) quo be presented at “Symposium on Development, Validation, and Application ot Inelastic Methods tor Structural Analysis and De-
sign”, 1996 ASME International Mechanical Engineering Congress an Exposition (IMECE98), Atlanta, GA, November 17-22, 1996.

SANDG4-0593C

SAVD~-F(-0STIC,

CONL. Goilol--1

PARALLEL CONTACT DETECTION ALGORITHM FOR TRANSIENT SOLID DYNAMICS
SIMULATIONS USING PRONTO3D

Stephen W. Attaway, Bruce A. Hendrickson, Steven J; Plimpton, David R. Gardner,
Courtenay T. Vaughan, Martin W. Heinstein, James S. Peery

Sandia National Laboratories
Albuquerque, New Mexico

ABSTRACT

An efficient, scalable, parallel algorithm for treating material sur-
face contacts in solid mechanics finite element programs has been im-
plemented in a modular way for MIMD parallel computers. The serial
contact detection algorithm that was developed previously for the tran-
sient dynamics finite element code PRONTO3D has been extended for
use in parallel computation by devising a dynamic (adaptive) processor
load balancing scheme. !

INTRODUCTION

This paper presents a review of inelastic analyses at Sandia
National Laboratories with a focus on the development, testing
and implementation of a parallel contact detection algorithm for
solid mechanics program PRONTO3D. We have accomplished
the important step of devising a dynamic load balancing scheme
for contact detection, which is necessary for efficient parallel com-
putation by the finite element method with material contacts.

Sandia’s solid dynamics code PRONTO3D uses Lagrangian
finite elements to model a wide variety of problems, such as the
calculation of impact damage to shipping containers for nuclear
waste and the analysis of vehicular crashes. Using parallel com-
puters for these simulations has been hindered by the difficulty of
searching efficiently for material surface contacts in parallel. A
new parallel algorithm for calculation of arbitrary material con-
tacts in finite element simulations has been developed and imple-
mented in the PRONTO3D transient solid dynamics code. This
paper presents some of the issues involved in developing, test-

1. This work performed at Sandia National Laboratories supported
by the U. S. Department of Energy under contract DE-

AC0476DP00789.

ing, and applying a parallel finite element code.

In order to implement a finite element calculation efficiently,
the mesh is partitioned among the processors so as to minimize
the need for inter-processor communications and evenly distrib-
utes the computational load. Optimal mesh partitioning for the fi-
nite element portion of the calculation is not difficult to achieve
since each processor must communicate only with the few con-
nected neighboring processors that share boundaries with the
decomposed mesh. However, contacts can cccur between sur-
faces that may be owned by any two arbitrary processors. Hencs,
a global search across all processors is required at every time
step to search for these contacts.

Here, we discuss the details of a new parallel contact detec-
tion algorithm. We also present timing and scalability results for
some large simulations that illustrate how the new contact-detec-
tion algorithm has enabled efficient parallel implementation of
PRONTO3D. Example simulations involving up to two million el-
ements are presented to demonstrate that the new algorithm is
scalable in practice to over 1000 processors of the Intel Paragon.

The structure of this paper is as follows: We review the capa-
bilities of PRONTOSD, then discuss the motivation for implement-
ing it for parallel computations. In preparation for describing the
parallel contact algorithm, we review the current serial contact ai-
gorithm and some background material needed to understand as-
pects of the paralle] algorithm. A description of the parallel contact
algorithm is followed by some examples that iliustrate the perfor-
mance of the parallel algorithm.

TRANSIENT DYNAMICS CAPABILITES OF PRONTOS3D
Sandia’s PRONTO3D code (Taylor and Flanagan, 1989),

(Attaway, 1990), (Bergmann, 1991) is a Lagrangian finite element

program for the analysis of the three-dimensional response of sol-

R DISTRIBUTION OF IS DOCUMENT 1S UNUMITED _
D08 M

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

id bodies subjected to transient dynamic loading. The program in-
cludes nonlinear constitutive models and accurately analyzes
large deformations that may lead to geometric nonlinearities. PR-
ONTO is a powerful tool for analyzing a wide variety of problems,
including classes of problems in:

e impact dynamics,

¢ rock blasting, and

e accident analyses.

PRONTOB3D is a direct descendant of the PRONTO2D code
{Taylor and Flanagan, 1988). Experienced users will recognize
the similarity in the structure between PRONTO2D and
PRONTO3D, since the theory and algorithms are the same in
both codes.

The development of PRONTO was motivated by the need for
a code that could serve as a test bed for research into numerical
algorithms and new constitutive models for nonlinear materials.
Towards this goal, the code contains a well-documented and
easy-to-use interface for implementing new constitutive models.
In addition, a flexible, problem-oriented language has been devel-
oped for the input to PRONTO that allows the user to define a
complex mechanics problems with a few concise commands. In-
ternally, the code is well documented and consistent between
subroutines. The algorithms within PRONTOS3D were designed to
be accurate, dependable, and to execute rapidly.

PRONTO contains no mesh generation or post-processing
capabilities. Instead, it relies on external mesh generators and ex-
ternal post-processors. There are few references in the user input
to finite element node or element numbers. The philosophy has
been to define the problem geometry through the GENESIS mesh
definition data base (Taylor, Flanagan and Mills-Curran, 1986).
The output from PRONTO is accessed through the EXODUS
data base. (Schoof and Yarberry, 1994). PRONTO is part of the
SEACAS family of codes. An overview of some of the tools avail-
able in the SEACAS system is found in Sjaardema (1993).

The following is a summary of the technology within
PRONTO3D:

Explicit mid-point time integration

Adaptive time step control

Eight node brick elements and four node shell elements
One point element integration

Flanagan-Belytschko Hourglass control for hex elements
Assumed Strain hourglass control for hexahedral elements
Objective material coordinate system

Global contact (self contact) with erosion of surfaces.

e & ¢ 0 0 0 0 o

WHY PARALLEL?

A complicated process such as a collision or explosion in-
volving humerous complex objects requires a large number of
mesh elements to model accurately. In addition, the underlying
physics of the stress-strain relations for a variety of interacting
materials must also be included in the model. Running such a
simulation for thousands or millions of time steps can be very
computationally intensive.

In the past, increases in speed were obtained by building
faster processors. However, the clock speed of a single proces-
sor computer is controlled by the size of the objects on the chip.

Current manufacturing techniques limit the size of the chip. Be-
cause of this size limit, we can no longer expect to see large in-
creases in speed by simply building processors with faster clock
cycles. 7

High computational speed has been obtained through vec-
torization on supercomputers such as the Cray Y-MP. Multitask-
ing on the Y-MP allows additional speed by breaking the vector-
ized loops into tasks that can be worked on by more than one pro-
cessor. While this approach works very well for small numbers of
processors, it does not scale well to large numbers of processors.

Massively parallel machines, such as the Intel Paragon,
which have very large numbers of inexpensive processors, offer
an alternative to the vectorized, multitasking machines. This mas-
sively parallel computer architecture uses multiple processors
that pass messages between each other to achieve faster perfor-
mances. Current plans for large scale parallel machines include
processors with speeds of 200 MIPS and over 4000 processors.

The problem with the message-passing parallel architecture
is the complexity of the code required to obtain a computationally
balanced algorithm. Since finite element calculations require syn-
chronization at each time step, the slowest processor wiil control
the total problem solution time. Thus, each processor must be
given the same amount of work.

Measures of Parallel Computer Performance
Here, we will review some important measures of perfor-
mance. The grind time, fixed-size speedup, scaled speedup and
paralle! efficiency will be outlined.
The grind time is an often used measure of performance for
a finite element program. The grind time, T erind’ is defined as

T .
execution
(1)

T . =
grind = N elements™ cycles

where T is the execution time of a mesh with

execution

elements for Ncycles . . .
Two measures of parallel performance are the fixed-size

speedup and the scaled speedup. The fixed-size speedup, § [
defined as:

N

T

s, =1 2
It &)
where T, , is the execution time for a problem with m elements
executed on one processor and T,, is the execution time for the

same problem size mrun on p processors.
The scaled speed-up is used to describe problems where the
problem size increases in proportion to the number of processors

and is defined as:

T
S, = _m1iP (3)
mep,p
whereT,,, , , is the execution time for a problem of size (m x p)
run on p processors.

