

LA-UR- 96-1953

Title: The Green's Function Method for
Critical Heterogeneous Slabs

CONF-961103-15

RECEIVED
JUL 19 1986
OSTI

Author(s): Drew E. Kornreich

Submitted to: American Nuclear Society

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Form No. 836 R5
ST 2629 10/91

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

THE GREEN'S FUNCTION METHOD FOR CRITICAL HETEROGENEOUS SLABS

Drew E. Kornreich
Los Alamos National Laboratory
TSA-7, MS F609
Los Alamos, New Mexico 87545

INTRODUCTION

Recently, the Green's Function Method (GFM) has been employed to obtain benchmark-quality results for nuclear engineering and radiative transfer calculations. This was possible because of fast and accurate calculations of the Green's function and the associated Fourier and Laplace transform inversions.^{1,2} Calculations have been provided in one-dimensional slab geometries for both homogeneous and heterogeneous media.^{3,4} A heterogeneous medium is analyzed as a series of homogeneous slabs, and Placzek's lemma⁵ is used to extend each slab to infinity. This allows use of the infinite medium Green's function (the anisotropic plane source in an infinite homogeneous medium) in the solution. To this point, a drawback of the GFM has been the limitation to media with $c < 1$, where c is the number of secondary particles produced in a collision. Clearly, no physical steady-state solution exists for an infinite medium that contains an infinite source and is described by $c > 1$; however, mathematical solutions exist which result in oscillating Green's functions. Such calculations are briefly discussing in Ref. 5. The limitation to media with $c < 1$ has been relaxed so that the Green's function may also be calculated for media with $c \geq 1$.⁶ Thus, materials that contain fissionable isotopes may be modeled.

The obvious application of the GFM with $c > 1$ is the critical slab problem. The critical slab problem has been solved using a variety of analytical and semi-analytical methods.⁷ However, as the GFM is used for heterogeneous media with $c < 1$, it may also be used for the heterogeneous critical slab problem. Reflected multiplying media have been studied and have included some anisotropic scattering in the medium properties.⁸⁻¹⁰ These analyses considered symmetric media with the multiplying medium in the center and finite or infinite reflectors on each side. The GFM with isotropic scattering will be employed to analyze similar systems as well as asymmetric slab configurations. The analysis consists of determination of the critical width and associated flux profiles.

THE GREEN'S FUNCTION METHOD FOR FINITE MEDIA

The power of the GFM rests primarily in the ability to obtain solutions for finite media using the infinite medium Green's function. Multiple-slab systems are easily constructed as a series of single-slab problems that are connected by equating boundary angular fluxes. Using standard Green's function formulations for the one-group linear transport equation with isotropic scattering, the angular flux in a slab is expressed in terms of the Green's function as

$$\phi(x, \mu) = \int_{-\infty}^{\infty} dx' \int_{-1}^1 d\mu' [q(x)S_{ext}(x', \mu') + S_G(x', \mu')] G(x-x', \mu|\mu') , \quad (1a)$$

where $S_G(x, \mu) = \mu \phi(0, \mu) \delta(x) - \mu \phi(\Delta, \mu) \delta(x-\Delta)$ (a result of Placzek's lemma), $S_{ext}(x, \mu)$ are any inhomogeneous sources, and $q(x)$ is the characteristic function for the slab, defined as 1 inside the slab and 0 elsewhere. The effect of Placzek's lemma is to add boundary flux source terms to the infinite medium formulation. Upon inserting the expression for $S_G(x, \mu)$ and separating the μ integral into positive and negative components we have

$$\begin{aligned}\phi(x, \mu) = & \int_0^1 d\mu' \mu' \phi(0^-, \mu') G(x, \mu | \mu') - \int_0^1 d\mu' \mu' \phi(\Delta^-, \mu') G(x - \Delta, \mu | \mu') - \\ & - \int_0^1 d\mu' \mu' \phi(0^+, -\mu') G(-x, -\mu | \mu') + \int_0^1 d\mu' \mu' \phi(\Delta^+, -\mu') G(\Delta - x, -\mu | \mu') + Q(x, \mu) , \quad (1b)\end{aligned}$$

where $Q(x, \mu)$ is the term for inhomogeneous sources. Both translational invariance [$G(x - x', \mu | \mu') = G(x, \mu | x', \mu')$] and reciprocity [$G(-x, -\mu | -\mu') = G(x, \mu | \mu')$] have been assumed. The interior angular flux in Eq. (1b) may be determined via quadrature if the angular boundary fluxes and the Green's function are known.

