e el

1A-UR-96 {1599

CoNL._q6no¢--3

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36.

TIME: 1 ightweight Computational Steering of Very Large
Scale Molecular Dynamics Simulations

AUTHORE): David M. Beazley
Peter S. Lomdahl

SUBMITTEDTO: - Sypercomputing '96, November 1996
Pittsburgh, PA

MASTE R Eﬂﬁmxgunoﬂ OF THIS DOCUMENT IS UNLIMITED

By acceptance of this article, the publisher recognized that the U S Govern

nt retains a nonexclusive, royalty-free license to publish or reproduce
the published form of this contribution or to allow others to do so for U S Go

ment purposes.

The Los Alamos National Laboratory requests that the pubiisher identify this article as work performed under the auspices of the U S Depariment of Energy.

Los Alamos National Laborato
L@@ AU@M@@ Los Alamos, New Mexico 8754%,

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

.

Lightweight Computational Steering of Very
Large Scale Molecular Dynamics Simulations

David M. Beazley

Department of Computer Science
University of Utah

Salt Lake City, UT 84112

beazley@cs.utah.edu
http://www.cs.utah.edu/~beazley

Peter S. Lomdahl
Theoretical Division
Los Alamos National Laboratory

Los Alamos, New Mexico 87545
pxlelanl.gov
http://bifrost.lanl.gov/T11_staff/Lomdahl.html

Abstract:

We present a computational steering approach for controlling, analyzing, and visualizing very
large scale molecular dynamics simulations involving tens to hundreds of millions of atoms. Our
approach relies on extensible scripting languages and an easy to use tool for building extensions
and modules. The system is extremely easy to modify, works with existing C code, is memory
efficient, and can be used from inexpensive workstations and networks. We demonstrate how we
have used this system to manipulate data from production MD simulations involving as many as
104 million atoms running on the CM-5 and Cray T3D. We also show how this approach can be
used to build systems that integrate common scripting languages (including Tcl/Tk, Perl, and
Python), simulation code, user extensions, and commercial data analysis packages.

Keywords:
Molecular dynamics, data analysis, large-scale simulation, steering, scripting languages,
visualization, CM-5, T3D, SPaSM, SWIG

Introduction

With the development of massively parallel supercomputers, the materials science community has
experienced an unprecedented explosion in both the size and complexity of large-scale short-range
molecular dynamics simulations [1,2,3,4,5]. The method of molecular dynamics (MD) has been used
since the 1950’s for a variety of computational problems in physics, chemistry, and materials science
[6]. The idea is really quite simple-- given a collection of atoms, we solve Newton’s equation of motion
F=ma and track the atoms” trajectories. The physics of the simulation is incorporated into the force law
in the form of a potential energy function. This function can range from a simple pair-potential to
complicated many-body potentials [7] .

Prior to 1992, MD simulations were usually performed on relatively small systems (often in 2D)
involving fewer than 1 million atoms [8]. However, in a span of only 3 years, MD simulation sizes have
grown to as many as 1 billion atoms in 3D [2,4,5]. This in turn has created a serious problem.
Production simulations involving tens to hundreds of millions of atoms are now routinely possible, but

analyzing the resulting data has proven to be extremely difficult if not impossible. As a result, most MD
simulations remain small even though most researchers agree that large-scale simulations are useful for
studying many different types of material properties.

In this paper, we describe our efforts in addressing the practical problems of working with very large
molecular dynamics simulations involving tens to hundreds of millions of atoms. Our primary goal has
been to devise a system that addresses our scientific needs in basic materials science research. We have
taken a computational steering approach in which simulation, data analysis, and visualization are
combined into a single package [9,10,11,12]. However, we have designed a system that is extremely
lightweight, portable, easily extensible, and not dependent on expensive special purpose hardware. (ie.
graphics workstations or high-speed networking).

The SPaSM Code

We originally developed the SPaSM (Scalable Parallel Short-range Molecular dynamics) molecular
dynamics code for use on the Connection Machine 5 at Los Alamos National Laboratory [1]. The code
is written entirely in ANSI C with explicit message passing used for interprocessor communication. In
1992, SPaSM became the first code to simulate more than 100 million (10/8) particles in both 2D and
3D [1]. In 1993, SPaSM was one of the winners in the IEEE Gordon Bell Prize competition [2]. Since
then, a memory optimization allowed us to increase simulation sizes to as many as 300 million particles
in double precision (on a 1024 node CM-5 with 32 Gbytes of memory) and the code has been ported to a
variety of other parallel machines. The code has also been used for a variety of production simulations
involving as many as 104 million atoms.