The parallel efficiency is defined as

E= (4)
The scaled parallel efficiency indicates the efficiency of the paral-
lel algorithm when the problem size increases in proportion to the
number of processors.

Typically, the fixed-size parallel efficiency,E =8;/p, will
decrease for fixed-size problems when the number of processors
increases. As the problem is divided between more and more pro-
cessors, the amount of computation each processor has to do rel-
ative to the amount of communications becomes small. Eventual-
ly, the communications will dominate the calculation time. Thus,
for small problems, there is a limit to how fast one can make par-
allel calculations run.

If the size of the problem increases as the number of proces-
sors increases, and if the problemn scales well (e.g. 0.95<E<1),
then the ratic of communications to computation will stay con-
stant. In order for a code to scale, each processor must be given
an equal amount of work to do. In addition, the number and size
of the interprocessor communications must not grow excessively
as the problem size grows. Thus, the big question is: will a calcu-
lation scale?

N

SERIAL CONTACT ALGORITHM

In this section, we will outline the serial contact algorithm
used in PRONTOSD. For a detailed account on the general for-
mulation and numerical treatment of finite deformation contact
problems in finite elements see Laursen and Simo (1991).

In explicit time integration algorithms, contacts are usually
processed with a predictor/corrector method. Within a time step,
the positions of nodes in the mesh are predicted assuming that no
contacts occur. A check for overlap and penetration is made, and
these overlaps are corrected by applying a contact force between
the contact surfaces.

An outline of the computations performed every time step in
the explicit time step algorithm in PRONTOS3D is shown in Figure
1.The contact algorithm is composed of steps (1.7)-(1.9). We de-
fine a set of nodes on the exterior of the mesh called contact
nodes and a set of surface patches on the exterior element faces
called contact surfaces. For efficiency, the contact constraint is
enforced only at the contact nodes. Thus, each contact node is
checked to see if it penetrated a contact surface.

It is convenient to separate contact algorithms into a location
phase and a restoration phase. The location phase consists of a
neighborhood identification, step (1.7), followed by a detailed
contact check. The neighborhood identification associates a con-
tact node to a set of contact surfaces that it potentially could con-
tact.

The neighborhood identification step requires a global
search of the simulation domain which can require 30-50% of the
overall run time when PRONTOSD runs on a vector machine like
the Cray Y-MP. In principle, any two surface elements anywhere
in the simulation domain can come in contact with each other dur-
ing a given time step. This is true even for surface elements on
the same object, as when a car fender is crumpled in a collision.

(1.1) Define/redefine contact surface. .
(1.2) Integrate the equations of motion.

S _ v"-1/2+Atf—n 5)
m
xn - xn_1+Atv"+1/2 (6)
(1.3) Compute the strain rate based on the motion of
the nodes.
g€ =f(v) ™

(1.4) Compute the stress rate based on the strain
rate and the material models.

6 = g(0,8) (8)
(1.5) Compute internal forces acting on nodes:
fint = V.o (g)
(1.6) Predict the locations of the nodes assuming no
contacts
~ fint
a = 7 (1 0)
v =v+Ara (11)
2= x+Ad (12)
(1.7) Search for potential contacts between nodes
and surfaces

(1.8) Perform detailed contact check to determine
“pest” contact surfaces.

(1.9) Enforce contacts by computing contact force
required to remove overlap

f=Fint +f contact (13)

FIGURE 1.Outline of explicit time step algorithm.

The detailed contact check in step (1.8) determines which, if
any, of the candidate contact surfaces is in contact with a contact
node. It also determines the point of contact, the amount of pen-
etration, and the direction that the contact node must be moved
in order to remove the penetration. The detailed contact check is
accomplished by monitoring the displacements of the contact
nodes throughout a time step for possible penetration of a contact
surface. This stage of the contact algorithm is logically complex
but computationally inexpensive. The complexity arises from hav-
ing to consider multiple contact surfaces as potential candidates
for contact (Heinstein, et al.,1993).

The contacts are enforced in step (1.9). This step defines a
contact constraint so that the contact node can be “pushed back’
to remain on the contact surface. This constraint is enforced in the

following time step, or possibly over several time steps.

Outlined below are the current characteristics of the serial
contact algorithm that we feel the parallel contact algorithm
should share. The algorithm will:

)] use a fast, memory-efficient global search to decide which
contact nodes are in proximity to an element contact
surface;

ii) perform a detailed contact check using projected move-
ments of both the contact surface and contact node to
determine the location, magnitude, and direction of con-
tact node penetration of the contact surface;

iii) automatically define all surfaces given the mesh connec-
tivity;

iv} use an accurate method for enforcing the contact con-
straint.

v) model self-contacting surfaces;

vi) model tearing and eroding surfaces; and

vii) have simple user input.

In the next section, we will describe in more detail the methods

used in the serial contact algorithm.

Automatic Identification of Contact Surfaces

The surface definition phase of the contact algorithm auto-

matically determines which surfaces are interior and which are
exterior. The exterior surfaces can be included in the contact
search on a material-by-material basis. This flexibility ailows the
user to select a subset of the problemto be included in the contact
search. ‘
There are several algorithms available for determining the
exterior of a surface (Whirley and Engelman, 1994) (Belytschko
and Neal, 1989).The algorithm described here foliows Heinstein,
et al. (1993).

The surface definition algorithm uses a data structure that
generates the initial surface definition and allows an incremental
update of surface when necessary. In the algorithm, shell ele-
ments are considered as a subset of hexahedral elements. For
clarity, the following discussion is limited to a mesh composed of
hexahedral elements. The algorithm stores a 6 x », list of faces
ID’s for a mesh composed of #, 8-node hexahedral elements and
invoives two simple steps. The first step is to build a list of face
ID’s for every element face:

faceid = ny;, 0, X0, (14)

where np.qis the total number of nodes in the problem, np,;, is the

smallest global node number defining the element face, and ngj,g

is the global node number that is diagonal to the smallest global
node Ny,

In the second step, the element faces on exterior surfaces
are found by locating all non-repeated face ID’s. The contact
nodes can then be determined by looping through the contact sur-
face list and flagging the nodal points defined by the contact sur-
face connectivity.

By storing a list of opposing faces for each element, an incre-
mental update of the contact surfaces can be performed when an
element is deleted. Once the surface map is complete, all the
contact surfaces and contact nodes can be collected into a heap

for sorting and processing. The idea of collecting contact surfaces
and contact nodes into a heap allows modeling of contacts be-
tween a variety of finite element types. For example, the nodal
points of elements, such as beams and trusses, can'be added to
the contact node list. Also, the potential contacts from coupling
the finite element method with other methods can be modeled.
For example, particle methods such as Smooth Particle Hydrody-
namics (SPH) (Attaway, Heinstein and Swegle, 1994) can be
easily coupled by adding the particles to the contact node list.

Location Phase

The location phase is the most time consuming part of the
contact detection algorithm. Here, we will briefly review the algo-
rithm used in the location phase. A more detailed description of
efficient schemes for spatially sorting and searching for contacts
can be found in the report by Heinstein, et al., (1993).

The -most robust approach for finding potential contacts
would be to check every contact node against every contact sur-
face each time step. This exhaustive global searching approach
requires nodal distance calculations on the order ni , where n_ is
the number of contact nodes.

The serial contact detection algorithm speeds up the location
phase by using a global search algorithm based on a bounding
box. This process involves bounding the space occupied by a
contact surface (element face) at its known location and at its pre-
dicted location. Figure 2 shows a bounding box for a moving con-
tact surface over one time step. The location of a contact surface
attime nand n+1is shown in the figure. To insure that all potential
contact nodes are within the bounding box, the dimensions of the
box are expanded by the maximum amount that a contact node
can move during atime step, d, . = V. dt. Any contact nodes
inside the capture box should be considered for potential contact
with the contact surface.

