. Copf-2b1125-—(
SAND--9b-8§54"1C

TCP Performance in ATM Networks:
ABR Parameter Tuning and ABR/UBR Comparisons

Chien Fang Arthur Lin
Sandia National Labs Cisco Systems, Inc.
P.O. Box 969, MS 9011 170 West Tasman Dr. TT e .
Livermore, CA 94551-0969 San Jose, CA 95134-1706 RNV QL
cfang@ca.sandia.gov alin@cisco.com ERR

v 181338
ST

February 27, 1996

Abstract

This paper explores two issues on TCP performance over ATM networks: ABR parame-
ter tuning and performance comparison of binary mode ABR, with enhanced UBR services.
Of the fifteen parameters defined for ABR, two parameters dominate binary mode ABR
performance: Rate Increase Factor (RIF) and Rate Decrease Factor (RDF). Using simula-
tions, we study the effects of these two parameters on TCP over ABR performance. We
compare TCP performance with different ABR parameter settings in terms of through-
puts and fairness. The effects of different buffer sizes and LAN/WAN distances are also
examined. We then compare TCP performance with the best ABR parameter setting with
corresponding UBR service enhanced with Early Packet Discard and also with a fair buffer
allocation scheme. The results show that TCP performance over binary mode ABR is very
sensitive to parameter value settings, and that a poor choice of parameters can result in
ABR performance worse than that of the much less expensive UBR-EPD scheme.

Keywords: ATM flow control, TCP over ATM, Available Bit Rate (ABR) service,
Early Packet Discard (EPD).

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United Stattfs
Government. Neither the United States Government nor any agency thereof, nor any of the\.r
i employees, makes any warranty, express or implied, or assumes any legal liability or responsi-

bility for the accuracy, completeness, or usefulness of any information, apparatusZ product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

¥

1 Introduction

ATM is an emerging technology designed to support a wide variety of services, including
video, voice and data. The ATM Forum defines five service categories for different application
requirements. For real-time applications, there are Constant Bit Rate (CBR) and Real-Time
Variable Bit Rate (rt-VBR) service categories, which provide numerical guarantees in cell
transfer rates, cell transfer delay and delay variations. For non-real-time applications, there
are Non-Real-Time Variable Bit Rate (nrt-VBR), Available Bit Rate (ABR) and Unspecified
Bit Rate (UBR) service categories. Nrt-VBR provides some degree of guarantee in cell transfer
rates but no guarantee on delay bounds. Both ABR and UBR are designed to utilize the left-
over bandwidth of CBR and VBR (i.e., guaranteed) services. To achieve this goal, ABR
employs a feedback-based flow control mechanism to minimize cell loss. However, there is no
quantitative assurance for ABR service. UBR is the true “best-effort” service which employs no
flow control and, as ABR, provides no guarantee on cell loss ratios, transfer rates or transfer
delay. Of the three non-real-time services, ABR and UBR are expected to be the primary
services for carrying traditional data traffic, i.e., file transfer, email and telnet sessions etc.

The basic idea behind the ABR flow control scheme is using network feedback to adjust
source rates. Central to the ABR flow control are information carried in Resource Management
(RM) cells. ABR sources periodically probe the network state (such as bandwidth availability,
state of congestion and impending congestion) with RM cells sent intermixed with data cells.
The RM-cells are turned around at the destination and sent back to the source. Along the way,
ATM switches can write congestion information (e.g., congestion flag, sustainable rates etc.)
into these RM cells. Upon receiving a returned RM cell, a source can then increase, decrease
or maintain its rate depending on the information contained therein.

The ABR flow control algorithm supports two modes of switch operation: binary mode and
explicit rate mode. In the binary mode, when an ATM switch queueing point detects incipient
congestion the switch may either set the Explicit Forward Congestion Indication (EFCI) state
in the headers of outgoing data cells or set the congestion indication (CI) or No Increase (NI)
bit in forward and/or backward RM-cells. In the former case, termed EFCI marking, the EFCI
state informantion is saved at the destination and transfered to the CI bit of a turn-around
RM cell. In the latter approach, termed Relaiive Rate marking, the congestion indication can
be written directly into the backward RM-cell instead. of relying on the destination end-system
to turn it around. Relative Rate marking can greatly reduce feadback delays and hence deliver
better performance than EFCI marking. Upon receiving a returned RM cell, a source can either
perform an additive increase (AI) or multiplicative decrease (MD) in its rate, depending on
whether the CI (or NI) bit has been set or not. The performance of ABR under this operatmg
mode thus mainly depends on the magnitude of Al and MD.

In the explicit rate (ER) mode, an ATM switch employs a control algorithm for managing
the bandwidth among the virtual circuits (VCs) traversing the switch. In addition to load
monitoring and congestion detection, the ER switch need to perform an explicit rate calculation
function. The switch algorithm continuously monitors and computes maximum allowed cell
rate (ACR) for each of its active VCs. The maximum value of ACR for each VC, called
ER, is then written into corresponding RM cells (containing a higher value of ER). When
a source receives a returned RM cell, its rate is adjusted by the ER rate contained therein.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

Switch algorithms are not standardizied by the ATM Forum, and are therefore implementation
specific. A number of switch algorithms have been proposed recently [1, 7, 9, 15].