Figure 1 : Fracture experiments with 38 million particles (left)
and 104 million particles (right).

Currently, SPaSM is implemented on top of a collection of wrapper functions for both message passing
and parallel I/O [13]. This allows the code to run on a variety of machines including the CM-35, Cray
T3D, Fujitsu VPP-550, SGI Power Challenge, Sun multiprocessor SPARCservers, and single processor
workstations (for development purposes). Normally, the message passing wrappers are implemented in
the native message passing environment available on each machine, but a general MPI version is also
available.

The performance of the SPaSM code has been discussed extensively in the literature [1,2,13]. While
early versions used CDPEAC assembler language for accessing the CM-5 vector units, the current

version no longer uses this approach and is optimized for RISC architectures instead. Table 1 shows
some recent performance results of the SPaSM code on several different machines. This table is
provided primarily to illustrate both the performance and simulation sizes that are currently possible.

Number atoms CM-5 T3D Power Challenge
| (1024 nodes) (128 nodes) | (8 nodes)
| 1,000,000 0.39 0.728 |8.68
| 5,000,000 1.60 3.86 40.43
10,000,000 2.98 6.93 80.96
32,000,000 - - 275.60
' , 50,000,000 14.20 33.09 | -
75,000,000 - 46.95 -
150,000,000 41.26 - -
300,800,000 90.59 - -
600,000,000 241.73 (SP) - -

Table 1 : Time for a single MD timestep. Atoms interact according to a Lennard-Jones
potential and have been arranged in an an FCC lattice with a reduced temperature of 0.72
and density of 0.8442 [4]. The cutoff is 2.5 sigma. All runs performed in double precision
except for (SP).

The Data Glut (and previous work)

Using SPaSM, we have been able to perform MD simulations with more than 100 million particles since
1992. However, running such a simulation in practice has proven to be almost impossible due to the
enormous amount of data that must be analyzed. For example, the 104 million particle simulation in
Figure 1 generated a collection of 40 1.6 Gbyte datafiles that only contained particle positions and
kinetic energy in single precision. None of the users have a workstation capable of handling these
datasets. Furthermore, even if we had a high-end graphics workstation fully loaded with memory, data
analysis would still be difficult. Most networks are unable to ship 64 Gbytes of data around efficiently
so it is difficult to get the data to the workstation in the first place. Once loaded into the workstation
(assuming it has enough memory), we have found that systems such as AVS are completely ineffective
for handling datasets with more than about a million atoms. Of course, this really should not come as a
surprise--why would any reasonable person expect a workstation to be able to efficiently handle the data
analysis from a simulation running on a 512 processor Connection Machine or large T3D?

The large dataset problem has not gone unnoticed by the supercomputing community and some have
come to call it the "Data Glut" problem [14]. To solve some of our data analysis problems in the past,
we have sometimes used a high speed parallel rendering tool [15]. This is how the 104 million atom
picture in Figure 1 was generated (on a Cray T3D). Unfortunately, this approach has not addressed our
scientific needs. We can make pictures, but few of the SPaSM users know how to run the rendering code

and pictures alone don’t provide that much information. The system also requires several minutes to
make a picture and can barely be called interactive. We need a system where we can perform
data-analysis and feature extraction coupled with visualization from our existing workstations. We also
need this system to be of extremely high performance--the users simply do not want to sit around for
minutes and hours on end waiting for results to appear.

Unfortunately, it seems that solutions to the large-dataset problem have become more and more
impractical in recent years. Some have even predicted the "end to batch-processing."” [11] The truth of
the matter is that large-scale computing is still difficult, still takes hundreds of hours of computing time
on the fastest machines available, and still generates an overwhelming amount of data. Some seem to
believe that the data-glut problem can be magically eliminated with very expensive special purpose
hardware [10,11,12,16]. While this may be true, our experience in the -WAY at Supercomputing’95
was a complete disaster [17]. Even if it had worked, most scientists we know do not have the resources
to go buy a CAVE, a personal Power-Challenge Array, a wall-sized display, and a dedicated OC3
connection to their favorite supercomputing center just to look at their data [17]. Thus, while these
efforts may be conceptually interesting, we feel they are of little practical value to a scientist who is
trying to use SPaSM from a remote location and an ordinary UNIX workstation.

