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Abstract

Rock properties in volcanic units at Yucca Mountain, Nevada are controlled largely by rel-
atively deterministic geologic processes related to the emplacement, cooling, and alteration his-
tory of the tuffaceous lithologic sequence. Differences in the lithologic character of the rocks have
been used to subdivide the rock sequence into stratigraphic units, and the deterministic nature of
the processes responsible for the character of the different units can be used to infer the rock mate-
rial properties likely to exist in unsampled regions. This report proposes a quantitative, theoreti-
cally justified method of integrating interpretive geometric models, showing the three-
dimensional distribution of different stratigraphic units, with numerical stochastic simulation
techniques drawn from geostatistics. This integration of soft, constraining geologic information
with hard, quantitative measurements of various material properties can produce geologically rea-
sonable, spatially correlated models of rock properties that are free from “stochastic artifacts” for
use in subsequent physical-process modeling, such as the numerical representation of ground-
water flow and radionuclide transport.

Prototype modeling conducted using the GSLIB-Lynx Integration Module computer pro-
gram, known as GLINTMOD, has successfully demonstrated the proposed integration technique.
The method involves the selection of stratigraphic-unit-specific material-property expected values
that are then used to constrain the probability function from which a material property of interest
at an unsampled location is simulated. In its current Fortran implementation, GLINTMOD draws
upon soft information from the geologic framework only at those locations for which the geo-
statistical search algorithm is unable to locate a user-specified number of either measured condi-
tioning data or previously simulated grid nodes within a user-specified neighborhood. Material-
property models created using the initial version of GLINTMOD reproduce an underlying synthetic
framework model to a much greater degree than otherwise identical models simulated using only
hard conditioning data.
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Use of Stratigraphic Models as Soft Information to
Constrain Stochastic Modeling of Rock Properties:
Development of the GSLIB-Lynx Integration Module

Introduction

Numerical models of rock material
properties will be used to evaluate the behavior
of various engineered features and the waste-
isolation performance of the potential Yucca
Mountain nuclear waste repository site in
southern Nevada. Pre- and post-closure perfor-
mance assessment activities must evaluate not
only the effects of the geometric distribution of
rock types within the subsurface, but also the
impacts of heterogeneities in the distribution
of material properties within that geometry.

Nuclear Regulatory Commission
licensing requirements to make quantitative
predictions of repository-system behavior for
extended periods into the future necessitate
some type of assessment of the uncertainty
associated with those predictions. A widely
held assumption is that uncertainty assessment
probably will take the approach of some kind
of Monte Carlo simulation, in which the mate-
rial properties and other parameters of a physi-
cal-process model are varied in a way that
reflects the uncertainty in those values. Varia-
tions in the input parameters are propagated
through a numerical representation of the
physical process under investigation, and this
variability is captured in a range of some per-
formance measure—ground-water travel times
or cumulative radionuclide releases, for exam-
ple. Geostatistical simulation has been recog-
nized as a preferred method for developing
material-property models for input to these
Monte Carlo-style uncertainty assessments,
specifically because this type of simulation
describes the spatial continuity of properties
that may control performance of repository

systems. The importance of spatial continuity
in performance modeling dictates that mate-
rial-property models be generated (simulated)
and evaluated as a whole, in contrast to the
more conventional Monte-Carlo approach that
simply samples either uniform or spatially ran-
dom property values from a univariate distri-
bution.

This report describes an approach to
the Monte-Carlo generation of spatially corre-
lated material property models of a complex
geologic system in a data-sparse environment
for use on the Yucca Mountain Project. The
approach is designed to incorporate soft, exter-
nal geologic knowledge to produce geologi-
cally reasonable property models in a
relatively data-poor modeling environment.