UBR service employs no flow control and provides no numerical guarantee; it is therefore
the least expensive service to provide. However, because of its simplicity, UBR performs
poorly for TCP applications in a congested network. Early Packet Discard (EPD) [5] has
been proposed as an inexpensive enhancement to improve the performance of UBR services.
EPD is based on the observation that one single cell loss will render the entire packet useless,
and thus it is more efficient to discard a complete packet rather than individual cell from
multiple packets/connections during congestion. The EPD scheme is relatively inexpensive to
implement on ATM switches, compared with the ABR flow control scheme. Although UBR-
EPD offers improved TCP performance over pure UBR service, it does not address the fairness
issue. To improve upon fairness in UBR-EPD the Fair Buffer Allocation (FBA) sheme [6] was
proposed. FBA uses per-VC accounting to improve VC fairness for an ATM switch with FIFO
buffers.

This paper will examine TCP performance over ATM networks using ABR and UBR ser-
vices. For ABR service we only consider binary mode switches since there exists a large number
of ATM switches which only support EFCI marking. Also the performance of ER operation is
almost completely determined by the switch algorithm, which is not standardized. A perfor-
mance comparison of different switch algorithms proposed to date is beyond the scope of this
paper. ’

In this paper we will study the effect of ABR parameter tuning (parameters corresponding
to Al and MD) on TCP performance. We will also compare TCP performance under binary
mode ABR with that of UBR enhanced by EPD and UBR enhanced by EPD and FBA.

The rest of the paper is organized as follows. Section 2 briefly describes ABR flow control,
ABR parameters, an Early Packet Discard scheme, and a Fair Buffer Allocation scheme. In
Section 3, we then present the network model and simulation tools used. We discuss simulation
results and compare the performance of TCP over ABR and UBR services in Section 4 and
conclude in Section 5.

2 Background

2.1 ABR Flow Control

The ABR flow control algorithm specified by the ATM Forum [14] consists of three parts:
source behavior, destination behavior and switch behavior. Each part is made up of a set
of rules, and a total of fifteen parameters are defined for the algorithm. For the purpose of
this paper, the most relevant source rule to ABR performance under binary switch mode are
summarized as follows:

Rule 1: An RM-cell is sent for every Nrm data cells sent.!

This rule generates periodic RM cells interspersed in data cell streams. Nrm determines the
frequency of RM-cell generation and also the overhead incurred by the flow control scheme.

1 This is a simplification of the actual source rule, which includes conditions for maintaining minimum forward

and backward RM-cell flow rates.

Rule 2: When a backward RM-cell is received with CI=1, then
ACR = MAX(ACR (1-RDF), MCR);
If the backward RM-cell has CI=0, then
ACR = MAX(ACR + RIF x PCR, PCR)

where CI is set to 1 by a congested ATM switch or rate-limited destination end system; ACR
is the allowed source sending rate; RDF is the rate decrease (or reduction) factor; MCR is the
minimum cell rate, RIF is the rate increase factor; PCR is the peak allowed source cell rate.
This rule determines the multiplicative decrease when congestion occurs and additive increase
when congestion clears.

The destination behavior consists of saving the EFCI state of incoming data cells, turning
around forward RM-cells, and copying of the saved EFCI state into the CI bit of backward
RM-cells.

The switch behavior under the binary mode consists of setting congestion flags in the
passing cells. Two operation modes are specified: EFCI marking and Relative Rate Marking.
In EFCI marking, the EFCI state in the data cell header is set; in Relative Rate marking the
CI bit in the forward and/or backward RM-cells is set during congestion; when CI bit in the
backward RM-cells is set, it is generally referred to as the BECN mode.

In this paper, we assume the BECN mode, as it yields better performance. We also assume
FIFO output buffers with a simple congestion threshold. Under this operating mode, when the
buffer occupancy exceeds the threshold, a congestion flag is set and the CI field of backward
RM-cells are marked. When the buffer occupancy drops below the threshold, the congestion
flag is cleared. The BECN mode provides faster feedback of congestion information to the
source, although at a slightly higher implementational complexity in switches.

2.2 Early Packet Discard

While short, fixed-length ATM cells facilitate high-speed hardware switching, the majority of
data units for applications/end-systems are variable-length. The term “packet” will be used
to denote these different higher level protocol data units for the rest of this paper. Early
Packet Discard (EPD) is a mechanism designed to optimize the performance of packet data
traffic (such as IP and 802.x LANs) over ATM. Recognizing that a single cell loss causes an
entire packet to be corrupted, EPD selectively discards cells belonging to the same packets
when congestion occurs. Thus when cell loss is deemed unavoidable, EPD attempts to confine
cell loss to as few connections as possible. EPD has the effect of freeing up buffers which
otherwise would have been used by cells belonging to corrupted packets. Specifically, the EPD
mechanism implemented in this study works as follows. When the first cell of a packet arrives
at a switch queueing point, (1) if it is not congested, this cell and all the remaining cells of
the packet shall be allowed to enter, provided that there is enough buffer space; (2) if it is
congested, the cell and all subsequent cells of the same packet will be dropped. By dropping
a small number of packets instead of cells from a large number of packets, EPD maximizes
the system goodput [5]. Note that EPD is designed to enhance the performance of any packet
traffic over ATM, and can be used in conjunction with both UBR and ABR services.