Computational Steering

To address.our needs of large-scale simulation, data analysis, and visualization, we have adopted the
approach of "computational steering" which aims to combine all of these aspects in an interactive
environment. We feel that this combination is important because trying to understand very-large MD
simulations is more than just a simulation problem, an analysis problem, a visualization problem, or a
user-interface problem. It is a combination of all of these things.

In order to build an effective system for large simulations, we feel that it must support the following
features.

® Interactivity. The user must be able to interact with the data and extract useful information.

® Scripting. The system must be able to support simulations that run for hundreds of hours and must
be able to run in the background without user intervention (just because you have steering doesn’t
mean you don’t want to run batch jobs).

® Memory efficiency. Large-scale MD requires a significant amount of memory. The steering
system should not.

® Network efficiency. There is too much data to be shipping across the network to a users
workstation. We must be able to work with the data directly on the parallel machine running the
simulation.

@ Extensibility. The user must be able to extend the code with new features and new functionality

with a minimal amount of work.

Compeatibility. The steering system should be able to work with existing code.

Portability. The system must work on all parallel machines and workstations.

Ease of use. Physicists must be able to both use and extend the system. This needs to be as simple

and flexible as possible.

Previous efforts in computational steering have focused primarily on interactivity while ignoring many
of the issues important for large-scale simulation [9,10,11,15]. As a result, most approaches continue to
rely on high-end graphics workstations and high-bandwidth networks -- a solution that simply does not

work for very large-scale MD simulations at this time due to both the high cost and limited performance.

Our approach incorporates all of the features listed above, but with an emphasis on very
large-simulations and simplicity. Instead of just worrying about interactivity, we focus on issues related
to memory efficiency, long running jobs, portability, and flexibility. We do not see our approach as a
replacement for other efforts in computational steering. Rather we see it as an "alternative world view"
in which we have tried to build a balanced system that lets us control and interact with our data, but is
also sensitive to the needs of the users and the issues of working with very large datasets. While most of
our efforts have focused on MD, we feel that our approach is applicable to many other large-scale
computing situations.

Lightweight steering with scripting languages

Rather than relying on a sophisticated graphical user interface, we have built our system around
extensible scripting languages such as Tcl/Tk and Python [18,19]. This allows a user to both interact
with the code (by issuing commands) or write scripts for controlling long-running jobs. The overall
structure is shown in Figure 2.

Text-based Control Language

[I

Original pata]
SPaSH Bnalysis Graphics
Code

Hessage |Parallel
Passing [I/0 Network

Figure 2 : SPaSM Organization

The control language is used to glue together different modules for simulation, data analysis and
visualization while the entire system is built on top of a message passing, parallel I/O and networking
layer that hides hardware dependent implementation details.

On parallel machines, we have developed our own scripting language based on a simple YACC parser
[20]. This language allows the user to access C functions and variables, but also allows loops,
conditionals, user-defined functions, and variables to be created on the fly. In reality, the scripting
language is not unlike Tcl/Tk, except that we have written the system to work with parallel I/O and have
cleaned up the syntax. Internally, the scripting language relies on a SPMD style of programming. Each
node executes the same sequences of commands, but on different sets of data. The nodes are only
loosely synchronized and may participate in message passing operations. However, this must be usually
be done with some care to avoid deadlock. As it turns out, the SPaSM code is independent of the

scripting language interface and can be compiled to run under Tcl, Perl, or Python as well (we return to
this point later).

The code can now be used in a number of ways. First, to the skeptics who feel that a text-based interface
is horrible, we point to the success of commercial packages such as MATLAB, Mathematica, IDL, and
Maple--all of which have this type of interface. SPaSM can be used in a similar manner by interactively
issuing commands to set up initial conditions, change boundary conditions, extract interesting data, or
perform visualization. For long-running simulations, the user can write scripts for controlling an entire
run. Secondly, we would like to emphasize the memory efficiency of this approach. Adding a scripting
language requires very little memory. The parser really only manages a small stack for the LALR(1)
parsing method used by YACC [20]. As a result, there is virtually no noticeable impact on memory
usage. Finally, we feel that it is important to emphasize that while a text-based interface might not be as
"“flashy" as a sophisticated GUI, it is easily portable, doesn’t require much network bandwidth, and can
be just as powerful (if not more so).