To efficiently determine the contact nodes that fall within this
capture box, the serial contact algorithm uses the point-in-box
search algorithm developed by Swegle and coworkers (Swegle,
et al,, 1993). The algorithm consists of three individual one-di-
mensional sorts of the nodal locations, using each coordinate val-
ue as the sort key. Binary searches of each sorted dimension are
used to determine the contact nodes that are closest to the max-
imum and minimum dimensions of the bounding box. Three lists
of nodes whose positions fall within the bounds of the box for
each coordinate direction are constructed using the results of the
binary searches. The final list of points within the box is the inter-
section of the three one dimensional lists.

The great advantage of using the point-in-box global search
algorithm is that it requires only 7n, memory locations. In addi-
tion, the algorithm’s execution time is proportional to r_logn,_ and
is independent of any problem geometry.

While it may not be necessary to perform the global search
every time step, we do so in the examples presented in this re-
port. Thus, the algorithms presented here could be made to run
much faster if memory were sacrificed to store the nearest neigh-
bors between time steps.

The point-in-box search is also used in the parallel algorithm
for searching for contacts on a given processor.

predicted surface p

current surface position
bounding box 7

capture box

osition
/Vz max
I » 28

(5]

S

A

S

contact
node

FIGURE 2.Contact search bounding box.

Detailed contact check

After gathering a list of potential interactions a detailed con-
tact check is done for each contact node - contact surface pair.
The detailed contact check determines: (1) which of the candidate
contact surfaces, if any, is in contact with the contact nede, (2) the
point of contact, (3) the amount of penetration, and (4) the direc-
tion the contact node should be moved to enforce the contact
constraint.

The difficulties associated with detailed contact determina-
tion included inaccurate push back direction and multiply defined
potential contacts. In order to minimize ambiguities, the detailed
contact check distinguishes between contact nodes that are not
in contact and those that are already in contact.

A velocity based contact check is used for the contact nodes
not already in contact. For contact nodes just coming into contact,
the velocity based contact check identifies the point of contact (or
impact) and the contact time. The velocity based contact check
makes use of the current position of the surfaces and the estimat-
ed velocities in the following time step. The time that a moving
contact node will intersect with a moving surface is solved as
shown in Figure 3. For the contact to be valid, the point of contact
must fall within the bounds of the contact surface during a time
step. For some cases, there may be more than one contact sur-
face that a node can contact within a time step. The surface that
has the minimum time to contact will be selected as the contact
surface. In certain cases there may be multiple contact surfaces
where valid contact is possible. In these cases, a strength of con-
tact check is used to determine the most opposed contact sur-
face. A complete derivation of the velocity based contact check
can be found in Heinstein, et al. (1993).

contact node
& at time ¢

contact nod

at time t+dt contact surface

at time t+dt

contact surface
attime t

FIGURE 3.Velocity based contact check. The detailed
contact check solves for the time until contact occurs(dt)
and the coordinates of the contact point (x).

The calculations for a static contact check are based on the
predicted configuration of the surface if the contact forces were
removed. This predicted configuration would obviously have
nodes penetrating contact surfaces. For contact nodes already in
contact with a surface, ambiguities can arise because the surface
normal is not continuous. This can result in not finding any contact
when there should be one or finding multiple solutions to a single
contact. The static based detailed contact checks resolve these
ambiguities by distinguishing between convex and concave sur-
faces.

contact node

. contact surface
at time t+at

at time t+dt

FIGURE 4.Static based contact check. The coordinates
of the nearest point to a surface (x} is found using the
surface normal of the last surface in contact.

The push back direction for a concave surface is determined
simply by the minimum distance to the contact surface. Fora con-
vex surface, the push back direction is always along the normal
of the contact surface that the contact node was previously in
contact with. This avoids adding artificial velocity due to a change
in push back direction, such as could occur near corners, Just as
in the case of a velocity based contact check, there may be some
instances where contact with multiple contact surfaces is possible
according to the static contact check. Again a strength of contact
check is used to determine the contact surface where the normal
of the contact surface projected onto the normal of the contact
node is minimized.

To summarize, the detailed contact check considers the po-

sition and velocity of both the contact node and contact surface in
determining initial contact. A distinction between a concave and
convex surface is made for nodes already in contact with a con-
tact surface. This approach results in a more accurate determina-
tion of the point of contact, amount of penetration, and the direc-
tion of push back.

Enforcement of Contact Constraints
Several different approaches are available for contact en-

forcement. (Belytschko and Neal, 1991), (Malone and Johnson,

1994}, (Laursen and Oancea, 1994) (Heinstein, Mello and Laurs-
en, 1995). Here, we will only consider the partitioned kinematic
approach used in PRONTO3D (Taylor and Flanagan, 1989),
(Heinstein, et. al, 1993).

For the contact enforcement, a predictor-corrector method is
used. First, the location of contact surfaces and contact nodes,
assuming no contacts is predicted,

a=1

2= (15)
p=veAra (16)
$=x+Atd (17)

where &, ¥, and % are the predicted acceleration, velocity and po-
sition respectively. The detailed contact check results in a calcu-
lated depth of penetration for each contact node into the contact
surface

S = max(h-(%-%),0). | (18)

The contact constraint is satisfied by simultaneously apply-
ing a contact force to the contact node and to the contact surface
so that the penetration is removed during the next time step. The
application of this penalty force will result in both surfaces mov-
ing. Therefore, the force must be determined with an iterative
method. .

First we compute a penalty force assuming the contact sur-
face cannot move. The acceleration (or force) needed to cancel
the contact node penetration assuming it is contacting a rigid sur-
face is given as:

3

a, = 5 (19)
At
or
dm
fs=—5 (20)
A?

Next we compute the movement of the contact surface that
results from the application of the contact forces. More than one
node may be contacting a surface; therefore, we must compute
the resulting acceleration of the contact surface taking into ac-
count all contact node forces. The resuiting forces acting on the
surface can be determined by transforming the force to an equiv-
alent set of forces acting at the corners of the contact surface:

F; = TN, EOf, (21)

where N, (&, £) is a linear interpolation function across the con-
tact surface and where & and { correspond to the point of con-
tact of the node with the surface. ‘

The total force acting on the contact surface must be assem-
bled. The accelerations of the nodes on the contact surfaces are
computed as:

ZFis
a;, = TI (22)

Once the accelerations of the contact surface have been comput-
ed, the initial guess for penalty force can be corrected. The accel-
eration of the contact point on the contact surface, due to the ac-
celeration of contact surface, is given by:

8y = SN & Qg (23)

A corrected penalty force can be computed as:

83 ms
.= 7 —a,m. (24)
To re-compute the acceleration of the contact surface using

this new penalty force
ma; = Z(fls - apsms) . (25)
s

To solve for the ‘best’ penalty force, one would have to con-
tinue iterating. Fortunately, one pass is usually all that is required
for an accurate solution. Any errors that are left after the one pass
solution in the contact enforcement will be corrected in the next
time step.

After assembling and solving for the motion of the contact
surface, the contact node acceleration can be corrected to ac-
count for the relative motion between the contact node and the
contact surface.

a =a, ~-£ (26)

Finally, the predicted accelerations for all nodes can now be
corrected by

a=2a+a, ‘ (27)

In the algorithm above, the contacts were assumed to be
one-sided. That is, the contact nodes were penetrating the con-
tact surfaces. In reality, the nodes on the contact surfaces are
also contact nodes that may be penetrating other surfaces. The
accuracy of the penalty force can be improved by using a sym-
metric (or partitioned) contact which allows both surfaces to be
considered for contact simultaneously.