2.3 Fair Buffer Allocation

While EPD improves the performance of data traffic in ATM networks by eliminating band-
width wastage, it contains no provision for providing fair bandwidth allocation among con-
tending VCs. Depending on the frequency of encountering a congested queue, contending VCs
at a bottleneck node may experience different packet loss ratios. Fair (per-VC) queueing and
its weighted version (WFQ) shall provide the ideal fairness [13], however they may be costly in
some cases such as high speed switching ports/links (STS-12c and higher). An alternative to
achieve fairness is to employ per-VC accounting on FIFO buffers. One such scheme, the Fair
Buffer Allocation (FBA) [6] algorithm, was proposed recently. FBA maintains per-VC usage
statistics on all active VCs and performs packet discard on those VCs which have exceeded
their fair share of the buffer usage. The FBA examined in this paper is implemented as follows.
During congestion the first cell of a packet will be dropped if the VC has more than its fair
share of the buffer usage, otherwise the cell will be accepted. The decision to drop the first
cell of a packet is determined by the following formula:

X_& (1)

(X>R)andW,->Z(1—|— K“X>
where X is the total number of cells in queue, R is the congestion threshold, K is the queue
capacity, Z is a free parameter (0.5 < Z < 1.0), and W; is a measure of VC(7)’s usage of
buffers, computed by multiplying the number of VC(2)’s cells in queue by the number of active
VCs? and divided by X, the total number of cells in queue.

The bulk of the implemention complexity for FBA is in the amount of computation required
during every cell time, as indicated by equation (1). However, equation (1) can be simplified
to minimize computational requirements, and some possible approaches using lookup tables

are described in [6].

2.4 Related Works

Performance of TCP over ATM networks was first examined by Romanow et al. in [5]. They
showed that TCP performs poorly over ATM using (plain) UBR service and proposed EPD to
improve TCP performance. Fang et al. [2] presented results on TCP performance over ATM
using UBR and a number of congestion control schemes including DEC’s credit-based ABR
scheme and two selective cell-drop schemes. Their results showed that per-VC buffering and
selective cell-drop can lead to significant performance improvement. Li et al. [11] presented
simulation results on TCP performance over ABR and UBR services. They compared TCP
performance over ABR with ER switch mode and UBR with EPD, and concluded that ABR
with ER switches outperforms UBR with EPD in a LAN environment. Kalampoukas et al. [8]
compared TCP performance of UBR-EPD with FCVC, the credit-based flow control scheme
proposed by Kung [10]. They claimed that the UBR-EPD scheme is able to remove some of
the unfairness and provide performance close to that of a datagram network as long as the
buffer sizes are not too small. The FCVC provides the best performance among the schemes
studied.

%a VC is active if it has at least one cell in queue.

3 Network Simulation Model

The network configuration used in our simulation study is shown in figure 1. This configuration

SW1 SW3 Sw4 SW5 SW6

5

Figure 1: Network Configuration

o

consists of six ATM switches connected in series and six TCP sessions making two to six hops
from source to destination. Two TCP connections originate from switch 1, one from each of
switches 2 to 5, and all connections terminate at Switch 6, creating a bottleneck at the link
connecting switches 5 and 6. All links are full duplex with link capacity of 151 Mbps, roughly
corresponding to the effective capacity of STS-3c links (2.8 pus cell time slots are used). This
configuration is interesting because we can study the behavior of TCP connections spanning
different number of hops and distances. The ideal performance achievable is approximately
151/6 x 48/53 = 22.8 Mbps for each TCP connection.

The simulation tool used in this study is based on MIT’s netsim [16]. We made exten-
sive modifications to netsim to add ATM functionalities such as segmentation-and-reassembly
(SAR) processing and ATM level flow control. The TCP module in netsim implements slow
start, exponential back-off, and enhanced round-trip-time (RTT) estimation, but not fast-
retransmit nor fast-recovery. A note on TCP’s timer granularity is in order. Netsim uses a fine-
grain clock for both RTT estimation and TCP time-out calculation. However, 500 ms clocks
are common in the majority of today’s kernel TCP implementations. While these coarse-grain
timers are sufficient for traditional packet networks, they become grossly adequate in gigabit
networks. At the same time, arbitrarily-fine-grained clocks (e.g., microseconds) would not be
a good idea without some rethinking of the algorithms used to set the retransmit timers (note
that the current TCP algorithms for measuring the RTT and for computing the retransmit
timeout are coupled). While too fine a granularity can introduce unnecessary retransmission, a
timer that is too coarse can result in under-utilized links. The optimal TCP timer granularity
for high-speed ATM networks (both LAN and WAN) is still an open issue, and on-going dis-
cussion abounds in the research community. Our goal in this paper is to study the dynamics of
TCP flow control algorithm in ATM networks using different services. With a fine-grain timer,
our result is as independent as possible of any particular TCP implementation. Note that we
have also performed numerous simulations using coarse-grain TCP timers, and although the

performance is poorer in all cases, the relative performance presented in this paper, and thus
the conclusion, still holds [3, 4, 12].
The following parameters are used for all our simulation runs in this contribution.