Automated Language-Independent Interface Generation

In order for a steering system to be useful, we feel that the user must be able to extend it with new
features. In our case, this involves extending the scripting-language interface with new commands and
variables. The standard technique used by most scripting languages is to write special "wrapper"
functions that provide the glue code between the scripting language interface and the C function.
Unfortunately, writing these wrapper functions is usually quite technical, tedious, and error-prone. Most
users do not want to spend time figuring out how to extend the user-interface with new functions.
Therefore, we have built an automated interface generator called SWIG (Simplified Wrapper and

Interface Generator)! that builds the entire user interface from ANSI C function and variable
declarations (Currently SWIG supports Tcl/Tk, Perl4, Perl5, Python,Guile, and our own scripting
language) [21]. Using SWIG, a typical user-interface specification looks like the following :

%init User_Init
% {
#include "SPaSM.h"

%}
extern void ic_crack(int 1x, int ly, int 1z, int 1lc,

double gapx, double gapy, double gapz,
double alpha, double cutoff);

/* Boundary conditions */

extern void set_boundary_periodic(void);

extern void set_boundary_free(void);

extern void set_boundary_expand (void) ;

extern void apply_strain{double ex, double ey, double ez);

extern void set_initial strain(double ex, double ey, double ez);

extern void set_strainrate(double exdot0, double eydotl, double ezdot();
extern void apply_strain boundary(double ex, double ey, double ez);

Code 1 : A SPaSM user interface file. This file is automatically translated into C wrapper
functions and can be combined with other modules at compile time.

In order to expand the system, the user writes a normal C function--exactly as would have been done

without the scripting language interface. In order to use the function, it’s ANSI C prototype declaration
is simply placed into the interface file. When SPaSM is compiled, that new function will automatically
appear in the interface. This scheme makes it extremely easy to add new features. Since the interface file
specification contain no code specific to any one scripting language, we are able to compile SPaSM
under any number of scripting languages as needed (although most scripting languages do not work well
in a massively parallel environment due to I/O problems).

Building Modules and Packages

SWIG allows users to easily build packages of interesting modules by allowing interface specification
files to include other interface files. Thus, a more complex user interface could be built as follows :

%init User_Init
% {
#include "SPaSM.h*

%include initcond.i
%inciude grephics.i
%include dislocations.i
%include particle.i
%include debug.i

Code 2 : SPaSM interface file with modules.

Many of the files can be placed in a common repository of modules available to all users, but others can
be written or customized by the user as needed for a particular simulation. Instead of forcing every user
to use the same system, this approach allows each user to customize SPaSM to their individual liking.
We feel that this flexibility is critical--especially in an environment where the code is in a constant state
of evolution as new physical models and simulations are being developed.

Pointers and Objects

The SWIG interface builder can be used with a surprising variety of C code. In fact, it handles C
pointers, structures, and objects in addition to simple functions as shown in Code 1 [21]. Within the
scripting language, the user can create vectors, particles, arrays, and other objects. These in turn can be
passed on to other C functions for later use. For example, suppose we want to make a module for culling
some of the particle data based on the value of its individual potential energy contribution (a useful
technique we have used for finding dislocations). We could write a special SWIG interface file
containing a C function for searching the particle data. In the following example, we’ve written such a
function that looks for the first particle matching the search range and returns a pointer to it. The
function can be called repeatedly with the previously returned pointer value to find all of the matching
particles.

// cull.i. SPaSM interface file for particle culling
%1{
Particle *cull_pe(Particle *ptr, double pmin, double pmax) f{
if (!Iptr) ptr = Cells[0] [0][0]).ptr - 1;
while ((++ptr)->type >= 0) {
if ((ptr->pe >= pmin) && (ptr->pe <= pmax))
return ptr;

return NULL;

oP «~

}

Particle *cull_pe(Particle *ptr, double pmin, double pmax);

Code 3 : Simple function for culling particles. Note that small C functions can be inlined
directly into interface files.