THE CRITICAL SLAB PROBLEM

The critical slab problem consists of a series of source-free slabs which scatter particles isotropically. At least one slab must be a multiplying medium. By letting $x \rightarrow 0^+$ and $\mu \rightarrow -\mu$ for the exiting angular flux at the left boundary and $x \rightarrow \Delta^-$ for the exiting flux at the right boundary, the following equations are obtained for the boundary angular fluxes of the i^{th} slab:

$$\begin{aligned}\phi_i(0^+, -\mu) + & \int_0^1 d\mu' \mu' \phi_i(0^+, -\mu') [G_c(0^-, \mu | \mu') \pm G_c(-\Delta, -\mu | \mu')] \pm \\ \phi_i(\Delta^-, \mu) \pm & \int_0^1 d\mu' \mu' \phi_i(\Delta^-, \mu') [G_c(0^-, \mu | \mu') \pm G_c(-\Delta, -\mu | \mu')] \mp \\ \phi_{i-1}(\Delta^-, \mu) e^{-\Delta/\mu} - & \int_0^1 d\mu' \mu' \phi_{i-1}(\Delta^-, \mu') [G_c(0^+, -\mu | \mu') \pm G_c(\Delta^-, \mu | \mu')] - \\ \phi_{i+1}(0^+, -\mu) e^{-\Delta/\mu} \mp & \int_0^1 d\mu' \mu' \phi_{i+1}(0^+, -\mu') [G_c(0^+, -\mu | \mu') \pm G_c(\Delta^-, \mu | \mu')] = 0 . \quad (2)\end{aligned}$$

The exponential terms come from the separation of the Green's function into collided and uncollided components. Again, the slabs "communicate" with one another via the boundary angular fluxes between the slabs. For a source-free medium, one solution is $\phi_i(\mu) = 0$. This trivial solution occurs if the cumulative integral operator is invertible.

However, the “critical” solution comes when the operator is singular, or non-invertible. Physically, with no source present, a slab configuration which is thinner than the critical configuration will have a zero neutron population (the trivial solution). If the thickness is greater than the critical thickness, no steady state solution is available (the population continuously increases with time). Therefore, the goal is to determine the critical thickness at which a steady-state flux distribution may be present without sources. The thicknesses of all but one of the slabs are held constant, and the critical width of the slab under consideration is desired. There are $2N_s$ unknown functions - the boundary angular fluxes $\phi_i(0^+,-\mu)$ and $\phi_i(\Delta^-,\mu)$. Assuming a Gauss-Legendre quadrature rule (order L_m) for the integrals, a cumulative solution vector is constructed from the boundary fluxes. The order of the vector is $2 \times N_s \times L_m$. A super matrix equation for Eq. (2) is constructed. As one form of the Green’s function for $c > 1$ is complex, this matrix is also complex.⁶ The critical solution comes when, for a given thickness of the variable slab, the determinant of the super matrix is zero. A dual zero search is performed for the real and imaginary parts of the determinant, which provides the critical width of the variable slab.

Once the critical thickness is determined, the next step is to calculate the angular and scalar fluxes for each slab. As usual, the magnitude of the flux distributions is arbitrary for a critical system (usually it is determined using a power level). With the GFM, the interior angular fluxes are determined via quadrature once the boundary fluxes are known. Normally, the operator matrix would be inverted to give the boundary fluxes; however, this matrix is singular and therefore can not be inverted. The boundary flux is determined using an iterative process. For each slab, there are four boundary fluxes which must be calculated as seen in Eq. (2). The initial guess for one of the entering boundary fluxes, $\phi_{i+1}(0^+,-\mu)$, is the normalization factor (a_0) which scales the scalar flux. The exiting boundary fluxes are then calculated from Eq. (2) with each slab being analyzed in

sequence. This process is done iteratively until all boundary fluxes have converged to a specified tolerance. Interior fluxes may then be calculated from Eq. (1b).

The Green's function method for a critical multi-slab system is demonstrated using two adjacent slabs. The first slab is a multiplying medium with $c_1 = 1.5$, and the second is a reflector on the right side of the first slab with $c_2 = 0.9$ and a width of $\Delta_2 = 1$. The critical width of the first slab was determined to be 0.9652. The scalar flux distribution, along with a comparison using the ONEDANT¹¹ code, is provided in Fig. 1. Good agreement is obtained, with correspondence achieved by matching the left endpoint fluxes. Comparisons of the GFM results with results from symmetric reflected systems found in Refs. 8-10 yield the same critical widths.