Configuration parameters:
LAN: ES link = 0.5 km; BB link = 2.0 km; prog. delay = 5 ps/km
WAN: ES link = 0.5 km; BB link = 400.0 km

SES Parameters:
Nrm = 32; Trm = 100 ms; Mrm =2; TOFF = 1; CDF = 1/2;
Crm = 32; TDFF = 1/2; PNI =0;
PCR = 155 Mbps; MCR = 0.5 Mbps;

Switch Parameters:
Non-blocking output-buffered switch;
Simple FIFO w/adujstable Congestion Threshold;
Switching delay 4 ps;

TCP parameters: ,
TCP window = 64, 128 & 256 KB; MSS = 8192 byte;
Packet process delay 300 ps;

4 Simulation Results

4.1 ABR parameter tuning

The determining factors in binary mode ABR are the parameters RIF and RDF. RIF deter-
mines the amount of rate increase as a fraction of PCR when the network is not congested.
RDF determines the fraction by which the current sending rate must be reduced when network
feedback indicates congestion. Increases are additive and decreases are multiplicative. In ATM
Forum TM 4.0 [14], both RIF and RDF are determined at connection setup time. A source
sends its preferred RIF & RDF values in the signalling message. Each switch along the path
will either accept the requested values or negotiate them downward. The returning signalling
message contains the final RIF & RDF values supported by all the switches on its path, and
these values are used by the source.

The values of RIF & RDF are powers of two and range from 1/32768 to 1.0. The smaller the
values the more conservative is the rate increase/decrease. In this section we will examine TCP
performance with different RIF & RDF values. The simulation runs in this section assume a
switch queue size of 1024 and congestion threshold of 500 cells.

4.1.1 Aggressive Increase

In this section we set RIF to an aggressive value of 1/8, i.e., every receipt of an RM-cell with
CI=0 would resull in a rate increase of 1/8 of PCR. We vary RDF from an aggressive value of
1/2 to a moderate 1/16, to a conservative 1/64.

Figure 2-(2)&(b) show TCP performance when both increase and decrease factors are
aggressively set, RIF=1/8 and RDF=1/2. As shown in Fig. 2-(a), the steady-state TCP
throughputs show wide variation from 10 to 35 Mbps. The throughput achieved by each TCP
is approximately inversely proportional to the number of hops it traverses. This phenomenon
can be explained by the following observations. On start-up, each TCP sends out one packet.
The acknowledgement of this packet determines the initial RTT estimate for each TCP. As
TCP opens up its congestion window, switch buffer begins to build up at the bottleneck port
and eventually congestion sets in. In respomnse, the ABR source reduces its sending rate, in
this case, aggressively. Although Fig. 2-(b) indicates that no cell is lost, a number of TCP
connections begin to retransmit packets. This occurs because of the fine-grain timers assumed,
i.e., TCP retransmits at the exact timer expiration time instead of multiples of some coarse
granularity (e.g., 200-500 ms). Since the shorter the connection the smaller the initial RTT
estimate is, the shorter connections have a greater chance of experiencing retransmission.

However, the artifact of fine-grain timer gradually disappears as the network reaches steady-
state. The RTT estimate update algorithm in TCP eventually converged to an accurate steady-
state value, which includes propagation delays and average queueing delay in both switch and
the source’s rate-control queue. At equilibrium, no retransmission was observed for any TCP
connections.

In Fig. 2-(c)&(d), we reduced RDF to a more moderate value of 1/16. In this case the
buffers consistently show both overflow and underflow (empty buffer). With a less aggressive
RDF, the source rate did not decrease fast enough to prevent buffer overflow and cell loss.
When cell lost occurs, TCP enters into slow-start, causing the links to be under-utilized.
Observe that the fairness performance is also very poor in this case. In Fig. 2-(e)&(f), we
repeated the simulation with a conservative RDF of 1/64. As the figures show, conservative
RDF values work poorly with the aggressive RIF, causing constant fluctuations between buffer
overflow and underflow.

The results from this section suggest that aggressive RIF must be matched by aggressive
RDF to minimize cell loss probability. However, poor fairness performance seems to be an
intrisic problem when aggressive parameters are used.

4.1.2 Moderate Increase

In this section we examine TCP performance with a moderate RIF of 1/64, with a range of
RDF, ranging from aggressive to consevative. Fig. 3-(a)&(b) show the performance results for
RIF=1/64 and RDF=1/2. With a large RDF, the maximum queue build-up was only about
600 cells. However, for the same reason, the queue became empty frequently, reducing link
utilization and overall network throughputs.

Fig. 3-(¢)&(d) show the result for a less aggressive RDF of 1/8. As expected, the maximum
queue build-up was increased (900 cells), and fairness performance improved significantly.
However, the link utilization is still less than optimal, since the bottleneck queue still became
empty frequently. As RDF was reduced to a conservative 1/64 (Fig. 3-(e)&(f)), the source rate
was not throttled fast enough to prevent queue build-up beyond buffer capacity. The resulting
cell loss and TCP retransmission lead to poor performance as the bottleneck queue fluctuates
between overflow and underflow.

