a function
of particle loading from “dilute” suspensions, through the “semi-dilute” regime. For sim-
ple shear flow, in the absence of particles interactions, the motion of a single particle does
not specify a steady orientation distribution that is independent of the initial conditions.
Instead, in the absence of other forces, we discuss how interparticle interactions have been
shown in very recent work to specify the steady orientation distribution.[10] We also discuss
the rheological consequences of this distribution.[7, 15]

Finally, we end with perhaps the most difficult flow situation in this class of problems:
microstructural configuration and its development in sedimentation.[3] New results regarding
the orientation of sedimenting fibers will be presented. We first demonstrate that a theoret-
ical understanding of the sedimentation of non-spherial particles is frought with difficulties
owing to the coupling of the sedimentation velocity and the particle orientation. While
calculations for random suspensions are well posed and yield,[14] reasonable results for the
mean sedimentation velocity, when the suspension is allowed to evolved dynamically, the the
orientation-center-of-mass coupling causes the pair probability to decay very slowly. Renor-
malization does not allow one to calculate a mean sedimentation velocity for this system
which is independent of box size.[3] Moreover, our calculations suggest that the suspension
becomes inhomogeneous, and is subject to particle clustering where the concentration fluc-
tuations scale on lengths of order ¢~%L, where L is the fiber length and ¢ is the particle
volume fraction. Dynamic simulations of sedimenting fiber suspensions will be presented
which indicate clustering, and also show that this clustering causes the sedimentation veloc-
ity to increase over its maximum possible value in unbound Newtonian fluids. These same
simulations show that the orientation distribution in these sedimenting fiber suspensions
achieves a steady state created by the hydrodynamic interactions, and this steady distribu-
tion is compared to the results of kinetic theory (keeping two body interactions) and very
recent experimental results. In the experiments, image analysis of fibers dynamically sedi-
_ menting in an otherwise index-of-refraction matched (and therefore, transparent) suspension
are presented which demonstrate that the orientation of fibers veritically - in the direction of
gravity — appears to be the stable orientation as determined by hydrodynamic interactions.
However, the velocity fluctuations also cause occasional “tumbling” of the fibers, thereby
broadening he distribution of particle orientation.
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The dynamics of semi-dilute and
semi-concentrated fiber suspensions

R.R. SUNDARARAJAKUMAR DONALD L. KOCH
School of Chemical Engineering, Cornell University, Ithaca, NY 14853

Abstract

The mechanical, thermal, and electrical properties of a fiber composite are
greatly influenced by the way in which the fibers are distributed within the
polymer matrix. The orientation distribution and spatial configuration of the
fibers are determined by the number of fibers per unit volume n. fiber aspect-
ratio L/d (where L is the length and d is the diameter of the fiber) and the
hydrodynamics of the processing flow.

Dilute (nL3® <« 1) and semi-dilute (nL3 > 1, nL2d < 1) suspensions un-
dergoing flows that are approximately linear have been the subject of many
theoretical and experimental studies. These studies indicate that mechanical
contacts are not important in these situations. This will no longer be true in the
presence of nonlinear flows or solid boundaries or when nL2d > O(1)—the so-
called semi-concentrated regime. We discuss here the influence of mechanical
contacts on the angular dispersion of fiber orientations in a semi-concentrated
fiber suspension undergoing simple shear flow, and the non-hydrodynamic dif-
fusion of a ball settling through a suspension of neutrally buoyant fibers.

In the semi-concentrated regime, we expect that a fiber can most easily
rotate (disturbing a minimum number of neighboring fibers) if it remains in
the plane made of the mean velocity and velocity gradient directions. This idea
is supported by our simulations of the simple shear flow of a semi-dilute fiber
suspension at moderate values of nL2d. Thus, as a beginning, it is reasonable to
model the simple shear flow of a semi-concentrated fiber suspension as that of

-a monolayer fiber suspension. Figure 1 shows the effect of mechanical contacts
on the dispersion of particle orientations, as measured by < p,2 > (p, being
the projection of fiber orientation p in the velocity gradient direction y). The
abscissa is the concentration measure n,L2, where n, is the number density
and L is the fiber length. It can be seen that < p,? > shows a nonlinear increase
in the range 3.5 < nL? < 5.0. This implies that the transport and mechanical
properties such as conductivity in the velocity gradient direction and particle
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stress show a nonlinear increase as well.

In semi-dilute fiber suspensions undergoing unbounded linear flows, the
fibers rotate and translate like fluid lines so that they do not tend to collide.
However. for non-linear flows or in the presence of solid boundaries, particle
collisions are possible. Falling ball rheometry experiments (Milliken et al 1989)
have established that the drag on the falling ball is significantly influenced by
mechanical contacts. In addition, these mechanical contacts also lead to a
non-hydrodynamic dispersion. Unlike hydrodynamic dispersion. which results
solely from random hydrodynamic interactions among particles (Ham & Homsy
1988). the non-hydrodynamic dispersion is due to the hindered settling of the
ball caused by mechanical contacts among the fibers as well as between the
fibers and the ball. We present results for the variance of the time ¢ required
by the ball to fall through a distance = for various values of the concentration
nL3. This enables us to analyze the behavior of the dispersion coefficient as a
function of the concentration.
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Figure 1: Schematic showing the nonlinear increase of angular dispersion
due to the presence of mechanical contacts. The dotted line is the value of
< p2 > for Jeffery orbits i.e. no collisions. The symbols (o) are the results
of our simulation.
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Fibre suspensions in dilute polymer solutions

Oliver G Harlen
Department of Applied Mathematical Studies, University of Leeds,
Leeds, LS2 9JT, UK

Donald L Koch
School of Chemical Engineering, Cornell University, Ithaca, NY 14853, USA

1 Introduction

Many injection moulded materials consist of polymers reinforced with short glass or carbon fibres.
In this paper, we examine the behaviour of fibre suspensions in dilute polymer solutions at high
Deborah numbers. In particular, we calculate the effect of hydrodynamic interactions between the
fibres and polymer molecules on the orientation of the fibres and the conformation of the fibres in
simple shear and purely extensional flow. A more detailed description is given in Harlen & Koch
(1992, 1993).

2 Simple shear flow

At high Deborah numbers, the shear viscosity of polymer solution is much lower than the extensional
viscosity. In a shear flow the polymer molecules stretch in the flow direction, perpendicular to
the velocity gradient, and so the velocity difference across a molecule remains small. In a fibre
suspension the polymers no longer experience purely simple shear flow, because of disturbances
produced by the fibres. The effect of these disturbances is to rotate the polymers away from
alignment with the flow direction, allowing the shear flow to stretch them further.

The polymers are modelled as elastic dumbbells with either a Hookean or Warner spring, yielding
respectively the Oldroyd B and FENE constitutive models. The method of averaged equations is
used to calculate the average extension of a polymer molecule in a random suspension of fibres
undergoing simple shear.

For linear dumbbells, the shear viscosity in the absence of fibres is constant. With the addition
of fibres the shear viscosity is given by

c
Habear = Fa (1 t 1- nl3De3M) ’
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where p,, is the solvent viscosity, ¢ the volume concentration of dumbbells, n the number density
of fibres, [ the fibre half-length and De the Deborah number. M is a constant that depends on the
orientation distribution of the fibres. At a critical Deborah number of (nL3M)~*/3 the polymers -
undergo a coil-stretch transition similar to that found in extensional flow and the viscosity becomes
unbounded.

This singular behaviour may be remedied by changing to a Warner spring, so that the dumbbells
cannot stretch beyond a maximum length Rmay. With this modification the shear viscosity remains
bounded and asymptotes to a constant value at high Deborah numbers.

Hehear ™ Hs (1 + Ry (nI°M )2/3) )

The orientation of an isolated fibre in a Newtonian fiuid follows one of a family of closed curves
called Jeffery orbits, depending upon its initial orientation. The distribution of a suspension of fibres
between different Jeffery orbits cannot be found from the motion of a single fibre, but depends on
secondary effects such as hydrodynamic interactions between fibres. In a weakly non-Newtonian
fluid, the Newtonian stresses are expected to perturb the Jeffery rotation and may cause fibres
to drift between Jeffery orbits. In the limit of low Deborah number, Leal (1975) calculated the
perturbation to Jeffery orbits for a second order fluid. This predicts a drift towards the vorticity
axis for fluids with a second-normal-stress difference.

We consider an alternative limit of small polymer concentration, but high Deborah number.
The perturbation to the rotation of a fibre is found to be in the same direction as that found by
Leal, but due to a different mechanism that does not require a second-normal-stress difference.

Experiments by Bartram et. al.(1975) and more recently by Iso et. al.(1995) see a drift of fibre
orientation towards the vorticity axis for weakly viscoelastic fluids, in qualitative agreement with
both theories. One of the fluids studied by Iso has a negligible second-normal-stress difference and
the fibre orientation is also observed to drift towards the vorticity axis in this fluid, suggesting that
a second-normal stress difference is not essential for this behaviour. However, at higher polymer .
concentrations Iso observed qualitatively different behaviour, that is not explained by either theory.

3 Extensional flow

In a steady uniaxial extensional flow at a Deborah number greater than unity, the polymer molecules
become highly extended and oriented with the extensional axis. The fluid behaves as anisotropic
viscous fluid with a high extensional viscosity, so that the fluid stress is of the form

o (0L 0% g 00
Oi5 = (62:] + Bz, +051,61J azl) ’

where 1 denotes the extensional axis. The parameter, ¢, determines the magnitude of the exten-
sional viscosity, and is proportional to the effective volume concentration of of extended polymers.
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Provided o is small compared to the square of the aspect ratio, r, the velocity disturbance
generated by a slender fibre in this medium can be calculated using slender body theory (Acrivos
& Shaqfeh 1988). The high extensional viscosity produces only a logarithmic change to the fibre
stress, which would be swamped by any shear-thinning of the fluid. If o 2 r2 the flow cannot
be analysed using slender body theory. However, for spheroidal fibres it is possible to obtain an
analytical solution in the limit & 3 r2 3 1. In this limit, the contribution from the fibres is found
to be negligible in comparison to contribution from the polymers.

A single fibre in an extensional flow will align perfectly with the extensional axis, however,
hydrodynamic interactions between fibres will produce a small dispersion of orientations about this
direction. The effect of adding polymers is to decrease the degree of dispersion from that calculated
by Shagfeh & Koch (1990) for a Newtonian fluid. This is because the anisotropy of the fluid screens
the velocity disturbances between fibres, with a radial screening length of L/{/c.. This is confirmed
by recent experiments by Rahnama et. al.(1995) on fibre alignment in a four-roll mill that show a
decrease in fibre dispersion with the addition of polymer.
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Exploitation of Brownian motions for the
optimal control of fiber orientation
distributions

——

Andrew J. Szeri*

The nonlinear dynamics of Brownian suspensions of orientable particles
are considered in unsteady flows. Suspensions of orientable particles are in-
teresting microstructured fluids that store information about their flow prior
to an instant of time in their current orientation distribution. The distin-
guishing feature of Brownian suspensions of orientable particles is that they
tend to have fading memories; in other words Brownian motions cause these
materials to have a more vivid memory of the recent past than of the more
distant past. This phenomenon is explored in some detail. These explo-
rations will make possible the optimal control of orientation distributions by
exploitation of fading memory.

In a dilute, non-Brownian suspension of rods, the motion of a parti-
. cle may be conveniently understood in terms of the deformation u(t,up) =
Q(t)uo/|| @(t)uol|, where Q is a second rank tensor that depends on time, u is
the (normalized) direction-vector of a rod-like particle, and uo is an initial
orientation. For a dilute non-Brownian suspension of rod-like particles in
a flow, the deformation is exact, with dQ/dt = «(t)Q and initial condition
Q(0) = K see Bretherton [2]. Here & is the “equivalent velocity gradient
tensor” of the flow, evaluated at the location of the material point in ques-
tion (k = £2 + GE, where 2 is the vorticity tensor, G is the shape factor of
particles, and E is the rate-of-strain tensor). If G = 1 then Q is simply the
deformation gradient tensor for the underlying fluid flow.