Within a scripting language, we can now write some functions to build and manipulate lists of particles.
In this case, we have built SPaSM under the Python scripting language [19].

Return a list of all particles with pe in [min,max]
def get_pe(min,max):

plist = [];
p = spasm.cull_pe ("NULL",min,max)
while p != "NULL"

plist.append(p)
p = spasm.cull_pe(p,min,max)
return plist

Make an image from particles in a list
def plot_particles(l):
spasm.clearimage () ;
for i in range(0,len{l)):
spasm.sphere(1[i]);
spasm.display ()i

Code 4: Python functions for extracting particle data and plotting.

Now, suppose we wanted to extract two sets of particles with different potential energy ranges and make
an image. The user could type the following:

>>> listl = get_pe(-5.5,-5);
>»>> list2 = get_pe(-3.5,-3.25);
>»>> plot_particles(listl+list2);

This example is interesting on several levels. First, we have used a C function to find and return pointers
to interesting particles. These pointers have then been used to construct Python list objects. Once
represented in this high level, we can form new lists with simple arithmetic operators. These lists, can in
turn be passed to other functions for making images and analysis. Of course, there are many different
ways of accomplishing the same task--an indication of the flexibility of this approach.

To further emphasize the flexibility of the system, SWIG has also been used to build interfaces out of
commercial packages including MATLAB and the entire Open-GL library. In short, almost any type of
C code can be integrated into our steering system (although not all codes will work on paraliel
machines).

A Scripting Example

Many people might not think of scripting as a component of steering, but we feel that it is absolutely
critical. Simulations can run for a very long time where user interaction really isn’t necessary. Thus, one

of the primary uses of our system is controlling long-running simulations. The example in Code 5 shows
a typical SPaSM script.

I Script for strain-rate experiment
I

printlog("Crack experiment.");
! Set up a morse potential

alpha = 7;

cutoff = 1.7;

init_table_pair();

source ("Examples/morse.script");

makemorse {(alpha,cutoff, 1000} ; ! Create a morse lookup table

! Set up initial condition

if (Restart == 0)
ic_crack(80,40,10,20,5,25.0,5.0, alpha, cutoff);
set_initial_strain(0,0.017,0);

endif;

! Now set up the boundary conditions

set_strainrate(0,0,0.001);
set_boundary_expand() ;
output_addtype ("pe");

! Run it
timesteps (1000,10,50,100);

Code 5 : A sample SPaSM script file. Commands can also be typed interactively.

In the script, we see that our C function in the interface file are called as in C. It’s also possible to
include other scripts as shown in the source ("Examples/makemorse.script") command. Scripts can
also be executed when running interactively. This is often useful for simplifying common operations or
setting up various parameters. In many cases, scripts offer a huge time savings as users can make
changes to scripts and see the effects without ever having to recompile the SPaSM code.

An Interactive SPaSM Example

When working in an interactive mode, we can perform data analysis and visualization. We have
developed a high-performance memory efficient graphics module that allows us to remotely visualize
MD data with as many as 150 million atoms on a 512 processor CM-5 (this work is in progress and will
be published elsewhere). The graphics module is integrated directly with the SPaSM code and can
visualize data from running simulations. It can also be used for post-processing and analysis. The
following example shows how this system is used on an 11 million particle impact simulation. Each data
set is 180 Mbytes. Image is sent as GIF files (which use LZW compression) to the user’s workstation for
display. The view is controlled by typing commands directly into the SPaSM code as shown in the
following example. This example was run on a 64 processor node CM-5 (and has been edited slightly
for clarity). Text typed by the user is shown in bold.

Run30 === cm5-4 === Sun Apr 28 10:22:23 1996

SPaSM [30] > open_socket("tjaze",34442);

Connecting...

Socket connection opened with host tjaze port 34442

SPaSM [30] > imagesize(512,512);

Image size set to 512 x 512

SPaSM [30] > colormap("cml5");

Colormap read from file cmilb

SPasSM [30] > FilePath="/sda/sdal/beazley/backup/backup”;

SPaSM [30] > readdat("Datl36.1%);

Setting output buffer to 524288 bytes

Reading 11203040 particles.