4.1.3 Conservative Increase

In this section we examine TCP performance with a conservative RIF of 1/256 with different
RDF settings. Fig. 4-(a)&(b) show the resluts for an aggressive RDF of 1/4. Similar to previous
results on aggressive RDF, the maximum queue build-up was limited to approximately 600
cells, but large decreases resulted in under-utilized bottleneck links. Fig. 4-(¢)&(d) plots the
result for a moderate RDF of 1/16. Note that with this setting the queue fluctuation was
much smaller than previous cases and the bottleneck queue never became empty after the
initial transient period. Fig. 4-(c) indicates that the six TCP connections essentially achieved
the optimal throughput performance. This combination of RIF and RDF produced the best
TCP performance so far. The last combination to be examined is a conservative RIF with a
conservative RDF. The plots in Fig. 4-(e)&(f) show the results for an RIF of 1/256 and an
RDF of 1/64. As can be seen in Fig. 4-(f), an RDF of 1/64 is too small, even for a conservative
RIF of 1/256, to avoid cell loss and TCP performance degradation.

4.1.4 Discussion on Parameter Tuning

The above results confirm our intuition about the settings of RIF and RDF-conservative
increase and aggressive decrease produce stable system behavior. However, a stable system is
not necessarily the system with the best performance. We found that under the conditions
of our simulation, a conservative increase factor coupled with a moderate decrease factor
produces by far the best TCP performance. Care should be taken in interpreting this result,
however. In general, the optimal parameter values for RIF & RDF also depend on factors
external to the ABR flow control algorithm, such as network configurations, RTT, buffer
sizes and congestion thresholds etc. Our simulations assume one particular configuration with
homogeneous ABR sources (identical RIF & RDF’s); a different network configuration and/or
heterogeneous ABR sources (different RIF & RDF’s) may produce a slightly different pair
of optimal values; however, the impact on TCP by tuning each parameter should remain
similar. What we hope to demonstrate in our study are the effects each parameter has on
TCP performance and also the sensitivity of binary ABR scheme with respect to the two
parameters.

TCP Throughput (Mbps)

TCP throughput (Mbps)

TCP Throughput (Mbps)

ABR RIF= 1/8, RDF= 172

50 T
‘i_tepla-18121p° ——
45 'r_tcp1b-18124p" — |
' icpic-18124p° -
T cp1d-18121p" ~——
40 r_teple-18121p' —
3B
30

Cip1f-18124p° ~om

1000
msec

1500 2000

(a)
© Parking Lot Config, BECN, BufSize~1024, ICR=10Mbps {const) - AIRF=1/8, RDFF=16

] 500 1000

msec

1500 2000

(c)
ABRRIF= 1/8, RDF= 1564

50 y T T
sty —
‘t_tepib- A’ 4
4 eyl
' icp1d-1864.tp'
80 ‘1_teple-1864.4p°
35
30
25

Tiep1#18844p° ~omm

0 500

1000
msec

1500 2000

Queue Size (cells)

Queus Size (celis)

Quoeue Size (cells)

ABR RIF= 18, RDF= 172 Mbps
1200 T T

Switch 5 —

.

1000

600

400

200

1000
msec

(b)

Parking Lot Config, BECN, BufSize~1024, ICR=10Mbps (const) - AIRF«1/8, RDFF=16

1500 2000

Switch 5 —

1000 !

600

400

200

(4)

1200 r T

msec

(f)

Figure 2: Aggressive Increase

ghput (Mbps)

TCP throughput (Mbps)

Custom Vector Al

‘ }[t lm|

) m“h H \hn h Hi |)‘I ik NL |H1HI Ml“

(b)

Custom Vector AG

‘r_teptan —_
'f_topi b — 1000
'r_tepic -
'L@}d' —
'r_topie- —
eptivel 1
800

=

g

B

o

o

H
50 2000
't lopiavalip ——
T tepibvaltp' —— 1000
' teploval tp!
‘I_teptd-valtp’ ——
'T_teple-valtp' ——
T_eplfvadtp' -

800

600

aue Size

Parking

—

Switch 5 ———

Mtuw

|| }ml

Lot Config, BECN, BufSize. 1024 =10Mbps (oonst)

1000

i |

! ‘ t f|
| l‘i i

|

Ll lllt

(

Iigure 3: Moderate Increase

Custom Vector C1 Custom Vector 1

50 T T T T T T
'1_teplavelip’ — Switch 5 ——
© *epibvel tp! —] 1000 . 1
40 'r_icplevsltp! — 4
‘_tepifvcitp’ w—
800
E 35
= 3
E T 600
g K
£]
% (<] 400
=4
200
0 [} u
0 500 1000 1500 2000 0 500 1000 1500 2000
msec msec
|
(a) (b) |
Parking Lot, BECN, BufSize=1024, ICR=10Mbps (const) - AIRF=1/256, RDFF=16 Parking Lot, BECN, BufSize=1024, ICR=10Mbps {const) - AIRF=1/256, RDFF=16 ‘
TCPia — Switch 5 —
TCPib —— 1000
35 TCP1G mevnm
TCP1d =
Terh —
30 800
i
e { =z
s el
a «
£ o E
g]
£ s
0. 15 S
<]
10
5
0 4 o
aq - 500 1000 1500 2000 [+] 500 1000 1500 2000
msec msec
(c) (d)
Parking Lot, BECN, BufSize=1024, ICR=10Mbps (const) - AIRF=1/256, RDFF=64 Parking Lot, BECN, ButSize=1024, ICR=10Mbps (const) - AIRF=1/256, RDFF=64
TCP1a = Switch 5 ——
TCP1h — 1000 }
35 TCPlc
TCP1d
e
30 800
©
2 ® .
< K}
é_ S 600
g (2]
g E
£]
a S a0
2
200 |
: LALLM AL
[500 1000 1500 2000 0 500 1000 1500 2000
msesc msec