*University of California, Irvine, Department of Mechanical and Aerospace Engineering,
Irvine, California 92717-3975. Internet: szeri@uci.edu
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A simple example shows that the deformation can become become ar-
bitrarily sharply peaked about some favored direction. Consider a uniaxial
extensional flow. The dynamical equation for Q may be written in coordinates
in the form Qu = (FéQ)1; where é is the rate-of-strain in the l-direction. If
€ > 0 and steady, then clearly @1 increases with time exponentially. Hence,
an initial orientation distribution becomes arbitrarily sharply peaked about
the 1-axis, provided one waits long enough. Simply allowing for Brownian
motions will cause the deformation to saturate at some point so that Q re-
mains finite.

A modification of the previous construction has been developed [5] for the
influence of Brownian motions on the orientation distribution. The addition
of another term to this model corresponding to an excluded-volume potential
yields a model for liquid crystalline polymers [4]. The Brownian terms in
the model lead to nonlinear saturation of the deformation Q in any (time-
dependent, three-dimensional) flow. Hence, so long as there are Brownian
motions the deformation Q cannot become arbitrarily sharply peaked about
some favored direction.

A special class of unsteady flows is studied in the present work. These
are termed closed flows: in a closed flow material points of the carrier fluid
experience no net deformation over the interval of the closed flow. However,
during the closed flow, material points of the carrier fluid may experience
arbitrarily large excursions —the point is that they return to their initial
locations. The class of closed flows includes general shear-free flows and
simple shear flow, provided the components of the rate-of-strain tensor in
these flows integrate to zero.

It is of interest to study suspension dynamics in these flows because in
some sense there is no ‘net’ history experienced by particles suspended in
such a flow. What this means precisely is that a non-Brownian suspension,
with perfect memory, will return to its initial orientation distribution after
such a closed flow. In contrast, a non-Brownian suspension will not. Because
its memory is fading, the first part of the closed flow will produce an effect on
the orientation distribution that is forgotten as the flow ‘reverses’ and returns
to its initial state. At the end of the closed flow, there is a net change to the
orientation distribution that arises from the more vivid memory the material
has of the more recent part of the flow.

These simple ideas lead to a class of control problems that are formulated
and solved in the present work. Within the class of closed flows, the task
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is to identify what closed flow will have the greatest ‘net’ history on the
orientation distribution of a Brownian suspension. These problems open up
new possibilities for the control of the orientation distribution. For example,
in a non-Brownian suspension, if one wants to align the particles with the flow
direction, the most effective way is to contract the conduit through which
the material flows [3). Similarly, to align particles across the streamlines, one
expands the cross-section of the flow [1]. In a Brownian suspension, optimal
control theory demonstrates that it is possible to align particles with the flow
direction without any net contraction of the flow domain normal to the flow
direction. Such a capability can improve industrial processes such as fiber
spinning and injection molding.
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Theoretical and experimental study
of hydrodynamic interactions
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A detailed knowledge of the hydrodynamic interactions between many spheres in a
Stokes flow is essential in the analysis of complex processes that occur in a suspension
flow. In particular, understanding of the hydrodynamic interactions may provide an
important insight into mechanisms of hydrodynamic diffusion. In this paper we address
the problem of precise experimental and theoretical evaluations of the hydrodynamic
interactions between several spheres.

A recently developed laser interferometric technique [1] has been used to measure the
velocity of a sphere settling vertically towards a fixed cluster of spheres. Our equipment
permits measurements of the vertical motion of a sphere with a sensitivity of about 50
nm. Clusters of one to four fixed spheres were considered. The fixed spheres had the
same diameter as the moving one. The spheres were millimeter size steel balls. They
were enclosed in a cylindrical container 5 cm in diameter and 4 cm in height containing
silicon oil. The oil was very viscous (100 Pa.s), so that the Reynolds number relative
to the moving sphere was small. The influence of the container walls was estimated by
changing the diameter of the set of spheres.

The experimental results have been compared with the numerical calculation of the
mobility matrix for a group of spheres in an infinite fluid. To this end the algorithm
recently developed by Cichocki at al. [2] has been used. The algorithm is based on a
systematic expansion of the force distribution induced at the particle surface into the
irreducible multipole moments and includes a correction for the lubrication layer. A
moderate number of multipoles is sufficient to obtain accurate results.
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The techniques were first validated for a settling sphere approaching another equal
fixed sphere: The theory, which for the two particle case gives a more accurate result
than the earlier theory for two spheres by Jeffrey and Onishi [3], was in good agreement
with experiment for small gaps, less than 0.01 when normalized by the sphere radius.
The deviation of the theory from the experiment for larger gaps was decreasing with a
decreasing particles diameter (the largest spheres were 6.35 mm in diameter) and was
thus attributed to wall effects. The effects of the walls on the particle mobility matrix
were estimated by introducing correction terms in the theoretical approach. The effect
of the support of the fixed cluster was also modeled by a vertical line of spheres. The
calculation showed that this effect is negligible.

Cluster of two to four fixed spheres were then considered. Comparison between ex-

periment and theory was found to be good, although a more detailed analysis of the wall
effect is still needed.

Experimental and theoretical results show that in some cases a very precise determina-
tion of the positions of the fixed spheres is critical. This happens when the hydrodynamic
interactions of the falling sphere with four fixed spheres, or more, occur simultaneously
in the lubrication regime. For example, we have considered a cluster of four spheres with
their centers forming a horizontal square. When two spheres located along the diagonal
were moved up by about 30 to 50 pm (the sphere diameter being 6.35 mm), the depen-
dence of the mobility of the falling sphere on the distance from the touching configuration
changed significantly for small gaps (less than 200 pm). The sensitivity of the results to
small displacements of the fixed spheres was much smaller for clusters of two and three
spheres. This effect has been observed both theoretically and in the experiment. Our
result suggests that in some cases a small change of the suspension microstructure may
result in a significant change of the hydrodynamic interactions.
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Diffusion and coalescence due to pair interactions
in a suspension of bubbles in potential flow

_ V. Kumaran,
Department of Chemical Engineering,
Indian Institute of Science,
’ Bangalore 560 012 India

The calculation average properties of a suspension
" of bubbles rising due to gravity in the high Reynolds
number, low Weber number limit (Kumaran and
Koch (1,2)) is discussed. In the high Reynolds num-
ber limit, the viscous forces are small compared to
the inertial forces and the fluid flow is described by
the potential flow equations, while in the low We-
her number limit the surface tension forces are large
and the bubbles can be considered to be spherical.
The calculation involves two steps — determination
of the effect of pair interaction on the motion of the
‘bubbles, and an ensemble averaging procedure to de-
termine macroscopic properties from a knowledge of
the details of the interactions.

The interaction between a pair of bubbles of radii
a1 and as with velocities U; and Uy in potential flow
(Figure 1) is determined using the method of twin
spherical expansions[l]. The fluid velocity field is
expressed in terms of the velocity potential u = V¢.
The governing equation for the velocity potential ¢
is the Laplace equation:

V34 =0, (1)

and the pressure in the fluid is given by the Bernoulli
equation:
)
The boundary conditions are the zero normal veloc-
ity at the surface of the bubbles:

3)

at the surface. In addition, the bubbles are consid-
ered to be massless, so the net force on each bubble
is zero:

u.n = U;.n

—/ApnidAi+Fi=Or (4)
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FIG. 1: Definition of coordinate system for analyzing the inter-
actions between non - deformable bubbles.

where A; is the surface of the bubble ¢ and n; is the
outward unit normal to this surface. F;, the sum of
the buoyancy and drag forces, is 12mpa;(U; — Uy),
where Uj; is the terminal velocity of a bubble of ra-
dius a;.

The fluid velocity field is expressed in terms of the
bubble velocities using the method of twin spherical
harmonics{1], and the acceleration of the bubbles is
determined as an expansion in (a;/R) using the zero
net force condition (4). The equations of motion are
non - linear due to the presence of the (v2/2) term in
the Bernoulli equation. The acceleration of bubble




1 due to potential flow interactions is:

d! _ 943 .o |2 F'II

dt 2124[Ul Us — 20 + (2/3)mpad’ (5)
dUt _ 94} . . Ft

dt SZR‘*U{"!(UI +Uz) + (2/3)mpad’ ©)

and the acceleration of bubble 2 is givenl by symmet-
rical relations, where Uil and U} are the velocities
along and perpendicular to the line joining the cen-
tres of the bubbles respectively. The leading order
acceleration due to the potential flow interaction is
. proportional to (1/R)*. Due to this strong decay,
no divergences are encountered in the pair averaging
procedure.

The interaction between a pair of bubbles rising
due to gravity, which initiated by the approach of
the larger bubble from below, can be determined
by a numerical integration of the equations (5) and
(6){1). The result of an interaction is strongly depen-
dent on the ratio of their sizes s = (as/a;) (here, a;
is assumed to be the radius of the smaller bubble).
If the ratio of sizes is larger than a critical value, s,
the bubbles repel each other during an interaction
and their surfaces do not touch, as shown in Fig-
ure 2. If the ratio is less than the critical value s,
the bubble collide along the horizontal plane if their
initial horizontal separation b is less than a critical
value b, as shown in Figure 3. If the trajectories are
continued assuming that the collision is elastic, the
bubbles collide repeatedly and coalesce. The empir-
ical relation for s,

(sc = 1) = 1.73Re™3/5 (7)

is applicable in the range Re = 100 to 400[1]. The
numerical calculations[i] indicate that there are two
scaling regimes for b:

be = 0.85(Re/(s — 1))'/* for b < AL, )
bo=0.8(s—1)"23 for b.> 7, AU, (9)

where AU, is the difference in terminal velocities,
and 7, = (Re/18)(a;/Uy,) is the viscous relaxation
time. -

The interaction between bubbles with size ratio
8 > s.{1] results in a vertical and horizontal displace-
ment of their positions in a reference frame moving

(8)
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FIG. 2: Trajectories of bubbles of different sizes rising due to
gravity.- The size ratio s is 1.2, the Reynolds number based
on the radius and terminal velocity of the smaller bubbleis 200
and the position of the larger bubble is tracked in a reference
frame moving with the smaller one. The broken line represents
a circle of radius (s +1); when the center of the larger bubble
is on the broken line, the surfaces touch.

FIG. 3: Interaction between bubbles of nearly equal size, The
size ratio is 1.05, and the Reynolds number based on the radius
of the smaller bubble is 200. The broken line represents a circle
of radius (s + 1), when the center of the larger bubble is on the
broken line, the surfaces touch.



at the terminal velocity, and this results in a flux
ofbubbles in a non - uniform suspension. The flux of
bubbles of species i due to interaction with bubbles
of species j in the horizontal and vertical directions
can be expressed as:

i=pi% p=DIF, ()

where n; and n; are the number densities of the two
species. Note that there could be diffusion of a bub-
ble of species i due to gradients in the densities of
both ¢ and j. The diffusion coefficient for small gra-
dients in the number density is given by([1]:

DY = 2T = Unlna-y [sodb (1)
DiJ = n|Usy — Unjna-; /b 26 (12)

where z and =5 are the horizontal and vertical de-
flections of the bubble i due to an interaction with a
bubble of species j in which the horizontal distance
between the trajectories before the interaction is b.
Typical diffusion coefficients are shown as a function
of Re and s in Figures 4 and 5. An interesting feature
of these results is that the horizontal and vertical co-
efficients are nearly equal. This is very different from
an isotropic medium. in which D, is twice D,, indi-
cating that the diffusion due to interactions is highly
anisotropic.