Geologic and Modeling
Framework

Volcanic Geology of Yucca Mountain

Yucca Mountain is located in the south-
western Nevada volcanic field, in the southern
basin-and-range province of Nevada. The
geology comprises a thick sequence of Tertiary
volcanic rocks, consisting largely of a series of
variably welded and nonwelded ash-flow tuffs
that are separated from one another by interca-
lated intervals of air-fall tuffs and reworked or
“bedded” tuffaceous deposits. A defining char-
acteristic of the entire Tertiary sequence,
which extends to depths of more than 6,000
feet in the vicinity of the potential repository
(Carr and others, 1986), is stratigraphic and
stratiform layering. Layering exists on several
scales and originates through the geologic pro-
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cesses responsible for the emplacement of
these rocks. The layering is thus relatively
deterministic in nature, and this deterministic
nature can be used in creating material-prop-
erty models of the Yucca Mountain site.

At the largest scale, layering is induced
through the very essence of the volcanic pro-
cess responsible for formation of the south-
western Nevada volcanic field. Large-volume
ash-flow tuffs, which form the dominant rock
type present at and near Yucca Mountain, orig-
inate through massive, eviscerating eruptions
of pyroclastic material from large magma
chambers in the subsurface. These massive
eruptions generally are associated with col-
lapse and subsidence of rock units overlying
the magma chamber into a resulting caldera.
Although much of the erupted magmatic mate-
rial appears to fall back into the actively sub-
siding caldera, many cubic kilometers of
particulate material is deposited outward from
the caldera as pyroclastic flows. These flows
produce first-order, stratigraphic layering of
eruptive products that may be separated widely
in time, composition, volume, and other char-
acteristics that determine the rock properties
associated with a particular ash-flow sheet.

Other geologic processes operated
within the thick, large-volume ash-flow tuffs
to produce second-order, mostly stratiform,
layering. Following large-volume ash-flow
eruptions, the deposited material cools by loss
of heat both to the underlying, former topo-
graphic surface and to the exposed, land-sur-
face environment. Internally, the still-hot mass
of glass shards and other debris compacts to
varying degrees under its own weight, forming
a welded tuff. Magmatic gasses still contained
within the glassy, fragmented material exsolve
to form a free vapor phase; these gasses act to
alter both primary volcanic glass and early
devitrification mineral assemblages to second-
ary assemblages that exhibit different material
properties from their unaltered precursors.
These compaction, cooling, and alteration phe-

nomena are controlled largely by temperature
and pressure gradients within the laterally
extensive, tabular deposits. These gradients
are, in gross form, perpendicular to the strati-
graphic top and bottom of these sheet-like
deposits, although marked divergence from
this general geometry may occur locally. Thus,
the distribution of these alteration zones,
which are generally parallel to isograds, is
generally stratiform. These welding and alter-
ation zones, however, are the result of second-
ary phenomena superimposed on a primary
stratigraphic layering, which may cause what
appears to be a stratabound feature within a
limited geographic area actually to cut across
time-stratigraphic layering at a low angle when
observed on a larger scale.

Additionally, time-stratigraphic layer-
ing is produced when the upper parts of thick
pyroclastic-flow deposits are reworked by sed-
imentary processes. These processes winnow
fines from the volcanic debris, deposit clays,
and otherwise impact the nature of the material
and affect the resulting material properties.
Small-volume volcanic eruptions produce
well-sorted air-fall deposits of coarse pumice
or fine ash. The sorting of these time-strati-
graphic volcanic deposits induces material
properties quite different from those associated
with the more-catastrophically deposited ash
flows.

Finally, following complete cooling of
the deposits of the southwest Nevada volcanic
field and even following the cessation of vol-
canic activity in the region, widespread geo-
logic processes that affected the distribution of
material properties continued to operate. Surfi-
cial weathering continued to alter the near-sur-
face portions of the different rock units. The
presence of certain ground-water conditions in
the subsurface may have altered any remaining
volcanic glass to zeolitic materials (Bish and
Aronson, 1993). Zeolitic and lesser develop-
ment of clay minerals may alter hydrologic
flow properties independently of the bulk
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properties of the rock, because these minerals
are effectively grown in-place, the result of
partial dissolution of pre-existing glass and the
precipitation of new mineral forms. These
types of late-stage alteration zones are typical-
ly even less stratabound than early-stage cool-
ing-related phenomena.