PARALLEL FINITE ELEMENT CALCULATION

Converting the finite-element (FE) volume integration to run
on a parallel machine is a relatively straightforward task. In an ex-
plicit time stepping scheme, each mesh element interacts only
with the neighboring elements that it is connected to in the FE
mesh topology. If each processor is assigned a cluster of ele-

ments (submesh), then there will be a small number of point-to-
point interprocessor communications along the boundary of the
element clusters. These communications will be efficient since
they are between adjacent processors. A variety of algorithms
and tools have been developed that optimize the decomposition
of the mesh into submeshes. For the calculations here, we used
a software package called EDDT (Exodus Domain Decomposi-
tion Tool), which is based on CHACO (Hendrickson and Leland,
1995). The decomposition tool partitions the FE mesh, giving
each processor an equal number of elements and minimizing the
interprocessor communication. In practice, the resulting FE com-
putations are highly load balanced and scale efficiently
(E,>0.95) when large meshes are mapped to thousands of pro-
cessors. The chief reason for the scalability is that the communi-
cation required by the FE computation is local in nature.

During each time step, the information (force, mass, etc.) on
these boundary nodes must be swapped and summed between
the processors. The nodes along the shared boundary of the
mesh are known as communication nodes (sometimes called
ghost nodes or duplicate nodes). In addition to decomposing the
mesh into submeshes, the decomposition tool also defines the
communication node sets necessary for the interprocessor com-
munication.To swap information, the contributions from local ele-
ments are first summed on each processor. Then, the resulting
sum is swapped and added to the results from other processors.
At the end of this swap and add, each communication node
should have the same result regardless of what processor it is on.
Thus, the total force on the boundary nodes will be the same on
all the processors. Each processor will have a “carbon” copy of
the boundary nodes that can be independently integrated through
time.

in order to perform the swap-and-add operation, a set of
communication nodes is read from the submesh data file. Each
communication set consists of nodes that live on the current pro-
cessor which needs to be shared with other processors. The or-
der of the nodes in this list is important. All processors will have a
different local numbering for the communication set; however, the
order will be the same for each processor. (i.e. global node num-
ber M will be the »™ node in a give list for all processors). First
we send the information on this processor, then receive informa-
tion sent by all the other processors. The ordering in the list allows
the data received to be paired with the correct node for summing.
Once received, the data is accumulated to form a sum.

Because the mesh connectivity does not change during the
simulation (with a few minor exceptions), a static decomposition
of the elements is sufficient to insure good performance. To
achieve the best possible decomposttion, we partitioned the FE
mesh as a pre-processing step before the transient dynamics
simulation was run. Similar FE parallelization strategies have
been used in other transient dynamics codes (Hoover, et al.
1995) (Longsdale, et. al., 1994), (Longsdale, et al. 1995), (Malone
and Johnson, 1994a 1994b).

Load Balance Issues
Efficient parallel FE computations with a contact algorithm
requires a dynamic (adaptive) load balancing scheme for the con-

tact portion of the calculations, as the following considerations in-
dicate. Several things can cause a calculation to become unbal-
anced. For example, if the element assigned to one processor
has a very complex material law, while other processors have
very simple material laws, then the partitioning of the mesh must
take into account the time it takes to evaluate each element. If the
amount of time it takes to evaluate the material model varies as
the problem runs, then the calculations can also become unbal-
anced, :

Contact surfaces can also cause the calculation to become
unbalanced. In simple problems, the locations of contacts can be
guessed. However, in complex crash simulations, the location of
contacts cannot be predicted.

On a parallel machine, contact detection is even more prob-
lematic. First, in contrast to the FE portion of the computation,
some form of global analysis and communication is now required
because the FE regions in contact can be owned by any two pro-
cessors. Second, load balance is a serious problem. Formally,
the task is to find all the geometric penetrations of a set of contact
surfaces (faces of elements) by a set of contact nodes (corner
points of elements). These contact surfaces and nodes come
from elements that lie on the surface of the meshed object vol-
umes and, thus, comprise only a subset of the overall FE mesh.
Since the FE decomposition described above load balances the
entire FE mesh, it will not (in general) assign an equal number of
contact surfaces and nodes to each processor. Finally, finding the
one (or more) surfaces that a node penetrates requires that the
processor that owns the node acquire information about all sur-
faces that are geometrically nearby. Even if we devise a global
communication scheme or a new decomposition technique that
provides this information, the decomposition technique must be
dynamic or adaptive instead of static because the set of nearby
surfaces changes as the simulation progresses.

PARALLEL CONTACT ALGORITHM
In the sections below, we will outline the changes required to
convert the serial contact algorithm to run on a parallel machine.

identification of Contact Surface

Determining the exterior surface for a parallel calculation fol-
lows the same logic as for a serial calculation. Each sub-mesh is
processed independently, and the communication side sets are
used to remove the element faces along the communication
boundary. Since the communication side sets are computed
when the mesh is decomposed, no interprocessor communica-
tions are required to determine the external surfaces.

If we allow elements to be deleted as the analysis progress-
es, then the surface identification phase becomes more compli-
cated with multiple processors. As elements are deleted from a
submesh, the opposing face list must be used to update a faces
on other processors. A communication step is required to update
the face on the opposing processor.

Parallel Contact Detection
The most commonly used approach (Longsdale, et al.,

1994), {Longsdale, et al. 1995), (Malone and Johnson, 1994a
1994b) has been to use a single, static decomposition of the
mesh to perform both FE computation and contact detection. At
each time step, the FE region owned by a processor is bounded
with a box. Global communication is performed to exchange the
bounding box’s extent with all processors. Then, each processor
sends contact surface and node information to all processors with
overlapping bounding boxes. This communication gives each
processor the information needed to perform the contact detec-
tion. Though simple in concept, this approach will not efficiently
load balance the contact detsction for general problem.

A better load balance has been obtained by using separate
decompositions for the contact detection and the finite element
analysis. (Hoover, et al., 1995). The contact surfaces and nodes
are first sorted into buckets (bins) by overlaying a regular, coarse
3-D grid on the entire simulation domain. The 3-D grid is used to
generate a set of buckets, with the nodes and surfaces being dis-
tributed to the buckets based on their location within the 3-D grid
(Whirley and Engelman, 1994), (Benson and Halquist, 1990),(Be-
lytschko and Neal,1989). To perform the contact check, the
nodes from a given bucket are combined with the nodes from
neighboring buckets to form a node pool from which nodes and
surfaces are checked for contact.

For the parallel implementation of the bucket sort, Hoover, et
al. (1995) divided the coarse grid along one dimension into slices.
One processor is responsible for contact detection within a slice.
The set of buckets along the processor boundary must be com-
municated with the adjacent processors. While this approach is
likely to perform better than a static decomposition, the imple-
mentation described in Hoover, et al. (1995) suffered from load
imbalance and did not scale to large numbers of processors.

The bucket sorting algorithm described above can also suffer
if the simulated body geometry expands with time. As the body
expands, more buckets (memory) will be required. In addition, the
size of the buckets are limited by the size of the largest element.
Thus, if one element is very large, the number of points within a
bucket can be quite large. In addition, if the problem geometry is
very not space filling, then there will be many empty buckets,
which can be an inefficient use of memory.

An important aspect of our approach is the use of a different
decomposition for contact detection than we used for the finite el-
ement calculation. This allowed us to optimize each portion of the
code independently. The key difference is that for contact detec-
tion, we used a dynamic technique known as recursive coordinate
bisection (RCB) to generate the decomposition anew at each time
step. We have found several advantages to this approach. First,
and foremost, RCB assigns processor nearly the same number of
contact nodes and surfaces, thereby achieving nearly perfect
load balance in the contact detection calculation that occurs on
each processor. Second, the cost of performing an RCB decom-
position is minimal if it begins from a nearly balanced starting
point. We use the RCB result from the previous time step, which
will always be close to the correct decomposition for the current
time step. Third, the local and global communication patterns in
our algorithm are straightforward to implement and do not require
any complicated analysis of the simulation geometry.

The price for these advantages is that we must communicate

information between the FE and contact decompositions at every
time step. Our results indicate that the advantage of achieving
load balance greatly outweighs the extra communication cost of
maintaining two decompositions. 7

In the next section we will provide some background material
that will help explain in more detail our algorithm in the following
section. Performance from simulations using PRONTO3D are
then presented.