The interaction between a pair of bubbles with
size ratio s < s results in coalescence[2]. The fre-
quency of coalescence can be determined using rela-
tions (7) for s. and (8) and (9) for b.. This calcu-
lation shows that the rate of coalescence decreases
oc Re~2/5, where Re is the Reynolds number.
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The nature of particle contacts in sedimentation

Shulin Zeng, Todd Kerns, Alexander Zinchenko, and Robert H. Davis
Department of Chemical Engineering

University of Colorado at Boulder
Boulder, CO 80309-0424

The macroscopic properties of a suspension of particles in a fluid depend on the nature
of the relative motion of particles. For example, extending Einstein’s classical expression
for the effective viscosity of a dilute suspension of rigid spheres to more concentrated
suspensions requires an understanding of particle interactions (Batchelor and Green, 1972;
Nir and Acrivos, 1973). Previous analyses have dealt with the interaction of two smooth
spheres which, according to classical lubrication theory, do not come into physical contact
under the action of finite forces. However, in the cases where the interacting spheres are
not smooth but have microscopic roughness elements on their surfaces, experimental
evidence shows that physical contact does occur and significantly affects the relative
motion of the spheres (Arp and Mason,1977; Parsi and Gadala-Maria,1987; Barnocky and
Davis,1988; Smart and Leighton, 1989). Moreover, particle contact due to surface
roughness breaks the symmetry of the relative trajectory of two spheres in shear flow, or
of two unequal spheres in sedimentation. This gives rise to a non-zero transverse
hydrodynamic diffusivity for dilute suspensions, as well as modifying the longitudinal
hydrodynamic diffusivity (Davis, 1992; da Cunha and Hinch, 1995).

Although spheres with small roughness do make physical contact in suspensions, the
nature and role of this contact are not understood. Davis (1992) developed two models
for the nature of this contact. One is a “stick/rotate* model in which the roughness
elements on the surfaces of the two spheres lock together so that the two spheres move in
rigid-body translation and rotation. The other is a “roll/slip” model in which one sphere
rolls around the surface of the other with slip occurring if the maximum tangential force
allowed by solid-solid friction is exceeded. In this paper, experimental observations of the

P3

contact of two unequal sedimenting spheres are described and compared to the models of .

Davis (1992).

The system under consideration involves a neutrally buoyant nylon sphere of diameter
6.35 mm and density 1.11g/cm? in a Newtonian fluid of density 1.11g/cm® and viscosity 25
kg/m-s. This fluid is a mixture of 97.4% polyalklene glycol and 2.6% tetrabromoethane by
weight. A single teflon sphere of diameter 6.35 mm and density 2.30 g/cm® sediments due
to gravity through the fluid and interacts with the neutrally buoyant one in this fluid. The
heights of the roughness elements on nylon and teflon spheres from microscopic analysis
are approximately 20 and 8 microns, respectively. The fluid is contained in a rectangular
vertical glass chamber, which has dimensions 25cm*25cm in horizontal cross section and
is 30 cm in depth. The interaction of the two spheres is observed by a video camera and
recorded on a video tape. The interaction message on the video tape is transformed into a
computer data file by Global Lab Image software.
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Results for a typical experiment are shown in Figures 1-3. The relative trajectory
(representing the location of the center of the heavy sphere relative to the center of the
neutrally buoyant sphere, made dimensionless with the sphere radius) is depicted in Figure
1. The theory was calculated in three parts: (i) an upstream noncontact interaction using
complete two-sphere mobility functions starting with an initial horizontal offset of 0.26
found by a best-fit of the data; (ii) a contact interaction described by the stick/rotate and
roll/slip models of Davis (1992), which give indistinguishable results in this case; and (iii) a
downstream non-contact interaction starting when the line-of-centers is horizontal and
with a best-fit initial separation of 0.00315, which represents the minimum dimensionless
separation of the nominal sphere surfaces supported by the roughness elements. Note that
the symmetry of the trajectory is broken by the contact.

Figure 2 is a plot of the angle of the line-of-centers from the vertical versus time made
dimensionless by the heavy sphere radius divided by its isolated velocity corrected for wall
effects by a best fit of the measured time dependence of the relative trajectory to theory.
The angle of the line-of-centers rotates more slowly for the stick/rotate model than for the
roll/slip model, and the latter provides a better fit of the data; a best-fit value of 35° is
found for the critical angle at which friction is no larger able to prevent slip at the surface.
This corresponds to a friction coefficient of 0.30. The individual spheres were observed to
rotate at different angular velocities, providing further support for the roll/slip model over
the stick/rotate model.

Figure 3 shows the transverse mobility function (representing the dimensionless relative
velocity normal to the line-of-centers) for the two-sphere interaction. Again, the roll/slip
model with a critical slip angle of 35° provides an excellent fit of the data, whereas the
stick/rotate model and the roll/slip model with no slipping underpredict the relative
velocity during contact.

Additional experiments were carried out using different initial horizontal offsets. It was
found that the critical impact parameter is 0.62 (Figure 4), beyond which contact does not
occur and the relative trajectories are symmetric. This value agrees with theory for a
contact separation of 0.00315.
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Deformation-Induced Drop Dispersion

Michael Loewenberg
Department of Chemical Engineering
Yale University

Dispersion of nonBrownian particles and drops in suspensions and emulsions is important
because it provides a mechanism for mixing. In a sheared suspension of spherical particles,
dispersion arises due to the irreversibility of multiparticle interactions. In dilute suspensions,
particle dispersion is a weak, O(¢?) effect, where ¢ is the particle volume fraction, because
pairwise interactions are reversible under low-Reynolds number, viscous flow conditions.

By contrast, pairwise interactions between deformable drops are intrinsically irreversible
so that dispersion has a more pronounced, O(¢) effect. There are two sources of this irre-
versibility: the nonspherical shape of an isolated, deformable drop in a shear-flow and the
nonlinear behavior of interacting, deformable drop interfaces. The first source of irreversibil-
ity relates to any nonspherical but fixed shapes, including rigid particles; the second is a
dynamic effect that is unique to deformable drops.

Self-diffusion refers to the random walk of a single marked particle or drop which can be
described in terms of a dispersion coefficient, D,, where « is a coordinate direction. Here,
we consider the two cross-flow components of self-diffusion in the direction of the velocity
gradient and the vorticity, denoted by @ = ||, L. In a dilute system, the dispersion
coefficient may be computed from pairwise interactions:

_ 3 . 9 o foO 2
Do = 5= ¢3a* [ [~ ALay doydas

where 4 is the shear-rate and a is the undeformed drop radius and the characteristic length
of the problem; A, (z),z1) is the net cross-flow displacement between a pair of interacting
drops that is obtained by integrating along the relative trajectory from an initial, widely
separated location (z),z.) on a plane perpendicular to the flow direction. The dispersion
coefficient is obtained by integrating over all initial locations.

Neglecting surfactant effects, the dispersion coefficients depend on the drop viscosity
ratio, A and the Capillary number, Ca = p¥ya/o, where o is the interfacial tension. The
Capillary number is the dimensionless shear-rate and the ratio of deforming viscous stresses
to surface tension. Three-dimensional boundary integral calculations were used to compute
the net displacements, A,. A portion of a typical trajectory is illustrated below; the net
cross-flow displacement resulting from the drop interaction is apparent.
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A reflection-type analysis shows that A, ~ r~2 as 7 — oo where r* = z? 4+ 22, It
follows that a large number of trajectory calculations are needed to accurately evaluate the
2-dimensional integral shown above. Fortunately, however, our results indicate that the net
contribution from all trajectories with 7 > 2 is only about 1% of the total value for the
dispersion coeficients. This unexpected finding greatly speeds evaluation of the dispersion
coefficients. 4

A sample of the results, shown below, predict that the dispersion coefficient is highly
anisotropic: dispersion in the direction of the velocity gradient is an order-of-magnitude
larger than dispersion in the vorticity direction. At vanishingly low shear-rates, drop defor-
mation is negligible so that pairwise interactions are reversible and do not produce dispersion.
At moderate shear-rates, Ca > 0.1, the results predict that dispersive effects attain a rather
constant value. A slight tendency for the dispersion coefficients to decrease at the high-
est shear-rates (drop breakup occurs for Ca > 0.4) may be a consequence of greater drop
deformation and alignment into the flow direction which reduces the cross-section for pair-
wise interaction between drops. Similar calculations reveal that dispersive effects are weakly
dependent on the drop viscosity.
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Figure 2: Dispersion coefficients as a function of Capillary number for A = 1.
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Shear-induced structure in bidisperse
suspensions

Gokul P. Krishnan * David T. Leighton, Jr.

Department of Chemical Engineering
University of Notre Dame
Notre Dame, IN 46556

In this paper, we present results from our flow-visualization experiments with
40% (by volume) concentration bidisperse suspensions. The particles (3175um and
6350um diameter) were ground PMMA spheres suspended in a solution of Triton
X-100, water, and zinc chloride with a viscosity of about 53p at 22.5°C. Relative
concentrations (denoted by X, and X, respectively) were varied over three different
values namely (2) X, = 0.25,X; = 0.75 (b) X; = 0.5,X; = 0.5 and (c) X, =
0.75,X; = 0.25. The suspensions were sheared in the interior of a rotating film
belt and floated on a layer of mercury to provide a stress-free lower boundary. The
sheared region measured approximately 10cm x 50cm , and the resultant flow-field
closely approximated a simple shear flow. In our study of these suspensions, we have
focussed our attention on both the evolution of the microstructure as a function of
the distance away from the wall and the pair distribution functions for small-small,
small-large and large-large pairs of particles.

In general, it was found that particles in the suspension tended to segregate by size
with the smaller particles being concentrated near the solid boundaries and the large
particles being displaced away from the boundaries towards the center of the device.
The relative enrichment of small particles at the wall was found to be much larger
for the suspension with a dilute concentration of the small particles as compared to
the other cases. Beyond a distance of r/a = 2 based on the small sphere radius,
however, the concentration distribution of the small particles became more uniform
and approached the bulk concentration distribution at about r/a = 4.

*current address: Department of Chemical Engineering, Massachusetts Institute of Technology,
25 Ames St., Cambridge, MA 02139
t Address for correspondence
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In experiments with concentrated monodisperse suspensions, Rampall (1992) showed
that particles in the vicinity of a wall tend to be highly ordered. This ordering per-
sisted upto 4 particle diameters away from the wall as can be seen from figure 1.
(figure 1). In concentrated bidisperse suspensions also, a maximum is observed in the
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Figure 1: Integrated concentration distribution for 3175um diameter spheres near the
wall. Data were for 50% concentration suspension. The peak at the wall corresponds
to a concentration of about 60%, which is close to the theoretical value of 60.7% for
a close packed layer. ‘

small particles concentration right at the wall, however, the presence of large particles
disrupted the structure causing the distribution of small particles to be more homo-
geneous. The large particles exhibited a corresponding depletion in the near-wall
region. This behavior is depicted in figures 2 and 3. -

It has been demonstrated that in a concentrated suspension of monodisperse parti-
cles undergoing simple shear flow, particles tend to accumulate along the compression
axis of the shear and be depleted along the recession axis (Parsi and Gadala-Maria,
1987; Leighton and Rampall, 1993). Our experiments indicate that this structure is
significantly modified in bidisperse suspensions. The presence of large particles causes
an agregation of the small particles in the compression quadrant of the shear flow,
resulting in an observed maximum around r/a = 2 in the integrated pair-distribution
funtions for small-small pairs of particles over what would be expected for a monodis-
perse suspension of small spheres at the same concentration. The magnitude of this
effect diminished as X increased (figure 4). .

