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THE GREEN’S FUNCTION METHOD
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INTRODUCTION

Recently, the Green’s Function Method (GFM) has been employed to obtain
benchmark-quality results for nuclear engineering and radiative transfer calculations. This
was possible because of fast and accurate calculations of the Green’s function and the
associated Fourier and Laplace transform inversions.!? Calculations have been provided
in one-dimensional slab geometries for both homogeneous and heterogeneous media.>* A
heterogeneous medium is analyzed as a series of homogeneous slabs, and Placzek’s
lemma’ is used to extend each slab to infinity. This allows use of the infinite medium
Green’s function (the anisotropic plane source in an infinite homogeneous medium) in the
solution. To this point, a drawback of the GFM has been the limitation to media with ¢ <
1, where c is the number of secondary particles produced in a collision. Clearly, no
physical steady-state solution exists for an infinite medium that contains an infinite source
and is described by ¢ >1; however, mathematical solutions exist which result in oscillating
Green’s functions. Such calculations are briefly discussing in Ref. 5. The limitation to

media with ¢ < 1 has been relaxed so that the Green’s function may also be calculated for

media with ¢ > 1.% Thus, materials that contain fissionable isotopes may be modeled.

.




The obvious application of the GFM with ¢ > 1 is the critical slab problem. The
critical slab problem has been solved using a variety of analytical and semi-analytical
methods.” However, as the GFM is used for heterogeneous media with ¢ < 1, it may also
be used for the heterogeneous critical slab problem. Reflected multiplying media have been
studied and have included some anisotropic scattering in the medium prope:r’cies.g'10 These
analyses considered symmetric media with the multiplying medium in the center and finite
or infinite reflectors on each side. The GFM with isotropic scattering will be employed to
analyze similar systems as well as asymmetric slab configurations. The analysis consists

of determination of the critical width and associated flux profiles.

THE GREEN ’S FUNCTION METHOD FOR FINITE MEDIA

The power of the GFM rests primarily in the ability to obtain solutions for finite
media using the infinite medium Green’s function. Multiple-slab systems are easily
constructed as a series of single-slab problems that are connected by equating boundary
angular fluxes. Using standard Green’s function formulations for the one-group linear
transport equation with isotropic scattering, the angular flux in a slab is expressed in terms

of the Green’s function as

otxw) = [ ax' [ an' [a@8entx ) + 850x00] Gl (12)
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where Sg(x,1) = 1 ¢(0,1)5(x) — p KA,1)8(x—A) (a result of Placzek’s lemma), S, (x,u) are
any inhomogeneous sources, and g(x) is the characteristic function for the slab, defined as
1 inside the slab and O elsewhere. The effect of Placzek’s lemma is to add boundary flux
source terms to the infinite medium formulation. Upon inserting the expression for

Sg(x.p) and separating the y integral into positive and negative components we have
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where Q(x,u) is the term for inhomogeneous sources. Both translational invariance
[G(x~x",ulp"y = G(x,ulx',1")] and reciprocity [G(=x,—ul—p") = G(x,ulu")] have been
assumed. The interior angular flux in Eq. (1b) may be determined via quadrature if the

angular boundary fluxes and the Green’s function are known.

THE CRITICAL SLAB PROBLEM

The critical slab problem consists of a series of source-free slabs which scatter
particles isotropically. At least one slab must be a multiplying medium. By letting x — 0*
and u — —pu for the exiting angular flux at the left boundary and x — A™ for the exiting flux
at the right boundary, the following equations are obtained for the boundary angular fluxes

of the i slab:
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The exponential terms come from the separation of the Green’s function into collided and
uncollided components. Again, the slabs “communicate” with one another via the

boundary angular fluxes between the slabs. For a source-free medium, one solution is

¢,(w) = 0. This trivial solution occurs if the cuamulative integral operator is invertible.




However, the “critical” solution comes when the operator is singular, or non-invertible.
Physically, with no source present, a slab configuration which is thinner than the critical
configuration will have a zero neutron population (the trivial solution). If the thickness is
greater than the critical thickness, no steady state solution is available (the population
continuously increases with time). Therefore, the goal is to determine the critical thickness
at which a steady-state flux distribution may be present without sources. The thicknesses
of all but one of the slabs are held constant, and the critical width of the slab under
consideration is desired. There are 2N, unknown functions - the boundary angular fluxes
¢{0%,—) and ¢(A ). Assuming a Gauss-Legendre quadrature rule (order L,,) for the
integrals, a cumulative solution vector is constructed from the boundary fluxes. The order
of the vector is 2 x N; x L,,,. A super matrix equation for Eq. (2) is constructed. As one
form of the Green’s function for ¢ > 1 is complex, this matrix is also complex.6 The
critical solution comes when, for a given thickness of the variable slab, the determinant of
the super matrix is zero. A dual zero search is performed for the real and imaginary parts
of the determinant, which provides the critical width of the variable slab.

Once the critical thickness is determined, the next step is to calculate the angular and
scalar fluxes for each slab. As usual, the magnitude of the flux distributions is arbitrary for
a critical system (usually it is determined using a power level). With the GFM, the interior
angular fluxes are determined via quadrature once the boundary fluxes are known.
Normally, the operator matrix would be inverted to give the boundary fluxes; however, this
matrix is singular and therefore can not be inverted. The boundary flux is determined using
an iterative process. For each slab, there are four boundary fluxes which must be
calculated as seen in Eq. (2). The initial guess for one of the entering boundary fluxes,
¢,.1(0%,~p), is the normalization factor (a,) which scales the scalar flux. The exiting

boundary fluxes are then calculated from Eq. (2) with each slab being analyzed in




sequence. This process is done iteratively until all boundary fluxes have converged to a
specified tolerance. Interior fluxes may then be calculated from Eq. (1b).

The Green’s function method for a critical multi-slab system is demonstrated using
two adjacent slabs. The first slab is a multiplying medium with ¢; = 1.5, and the second is
a reflector on the right side of the first slab with ¢, = 0.9 and a width of A, = 1. The
critical width of the first slab was determined to be 0.9652. The scalar flux distribution,
along with a comparison using the ONEDANT!! code, is provided in Fig. 1. Good
agreement is obtained, with correspondence achieved by matching the left endpoint fluxes.

Comparisons of the GFM results with results from symmetric reflected systems found in

Refs. 8-10 yield the same critical widths.
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Fig. 1. Scalar flux distribution for two-slab critical system (A; = 0.9652, A, = 1).