REFERENCES

1. B. D. GANAPOL, "The Infinite Medium Green's Function for Neutron Transport in Plane Geometry 40 Years Later," *Proc. Amer. Nuc. Soc.*, **69**, 126 (1993).
2. B. D. GANAPOL, "The Green's Function Method (GFM) for the Monoenergetic Transport Equation in a Half-Space," Prepared for the Mission Research Corporation (1995).
3. B. D. GANAPOL, "Green's Function Method for the Monoenergetic Transport Equation in Heterogeneous Plane Geometry," *Proc. Amer. Nuc. Soc.*, **73**, 185 (1995).
4. B. D. GANAPOL and D. E. KORNREICH, "The Green's Function Method for the Monoenergetic Transport Equation with Forward/Backward/Isotropic Scattering," *Ann. Nucl. Energy*, **23**, 301 (1996).
5. K. CASE, F. DEHOFFMANN, and G. PLACZEK, *Introduction to the Theory of Neutron Diffusion*, Los Alamos National Laboratory (1953).
6. D. E. KORNREICH and B. D. GANAPOL, "The Infinite Medium Green's Function in Multiplying Media," ANS Winter Meeting, Washington, D. C. (1996).
7. P. GRANDJEAN and C. E. SIEWERT, "The F_N Method in Neutron-Transport Theory. Part II: Applications and Numerical Results," *Nucl. Sci. Eng.*, **69**, 161 (1979).
8. G. CARROLL and R. ARONSON, "One-Speed Neutron Transport Problems - Part II: Slab Transmission and Reflection and Finite Reflector Critical Problems," *Nucl. Sci. Eng.*, **51**, 166 (1973).
9. A. R. BURKART, Y. ISHIGURO, and C. E. SIEWERT, "Neutron Transport in Two Dissimilar Media with Anisotropic Scattering," *Nucl. Sci. Eng.*, **61**, 72 (1976).
10. K. NESBAT, C. E. SIEWERT, and Y. ISHIGURO, "An Improved P-L Solution to the Reflected Critical-Reactor Problem in Slab Geometry," *Nucl. Sci. Eng.*, **62**, 330 (1977).
11. R. E. ALCOUFFE, R. S. BAKER, F. W. BRINKLEY, D. R. MARR, R. D. O'DELL, and W. F. WALTERS, "DANTSYS: A Diffusion Accelerated Neutral Particle Transport Code System," Los Alamos National Laboratory, LA-12969-M (1995).

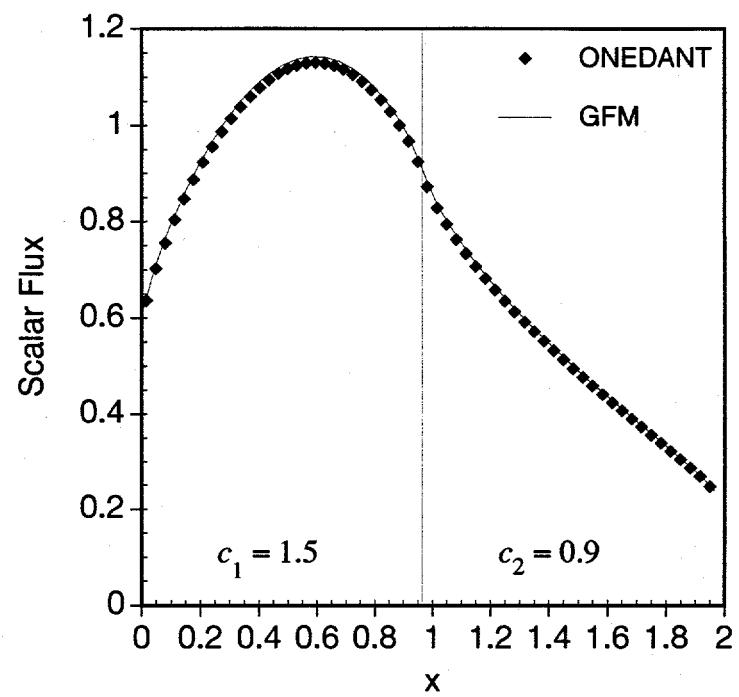


Fig. 1. Scalar flux distribution for two-slab critical system ($\Delta_1 = 0.9652$, $\Delta_2 = 1$).