The large particles behaved quite differently. In the case where large spheres were
in excess, the large-large pairs behaved as a concentrated monodisperse suspension,
except that the small particles tended to randomize the structure. In the case of a
large excess of small particles, however, the large spheres exhibited the same structure
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Figure 2: The actual number density of small particles in a 40% suspension with

X; = 0.75 and X; = 0.25 with 1o errorbars. Notice the preferential accumulation of

small particles in the near wall region and a relatively homogeneous profile farther
away.
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Figure 3: The actual number density of large particles in a 40% suspension with
X, = 0.75 and X; = 0.25 with lo errorbars. Notice the relative depletion of large
particles in the near wall region and an accumulation towards the center of the device.
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Figure 4: Radially integrated pair distribution functions for small-small pairs on the
compression side. When X, = 0.25, a preferential accumulation of small particles
is observed. This is noticeably absent when X, = 0.75 which behaves more as a
concentrated suspension.

as a dilute monodisperse suspension of large spheres with a depletion in the pair
distribution function in the flow-wise direction in both the compression and recession
quadrants. These measurements suggest that, with at least some justification, the
behavior of large particles in a bidisperse suspension may be modeled as a suspension
of particles at reduced concentration moving in an effective continuum. The reverse
model, however, is not valid for the smaller particles.
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The Longitudinal Shear-Induced Gradient Diffusivity
of a Monodisperse Dilute Suspension of Spheres

by
Yongguang Wang. Andreas Acrivos and Roberto Mauri

The Levich Institute and Department of Chemical Engineering,
City College of CUNY, New York, NY 10031

Abstract

We present the calculation of the particle volumetric flux of a dilute, neutrally
buoyant suspension of spheres under the action of shear when inertia and Brownian
effects are negligible. This mass flux, which is the product of the local particle
volume fraction ¢ times the mean particle velocity, results from the effect of an
imposed concentration gradient. Using a renormalization technique first employed
by Batchelor [J. Fluid Mech., 52, 245 (1972)]. we found that the particle volumetric
flux is proportional to the concentration gradient through a shear-induced gradient
diffusivity, D = a@a®E, where a is the radius of the spheres and E is the fluid rate
of strain, while @ = 2.50 for simple shear flow, and a = 3.12 for pure straining flow.

Consider a dilute, monodisperse suspension of force-free and couple-free spherical
particles immersed in a fluid with a concentration gradient along the &,-direction. That
means that the probability of finding a particle at location r = (z;,7;,73) is equal to

n,P(r), with:
P(r)=1+ L<3Oo>12 (1)

Here n is the number density. (06/0z2) is the imposed mean gradient in the é,-direction
of the particle volume fraction ¢ = %n‘ag'n, and the subscript "0” refers to the value of n
and o at the origin. In addition, we assume that the spheres have a radius @ small enough
that inertia effects can be neglected, while the fluid is incompressible, has viscosity g, and
undergoes a uniform shear flow with velocity v(r) = v z,€, along the &;-direction. Clearly,
in writing Eq. (1) we have assumed that the concentration gradient is small, or, conversely,
that z, << | = ¢, (0¢/0z2)".

The goal of this calculation is to find the mean volumetric flux J of the suspended
particles in terms of the concentration gradient. Now, by definition, J at the origin is the
product of the local concentration ¢, times (U), the instantaneous mean velocity of a test
sphere at the origin. In turn, (U) is given by:

(U) = n. [ U(0lr) P(x]0) d°r +0(x), @)

where U(O|r) is the instantaneous velocity of the test sphere at the origin in the presence
of a second sphere at position r, and P(r|0) denotes the normalized conditional probability
of finding the second sphere at r, provided that the test sphere is located at the origin.
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As shown by Batchelor and Green [2]. the velocity U(0jr) may be written as:

ZiT; IT;

Ui(O|r) = % KTk [A(T)—;z— + B(r) ( G- 7)] . (3)

where 7 = |r|, Eji = 37(8;16r2 + 652611 is the uniform rate of strain tensor, while A(r) and
B(r) are known scalar functions of 7, decaying as 7~2 and r~° as r — oo, respectively.

Clearly, Eqgs. (2) and (3) show that the mean velocity of the test sphere in a uniformly
distributed suspension, i.e. with P(r|0) = 1, is identically zero, so that (U) is determined
only by the deviation of P(r|0) from a constant value. Now, the conditional probability
P(r|0) is not known a priori, as it is the solution of a two-particle convection problem, and
can be determined following the method of Batchelor and Green [3)]. finding:

p(r,t) = P(r|0) = ¢(r) Peo(r|0), (4)

where g(r). with g(oc) = 1, is Batchelor and Green’s [3] pair distribution function. while
1 [/ 0¢ .
Poo(rIO) = [l + é—o <a_:l‘2> :I‘-z] H(r — 2a). (3)

Here H(y) denotes the step function, with H(y) = 1 when y > 0, and H(y) = 0 when
y < 0.

Now. when we substitute Egs. (4) and (3) into (2) we find a diverging integral. This
singularity can be removed applying the renormalization technique introduced by Batchelor
[4). namely considering that the ensemble average velocity and pressure gradient at the
origin must be zero. Finally. after a straightforward calculation, where the integration
in (2) is taken outside the region of closed trajectories (Batchelor [3]), we find that the
volumetric flux at the origin in the longitudinal direction, J; = ¢, (%), is given, up to
terms of O(0?) and O(|aV$[?) by the following expression:

_ploe\
JI_D<81'2>= (6)

D = a~ad®¢,, (7)

where

with o = 1.25 £ 0.01.

The case of pure straining flow with rate of strain E can be solved following the
procedure described above. Here, however, as all the trajectories of one sphere relative to
another come from infinity and are open, we are led to solve the integral in (2) for 7 > 2,
which leads to the following result for the longitudinal volumetric flux:

J=D.V4, (8)

where

D - ﬂazéoE, (9)
with 4 = 3.12 £ 0.01, is the longitudinal shear-induced particle diffusivity.
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Perhaps the most important characteristics of the expressions (7) and (9) for the
longitudinal gradient diffusivity is that they depend linearly on the local volume fraction.
unlike the coefficient of self diffusivity calculated in Ref. [1}, which is proportional to
¢log ¢. The reason of this difference is that the coefficient of self-diffusion is proportional
to the temporal growth of the mean square displacement of the test sphere, due to its
hydrodynamic interactions with the other particles. Now, summing over the contributions
of all possible interactions, led to a logarithmically diverging integral. This singularity
was due to the very weak but long-lasting interactions betweeen the test sphere and a very
slowly moving second sphere, when the latter is at great distances from the origin and close
to the (21, z3)-plane. The diverging integral was made finite by allowing for the cut-off due
to the occasional presence of another pair of particles.

On the other hand, the calculation of the gradient diffusivity consists in evaluating the
instantaneous mean velocity of the test sphere immersed in a sheared suspension, due to the
effect of an externally imposed particle concentration gradient. In this case, no singularity
arises. so that the resulting diffusivity in the direction of the flow is proportional to é.
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APPLICATION OF LASER-DOPPLER ANEMOMETRY IN
HIGHLY CONCENTRATED SUSPENSIONS
A. Averbakh, A. Shauly, A. Nir and R. Semiat
Department of Chemical Engineering, Technion, Haifa 32000, Israel

The measurement of velocities in concentrated suspensions using laser-Doppler
anemometry requires penetration of the laser beams into the flow field and collection
of light scattered from the flow. In this work, velocity in highly concemrated
suspensions, up to 50%, was measured. A match between the refractive indices of the
solid and liquid phases, which creates a transparent suspension, facilitates the light
penetration. The solid phase of the transparent suspension was PMMA spheres with an
average diameter of 90 pm. The liquid phase was composed of a mixture of
tetrabromoethane, UCON oil H-450, and Triton X-100. The match between the
refractive indices was achieved via accurate temberature control, and was monitored
on-line. It is assumed that Doppler signals in the transparent suspension were
generated by various sources: the particles, defects in the particles and dust carried
with the liquid.

The refractive indices match was monitored on-line using an optical unit
designed for this purpose. In this unit one of the laser beams that passes through the
flow field is collected and spread into a sheet of light. The light sheet illuminates a
bench of photocells. Light intensity collected by the photocells is amplified and
processed using a PC486. The criterion for the best match between the refractive
indices was the narrowest light distribution achievable on the photocells bench. During
the experiments the light distribution on the photocells bench was recorded while the
suspension temperature was varied. Velocity measurements were made at the
temperature which gave the best match. Temperature was controlled with an accuracy
of 0.10C during each run. In addition to defining the quality of the refractive index
match, the average concentration of the suspension, illuminated by the laser beam, may
be found. This concentration is interpreted from the intensity of light collected at the
central photoreceiver at the temperature which gives the best match.

In this work velocity was measured in a closed rectangular channel. The
dimensions ratio of cross section was 1:6.25. Velocities in two perpendicular directions
were measured: velocity along the flow channel and velocity toward the center of the
channel along the wide axis. At each point in the flow field 2000 Doppler signals were
collected. The velocity was calculated from the average of those signals. The standard
deviation of the 2000 data points was also evaluated.
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Longitudinal velocity profiles measured in relatively low concentration
suspensions (10%, 30%) were flat, similar to a Newtonian velocity profile typical to
the flow of a homogenous fluid in such a channel. At higher suspension concentrations
(40%, 45%, 50%) the profiles deviated from the Newtonian distribution and were
slightly rounded. Lateral velocity profiles measured in the suspensions with higher
concentration showed net velocities towards the center of the closed channel. These
are due to particles drift resulting from shear-induced particle diffusion in the
concentrated suspensions.

Standard deviation in velocity calcplation may be related to various causes:
frequency detection error, optical noise, rotation of particles in the flow field, and
shear induced self diffusion in the concentrated suspensions.

In conclusion this work shows that velocity measurements in highly concentrated
suspensions, up to 50%, is possible. The measurements were made in transparent
suspensions. Transparency was monitored on line and maintained with careful
temperature control, with accuracy of 0.1°C. Velocity profiles measured in
concentrated suspensions are different from Newtonian velocity profiles typical to this
flow channel.
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A NEWTONIAN MODEL FOR PROPPANT TRANSPORT
IN AN INCLINED CHANNEL

S.J. MCCAFFERY, L. ELLIOTT, D.B. INGHAM, A.T. UNWIN*
Department of Applied Mathematical Studies, University of Leeds, Leeds, LS2 9JT, England
*Schlumberger Cambridge Research Limited, P.O. Box 153, Cambridge, CB3 0HG, England

ABSTRACT

In a hydraulic fracturing treatment, a fracture is created from the wellbore by means of a non-
Newtonian fracturing fluid. Sand particles, or ‘proppants’, are carried by the fracturing fluid into
the induced fracture channel where they form a packed bed which props the fracture open. In
practice particles sediment much faster in an inclined fracture than in one that is vertical . This
phenomenon is known as the ‘Boycott Effect’. A two-dimensional model for the settling of proppants
within a channel is presented in this paper, and using this model the effect on the sedimentation
process of the angle of inclination of a channel is illustrated.

INTRODUCTION

This paper presents a Newtonian model for the two-dimensional sedimentation of proppant parti-
cles in a hydraulic fracturing treatment, and by numerically solving the underlying equations the
Boycott effect is demonstrated. The sedimentation process considered consists of rigid spherical
particles, which are of equal size and density and do not aggregate, settling at very small particle
Reynolds numbers from a suspension comprised of an incompressible Newtonian fluid. The problem
addressed is temperature independent and, by assuming that there is no main (primary) flow along
the fracture, the situation is equivalent to the stage when the pumping of material has ceased but
the fracture is still open.

GOVERNING EQUATIONS

The geometry employed is illustrated in figure 1, where y and z represent non-dimensional spatial

variables. The non-dimensional equations governing two-dimensional sedimentation in a fracture
are

. a%(c'v,,y) Fo(CV) = 0 ()

—Aklgg + 5in 0AC BC + 5% {(—1—_1—05;%} + 56; {(1—_17);%1} =0 2)
_Akl-g—z + cos OACBC + -:—y {(T—IT)“%—Z} + % {(1—_—15)76—;’;} =0 3)
%Vyl =0 @

where C is the concentration of particles normalised with respect to the concentration, Cm, of
particles in the state of close packing, V,, V3, and V., V,,; are the y- and z-components of the non-
dimensional bulk average velocity, particle velocity, respectively, p is the non-dimensional pressure,
t is non-dimensional time and ), k;, B and « are constants. Expressions for Vpy, V. in terms of C
and V,, C and V;, respectively, are obtained from a slip velocity law.