(e) ()

Figure 4: Conservative Increase

11

4.2 ABR and UBR Comparison

In this section we compare TCP performance over binary mode ABR with that of two en-
hanced UBR services: UBR-EPD and UBR-EPD-FBA. We compare performances assuming
different buffer sizes and LAN and WAN distances. The RIF and RDF values used in the ABR
simulations are taken from the best performing set shown in 4.1.3, i.e., RIF = 1/256 and RDF
= 1/16. ’

Fig. 5 plots the throughputs and queue states of the bottleneck switch, for a LAN envi-
ronment with 2K cell buffers. The congestion threshold for UBR services is 1500, and that for
ABR is 1024 cells. As can be seen from Figs. 5-(a) & 5-(c), the fair buffer allocation scheme
produced improved fairness performance for the six TCP connections. From the queue states
plots in Figs. 5-(b) & 5-(d), we can see that the FBA scheme makes better use of the “head-
room”, i.e., the amount of buffer available to capture cells during congestion; EPD drops any
incoming packet which sees a congested queue, while EPD-FBA only drops those that have
used more than their fair share of the buffers during congestion. Note that the bottleneck
link is fully utilized in both cases. The ABR throughputs show excellent fairness performance,
although the bottleneck link is not fully utilized, as indicated by the bottleneck queue period-
ically emptying out. Note that the aggregate throughput for all three cases are approximately
the same.

The above simulations were repeated with twice the amount of buffers, i.e., 4K cell buffers,
with thresholds of 3072 for UBR and 2048 cells for ABR. The results are ploted in Fig. 6.
Basically, the results are similar to those obtained with 2K buffers in Fig. 5. Comparing EPD
and EPD-FBA, the fairness improvement produced by FBA is more pronounced than that in
Fig. 5: link utilization is also improved by FBA, as the queue state never reaches zero during
the entire simulation run. The ABR performance plotted in Fig. 6-(e)&(f) compared somewhat
unfavorably with both UBR services. The ABR performed only slightly better in fairness, but
the ABR aggregate throughput and the bottleneck link utilization are both less than its UBR
counterparts.

By increasing the inter-switch link distance from 2 to 400 km, we examined TCP perfor-
mance in a WAN environment. - Because of the longer RTT, the TCP window was increased
from 64 KB to 128 and 256 KB so as to be able to completely fill up the pipe. Fig. 7 plots the
results for a WAN environment with 4K cell buffers. Fig. 7-(a) shows that simple EPD pro-
duced extremely poor fairness performance, with the shortest TCP connection (1f) grabbing
an unfairly large share of the bottleneck bandwidth. In the WAN case, the fairness improve-
ment by FBA is quite significant, as the range of throughputs is narrowed from 10 — 43 Mbps
down to 16 — 29 Mbps. Link utilization is also improved slightly by FBA, judging from the fact
that the FBA queue states empties out less often than the corresponding EPD plot. The ABR
performance is slightly better in terms of fairness, but falls short in both aggregate throughput
and link utilization.

The above WAN simulations were repeated with 8K buffers, with thresholds of 7168 for
UBR and 4096 cells for ABR. Results are plotted in Fig. 8. Comparing Fig. 8-(a) with Fig. 7-
(a), larger buffers has the effect of improved fairness performance for the EPD scheme; however,
the link utilization is still less than 100%. FBA also significantly improved fairness performance
in this case, in addition to also improving the link utilization. The corresponding ABR perfor-

mance paralleled that of Fig. 7, and compared somewhat unfavorably with both UBR services.

It should be noted that the ABR parameters used in these comparisons were chosen from
Section 4.1 which used a buffer size of 1024 cells and a threshold of 500 cells. Further fine-tuning
of RIF and RDF using different buffer sizes, thresholds and WAN distances may yield better
results. However, such fine-tuning may be impractical in real networks without employing some
kind of global optimization schemes. Unfortunately, such schemes are conspicuously lacking.
Therefore, the ABR. performance results used for these comparisons may not be optimal, but
they should not be too far from typical ABR performance.

5 Summary and Discussion

In this paper we have presented simulation results on parameter tuning in binary mode ABR
service in ATM networks. We examined the effects of binary mode ABR parameters on TCP
performance. We have shown that TCP performance is highly sensitive to the values of two
parameters, RIF and RDF. We observed that a conservative RIF coupled with a moderate RDF
resulted in the best TCP performance under our test configuration. In the second part of the
paper, we compared the performance of binary mode ABR and two enhanced UBR schemes in
supporting TCP traflic. We found that UBR-EPD yielded poor fairness performance without
fairness enhancement. FBA provided such a fairness enhancement with the addition of a
per-VC accounting algorithm. In the absence of global optimization for ABR parameters,
UBR-based services can provide comparable, if not indeed superior, performance to binary
mode ABR.