11203040 particles { x v z ke } read from /sda/sdal/beazliey/backup/backup/Dat36
SPasSM [30] > range("kem",0,15);

ke range set to (0,15)

SPaSM [30] > dimage();

Image generation time : 10.1531 seconds

SPaSM [30] > rotu(70);

Image generation time
SPaSM [30] > rotr(40)
Image generation time
SPasSM [30] > down(l5);

Image generation time : 10.5469 seconds
SPasSM [30] > ©Spheres=1;

SPaSM [30] > zoom(400);

Image generation time : 19.8765 seconds
SPasSM [30] > «c¢lipx(48,52);

Image generation time : 7.29181 seconds
SPasM [30] >

10.7456 seconds

e wo e»

10.9436 seconds

Fig 3 : Six images genefat;d by the interactive exapl (in order from left to right).

To some, this approach may seem archaic or even insane, yet we have found the command based
approach to work remarkably well in practice. With a careful choice of parameters, it is easy to move
around in a data set and look at interesting features. Previously defined viewpoints can also be easily
saved and recalled. It is also important to keep in mind that when we tried to work with this dataset on
an SGI Onyx graphics workstation with 256 Mbytes of RAM, it was virtually impossible. Images
required as many as 45 minutes to generate and the machine was simple incapable of dealing with a
dataset of this size [15].

While this example has been simple, we can also use SPaSM to interactively set up initial conditions,
visualize the data, run the simulation, and perform analysis in real-time as the simulation runs.
Periodically, the user can stop the simulation, look at the data in more detail, make changes to various
parameters, and continue the simulation. All of this is possible without exiting the SPaSM code and
without using a memory and network intensive steering "environment.”

Data Exploration and Feature Extraction

One of the benefits of using large 3D materials simulations is that it allows us to study phenomena that
require relatively large systems to be seen. For example, we may be interested in the formation of
dislocations or damage effects. Often, a feature of interest is embedded within a large-bulk of
uninteresting atoms. Using SPaSM, we are able to explore very large datasets and look for interesting
features. Figure 4 shows two examples of this. In Figure 4a, we see dislocation loops generated inside a
block of 35 million copper atoms (interacting via an embedded-atom potential). This simulation ran for
120 hours on a 128 processor Cray T3D and produced 35 Gigabytes of output. In Figure 4b, we are
looking at damage due to ion-implantation in a 5 million atom silicon crystal. In both cases we were able
to explore and visualize the data by running the SPaSM code remotely and displaying images on local
workstations. Images take about 10 seconds to generate, but this is a huge improvement from our prior
experiences using graphics workstations. Interestingly enough, we can use the feature extraction
capability to reduce the datasets down to a size that can be handled on an ordinary workstation. In
Figure 4a, a single snapshot is 700 Mbytes, but by removing the bulk, this can reduced to only 10 or 20
Mbytes--a file that can be easily handled.

Fig 4a. Dislocation loops in 35 million atom fracture simulation. Generated from a 700 Mbyte datafile.
(MPEG movies of these simulations are also available).

Fig 4b. Ion-implantation in 5 million atom silicon crystal. Generated from a 100 Mbyte datafile.

Debugging, Prototyping, and Development

Due to the portability of the SPaSM code, it is possible to do code development and debugging on
ordinary workstations. Due to the language-independent interface specification, we can build SPaSM
under a number of popular scripting languages including Tcl/Tk, Perl, and Python. It is also possible to
integrate packages such as MATLAB directly into SPaSM for performing more sophisticated analysis.
Figure 5 shows a screen shot of such a simulation. In this simulation, we are testing a small MD
shock-wave problem on a single processor Unix workstation. The simulation itself is being controlled by
the Tcl interpreter shown in the lower left corner. Any of the SPaSM commands (and arbitrary Tecl
scripts) can be executed here in addition to MATLAB commands. In the upper left corner, we see a
MATLAB figure showing particle velocities as a function of position. To the right of that we see the
latest snapshot of particle kinetic energies produced by the SPaSM visualization module. These two
screens are updated in real-time as the simulation runs. Two Tk windows are also shown. The toolbar on
the right contains visualization shortcuts and the menu in the lower right allows us to load data files and
change various setti

Erm ?
Sy

] Adtiwa E

Fig 5: SPaASM/MATLAB running on a workstation under Tcl/Tk.
(Click on image for full-size view).