The boundary conditions on C were taken to be

C = 0on y=-1 and %g-=0 on z=-2 (5)
C = lony=1,2=2 . (6)
while those enforced on V, and V, were, respectively,
V, = 0on y=%£1, z=2 &nd %%—’:0 on z=-2 (7)
V. = 0on y=+41 , z=2 and %%—:0 on z=-2 (8)
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Figure 1. Geometry for two-dimensional sedimentation in an inclined channel.
SOLUTION PROCEDURE

To determine the solution of the governing equations (1)-(4), the following procedure was repeated
iteratively for successive times. For the known distributions of concentration, C, and bulk average
velocity, V, at the current time, ¢, equation (1) was solved using 2 Godunov-type scheme, Hirsch (1],
to produce C at the next time, t + A¢. Employing this distribution of C, a control-volume formu-
lation, Patankar [2], was then applied to equations (2)-(4) to yield V. and p at the same time, t+At.

RESULTS )

Equations (1)-(4) were solved as described above for a progression of times subject to several
different values, in turn, of the angle of inclination, 6. For each value of 6, the distributions of C
and V at a selection of times were displayed graphically in the form of contour plots and vector
plots, respectively. Examples of such contour plots and vector plots are illustrated, respectively, in
figures 2 and 3 for the case when 8 = 80°, C|t=o = 0.5, C;r, = 0.67, A = 9000, k; =1, B =2, a = 1.

Figure 2. C after 100 time steps when 6 = 80°.  Figure 3. V. after 100 time steps when 6 = 80°.
CONCLUSION

A two-dimensional Newtonian model for proppant transport in an inclined channel has been pre-
sented in this paper, and by solving the governing equations (1)-(4) of the model for a variety of

angles of inclination it has been shown that the greater the angle of the channel to the vertical, the
greater the rate of sedimentation of the proppant.

REFERENCES
1. Hirsch, C., 1988, Numerical computation of internal and external flows , John Wiley and Sons

Ltd.
2, Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corpo-
ration.
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Self -Diffusion in Vibrated Granular Beds

Yidan Lan and Anthony D. Rosato
Mechanical Engineering Department
New Jersey Institute of Technology
Newark, NJ. 07102

Self-diffusion in a vertically vibrated bed of smooth, inelastic uniform spheres has been investigated in a
three-dimensional discrete element simulation. The computational cell is a parallelepiped with a flat vertically
oscillating floor, lateral periodic boundaries and an open top. A right-handed Cartesian coordinate system is
established, such that the origin of the x and z axes coincides with a corner of the floor, while gravity acts in
the -y direction. Self-diffusion coefficients are computed from both the ensemble-averaged velocity
autocorrelation functions and the mean-square displacements.

In terms of velocity autocorrelations, the trace of the self-diffusion tensor D is computed using

D= %T(v(r) -v(0))dt = %[Dm + Dw + D..:] where D, = T(vk(‘c) - vk(O))d‘c, where k=x, v, z.
0 0

The Einstein relation D = |jm <[r(l) - r(O)]2> provides an alternative method to compute D in terms of

1
tco OF
the particle displacement r. where ( ) represent the ensemble average. We use this method as a comparison
with the result obtained from the autocorrelation.

Particles are modeled as smooth spheres of diameter d = 0.1 m and density p= 1200kg iy The soft
sphere contact model of Walton and Braun [3] is used. where the normal force acting between two
overlapping spheres is governed by linear loading and unloading springs of stiffness K, and K-, respectively.
This produces a constant effective restitution coefficient e = VK, /K. . The loading stiffness K; =2.8 x 10° is

chosen to ensure a maximum overlap of approximately less than 0.01d, and produces a time step dr ~ 10°
seconds. Diagnostic quantities are accumulated after the system has reached steady state to compute D.Inall
studies discussed below, e =0.9.

In the regime of large floor accelerations I' = qmz, where a is displacement amplitude and o the frequency
of the sinusoidally oscillating floor, the autocorrelation functions in the three coordinate directions are
exponentially decaying. This produces a value of D in agreement with the value obtained from kinetic theory

dJ=T -

——_—8(1 T (0) Here, T is the granular temperature, v is the

solids fraction and g,(v) is the Camahan-Starling approximation to the contact radial distribution function
given by go( v)=(2- v)/ 2(1- V)3. Fig. 1a,b shows a typical velocity autocorrelation function and mean

predictions of Savage and Dai [2], that is, D =

square displacement ([r( 1) -r( 0)]2> while Table 1 summarizes results for two different values of I” = ao°” at
a fixed frequency /= 50 Hz.

Parameters D (m" s) (Simulation) |D (m" s) (Savage) |D* (ms) | v T (cell average)
I =90¢. a =0.09d 0.00544 0.00532 0.00530 [0.44 0.7950
" =483g. a=0.5d 0.2676 0.2116 - 0.14 13.80

* Computations from mean-square displacement method
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At low acceleration levels, it was not possible to compute Dy, since the y-velocity autocorrelatoin
function (Fig. 2) did not exponentially decay, but showed oscillations about zero with a frequency equal to
that of the vibrating floor. This provides evidence that the vertical motion of the bed was well-correlated with
the floor oscillations, as was also seen in other recent simulations by the authors [1]. In an attempt to uncover
possible scaling behavior, a series of investigations was performed in which I was varied at fixed amplitude
a= 0.5d. Since it was not possible to determine Dy, for low I''s for the reason described above, only D,, and
Dy could be computed. The results shown in Fig. 3 indicate that these components increase with I". Several
cases have also been completed where the quantity o’ is fixed while varying its constituents.
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Fig. 1a: Typical velocity autocorrelation at high T Fig. 1b: Corresponding mean square displacement.
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Application of a novel algorithim to
Hydrodynamic Diffusion in Sedimenting Systems

W. Kalthoff!, S. Schwarzer!, G. H. Ristow? and H. Herrmann!

Introduction

We want to focus on the application of a novel computer simulation method [6] for
particulate multiphase flow to the problem of sedimentation. Our aim is to capture
the large scale collective processes of the combined particle-liquid system. To this end
we solve the Navier-Stokes equation for the liquid, giving us the correct long-range
interactions, and use molecular dynamics to simulate particle motion. A particle-fluid
interaction force entering both the Navier-Stokes and the molecular dynamics equations
is used as a coupling term.

Simulation Technique

To be able to simulate large systems in a reasonable amount of time, we make the
assumption that we can represent the fluid-particle interaction by a drag force instead
of evaluating and integrating the stress tensor on each particle surface. For low Reynolds
numbers it seems reasonable to use a Stokes-like drag force Fy = C’dnr,-(f/:,- — ¥;), where
7; is the particle and V; the liquid velocity. As we cannot access the liquid velocity
at infinity, we have to use the local average liquid velocity V;. The resulting error is
accounted for by the drag coefficient Cy which is fitted so that a single Sphere falls
with Stokes velocity. In most simulations, Cy differs by a factor of less than 2 from the
expected 67. Since lubrication effects are not properly represented by this force ansatz,
we replace them by particle contact forces. These together with gravitation and the drag
force enter into the molecular dynamics equations used to describe particle motion. The
fluid itself is modeled by solving the Navier-Stokes equation on a quadratic MAC-grid
using the Chorin scheme. There is no limitation due to inertial effects, neither by the
particles nor by the liquid.

Results and Discussion

Our approximation described above delivers acceptable results when applied to sedimen-
tation. In a first step we apply the method to a two dimensional sedimenting system at
low Reynolds numbers, looking at the diffusion constants, settling velocities and velocity
fluctuations as a function of the solid volume fraction. We find a strong isotropy of the
diffusion constants in horizontal and vertical direction, in good agreement with exper-
imental results (Fig. 1). Our simulations also showed a decrease of the mean settling
velocity as a function of the volume fraction ®. The observed decrease is however slightly

!PMMH, ESPCI, 10 rue Vauquelin, F-75231 Paris Cedex 5, France.
?Fachbereich Physik, Philipps-Universitit Marburg, 35032 Marburg, Germany.

103

P10

S



20 i i i i ¥ ] i I ] i t ) 1 Ll ! 1]

10 T4

SR WONEE SN SN SOV, R | PURNE NEUE SR VT DN RSO S |
0 0

0.0 0.1 0.2 0.3 04 0.0 0.1 0.2 0.3 04 -

Figure 1: (a) Dimensionless particle self-diffusion constants D; (*)
and Dj, (O) as a function of solid fraction ®. (b) Dimensionless ratio
D,/ D, of self-diffusivity parallel (Dy) and perpendicular (D7) to settling
direction () and the experimental data from Nicolai et al. [2] (+).

smaller than that found in experimental and theoretical results. One reason is our drag-
force ansatz, which does not produce as much back flow as a complete treatment of the
particles as internal liquid boudaries would.

Conclusions and Outlook

The presented algorithm is both fast and capable of reproducing many known results at
low Reynolds numbers, while being applicable to larger Reynolds and Stokes numbers.
An extension to three dimensions has already been done. The greatest drawback seems
to be the drag-force ansatz for the liquid-particle interaction, which will be replaced by
an evaluation of the stress-tensor and the treatment of the particles as liquid boundaries
in the near future.
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Velocity and fluid fraction measurements in suspensions flowing through
abrupt contractions and expansions

. S. Altobelli, E. Fukushima
The Lovelace Institutes, Albuquerque, NM
L. A. Mondy ‘
Sandia National Laboratory, Albuquerque, NM

Abstract

Nuclear Magnetic Resonance Imaging (NMRI) was used to study two neutrally buoyant
suspensions flowing through an axially symmetric, 4:1:4 (diameter) contraction/expansion
model. The suspensions were 50% solids (100 and 675 pm) in a viscous synthetic oil. NMRI
was performed while the suspensions were piston-driven through the model. The fluid fraction
and the axial component of liquid-phase velocity were measured in the small tube and fluid frac-
tion, axial, and radial velocities were measured in the expansion region, using a phase method.
Fluid fraction was measured near the driving piston face in a series of static images. The average
velocity in the small tube was 1 cm/s and the total duration of flow was 6-8 minutes. Particle
migration was observed in the suspension prepared with larger particles: the particle concentra-
tion was lower near the wall of the small tube and suspension which was relatively low in parti-
cles accumulated immediately downstream of the expansion. In the suspension of smaller par-
ticles, no migration was observed in a single pass, but repeated processing produced accumula-
tions of particles in the sections of the large tube adjacent to the small tube. Observations of the
driven piston show that a region of relatively high fluid fraction rapidly develops along the tube
axis adjacent to the piston. '

Extruder

The extruder consists of a reservoir pipe, a four-to-one contraction into a smaller pipe and
a one-to-four expansion into another larger pipe (Figure 1.) The larger diameter pipe is 6.35 cm
OD polymethyl methacrylate (PMMA) tubing with 0.635 cm walls. The smaller pipe is made
from 6.35 cm OD PMMA stock with a 1.27 cm hole bored through the center. Each section is 38
cm long. The contraction and expansion are abrupt. Two pistons, sealed with O-rings, slide in
the larger pipes. A 2 m rod connects the reservoir side piston to a digitally controlled screw
drive, which forces the suspension into the contraction at a steady 0.0625 cm/s, yielding a 1.0
cm/s average velocity in the small pipe.

. 38cm ’

A A to drive motor
_.)

imaging imaging
region region

Figure 1
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Suspensions

The suspensions tested are made of 50% PMMA spherical particles suspended in a vis-
cous liquid with the same density as the particles (1.89 g/cm3.) Two sets of particles were used,
both with broad, unimodal distributions of diameters. The larger, Diakon MG102 from ICI-
United Kingdom, has a mean diameter of 675 um. The second, Lucite 4F from DuPont, Chemi-
cal Co., has a mean diameter of 100 pm.

The suspending liquid is a solution of 14 % tetrabromoethane, 36% UCON oil, and 50%
Triton-X100. It exhibits Newtonian rheology with a viscosity of 5 Pasat23 ° C. (See Abbott,
et al, J Rheol 35(5) 773, 1991.)