The results presented in this paper raised a number of interesting questions for future work.
One natural question to ask is whether the results will still hold when the bandwidth available
to ABR service is a time-varying function, instead of a constant as assumed in this paper.
When the available bandwidth changes with time, as is expected to be the case when there
is CBR and VBR. traffic, how well will ABR be able to fill up the left-over bandwidth? Is
ABR performance as sensitive to RIF and RDF as the case when there is no CBR and VBR
traffic? How will ABR and UBR comparisons be changed, if at all? Moreover, the bandwidth
available to ABR can exhibit different degree of variability depending on the underlying VBR
traffic characteristics. The performance of ABR with respect to different degree of variability
in available bandwidth is another issue of interest. Is ABR more effective when the available
bandwidth variability is low? Or, is there a threshold in variability beyond which ABR will
cease to be effective? '

13

TCP Throughput (Mbps)

TCP Throughput (Mbps}

TCP Throughput (Mbps)

UBR w/EPD; Qs =~ 2048, Th = 1500

‘r_icpla-2ktp’ ———
" topib-2kip’ ~— |
‘TPl G-2K AP’ e
*r_icpld-2kAp’ ——

50

45

40 ‘r_tople-2kip’ —— 4
T —

35

30

5
o
0 500 1000 1500 2000
msec
(a)
" UBRWEPD & FBA; Qs = 2048, Th = 1500
e
He i
45 Bt
‘Copid-fgzk tp'
40 *r_tople-ky2k 4p'
i T tepit-a2kp'
35
30
25

[500 1000

msec

1500 2000

c)
ABR {ICR=10-50Mbps), Qsize=2048, Th=1024; LAN

0 500 1000

msec

(e)

1500 2000

Queue Size (cells)

Queus Size (cells)

Queue Size (cefls)

2000

1500

1000

500

2000

1500

500

2000

1500

1000

500

UBR w/EPD; Qsize = 2048, Thresh «1500;

T T v

Switch 5 ~——

500 1000
msec

(b)

UBRW/EPD & FBA

1500

T T T

Switch 5§ —

500 1000
mses

(d)

ABR (ICR=10-50Mbps); Qsize=2048, Th=1024; LAN

1500 2000

T

Swilch § ——

500 1000
msec

()

1500 2000

Figure 5: UBR-EPD, UBR-EPD-FBA & ABR; 2K, LAN

TCP Throughput (Mbps)

TCP Throughput (Mbps)

TCP Throughput (Mbps)

UBR W/EPD; Qs = 4096, Th = 3072 UBR w/EPD; Qsize = 4096, Thresh 3072

() (f)
Figure 6: UBR-EPD, UBR-EPD-FBA & ABR; 4K, LAN

15

r_tepla-dktp’ —— 4000 Switch 5 ——
"iopTb-Alap! — .
ke
't AP -
% '[_tople-dkip' = 3500 1
T ep1f-dkp’ ==
= M
=
BT 2500
3
‘g 2000 1
S
S 1500
1000 d
500
0
[500 1000 1500 2000 [} 500 1000 1500 2000
msec msec
(a) (b)
UBRW/EPD & FBA; Gs = 4096, Th = 3072 UBR wEPD & FBA
i ' 4000 h 5 —
N oo Rt '
7 topld-iy 2500
‘T tople-gdkip’ —
TAPI-QATD e
3000 \ E
=
® 2500 4
&
[77]
B 2000 l
H]
=
S 1500
1000
500 f
- o
0 500 1000 1500 2000 0 500 1000 1500 2000
msec meeg
(¢) (d)
ABR {ICR«10-50Mbps); Qsize=4096, Thw2048; LAN ABR (ICR=10-50Mbps); Qsize=4096, Th=2048; LAN
7_toplatp —— et Switch 5 —
e
4 C.
:.“’m.&‘i 3500
o 'r_tepietp’ 4
3 T_teptitp’ meww
h; 3000 |
. .
= 2500
8
]
@ 2000 i
]
s
(e 1500 E
1000
500
s 0
0 500 1000 1500 2000 0 500 1000 1500 2000
msec mseg¢

TCP Throughput (Mbps)

TCP Throughput (Mbps)

TCP Throughput (Mbps)

UBRW/EPD; Qs = 4036, Th = 3072; WAN; ELN 128K

T T v

'r_tupu;«.g —
E Aictp, ——
e 1Ak

U =
faasd e

1500
msec

2000 2500

UBR W/EPD & FBA; Qs = 4096, Th = 3072; WAN; ELN 128K

3

'I_tepla-iqdictp’ ——

-
g
e
§-)
RReii
h:
H

1500
msec

2000 2500

(¢)
ABR (ICR=10-50Mbps); Qsize=4096, Th=2048; WAN; ELN=128KB

emcamen,

e e,
i S
e b St BNy s st

500 1000
msec

()

1500 2000

Queue Size (colls)

Quoue Size (cells)

Queue Sizo (cells)

3500

3000

2500 H

2000

1500

1000

UBR w/EPD; Osize = 4096, Thresh =3072; WAN; ELN 128K

Switch & ——

.