It is important to emphasize that everything shown in the image has been combined into a single
package using our automatic interface generator, yet the SPaSM code is unchanged from the version run
on the CM-5 or Cray T3D. Thus, anything developed in this environment can also be used on those
machines. In practice, we have found that developing on a workstation is considerably easier, more
reliable, and less frustrating than trying to develop everything on parallel machines. By having a highly
flexible architecture, we can combine a wide variety of analysis tools during the development phase and
still move up to larger, less interactive, simulations when we are ready.

Conclusions and Future Work

We have presented a simple steering approach based on scripting languages and an automated interface
building tool, SWIG, that we have developed for building extensions and modules. This approach has
been used with the SPaSM code for about one year. We feel that this has been a step in the right
direction, but want to emphasize the differences between our approach and others. First, rather than
trying to build a sophisticated computational steering "environment” and integrating simulation codes
into it, we have developed an extremely lightweight tool that works with our existing codes, but tries to
stay out of the way. Secondly, our system has been designed primarily to support very-large scale
simulation. While we can run interactively, the system works equally well in a batch processing mode
for long-running simulations. The memory efficiency of the approach has allowed us to continue
running very large simulations, even when performing analysis and visualization. Our approach also
works well on inexpensive workstations and slow networks--making it useful to users who only have
remote access to a large parallel supercomputer. Finally, we recognize that most scientists who would be
using SPaSM are highly qualified professionals who demand both simplicity and functionality. Our
approach works with existing C functions and is easy to extend. At the same, we impose no restrictions
on the scripting language or types of C code that can be glued together. Thus, a scientist can easily build
a simple implementation or one of almost arbitrary complexity.

Future directions for our work include the development of better graphics and data analysis modules for
SPaSM. We are also interested in extending our work with the Python scripting language and exploring
extensions such as Numerical Python which provide high-level mathematical operations on arrays and
matrices [22]. We have no plans to build a sophisticated graphical user interface at this time. If this is
desired, we feel that we could probably use any number of existing systems such as the SCIRun steering
software developed at the University of Utah [9]. As data analysis and visualization become
commonplace, we feel that data management and organization of results will be critical. Therefore we
are quite interested in extending some of our work to scientific databases and data management systems.
As the SPaSM code becomes more widely used, we feel that management of data, run parameters, and
output, will be more critical than simply providing more interactivity.

Acknowledgments

This work would not be possible without the support and input of many people. We would like to
acknowledge our collaborators in MD, Brad Holian, Shujia Zhou, Tim Germann, and Niels Jensen.
Mike Krogh, Chuck Hansen, Jamie Painter, and Curt Canada of the Advanced Computing Laboratory
have provided valuable assistance. We would also like to acknowledge Chris Johnson and the Scientific
Computing and Imaging group at the University of Utah. Recent development of SWIG has been funded
in part by the NSF and NIH. Finally, we would like to acknowledge the Advanced Computing
Laboratory for their generous support. This work was performed under the auspices of the United States
Department of Energy.

Footnotes

! The SWIG interface building tool is freely available for download at
http://www.cs.utah.edu/~beazley/SWIG/swig.html.

References

[11 D.M.Beazley and P.S. Lomdahl, "Message Passing Multi-Cell Molecular Dynamics on the
Connection Machine 5," Parallel Computing 20 (1994), p. 173-195.

[2] P.S.Lomdahl, P.Tamyo, N.Gronbech-Jensen, and D.M.Beazley, "50 Gflops Molecular Dynamics on
the CM-5," Proceedings of Supercomputing 93, IEEE Computer Society (1993), p.520-527.

[3] R.C.Giles and P.Tamayo, Proc of SHPCC’92, IEEE Computer Society (1992), p. 240.

[4] S.Plimpton, "Fast Parallel Algorithms for Short-range Molecular Dynamics," J Computational
Physics, vol 117, (March 1995) p 1-19.

[5] Y.Deng, R. McCoy, R. Marr, R. Peierls, O. Yasar, "Molecular Dynamics on Distributed-Memory
MIMD Computers with Load Balancing," Applied Math Letters 8, No. 3 (1995), p. 37-41.

[6] M.P.Allen and D.J. Tildesley. Computer Simulations of Liquids. Clarendon Press, Oxford (1987).