Results

Some representative images are shown in Figure 2. On the left, six images are arranged
in two sets of three showing fluid fraction, axial velocity, and ‘radial’ velocity from the top
down. The left set is form 100 pm particle suspension measurements and the right set is from
the larger particle suspension. On the right, two images of the fluid enriched region that devel-
ops at the driven piston face are shown.

Fluid |
Fraction §

oom vy

T

Figure 2. Several NMR images of fluid fraction and velocity components obtained. See text for de-
scription.

k £
100 pm* 700 pum

Conclusions

e NMRI studies of simple suspensions in pipe flows with sudden expansions and contractions
show that complex spatial variations in particle concentration were induced. The patterns
observed in the expansion region may be qualitatively explained by shear-induced migration.

e The solid-depleted regions were observed near the driven piston face. This inhomgeneity
could be imaged after the piston had travelled 2 (large) tube diameters.

e Particle diameter effects are strong in these flows.
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Nuclear Magnetic Resonance Imaging Measurements of Average and
Fluctuating Velocity Distributions in Sphere Suspension Flow

Robert L. Powell Michael J. McCarthy

Joseph D. Seymour Kathryn L. McCarthy

Chemical Engineering & Food Science &

Materials Science . Technology
University of California

Davis, CA 95616

We present NMR measurements of the average and fluctuating fluid velocity
distributions for laminar tube flow of a suspension of spheres for volume fractions from

¢=0.0, the suspending fluid case, to $=0.362. The multiple length and time scales present
in multi-phase systems require care in interpreting experimental data for comparison with

theory due to the interaction between the scales of the system and the scales of the
experimental probe.

The suspending medium was a Newtonian fluid composed of deionized water, 57
wt%, 75-H-90,000 polyalkylene glycol oil (Union Carbide), 28 wt%, and sodium
chloride, 15 wt% which was added to increase the fluid density near to that of the
suspended spheres. The density and viscosity of the fluid are p=1,120 kg/rn3 and p=0.13
Pa s. The suspended phase consisted of polymethylmethacrylate (pmma) spheres of density

p=1,190 kg/m3. Sphere volume fractions of ¢$=0.0, 0.085, 0.29 and 0.36 were used. The
sphere sizes for each of these volume fractions varied somewhat due to the large quantity of

spheres required, over 10 kg for the maximum concentration. For $=0.085 the mean
sphere radius is 265 pm. For ¢=0.29 the radial distribution is bimodal with 23% spheres of
mean radius 265 pum and 77% spheres of mean radius 118 pm. For ¢=0.36 the radial
distribution is bimodal with 16% spheres of mean radius 265 um and 84% spheres of mean

radius 118 pm. The ratio of sphere sizes in the bimodal suspensions, i.e. $=0.29 and 0.36,
is 2.2. The ratios of the particle radii to the tube diameter are 0.01 for the large spheres and
0.0045 for the small spheres.

The NMR system consists of a 2T Oxford magnet connected to a General Electric

CSI-II spectrometer. The imaging is done on the 1H protons of the fluid phase of the
material at 85.5 MHz. The flow loop is 26.2 mm internal diameter plexiglass tubing with a
positive displacement pump. The imaged region is 175 diameters downstream from the
entrance. The axial direction of the flow in the tube is aligned with the z-axis of the
stationary applied magnetic field.

The flow regimes studied were in the low particle Reynolds number range and large
particle Péclet number range. We obtain joint spatial-velocity spin density distribution
images for each sphere concentration studied which can be interpreted as average axial
velocity profiles for the fluid phase. The velocity profile for the suspending fluid is in

agreement with a parabolic Newtonian profile. The average velocity data for $=0.085 also
show no variation from a parabolic profile. The average velocity profiles for the
concentrated suspensions exhibit shear thinning behavior with blunted average velocity
profiles.
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Finally, we have shown that there is a the relation between velocity fluctuations and
the intensity ratio for the flow to no flow images. Normalization of the flow image by the
no flow image at each position eliminates intensity effects due to fluid density, T2

relaxation and diffusion. The distributions of the intensity ratios for the flow to no flow

images at each concentration to the intensity ratio for the flow tono flow images at $=0.0 is
a direct measure of the change in signal intensity distribution due fluid velocity fluctuations.
The distributions indicate increase in the minus log of the ratio of intensity ratios due to
fluctuations in velocity, with increase in particle concentration in qualitative agreement with
the trend in the suspension temperature as a function of concentration in the simulation of |,

Nott and Brady (1994)* for a sphere radius to channel height ratio of 0.027. The relatively

_ insignificant effect on intensity in the dilute suspension, ¢$=0.085, is consistent with the
average nature of the NMR velocity measurement. The probability for finding a sphere in a
volume located at any point in the fluid, x, for a dilute suspension of uniformly,
independently distributed spheres is equal to the number density of the spheres,

P(x)=¢/Vsphere: where Vsphere is the volume of a single sphere. For the experimental

resolution used to obtain a typical image the voxel dimension is 0.075 mm3 and the
probability of a sphere being in a voxel is calculated to be 0.082 spheres per voxel. Since
each observation in the NMR experiment is independent the total probability that a sphere is
in a voxel in the final image is a multiple of the single probability for each signal average.
This yields low probability for a sphere to be in a voxel and the velocity in a voxel is
relatively unperturbed.
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The viscosity and sedimentation of aggregating colloidal
dispersions in a Couette flow.

W. Wolthers, D. van den Ende, M.H.G. Duits and J. Mellema
Rheology Group, Facully of Applied Physics,
Universily of Twente,
P.O. boz 217, 7500 AE Enschede, The Netherlands

May 23, 1995

Abstract

In order to interpret the time dependence of the measured torque in a steady shear experiment
on an aggregating dispersion in a Couette geometry, a microrheological model has been used
in which two existing models are integrated. In this microrheological model, the theory of
Potanin et al. (1995) for fractal aggregation in shear flow is combined with the theory of
Acrivos et al. (1994) for the sedimentation and resuspension of non-colloidal hard spheres.
The former theory describes the viscosity as a function of shear rate, while the latter predicts
the stress increase in a Couette device due to sedimentation. The connection between the two
theories is made by identifying the aggregate parameters of the former with the hard sphere
parameters (size and volume fraction) of the latter.

The experimentally studied aggregated system, consists of silica spheres sterically stabi-
lized by stearyl alcohol chains. When such spheres are dispersed in cyclohexane they behave
like hard spheres, but after the addition of a certain amount of polystyrene molecules they
can become aggregated due to the phenomenon of depletion flocculation. The rheological
experiments were carried out with primary particles having a radius @ of 38 [nm] at one vol-
ume fraction ¢ = 8%. For the measurements a Contraves Low Shear 40 with a concentric
cylinder geometry was used. The apparatus is a controlled shear rheometer with a gap height
of 8.0 [mm].

The parameters of the aggregates as a function of the shear stress are obtained by mea-

- suring a flow curve before sedimentation effects become significant and fitting this curve with
the theory of Potanin et al. (1995). In this theory the aggregates are described as spheres.
Their radius and volume fraction are decreasing functions of shear rate. The theory contains
two coefficients which can be adjusted to obtain the best fit to the experimental data. The
experimental results together with the best model fit are shown in Fig. 1.. In table I the
from the fit resulting values of ¢, (volume fraction of aggregates) and Rp/a (radius of the
aggregates) are listed.
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Table I. The aggregate parameters as a function of shear rate 7.

4 [5-Y [/ 0.096]0.37]1.45 ] 5.30 | 21.0 | 81.3
Rujal-) || 202 | 177 | 144 | 112 | 80.7 | 56.5
éa ] | 0.53 | 0.49 | 0.43 | 0.37 | 0.30 | 0.24

During the sedimentation of the primary particles, the aggregate size and volume fraction
become a function of both time and position in the rheometer. The primary particle fluxes
are calculated using the viscous resuspension theory of Acrivos et al. (1994). The connection
between their model and our aggregated colloidal dispersion is made by identifying Rx and ¢,
of the aggregates with respectively their hard sphere radius and volume fraction. In the Figs. 2
and 3 the results of the long term sedimentation experiments are plotted. The stress-time
results are shown from the moment at which the viscosity reached its steady state value. One
can see that the application of the combined theory results in a good prediction of the global
behavior of the experimental curves. This result corroborates both the existing theories and
the combined theory provides a method for estimating the sedimentation rate of aggregates
in a shear flow.
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Microstructure in a strongly-sheared
suspension and its impact on rheology and
self-diffusivity

John F. Brady & Jeffrey F. Morris*

Division of Chemistry and Chemical Engineering -
California Institute of Technology
Pasadena, CA 91125

The combined effects of Brownian motion and an interparticle force of
hard-sphere type upon the particle configuration in a strongly sheared sus-
pension have been analyzed. Under the influence of hydrodynamic interac-
tions alone the pair-distribution function has symmetry properties that yield
a Newtonian constitutive behavior and a zero self-diffusivity in the limit
Pe~! = 0, where Pe = 4a?/2D, with ¥ the shear rate, a the particle size
and D = kT/6mna the diffusivity of an isolated particle. Fore-aft symmetry,
in which a second sphere is equally likely to lie on an approaching (fore) or
receding (aft) trajectory relative to the reference sphere, holds under these
conditions. However, if particles are maintained at a minimum separation of
b > 2a, as Pe — oo there is a boundary layer of thickness aPe™! in which
the affects of Brownian diffusion and advection balance, leading to an asym-
metry of the pair-distribution function of O(Pe), with an excess of particles
along the compressional axes. The product of the magnitude of the asym-
metry and the thin boundary layer leads to an O(1) contribution (dependent
on b/a) as Pe — oo yielding a nonNewtonian (normal stresses) rheology.
This broken symmetry and boundary-layer structure produce shear-induced
self-diffusivities that are O(¥a?) as Pe — oo. For dilute suspensions in the
absence of hydrodynamic interactions the self-diffusivity is predicted to be
D® = —a?/2Ty X' /8¢, where X' is the bulk stress (less the solvent and
Einstein viscosity contributions) and ¢ is the volume fraction of spheres.

*Present address: Koninklijke/Shell-Laboratorium, Amsterdam (Shell Research BV);
Postbus 38000. 1030 BN Amsterdam, The Netherlands.
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Hydrodynamic Diffusion in Sheared, Sedimenting Suspensions
at Finite Reynolds Numbers

Heng-Kwong Tsao and Donald L. Koch
School of Chemical Engineering,
Cornell University
Ithaca, NY 14853

The hydrodynamic particle diffusivity is studied in a dilute,
monodisperse, sheared suspension of sedimenting spheres. The particle
Reynolds numbers are assumed small, i.e., Re,(”2 « Re « 1 where Re = Uja/v
and Re, = ya’/v, U, is the terminal velocity of the particles, a is the particle
radius, and v is the kinematic viscosity of the fluid. '

In the absence of fluid inertia, the variance of the velocity and the
particle diffusivity in a suspension of randomly positioned particles depends
on the macroscopic dimension of the suspension. These quantities will only
take on values that are independent of the size of the suspension if particle
interactions lead to a screening of the conditionally averaged fluid velocity
disturbance caused by each particle. In an unsheared, sedimenting
suspension at finite particle Reynolds numbers, inertial effects lead to
weaker divergence of the velocity variance and hydrodynamic diffusivity,
than are predicted in the absence of inertia. However, these quantities still
depend on either the system size or a particle-interaction-induced
hydrodynamic screening mechanism (D. L. Koch, Phys. Fluids A 5, 1141
(1993)). '

The divergence of the velocity variance and hydrodynamic
diffusivity in a sedimenting suspension at finite Reynolds number results
from the slow decay of the fluid velocity disturbance in a particle’s wake.
A linear shear flow alters the structure of the wake produced by a
sedimenting particle and this effect can lead to a finite velocity variance and
hydrodynamic diffusivity in a suspension of randomly distributed particles.