Background Material

Unstructured Communications. The parallel contact algo-
rithm involves a number of unstructured communication steps. in
these operations, each processor has some information it wants
to share with a handful of other processors. Although a given pro-
cessor knows how much information it wants to send and to
whom, it doesn’t know how much it will receive and from whom.
Before the communication can be performed efficiently, each pro-
cessor needs to know the number and sizes of the messages it
will receive.

We accomplish unstructured communications with the ap-
proach sketched in Figure 5.

Form vector of 0/1 denoting who | send to

Fold vector over all P processors

Gather number of receives for my processor,
nrecvs = vector(g)

For each processor | have data for, send message
containing size of the data

Receive nrecvs messages with sizes coming to me
Allocate space & post asynchronous receives
Synchronize

Send all my data

Wait until | receive my data

FIGURE 5.Unstructured communications.

In steps (5.1)- (5.3) each processor learns how many other
processors want to send it data. In step (5.1) each of the P pro-
cessors initializes a P-length vector with zeroes and stores a 1 in
each location corresponding to a processor it needs to send data
to. The fold operation (Fox, et al. 1988} in step (5.2) communi-
cates this vector in an optimal way; processor g ends up with the
sum across all processors of only location g, which is the total
number of messages it will receive.

In step (5.4) each processor sends a short message to the
processors it has data for, indicating how much data they should
expect. These short messages are received in step (5.5). With
this information, a processor can now allocate the appropriate
amount of space for all the incoming data, and post receive calls
which tell the operating system where to put the data once it ar-
rives. After a synchronization in step (5.7), each processor can
now send its data. The processor can proceed once it has re-

ceived all its data.

Recursive Coordinate Bisectioning. The recursive coordi-
nate bisectioning (RCB) algorithm we used was first proposed as

a static technique for partitioning unstructured meshes (Berger
and Bokhari, 1987). Although the RCB algorithm has been
eclipsed by better approaches for static partitioning, RCB has a
number of attractive properties when used as a dynamic partition-
ing scheme (Jones and Plassmann, 1994). The subdomains pro-
duced by RCB are geometrically compact and well-shaped. The
algorithm can also be parallelized in a fairly inexpensive manner.
Also, RCB is attractive because small changes in the geometry
induce only small changes in the partitions. Most partitioning al-
gorithms do not exhibit this behavior.

Figurs 6 shows a graphical picture of how a RCB decompo-
sition progresses. The goal of the RCB algorithm is to divide
equally among P processor&N§ the combined set of N contact sur-
faces and nodes. For this operation we treated each surface as a
single point. Initially, each processor owns the subset of the
points based on the finite element decomposition. This decompo-
sition may scatter the points anywhere in the domain. Some pro-
cessors may have many points, while others have none.

The first step in the RCB is to choose one of the coordinate
directions, x, y, or z. for bisectioning. For this first cut, we chose
the direction that results in the sub-domains being as cubic as
possible. The next task is to position the cut, shown as the dotted
line in the figure, at a location which puts half the points on one
side of the cut, and half on the other. This step is equivalent to
finding the median of a distributed set of values in parallel.

To find the median, we use an iterative algorithm. First, we
select the geometric midpoint of the box. Each processor counts
the number of points it owns that are on one side of the cut. Sum-
ming this result across processors determines which direction the
cut should be moved to improve the median guess. In practice,
within a few iterations we find a suitable cut that partitions the
points exactly. Then, we divide the processors into two groups,
one group on each side of the cut. Each processor sends its
points that fall on the far side of the cut to a partner processor in
the other group. Likewise, each processor receives a set of points
that lie on its side of the cut. These steps are outlined in Figure 7.

After the first pass through steps (7.1)-(7.4), we have re-
duced the partitioning problem to two smaller problems, each of
which is to partition N/2 points on P/2 processors within a new
bounding box.

Thus, we can recurse on these steps until we have assigned
N/P points to each processor, as shown in Figure 6 for an 4-pro-
cessor example. The final geometric sub-domain owned by each
processor is a regular parallelepiped. Note that it is simple to gen-
eralize the RCB procedure for any N and non-power-of-two P by
adjusting our desired “median” criterion at each stage to insure
the correct number of points end up on each side of the cut.

1
} , _
° e Te Time step n
. . | .c. °
. b —"— o - 2nd
0 [] .ol . P
2nd- + — 5 — 4
* ® I ®
o
e 3 e c! Do
1
1st bi'section
1
) .1 .
| . ‘ Time step n+1
. I ¥ ° (before new RCB)
L
. F —— — - 2nd
L
o I®
S RIS
® ® I ®
' L d
e Je :a Doe
I
1st bisection
fst bissction
[
ic T Time step n+1
(I . (after new RCB)
°, o I ie .
b e b - 20
0°® o I e ®
2nd- 1+ —o— — 4
. e | .
I L]
e Z e :c D oe
1
1st bisection

FIGURE 6.Recursive Coordinate Bisection.The global
domain is divided in half by all the processors based on
the surface coordinates. Then each half is divided in half
by half of the processors, recursively, until the entire
domain is divided. At each time step, the algorithm starts
a nearly optimal approximation.

with

Choose a coordinate axis (xyz)
Position cut so as to partition points equally
Send points that lie on far side of cut

Receive points that lie on my side of cut
Recurse

FIGURE 7.Steps used in RCB algorithm.

ompositi C cts

Our paralle! algorithm for contact detection is outlined in Fig-
ure 8. In step (8.1), the current position of each contact surface
and node is communicated from the processor who owns it in the
FE decomposition to the processor who owned it in the RCB de-
composition during the previous time step. (On the first time step,
this step is simply skipped.) The above communication step in-
volves unstructured communication as detailed in the section ti-
tled Unstructured Communications. This step gives the RCB de-
composition a starting point close to the correctly balanced an-
swer, since the finite elements do not move far in any one time
step. In step (8.2) we perform the RCB decomposition as de-
scribed in the previous section to rebalance the contact surfaces
and nodes based on their current positions.

(8.1} Send contact data from FE decomposition to old
RCB decomposition

(8.2) Perform parallel RCB to rebalance
(8.3) Share RCB cut info with all processors

(8.4) For all my surfaces
If surface capture box extends beyond my RCBE box:
Determine what other processors need it

(8.5) Send overlapping surfaces to nearby processors
(8.6) Find contacts within my RCB box
(8.7) Send contact results to FE owners

FIGURE 8.0utline of dynamic decomposition for parallel
contacts.

The entire RCB decomposition can be represented as a set
of P-1cuts, one of which is stored by each processor as the RCB
decomposition is carried out. In step (8.3) we communicate this
cut information so that every processor has a copy of the entire
set of cuts. This communication is done via an expand operation
(Fox, et al. 1988).

Before contact detection is performed, each processor must
know about all contact surfaces that are near any of its contact
points. Because we represented a surface as a single point dur-
ing the RCB decomposition, some of these nearby surfaces will
actually be owned by surrounding processors. So in step (8.4),
each processor determines which of its contact surfaces extends

beyond its RCB sub-domain. For those that do, a list of proces-
sors who need to know about that surface is created. This list is
built using the RCB vector of cuts created in step (8.3). The infor-
mation in this vector enables a processor to know the bounds of
the RCB sub-domain owned by every other processor. In step
(8.5), the data for overlapping contact surfaces is communicated
to the appropriate processors.

Detailed Contact Check. In step (8.6) each processor can
now find all the contacts that occur in its geometric RCB sub-do-
main. A nice feature of our algorithmis that this detection problem
is identical conceptually to the global detection problem we origi-
nally formulated, namely to find all the contacts between a set of
surfaces and nodes bounded by a box. In fact, in our contact al-
gorithm, each processor calls the original serial PRONTOS3D con-
tact detection routine to accomplish step (8.6). Calling the serial
routines at this point enables the code to take advantage of the
point-in-box sorting and searching features the serial routine used
to efficiently find contacts. It also means we did not have to re-
code the complex geometry equations that compute intersections
between moving 3-d surfaces and points! Finally, in step (8.7), in-
formation about contacting surfaces and nodes is communicated
back to the processors who own them in the FE decomposition.
Those processors can then perform the appropriate force calcu-
lations and contact push-back.