500 1000 1500

msec

(b)

UBR w/EPD & FBA, WAN; ELN 128K

2000 2500 3000

—— T T T T

Switch § —

500 1000 1500

msec

(d)

2000 3000

3000 |
2500
2000
1500
1000

500

ABR (ICR=10-50Mbps); Osize=4036, Th=2048; WAN; ELN=128KB

Switch § ——

500 1000
msec

()

1500 2000

Figure 7: UBR-EPD, UBR-EPD-FBA & ABR; 4K WAN

TCP Throughput (Mbps)

TCP Throughput (Mbps)

TCP Throughput (Mbps)

UBR w/EPD; Qsize 8192, Th 7168; WAN; ELN 256K

T iople-SkAp —
-'r_‘f’.ipfm.% a——

9 500 1000 1500 2000 2500 3000
msec
(a)
% UBRW/EPD & FBA; Osize 8192, Th 7168; WAN; ELN 256K
i
60 i ; E
i '_teple-k8k iy —
i T_tep1HBICp’ eree
50 b & J
il
H
i
L
Y
30 .

0 500 1000 1500 2000 2500
msec
(c)
ABR (ICR=10-50Mbps); Csize«8192, Th=4096; WAN; ELN=255KB

& 'T_toplatdp’ e

i —

i —
H
!
i
§
i
§

1500

500 1000

msec

(e)

Queue Size {cells)

Queue Size (calls)

Queus Size (colls)

2000

8000

7000

UBR w/EPD; Qsize 8192, Thresh 7168; WAN; ELN 256K
Switch5 —

1500
msec

(b)

500 2000 2500

8000

7000

6000

4000

3000

2000

1000

UBRW/EPD & FBA; Qsize 8192, Thresh 7168; WAN; ELN 256K

1000 1500 3000

msec

(d)

2000

ABR (ICR=10-50Mbps); Osize=8192, The=4096; WAN; EL Ne256KB
Switch 5 —— |

1000 2000

msec

(f)

Figure 8: UBR-EPD, UBR-EPD-FBA & ABR; 8K WAN

17

References

[1] Y. Chang, N. Golmie, and D. Su, “A Rate Based Flow Control Switch Design for ABR
Service in an ATM Network,” in Proceedings ICCC’95, August 1995.

[2] C. Fang, H. Chen and J. Hutchins, “A Simulation Study of TCP Performance in ATM
Networks,” Proceedings of IELEE GLOBECOM 94, pp. 1217-1223, November, 1994.

[3] C. Fang and A. Lin, “A Simulation Study of ABR Robustness under Binary-Mode
Switches: Part II,” ATM Forum, AF-TM 95-1328R1, October 1995.

[4] C. Fang and A. Lin, “On TCP Performance of UBR with EPD and UBR-EPD with a
Fair Buffer Allocation Scheme,” ATM Forum, AF-TM 95-1645, December 1995.

[5] S. Floyd and A. Romanow, “Dynamics of TCP traffic over ATM Networks,” in Proceedings
of ACM SIGCOMM’94, pp. 79-88, Sept. 1994.

[6] J. Heinanen and K. Kilkki, “A Fair Buffer Allocation Scheme,” submitted for publication.

[7] R. Jain, S. Kalyanaraman, R. Viswanathan and R. Goyal, “A Sample Switch Algorithm,”
ATM Forum, AF-TM 95-0178, February 1995.

[8] L. Kalampoukas and A. Varma, “Performance of TCP over Multi-Hop ATM Networks:
A Comparative Study of ATM Layer Congestion Control Schemes,” in Proceedings of
1CC’95, June, 1995.

[9] L. Kalampoukas, A. Varma, and K.K. Ramakrishnan, “An efficient rate allocation algo-
rithm for ATM networks providing max-min fairness,” in Proceedings of 6th IfIP Interna-
tional Conference on High Performance Networking, HPN’95, September, 1995.

[10] H.T. Kung, R. Morris, T. Charuhas, and D. Lin, “Use of Link-by-link Flow Control in
Maximizing ATM Network Performance: Simulation Results,” in Proceedings IEEE Hot
Interconnects Symposium 93, August, 1993.

[11] H. Li, K.-Y. Siu, H.-Y. Tzeng, C. Ikeda, and H. Suzuki, “TCP Performance over ABR
and UBR Services in ATM,” to appear in IPCCC’96, March 1996.

[12] A. Lin and C. Fang, “A Simulation Study of ABR Robustness under Binary Switch
Modes,” ATM Forum, AF-TM 95-1019, August 1995.

[13] B. Lyles and A. Lin, “Definition and Preliminary Simulation Results for a Rate-based
Congestion Control Mechanism with Explicit Feedback of Bottleneck Rates,” AF-TM
94-0708, May 1994.

[14] S.S. Sathaye, ATM Forum Traffic Management Specification, Version 4.0, ATM Forum,
TM Subworking Group, January 1996. ATM Forum/95-0013R10.

[15] K.-Y. Siu and H.-Y. Tzeng, “Intelligent Congestion Control for ABR Service in ATM
Networks,” Computer Communication Review, Vol. 24, no. 5, pp. 81-106, Oct. 1994

18

[16] A. Heybey, “The Network Simulator,” available from LCS, MIT, May 21, 1993 (available
for anonymous ftp from allspice.lsc.mit.edu in /pub/netsim).

19