We consider the three geometries in which the gravitational
acceleration is parallel to the flow (x-), gradient (y-), and vorticity (z-)
directions of the simple shear. When P = Re/Re," » 1, the shear is
sufficiently weak so that it does not affect the fluid velocity disturbance at
the O(aRe™") separation from a particle where the wake first forms. In case

113

- ————— — e — -

P15



(2), the shear flow leads to a more rapid spread of the wake at an O(aRe,
12p) distance above the particle. The faster spreading of the wake causes
the fluid velocity to decay like 1/z° in the sheared wake, resulting in a finite
O((¢U/Re)In(P)) velocity variance. The mean-squared displacement of a
particle grows in proportional to t In’t. In case (y), the wake begins to
spread faster due to shear flow at an O(aRe{”ZPlB) distance above the
particle and this leads to a finite velocity variance and hydrodynamic
diffusivity. In case (x), the shear flow drives the particles into a region of
closed interparticle trajectories. This effect will lead to a clustering of
particles and an instability of the homogeneous suspension.
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UNSTEADY FIOWS OF TWO — PHASE MEDIA IN TUBES DUE TO LOCAL
SUPPLY OF MASS AND ENERGY ~

V.P.Korobeinikov.
Institute for Computer Aided Design, Russian Academy of
Sciences and Russian National Committee on Theoretical and
Applied Mechanics, Moscow, Russia.

Let we have a tube (or a canal) filled by gas or fluid with
suspended solid particles. At time t=to an inflow of
analogous mixture begins into this tube across an opening.
As a result we have interaction and nonstationary motion of
both media. The problem may be of interest for theory of
unsteady flows in nozzles, in combustion chambers of
internal engines, in diffusion of pollution of air space, in
shock tube flows and corresponding flows in canals, lakes,
river mouth near a see bay. It can be formulated for coupled
heat conductivity - diffusion egquations system, for fluid
dynamics equations, shallow water motion equations. The
simple variant of the problem is: at time t=0 finite amount
of "ink"” is suddenly released in a section of straight canal
where water velocity is constant. The distribution of the
ink matter along the canal for t>0 have to be found. The
solution can be obtained by using the fundamental solution
of linear diffusion egquation. For the case of two phase or
two-component gas media with velocities, pressure and
densities are variable in space and time. We have to study
solutions of two-phase fluid dynamics equations. In the
paper the self-similar problem on local supply of mass and
energy in dusty gas is studied. The following results were
obtained:1) The parameters of inlet flow and initial state
for medium in conical, wedge type and plane tubes( for which
two contact surfaces and two shock waves are formed in the
flow) are found; 2)the arising in dusty gas of zones with
high concentration of solid particles (ro-layers) was
proved. For two-dimensional plane case the problem of
lifting of particles of a layer near the canal bottom was
solved numerically. The particles diffusion in viscous
boundary layer with including of Saffman force influence is
also briefly discused. The comparison of the results with
experiments are made. The extensions of the results to
shallow water flows with suspended particles is considered.
The author obtained these results working together with
colleagues and students mentioned in the References.
References: 1.N.S.Zakharov, V.P.Korobeinikov, Mekhanika
Zhidkosti i Gaza #4, 1878,pp.70-77; 2.V.P.Korobeinikov,
Archivum Combustions, v.9, #1/4, 1983, pp.149-152;
3.V.P.Korobeinikov, V.V.Markov, I.S.Menshov, Dokl. Acad.
Nauk 8SSSR, v.290, 1986, pp.B818-820; 4.V.P.Korobeinikov,
G.G.Tivanov, Dokl. Acad. Nauk SSSR, v.310, 1880, pp.1320-
1323; 5.A.N.Gavrilov, Dokl.Acad. Nauk SSSR, v.312, 1991,
pp.1417-1420; 6.V.P.Korobeinikov, Proc. 5th Intern. Symp. on
CFD, v.2, Sendai 1993, pp.76-83; 7.A.N.Osiptsov et Al.,
Appl. Math. Mech., v.12 #6, 1991, pp.531-538.
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TUTAM Symposium on Hydredynamic Diffusion of Suspended Particles
Estes Park, Colorado, 22-25 July 1995

EXPERIMENTAL TECHNIQUES for SUSPENSIONS and DISPERSIONS
Jéréme MARTIN and Dominique SALIN

and Laboratoire Fluides, Automatique et Systémes Thermiques
Batiment n°502 - Campus Universitaire - 91405 Orsay Cedex France

Addressing the many different issues of experimental techniques suitable for analyzing
suspensions and dispersions is quite a challenge and we will focus on some particular aspects,
allowing to compare them in terms of physical basis, resolution, accuracy, safety hazard and
cost. The very first question to ask is what piece of information we want and what about the
constraints on the system. For instance, looking for direct observation of particules velocity in
a suspension, you can design an experiment with video techniques etc.... But if the given
dispersion is concentrated and opaque you have to adapt different techniques to get insight
into that particular system.

Instead of listing, we will try to classify techniques in terms of general methods such
as transparency, scattering, tracer or specific methods related t6 the physical property of the
dispersion itself. In this symposium we are mainly dealing with liquid/solid systems. The
granular material (solid/gaz) is observed mainly with video imaging but also with NMR which
will be described in a following lecture by Fukushima et al.

Tracking single particule paths can be achieved by different visualization methods : the
position of a single tagged particule is followed in 3D space and time : the "video" could be
CCD, or X Ray cameras [1, 2]. The fluid and the other particles have to be transparent to the
corresponding rays and also a large viscosity is often required to have time enough to perform
measurements (1000 frames/s could be obtained with high speed cameras) In the same class of
methods fluorescent photochemical and radioactive tracer method have been used [3]. Speckle
velocimetry provide the same type of information.

Concentration measurements are usually derived from transparency to either optical
beam, ygraphy, Xrays or even NMR [4, 7]. The accuracy is typically 1 % in concentration and
the spatial resolution that of the beam size (a few mm for optics and vy, down to 100 pm for
X). Measurements are fast for optics but the other two are counting methods which accuracy
involves the square root of time. Large concentrations lead to opacity and multiple scattering,
limiting these techniques to low concentrations.

Dynamic quasi-elastic light scattering is well suited to measure the collective diffusive
behaviour of the dispersion. Routinely used in colloidal dispersions, i.e. submicron particles,
non-colloidal dispersion requires a good choice of the wave vector and an adaptation of the
method [8].

-A special class of technique, not only because of its use by the speaker [9], is acoustics

which is linked to the hydrodynamics properties of the dispersion itself. Basically the two
acoustic measurements are the sound velocity V and the sound wave attenuation.V is linked to
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the density and the compressibility of the dispersion and therefore is concentration dependent ;
note that generally the larger the concentration, the larger the velocity variations, qualifying
this technique for large concentrations up to the packing. The attenuation in the suspension is
related to the suspension viscous loss which is nothing but its concentration dependent settling
velocity. At higher frequency Rayleigh scattering allows to discriminate between large and
small particles. The typical accuracy in concentration is better than 0.05 % and the spatial
resolution that of the transducers (1 or 2 mm). Note also that most dispersion systems are
transparent to acoustics but a dispersion system involving, even a tiny, amount of gaz bubble
is avoided.

Most of the techniques overviewed in this talk do not require years of pratice on that
topic and a good experimentalist can adapt them to the system he wants to study. This is
definitely not the case of NMR technique which requires years of training and a continuous
interference between the technique and systems (so is it for X, CT scanner [10]). But when

microscopic information is needed we have to go to such techniques. Note that a promising
technique is the NMR impulsion gradient which can give the velocity field of the fluid.
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NMR Imaging of Particle Migration in Concentrated Suspensions
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1Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (USA)
2Lovelace Medical Foundation, 2425 Ridgecrest Dr., S.E, Albuquerque, New Mex-
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4Sandia National Laboratories, Albuquerque, New Mexico 87185 (USA)
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Nuclear magnetic resonance (NMR) imaging has been used to observe
the evolution of concentration and velocity profiles of initially well mixed
suspensions undergoing flow in a wide gap between rotating concentric or
eccentric cylinders. More detailed descriptions of the experiments in con-
centric cylinders and of the NMR imaging techniques used can be found in
earlier papers [Abbott, et. al (1991); Mondy, et. al (1994)]. The suspen-
sions consist of large, noncolloidal spherical or rodlike particles suspended
In a viscous Newtonian liquid with the same density as the particles. Par-
ticles migrate away from the high shear-rate region near the rotating inner
cylinder even under conditions in which inertial forces are usually consid-
ered negligible. Large concentration gradients can be established after only
a short time. .

In the concentric cylinder device, the particle migration rate increases
with the mean particle volume raised to ~0.7 power (for spheres, the ra-
dius raised to somewhat higher than 2). The migration rate and the final
steady-state concentration profiles depend only weakly on the particle size
polydispersivity or the particle aspect ratio. In a Newtonian suspending
fluid, the particle migration does not depend on the strain rate or on the
suspending liquid viscosity.

In Phillips’ et al. model (1991), a steady state will occur when the migra-
tion due to spatial variations in the particle interaction frequency (caused by
gradients in shear rate or solids volume fraction) is balanced by that due to
spatial variations in viscosity (caused by gradients in solids concentration).
The relative effect of these two mechanisms are set by two empirically de-
rived constants K, and K.. With constants obtained from these experiments
on suspensions with average solids volume fraction ¢=0.55, the model ade-
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quately predicts migration in suspensions with average ¢ down to 0.45. At
lower concentrations, comparison of the model to data suggests that the
“constants” need to be modeled as functions of concentration.

Experimental measurements have also been taken to study shear-induced
migration of spherical particles in a concentrated suspension (¢=0.50) sub-
jected to flow in the wide gap between a rotating inner cylinder placed ec-
centrically within a fixed outer cylinder (a cylindrical bearing), so that the
eccentricity ratio is 1/2. A flow reversal is predicted for a Newtonian liquid
in this geometry (Wannier 1950); however. the magnitude of the reversed
velocity seen in a Newtonian liquid is about 1% of the velocity of the inner
shaft and much smaller than can be distinguished with the NMR technique.
Figure 1 shows the NMR image of the cylindrical bearing. The presence of
a high concentration region, not at the outer wall, but in a region within the
gap seems to indicate that a flow reversal occurs in the suspension. Visual
observations of a tracer particle in the suspension confirmed that, indeed, a
region of very slow (of order 1 mm/minute) reverse flow occurs.

Figure 1. NMR image of a cylindrical bearing with an eccentricity ratio
equal to 1/2. Darker regions represent higher liquid fraction (lower ¢).

We have modeled the flow between eccentric rotating cylinders following
the equations presented in Phillips et al. (1991). The values for the param-
eters K, and K, are’the same as those used by Phillips et al. We employ

.a psuedo-transient finite volume scheme, which is based on the method of

artificial compressibility due to Chorin (1967). The computational domains
are discretized using unstructured triangular cells (Jin and Wiberg, 1990),
and the field variables are assumed piece-wise constant.

The experimentally measured and the numerically predicted concentra-
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tion  and velocity profiles along the narrow and the wide gaps are given in
Fig. 2. Although the overall agreement with the data is fair, we find no
recirculation, in contrast to the experimental observation of a tracer par-
ticle, mentioned above. However, the concentration profile is reasonably
well-predicted (as seen from Fig. 2a) considering the uncertainty in the ex-
perimental data and the simplicity of the model theory.
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Figure 2. Steady-state velocity and concentration profiles along the x-
axis of a cylindrical bearing with an eccentricity ratio equal to 1/2. Numer-
ical (= — -), experimental (solid line), Newtonian (Wannier 1950, - - -).
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Experimental Studies of the Motion of Concentrated Suspensions in Two-
Dimensional Channel Flow

by
M. K. Lyon and L. G. Leal

Department of Chemical and Nuclear Engineering
University of California
Santa Barbara, CA 93106

Abstract

Over the past few years our laboratory has been concerned with the development of a
method to accurately measure velocity and concentration profiles for the pressure driven
flow of a concentrated suspension through a narrow gap rectangular channel. Results
from two recent models developed by Phillips et al. [1] and Nott and Brady [2] suggest
that under steady flow conditions, the shape of these two coupled profiles depends on the
bulk particle concentration, and in the case of the latter, the ratio of particle diameter to
channel gap-width. Although many experimental studies have been undertaken to
measure these profiles, the results to this point have only provided qualitative
concentration information, i.e. a nonuniform concentration distribution [3], or were
inconsistent in that a modified velocity profile was reported (relative to that for a
Newtonian fluid under equivalent flow conditions), but with a uniform concentration
profile [4,5]. Our objective, therefore, is to ascertain experimental velocity and
concentration profile data to test the applicability of these current models, as well as aid
in the development of any relevant future models.