In summary, steps (8.1), (8.5), and (8.7) all involve unstruc-
tured communication of the form outlined in Figure 5. Steps (8.2)
and (8.3) also consist primarily of communication. Steps (8.4) and
(8.6) are solely on-processor computation.

Parallel Contact Enforcement

The contact enforcement is performed in the FE decomposi-
tion. One could argue that a separate decomposition should be
used to better insure load balance during this step. However, for
most problems, only a small portion of the problem will be in con-
tact (there may be fewer contacts than there are processors). In
addition, the contact enforcement is computationally inexpensive.

Sense the contact enforcement was done in the FE decom-
position, the existing serial algorithm was modified by adding
communication steps at selected locations in the algorithm. For
the parallel algorithm, each processor will own a set of contact
nodes that can be in contact with a surface that may live on other
processors. The contact search will return to each processor in
the FE decomposition three things: a list of nodes in contact; the
surfaces these nodes contact; and the processor on which the
contacted surface lives. Because the enforcement calculations
are being done in the FE decomposition, the processor that the
surface lives on may not be adjacent to the current processor.
However, the location of the processor is known which allows for
direct point-to-point communication.

The initial penalty force in Eq. (19) can be computed without
communications because the detailed contact check will return
the penetration, surface id and surface processor id for each con-
tact node that is in contact.

For the calculation in Eq. (22) communications are required.
The penalty forces from each contact node in contact with a sur-

face must be summed to the corners of the contact surface. The
initial penalty force must be communicated to any surfaces that
do not live on the current processor. Thus, each processor must
receive penalty forces to be accumulated in the surface sum in
Eq. (21). This communication step is done using the unstructured
communication scheme outlined in the Unstructured Communi-
cations section.

The assembly of the total force acting on the contact surface,
Eq. (22), requires the nodal sums from each surface to be com-
bined into an equivalent global force, a process that requires
swapping and adding the forces along processor communication
boundaries.

Once the acceleration of the contact surface has been com-
puted, the contact surface accelerations must be communicated
to the processors that own the contact node so that the accelera-
tion of the contact point, Eq. (23), can be used to correct the pen-
alty force, Eq. (24). One more communication is required to com-
pute the acceleration of the contact surface using this new penal-
ty force, Eq. (25).

In summary, the contact enforcement algorithm requires nu-
merous small communication steps to trade information related to
contact surfaces back and forth between processors. The algo-
rithm follows the same logic as the serial algorithm, with the addi-
tion of the communication steps. In practice, the number and size
of communications is small.

RESULTS

Bending Beam

As a first example, we will consider the parallel performance
of a simple problem with no contacts. A simple vibrating beam
with a uniform pressure, symmetry plane, and a pinned support is
used for this purpose. This beam example problem is based on
the example presented in Flanagan and Belytschko’s (1982) clas-
sic paper on orthogonal hourglass control. The example has a
pressure load along the top of the beam and a pinned boundary
condition on each side as shown in Figure 9. A simple elastic ma-
terial model was used.. A plane strain assumption is created by
prescribing no displacement boundary conditions along the front
and back sides of the beam.

uniform pressure

symmetry plane
FIGURE 9.Beam bending example problem.

Fixed-Size Speedup. The performance for the vibrating
beam problem with 19500 elements and 22,506 nodes is shown
in Figure 10. The parallel calculation remained efficient for over
512 processor until there were only approximately 40 elements

per processor.

10000 10000

—O— Grind Time
~—{— Scaled Speedup
—————— ideal Speedup

3
3
\

P 1000

g

100

Grind Time (1s/element/oycle)
Parallel Scaled Efficiency

-
=3

1
1 10 100 1000 10000
Number of Processors

FIGURE 10.Performance for the fixed-size beam problem.

In the above example, the problem size was held fixed while
the number of processors increased. Since the communications
routines have a fixed overhead, the work to be done on a given
processor must be greater than the communications overhead.
The algorithm will continue to become more efficient as proces-
sors are added to the problem, as long as there is enough com-
putational work for each processor. The low number of 40 ele-
ments per processor means that in addition to running very large
problems, relatively small problems can be run very fast by divid-
ing the work over many processors. For example, a problem with
40,000 elements should run optimally up to 1000 processors,
while a problem with 4000 elements should run optimally up to
100 processors.

If the problem size is increased as the number of processors
is increased, then the scaled performance can be measured. Fig-
ure 11 shows the scaled performance for the beam problem.

10000 -3 10000

—O— Grind Time
~—{F— Scaled Speedup
—————— Ideal Speedup

1000 |- - 1000

4 100

Grind Time (ns/elament/cycle)
8
1
Scaled Speadup

S
T
)

3

rardl | ttdniea |

i L e dd b 1
10 100 1000
Number of Processors

1=
1

FIGURE 11.Scaled performance for the vibrating beam
problem.

Here, the number of elements in the problem was proportional to
the number of processors. For example, a one-processor prob-
lem would use 6480 elements. A two-processor problem would
have 12960 elements. The maximum number of elements that

would fit on the smallest processor was 6480.

The performance scales linearly to 256 processors with
1,658,880 elements. Since each processor had the maximum
number of elements that would fit on a processor, the computa-
tional work for each processor is quite large compared to the
communication overhead. Limitations in the pre- and post-pro-
cessing tools limited the calculation to 256 processors. This prob-
lem should continue to scale for the maximum number of proces-
sors on Sandia’s Intel Paragon, 1824. If the maximum number of
elements per processor were used, this would lead to a maximum
problem size of over 11,000,000 elements.

Brick Walj

This example considers a wall of bricks being hit by an elas-
tic-plastic rod. The initial geometry is shown in Figure 12. The im-
pact causes the bricks to bounce off each other in an unpredict-
able manner. One of the added capabilities of the contact material
algorithm is the efficient modeling of multi-body impact without a
priori definition of contact surfaces. This example considers an
elastic-plastic bar impacting a stack of 17 elastic bricks. A station-
ary elastic-plastic wall is also resting against the stack of bricks.
All contact nodes and contact surfaces on the bodies were auto-
matically defined using the contact material algorithm.

wall with zero
initial velocity

f elastic -plastic rod with
initial velocity 2000 in/sec

FIGURE 12.Brick wall example. A stack of bricks with a
ze:lo initial velocity are impacted by an elastic plastic
rod.

The resulting deformed shape of the brick wall problem is
shown in Figure 13.The impact of the bricks by the rod scaiters
the bricks geometrically. During the early stages if this problem,
there are a large number of contacts that must be enforced. At
late times, the bricks have spread out and very few contacts occur
in each time step. Thus, for this problem, most of the contact al-
gorithms time is spent searching for contacts.

The performance of the fixed-size brick wall problem is
shown in Figure 14. For this calculation, 8400 elements were
used (54 elements were used to model each full brick). The num-
ber of elements was held fixed while the number of processors in-
creased. The calculation efficiently fell off when the number of
processor exceeded 64. At this point each processor had only
130 elements.

FIGURE 13.Deformed shape of bricks after impact.

10000

1000

100 O\O\O\O\O_O_O_O

Grind Time (us/elerﬁent/cycle)

0 PRI ol s aaal " e wee | M ST e a T |
1 10 100 1000 10000

Number of Processots

FIGURE 14.Performance of the fixed-size brick wall
problem.

Figure 15 shows the performance for the scaled brick wall
problem. Here, the number of elements per brick was increased
as the number of processors increased. Each processor had
1890 elements/processor. The computational efficiency contin-
ued to increase as the number of processors increased.

10000 -3 10000

1000

—_
2
S
(3]
]
c o
[0 p=
5 lw B
— @
<D =%
S~
.0 w
= ©
=
s 410 @
= 8
~ (7]
T —O— Grind Time 41
= —{—— Scaled Spsedup
S e |deal Spasdup
0 i i PR SRR B | i 1 Ak i L] i e o
1 10 100 1000

Number of Processors

FIGURE 15.Performance on the scaled brick wall
problem for 1890 elements/processor.