[7] MRS Bulletin, "Interatomic Potentials for Atomistic Simulations", Vol 21, No. 2 (1996). This
volume provides several articles and an overview of atomic potentials.

[8] A.LMelcuk, R.C.Giles, and H.Gould, Computers in Physics (May/June 1991). p. 311.

[9] S.G. Parker and C.R. Johnson. "SCIRun: A Scientific Programming Environment for
Computational Steering," Supercomputing ‘95, IEEE Computer Society, (1995).

[10] G.Eisenhauer, W.Gu, K. Schwan, and N. Mallavarupu, "Falcon-Toward Interactive Parallel
Programs : The On-line Steering of a Molecular Dynamics Application," Proc of the Third International
Symposium on High Performance Distributed Computing (HPDC-3), IEEE Computer Society (1994),
pg. 26-34.

[11] G. Eisenhauer, et al. "Opportunities and Tools for Highly Interactive Distributed and Parallel
Computing," Proc of the Workshop on Debugging and Tuning for Parallel Computer Systems, Chatham,
MA. 1994. (in print)

[12] J.A. Kohl, P. M. Papadopoulos, "A Library for Visualization and Steering of Distributed
Simulations using PVM and AVS", High Performance Computing Symposium ’95, Montreal,
CA,(1995).

[13] D.M. Beazley and P.S. Lomdahl, "High Performance Molecular Dynamics Modeling with SPaSM
: Performance and Portability Issues," Proceedings of the Workshop on Debugging and Tuning for
Parallel Computer Systems, Chatham, MA, 1994 (in print).

[14] S.Bryson, "The Data Glut Revisited," Computers in Physics, Vol.9, No.5, (1995), p. 525-530.

[15] C.D. Hansen, M. Krogh, and W. White, "Massively Parallel Visualization : Parallel Rendering,”
Proc. of 7th SIAM Conference on Parallel Processing for Scientific Computing, (1994), p. 790-795.

[16] C. Cruz-Neira, et al. "Scientist in Wonderland: A Report on Visualization Applications in the
CAVE Virtual Reality Environment," Proc. of IEEE Symposium on Research Frontiers in Virtual
Reality (1993), p. 59-66.

[17] "Virtual Environments and Distributed Computing at SC’95 : GII Testbed and HPC Challenge
Applications on the I-WAY", ed. H. Korab, M. Brown. ACM/IEEE. (1995).

[18] J.K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley (1994).
[19] G. van Rossum, Python Reference Manual, (1995).
[20]J. Levine, T. Mason, and D. Brown, Lex and Yacc. O’Reilly & Associates, Inc. (1992)

[21] D.M. Beazley, "SWIG : An Easy to Use Tool for Integrating Scripting Languages with C and
C++," Proceedings of the 4th USENIX Tcl/Tk workshop, (to appear 1996).

[22] P. Dubois, K. Hinsen, and J. Hugunin, "Numerical Python", Computers in Physics (to appear
1996).

Author Biographies

David M Beazley
beazley@cs.utah.edu

Dave Beazley is a Ph.D. student in the Department of Computer Science at the University of
Utah where he is working in the Scientific Computing and Imaging (SCI) group on problems
related to remote manipulation of very large-scale scientific datasets and parallel
computation. He is also interested in extensible scripting languages, scientific databases,
high-performance computer architecture, and large-scale materials science simulations.
Since 1990, he has worked at Los Alamos National Laboratory in the Center for Nonlinear
Studies and Theoretical Division on the development of the SPaSM molecular dynamics
code for the CM-5 and Cray T3D. Beazley received his M.S. in mathematics from the
University of Oregon in 1993 and a B.A. in mathematics from Fort Lewis College in 1991.

B S <SR N e

Peter S. Lomdahl
pxl@lanl.gov

Peter Lomdahl is a staff member in the Condensed Matter and Statistical Physics Group in
the Theoretical Division at Los Alamos National Laboratory where he has worked on
computational condensed-matter and materials-science research since 1985. From 1982 to
1985, he was a postdoctoral fellow in the Center for Nonlinear Studies. Lomdahl received
his M.S. in electrical engineering and his Ph.D. in mathematical physics from the Technical
University of Denmark in 1979 and 1982. His research interests include parallel computing
and nonlinear phenomena in condensed-matter physics and materials science.