The experimental method utilized in our lab is a modified Laser Doppler Velocimetry (

(LDV) technique. The term "modified" refers to the use of a model system in which the
index of refraction of the suspending and particulate phases are closely matched. This is
necessary in order to overcome turbidity effects inherent in the application of optical
methods to concentrated systems, and has enabled us to obtain scattered light signals
from individual particles as they pass through the probe volume. Because the scattered
light signals result from local regions of refractive index mismatch within individual
particles, they are rather weak. Therefore, we have implemented an optical geometry
which maximizes the scattered light intensity and yields a geometric probe volume that is
smaller in size than the suspended particles. Data acquisition inciudes an absolute
measure of the local particulate phase velocity, and an absolute local particle
concentration, which is attained by measuring the time between consecutive particles
through the probe volume and normalizing based upon our knowledge of the total particle
flux through the channel. A total of twelve experiments were performed corresponding to
particle volume fractions of 0.30, 0.40, and 0.50 and particle diameter to channel gap-
width ratios of 0.042, 0.059, 0.072, and 0.100, respectively.

Comparing the area under the measured velocity profiles with that corresponding to a
Newtonian fluid under identical flow conditions suggests the absence of a relative slip
velocity between the particulate and suspending phases. Such a finding is consistent with
the aforementioned models, which either do not account for this phenomena [1], or
neglect it, arguing that it scales like the square of the particle diameter to gap-width ratio
[2]. Although earlier data from our lab [6] reported particle velocities that lagged as
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much as 50% behind those of the suspending liquid, we now believe that these results
were anomalous and may have been a consequence of poor spatial resolution and
inadequate degassing of the flow system.

Qualitative results for increasing bulk concentration of particles within the suspension
reveal a larger particle concentration in the vinicity of the channel centerline and
increased blunting of the velocity profile consistent with model predictions [1,2].
Similarly, decreasing the ratio of particle diameter to channel gap-width yields a greater
blunting of the velocity profile, but this effect is extremely weak over the range
considered.
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Figure 1. Velocity and concentration profiles for ¢puk = 0.50 and a/H = 0.059:
0O, data points; ---, theory of Phillips et al.; —, theory of Nott and Brady.

Recently, we have completed velocity and concentration profile calculations utilizing the
diffusion [1] and statistical mechanical [2] models mentioned above for comparison with
our experimental data. A typical result, shown in figure 1, is for a bulk particle
concentration of 0.50, and ratio of particle diameter to channel gap of 0.059. As can be
seen, the latter theory provides better agreement with our data, particularly in regards to
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the velocity profile, where, except for the two points adjacent ot the channel walls, the
theoretical solid curve lies within the standard deviation of all the data points.

We are currently expanding our experimental method to obtain data from particles
incorporating a fluorescent dye. This will allow discrimination of particle size for
measurements on suspensions with a bimodal size distribution, as well as independent
suspending fluid velocity measurements that utilize small tracer particles.
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SHEAR-INDUCED MIGRATION OF PARTICLES IN A FLOWING VISCOUS
CONCENTRATED SUSPENSION
By
A. Shauly, A.Averbakh, R.Semiat and A. Nir *
Department of Chemical Engineering, Technion, Haifa 32000, Israel.

The shear-induced migration of non-Brownian particles in flowing viscous
suspensions was studied using laser-Doppler anemometry (LDA) and numerical
simulations. Measurement systems and techniques were developed to apply LDA to
velocity detection in the bulk of highly concentrated suspensions flowing in a
rectangular duct with a slender aspect ratio. The penetration of the laser beams into the
bulk of the suspension, with minimal light scattering, was facilitated by rendering the
suspension transparent. Matching of the refractive indices of the solid and fluid phases
was maintained by a careful control of the suspension temperature during each run,
and was monitored on-line. Measurements were carried .out in suspensions with
particle concentration between 0.1 and 0.5. Numerical simulations of similar flows in
circular pipes and rectangular ducts, including phenomenological models for particle
shear-induced diffusion, were solved and qualitatively compared to the measured
results.

Velocity profiles in the direction of the flow and in the direction perpeﬁdicular
to the primary streamlines were obtained for various particle concentrations, ¢g. These
profiles were measured at a distance of 30 cm from the flow entrance (about 75 times
the duct cross sectional narrow dimension). At relatively low .particles concentration,
¢s < 0.3, the suspension velocity profiles were identical with those expected for
profiles in a homogeneous Newtonian fluid. Measurements in the direction
perpendicular to the main flow recorded signals which did not indicate a significant net
motion in the lateral direction. For the higher particles concentration, ¢¢ > 0.3, the
suspension velocity profiles deviated significantly from those expected for a
homogeneous Newtonian fluid. This deviation increased with the increase of ¢s. The
detected lateral velocity increased as well and showed motion directed from the side
walls toward the duct center. Since, under the conditions of the experiment, the flow is
practically always fully developed everywhere, the net lateral velocity in the duct cross
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section is due to particles drift caused by shear-induced migration. It was found that
the migration intensity does not increase monotonically with the increase of ﬁarticle
concentration and that it has a maximum at an intermediate value near g ~ 0.4. This
reflects the combined opposing actions of the driving forces for particles migration,
the shear rate gradients and the effective viscosity and concentration gradients
(Leighton and Acrivos, 1987), as well as the fact that the migrating particles move in
an extremely viscous environment when particle concentration is very high. It is
interesting to note that at all particles concentrations the magnitude of the net averaged
lateral velocity is much lower than the standard deviation (STD) of the corresponding
measurements. The instantaneous measurement detects also periodic motions resulting
from particle rotation. With y and a being the shear strength and particle radius,
respectively, the periodic motions are typically of O(ya) while the shear induced
diffusion coefficient is of O(ya?). This difference is further enhanced due to particles
aggregation into bigger clusters.

The measurements are corroborated by numerical solutions of dynamic mass
and momentum balances based on the phenomenological model of Phillips et al.
(1992). Steady and transient states were solved for suspension flow in circular and
rectangular geometries. Following Seifu et al. (1994), the problem was formulated in
terms of a shear-induced 'migration potential', P, the evolution of which was followed.
The major results of the calculations agree qualitatively well with the LDA
measurements. At steay states, in which P is uniform in a cross section of the flow, the
suspension velocity profiles along the larger axis of the rectangular duct are flat at
lower ¢¢ and more rounded at relatively high g¢. Rather unexpectedly the calculations
predict that, although the location of the LDA measurements point is far from where a
steady state is achieved, there is a significant pressure gradient drop for the high
concentration suspensions even at such a short distance. Furthermore, lateral fluxes are
predicted at this measurement location haviﬂg profiles similar to those measured in the
experiments. The intensity of these fluxes (or lateral velocities) does not grow
monotonically with the increase in suspension particle concentration but, rather,
exhibits a maximum at about ¢g ~ 0.4, qualitatively agreeing with the experimental
observations. These characteristics were found for both circular cross section pipe and
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rectangular duct. The measured particle migration velocities are higher considerably
than those predicted by the simulation. The difference can not be attributed to the
choice of the phenomenological model and can not be bridged by a change in it's
coefficients. It might be, however, due to migration and rotation of large clusters of
particles, rather than individual particles, which tend to aggregate due to traces of
interparticle surface forces or due to a size distribution as was recently suggested by a
study of self diffusion of bimodal suspensions using Stokesian Dynamics (Chang and
Powell, 1994).
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NMRI Studies
of Granular Flows
in a Rotating Horizontal Cylinder

E. Fukushima, S.A.Altobelli, A. Caprihan, M. Nakagawa and L. Z. Wang
The Lovelace Institutes, 2425 Ridgecrest, SE, Albuquerque, NM 87108

introduction

We have developed nuclear magnetic resonance imaging (NMRI)
techniques to measure parameters of granular flows. In particular, we have
measured velocity components, concentration (density), and particulate diffusion
for flows in a horizontal cylinder partially filled with mustard, sesame or
sunflower seeds [1]. The cylinder was rotated about its axis inside the bore of a
horizontal superconducting magnet. The NMRI measurements were obtained from
central slices, 0.3 - 1.0 cm thick, where the flow was not influenced by the end
walls of the cylinder. Liquid state NMR techniques may be used because of the
strong signal obtained from the seeds’ internal oils. We have also studied these
flows with a discrete numerical simulation [2].

NMRI Techniques

We have used two methods for measuring velocity and concentration. One
is to non-invasively tag the particles with a rectangular grid and measure the
evolution of the pattern as a function of time. The average velocity of each
rectangular cell is obtained from the displacement of the center of the cell, and
other parameters such as shear and vorticity can be obtained from the deformation
and rotation of the cell. The evolution of the tags for different delays can be linked
in a movie loop to enhance the visualization. This is a simple and robust method
because the tagging can simply be appended to a standard imaging operation and
the results do not depend on the signal intensity but only on displacements that can
be measured in the image [3]. The trade-off is that spatial resolution is limited.

The second method uses the fact that NMRI can measure both the phase
and amplitude of the magnetization that evolves due to motion during the imaging
operation [4]. We design time varying magnetic field gradient pulses in such a
way that the gain in magnetization phase at the end of an echo sequence is
proportional to the average velocity of the image voxel. In this way, a complete
velocity field can be mapped in 2- or 3-D.

Images of velocity component fluctuations are obtained by adapting NMR
methods for measuring molecular diffusion. The relation between the measured
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fluctuation images and the granular temperature is not completely established in
part because density fluctuations are not included in the standard descriptions of
the NMR signal.

The spatial resolution of methods of the second type is the same as the
spatial resolution of the image. In the present experiments this is a fraction of a
mm. Routine images are 128% or 256 and require many minutes to create.

Results

An example of the first type of NMRI experiment is shown in Figure 1.
The flow is composed of a large lower region moving in rigid body rotation with a
thin shear layer above it. The “free-surface” is slightly curved with a point of
inflection. Most of the flows studied were in this regime.

s ~ o oS
.y =3 = -~ -~
TS Ioa ~ ~ )
1 'g,::';,/ f‘gj-;;:";& WS e
> 5::"‘ "" #f ’ -

§
b
\i

Figure 1. Grid-tag experiment of flowing mustard seeds at 18 rpm. The delays
between tagging and imaging are 1, 10, 20, 50, and 100 ms, from left to right.
The tagged cells translate and deform as a function of time.

Figure 2 shows an image of the horizontal component of velocity obtained
from an NMRI experiment compared to one calculated by direct numerical
simulation [2]. The shading of the image in the rigid body region shows that the
velocity is proportional to the vertical coordinate, as expected. Note that the
velocity is higher in the flowing layer than at the cylinder wall. This is due to
the difference in thickness of the two counterflowing layers and also to the lower
density in the flowing layer. The numerical simulation produces a qualitatively
similar picture, and correctly captures some trends. For instance, both experiments
and simulation show that the dynamic angle of repose is proportional to rotation
speed Q, and that flowing layer thickness increases roughly as Q"
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Figure 2. X-velocity component images obtained from NMRI (left) and direct
numerical simulation (right). Light color indicates motion to the left, and dark .
color indicates motion to the right.

Conclusions

Excellent results for velocity and concentration of flowing and colliding
particles have been obtained non-invasively. We studied flows in geometries that
are otherwise impossible to study because of the optical opacity of the materials.
In addition, we obtained data for diffusion and collisional losses which must be
related to granular temperature. New fast imaging methods, demonstrated in a
small flow system [5], will reduce the time required to produce NMRI data to tens
of milliseconds. We expect that with continued development NMRI will prove
increasingly valuable in studies of granular mechanics.
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