Can Crush

Figure 16 shows a schematic for simulation of a steel ship-
ping container being crushed due to an impact with a flat inclined
plate. In the finite element simulation, a symmetry plane was used
so that only one half of the container was simulated. As the con-
tainer crumples, numerous contacts occur between layers of ele-
ments on the folding surface. We have used this problem to test
and benchmark our serial and parallel contact algorithm (Hein-
stein, et al.,1993).

The can is 0.25 inches thick, has an inside radius of 5 inches,
and is 15 inches long. The bottom of the can is constrained in all
directions. The 22x11 in. plate is 2.5 inches thick and is initially
tilted at a 10 degree angle as it impacts the can at 5000 in/s.

£

A =2000 in/sec
angle = 10

FIGURE 16.Schematic of the can crush model

Fixed Problem Size. Here, we present timing results for a
fixed-size problem geometry containing 7152 finite elements. For
the fixed-size scaling problem, both the container and wall were
meshed 3 elements thick, so roughly 2/3 of the elements are on
a surface.

Since the can will deform plastically, the number of integra-
tion points through the thickness will affect the accuracy. With
only three integration points, the detection of plastic strain will be
limited. More integration points would provide a more accurate in-

tegration of the plastic strain. Here, we are simply using three
points through the thickness as a numerical example. We will re-
fine the mesh in the scaled test problem in the next section.

Since each surface element contributes both a surface and
node, there were about 9500 contact surfaces and nodes in the
problem. Whether in serial or parallel, PRONTOS3D spends virtu-
ally all of its time in two portions of the time-step calculation - FE
computation and contact detection. For the serial code, the con-
tact detection takes approximately the same amount of time as
the FE computation. For the paraliel code, the contact detection
takes about twice as along as the FE calculation.

10000

1000

100

10

Grind Time (us/element/cycle)

o P ATEY |) Mo | S ErIPE |
1 10 100 1000 10000

Number of Processors

FIGURE 17.Grind time for the fixed-size can crush
problem.

The average CPU time per time step for simulating this prob-
lem on various numbers of Paragon processors from 4to 1840 is
shown in Figure 17. For this problem, both portions of the code
speed-up adequately on small numbers of processors, but begin
to fall off when there are approximately one hundred elements per
processor.

Scaled Problem Size. Figure 18 shows performance on a
scalable version of the crush simulation, where the container and
surface are meshed more finely as more processors are used. On
one processor a 1875-element model was run. Each time the pro-
cessor count was doubled, the number of finite elements was also
doubled by halving the mesh spacing in a particular dimension.
Thus, all the data points are for simulations with 1875 elements
per processor; the largest problem was 480,000 elements on 256
processors.

As a point of reference, the grind time for a 60,000 element
problem on the Cray Y-MP was T,,;,; = 41.25 ps/element/cy-
cle. The grid time on the 32 processor problem was 40.75 p s/el-
ement/cycle. The maximum grind time for the 256 processor
problem was ~ 5 s/element/cycle.

In contrast to the previous graph, we now see excellent scal-
ability. A breakdown of the timings shows that the performance of
the contact detection portion of the code is now scaling as well or
better than the FE computation, which was our original goal with

this work. In fact, since linear speed-up would be a linear line with
slope 1.0 on this plot, we see apparent super-linear speed-up for
some of the data points! This is due to the fact that we are really
not exactly doubling the computational work each time we double
the number of finite elements.

10000 ¢ 4 10000
_—
@
3} [
D 1000 4 1000
2
2 g
£
4 he]
% 100 100 8
& [o%
= (73]
=
o 10 410 E
E s
= [0
& 1 —O— Giind Time 41
5 —{— Scaled Spesdup
—————— ideal Specdup
ol L L 0
1 10 100 1000

Number of Processors

FIGURE 18.Grind time and parallel scaled efficiency for
the scaled can crush problem.

There are several factors that could explain the superlinear
speedup. First, the mesh refinement scheme we used does not
keep the surface-to-volume ratio of the meshed objects constant,
so that the contact algorithm may have less (or more) work to do
relative to the FE computation for one mesh size versus another.
Second, the time step size is reduced as the mesh is refined. This
actually reduces the work done in any one time step by the serial
contact search portion of the contact algorithm (step (8.6} in Fig-
ure 8), since contact surfaces and nodes are not moving as far in
a single time step. The bounding box for each contact surface
must be expanded by the maximum amount that a contact node
can move. In parallel, the bounding box must be expanded only
by the maximum that a hode moves on a given processor. Thus,
tighter bounding boxes will mean less work. More generally, the
number of actual contacts that occur in any given time step fora
given processor will not exactly double just because the number
of finite elements is doubled.

The second reason for super linear speedup is due to a more
subtle effect in the parallel contact algorithm. When the serial
contact algorithm searches for contacts in a large region it per-
forms various sorts and searches to optimize its operation. Now
consider what happens if we use 2 processors to perform a par-
allel contact search on the same region. The RCB decomposition
effectively sorts the contact surfaces and nodes at a high-level, so
that the serial algorithm working on each processor operates on
a smaller geomestric sub-region. If the RCB decomposition run-
ning in parallel is more efficient than the serial algorithm at per-
forming this geometric sort, as it sometimes is in practice, then
our parallel contact detection algorithm is actually reducing the to-
tal amount of work performed.

(@) (b)
FIGURE 19.Decompaosition generated by a) CHACO and
b) RCB at time zero

time=1.6 ms

Meshes in these regions

are distant in the FE decompo-
sition and in RCB decomposi-
tion.

' time=3.2ms
The surfaces are now geomet-

rically close, but are still distant in
the FE communications topology

FIGURE 20.RCB mapping for times t=1.6 ms and t=
3.2ms. Deformed and undeformed mesh.

Mesh Decomposition. Figure 19 shows the CHACO and
the RCB decompositions at time zero. Figure 19a shows a plot
coded according to the processor that owns the element. Figure
19b shows a color coded plot where the colors correspond to
which processor owns the surface. Note that the CHACO and
RCB decompositions are not the same even at time zero. In fact,
the top of the mesh is assigned to processor zero in the CHACO

mesh, while in the RCB decomposition, the contact surfaces in
this same region are assigned to processor 31.

In Figure 20, the RCB decomposition at time t=1.6 ms and t
= 3.2 ms is shown mapped onto the deformed and undeformed
shapes. The plots show how the surfaces are locally mapped to
a given processor. Some of the surfaces that start on processor
0 at the start of the problem, remain on that processor for the du-
ration of the calculation. While other surfaces (i.e. the top of the
block) are mapped onto processor zero as the calculation
progresses.

SUMMARY

A scalable contact algorithm was developed for the transient
finite element code PRONTOSD. Two different problem decom-
position schemes were used to insure load balancing on all pro-
cessors. The algorithm used a static decomposition for the finite
element mesh (provided by CHACO) and a dynamic decomposi-
tion (provided by recursive coordinate bisection, or RCB) for de-
termining the contacting surfaces. The static decomposition dis-
tributes the three-dimensional mesh into compact subdomains in
which processors communicate only with their nearest neighbors.
The dynamic decomposition redistributes the contact surfaces
equally over all the processors and provides a decomposition in
which processors communicate only with nearest neighbors.

A well load-balanced contact search was developed. All the
processors contributed equally, rather than only those which
“owned” contact surfaces in the static finite element decomposi-
tion. The contact search by each processor is over a small sub-
domain. The same efficient search algorithm used in the serial
code was used on each subdomain, and is more efficient on the
subdomain than on the global domain. At each time step, the
RCB algorithm starts from a near-optimal decomposition from the
previous time step. The decomposition is dynamic but incremen-
tal, and is, thus, very efficient.

The new algorithm has some additional costs: extra memory
is required to petform the dynamic RCB decomposition; commu-
nication is required within the RCB decomposition; and commu-
nication is required between the static and dynamic decomposi-
tions.

Despite these costs, we have found in practice that the con-
tact algorithm is almost perfectly scalable. The speedup in the ex-
ecution increases as the number of processors increases.

REFERENCES

Flanagan, D. P., and Belytschko, T., 1982, “A Uniform
Strain Hexahedron and Quadrilateral with Orthogonal Hourglass
Control”, J. Comp. Meths. Appl. Mechs. Eng., Vol 30.

Belytschko, T. and Lin, J.l., 1987 “A Three-Dimensional
Impact-Penetration Algorithm with Erosion,” Computers and
Structures, Vol. 25, No. 1, pp. 95-104.

Berger, M.J. and Bokhari, 1987 “A partitioning strategy for
nonuniform problems on multiprocessors”, [EEE Trans.
Computers, C-36, pp 570-580.

Taylor, L.M. and Flanagan, D.P., 1987 PRONTO2D: A Two-
Dimensional Transient Solid Dynamics Program, SAND86-0594,
Sandia National Laboratories, Albuquerque, NM 87185.

Fox, G. C.; Johnson, M. A,; Lyzenga, G.A.; Otto, S.W.;
Salmon J. K. and Walker, D. W., 1988 Solving Problems on
Concurrent Processors: Volume 1, Prentice Hall, NJ.

Belytschko, T. and Neal, M. O., 1989 “Contact-impact by
the pinball algorithm with penalty, projection and Lagrangian
methods,” Proc Symp. on Computational Techniques for Impact,
Penetration, and Perforation of Sofids, ASME AMD 103, pp 97-
140,

Taylor, L.M. and Flanagan, D.P., 1989 PRONTO3D: A
Three-Dimensional Transient Solid Dynamics Program,
SAND89-1912, Sandia National Laboratories, Albuguerque, NM
87185.

Attaway, S. W., 1990, “Update of PRONTO 2D and
PRONTO 3D Transient Solid Dynamics Program,” SAND90-
0102, Sandia National Laboratories, Albuquerque, New Mexico,
November, 1990. .

Benson, B.J. and Hallquist, J.0., 1990 “A Single Surface
Contact Algorithm for the Post-Buckling Analysis of Structures,”
Computer Methods in Applied Mechanics and Engineering, Vol.
78, pp. 141-163.

Belytschko, T. and Neal, M.O., 1991 “Contact-Impact by the
Pinball Algorithm with Penalty and Lagrangian Methods,” /nt. J.
Numerical Methods Eng., Vol. 31, pp. 547-5672.

Bergmann, V.L,, 1991, “Transient Dynamics Analysis of
Plates and Shells with PRONTO 3D,” SAND21-1182, Sandia
National Laboratories, Albuquerque, New Mexico, September
1991.

Laursen, T.A,, & J.C. Simo (1991), ~"On the Formulation
and Numerical
Treatment of Finite Deformation Frictional Contact Problems,” in
Nonlinear Computational Mechanics -- State of the Ant, P.
Wriggers & W. Wagner, eds., Springer-Verlag, Berlin, pp. 716-
736.

Plaskacz, E.J.; Belytschko, T. and Chiang, H. Y., 1992,
“Contact-Impact Simulations on Massively Parallel SIMD
Supercomputers,” Computing Systems in Engineering, Vol 3,
Nos 1-4, pp 347-355.

Heinstein, M.\W._; Attaway, S. W.; Mello, F. J.; and Swegle, J.
W., 1993 “A general-purpose contact detection algorithm for
nonlinear structural analysis codes,” SAND92-2141, Sandia
National Laboratories, Albuquerque, NM.

Sjaardema, G. D., 1993, “Overview of the Sandia National
Laboratories Engineering Analysis Code Access System,” SAND
92-2292, Sandia National Laboratories, Albuquerque, NM.

Attaway, S.W., Heinstein, M.\W., and Swegle, J. W., 1994,
“Coupling of smooth particle hydrodynamics with the finite
element method,” Nuclear Engineering and Design, 150, pp 199-
205,

Jones, M. and Plassman, P., 1994 “Computational results
for parallel unstructured mesh computations,” Computing
Systems in Engineering, 5, pp 297-308.

Laursen, T.A., & V.G. Oancea (1994), ~~Automation and
Assessment of Augmented Lagrangian Algorithms for Frictional
Contact Problems,” Journal of Applied Mechanics, 61, pp 956-
963.

Longsdale, G.; Clinckemaillie, J.; Viachoutsis, S.; and
Dubois, J., 1994 “Communications requirements in parallel

crashworthiness simulations,” Proc. HPCN'94, Lecture Notes in
Computer Science 796, Springer, pp 55-61.

Malone, J. G. and Johnson, N. L., 1994a “A Parallel Finite
Element Contact/Impact Algorithm for Non-Linear Explicit
Transient Analysis: Part | - The search Algorithm and Contact
Mechanics,” International Journal for Numerical Methods in
Enginesring, Vol. 37, 559-590.

Malone, J. G. and Johnson, N. L., 1994b “A Parallel Finite
Element Contact/Impact Algorithm for Non-Linear Explicit
Transient Analysis: Part || - Parallel implementation,”
International Journal for Numerical Methods in Engineering, Vol.
37, 591-608.

Swegle, J.W.; Attaway, S.W.; Heinstein, M.W., and Hicks,
D.L., 1994, “An Analysis of Smoothed Particle Hydrodynamics,”
SAND 93-2513, Sandia National Laboratories, Albuquerque, NM.

Whirly, R. G. and Engelman, B. E., 1994 “Automatic contact
algorithm in DYNAR3D for crashworthiness and impact problems,”
Nuclear Engineering and Design, Vol 150, pp 225-233.

Zhong, Z. H. and Nilsson, L., 1994 “Contact-impact
Algorithms on Parallel Computers”, Nuclsar Engineering and
Design, Vol. 150, pp 253-263.

Heinstein, M.W., F.J. Mello & T.A. Laursen (1995),

" Augmented Lagrangian Algorithms for Enforcement of Contact
Constraints in Explicit Dynamicand Matrix-Free Quasistatic
Applications,” in Contact Mechanics |l:Computational
Techniques, M.H. Aliabadi & C. Alessandri, eds., Computational
Mechanics Publications, Southampton, pp. 283-296.

Hendrickson, B. and Leland, R., 1995 “The Chaco User’s
Guide: Version 2.0,” SAND94-2692, Sandia National Labs,

Albuquerque, NM, June.

Hoover, C. G.; DeGroot, A.J.; Maltby, J. D.; and Procassini,
R. D., 1995 “Paradyn: Dyna3d for massively parallel computers,”
Presentation at Tri-Laboratory Engineering Conference on
Computational Modeling, October.

Longsdale, G.; Elsner, B.; Clinckemaillie, J.; Vlachoutsis, S.;
De Bruyne, F. and Holzner, M., 1995 “Experiences with
industrial crashworthiness simulations using the portable,
message-passing PAM-CRASH code,” Proc HPNC’95, Lecture
Notes in Computer Science 919, Springer, pp 856-862.

DISCLAIMER

i t of work sponsored by an agency of the United Statets
o e wa;:,iz;z:r::eaérililt‘e:o;:;s Governm‘e)zt nor any agency theref)f, nor any of tl;eslir_
o e kes any warranty, €xpress or implied, or assumes any legal liability or fgg o
e{n? loyees, ma rag completeness, 0T usefulness of any informguon, apparatusz ;l)lr 1;{ e,f x
e fsogitst:l"o::;uor 3r,;:pn-,sems that its use would not infringe privately owned rights.
proces ,

i me, trademark.
ence herein to any specific commercial product, process, or service by trade na 8

herwi ly its endorsement, recom-
, manufacturer, or otherwise

i itute or imp
does not necessarily constitu e o e
! mendation, or favoring by the United States Government or any agency thereof.
m , t
and opinions of authors expressed herein do

not necessarily state or reflect those of the
United States Government or any agency thereof. -