Stratigraphic Control of Material
Properties

The distribution and variation in rock
material properties within the volcanic se-
quence at Yucca Mountain is the result of the
complex interplay of a number of different, but
relatively well defined, geologic processes.
The resulting features of the rock are determin-
istic to the extent that their observation at one
location virtually assures the existence and
proximity of similar and/or related features in
roughly predictable locations elsewhere in the
same general region. Recognition of the con-
trol of rock characteristics or material proper-
ties by stratigraphy is not new. In a qualitative
sense, stratigraphic control of rock properties
is the fundamental basis for recognizing a lay-
ered, genetic geologic system and for subdi-
viding the rock column into geologic units.
Major differences in rock type, phenocryst as-
semblages, chemical composition, and post-
emplacement alteration have been used to sub-
divide the volcanic rocks of the southwestern
Nevada volcanic field (table 1) for many de-
cades (Christiansen and Lipman, 1965; Lip-
man and McKay, 1965; Lipman and others,
1966; Byers and others, 1976; Scott and Bonk,
1984; Spengler and Fox, 1989; Sawyer and
others, 1994; Geslin and Moyer, 1995).

More quantitative efforts to use
stratigraphy as a basis for predicting material
properties are not new, either. An early attempt
relevant to the Yucca Mountain Project was
work by Scott and others (1983), who recog-
nized a distinction between conventional geo-
logic units and material-property units, and
who provided some generalized, average mate-

rial-property values for this non-conventional
subdivision of the volcanic section. A similar,
but more formal, classification was work by
Ortiz and others (1965), who subdivided the
volcanic rocks at Yucca Mountain into units
that exhibited similar thermal, mechanical, and
hydrologic characteristics. Effectively, this
thermal/mechanical stratigraphic subdivision
(table 1) ignored genetic considerations, and
emphasized the distinction between welded
and nonwelded rock types as the first-order
control on material properties (figure 1). This
distinction based upon degree of welding func-
tionally translates to a first-order material-
property subdivision based upon porosity. Ad-
ditional second-order subdivisions related to
post-emplacement alteration were also recog-
nized by Ortiz and her coworkers. So success-
ful was this classification at capturing
material-property variability at the Yucca
Mountain site (despite other weaknesses), that
this “thermal/mechanical stratigraphy” has
formed the basis for most subsequent large-
scale performance modeling (Dudley and oth-
ers, 1988; Barnard and Dockery, 1991; Bar-
nard and others, 1992; Wilson and others,
1994).

More recently, outcrop-transect sam-
pling studies at Yucca Mountain (Rautman and
others, 1991; 1993; 1995; Rautman and Flint,
1992; Istok and others, 1994; Flint and others,
1996) have identified smaller-scale variations
in material-property distributions that appear
related to “microstratigraphic” or informal
zonal units (figure 2). These units are also in-
ferred to originate in the geologic processes re-
sponsible for formation of the tuffs at Yucca
Mountain). For example, the histograms
shown in figure 2(a) illustrate several distinct-
ly separate populations of porosity values as-
sociated with four of the zones, all within the
welded part of the Topopah Spring Tuff, rec-
ognized by Scott and Bonk (1984) in their geo-
logic mapping of Yucca Mountain. These
different, but closely related, welded zonal
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Table 1: Comparison of several stratigraphic subdivisions of volcanic rocks at Yucca
Mountain and encountered on the Yucca Mountain Site Characterization Project.
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Figure 1. Porosity distributions for different major rock types at Yucca Mountain in (a) histogram format;
(b} cumulative distribution function (cdf) format. Cdfs are used in the balance of this report because of their
easier conceptual tie to probability distributions. Porosity data are from drill hole USW SD-9;
measurements provided by L.E. Flint (U.S. Geological Survey).
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Figure 2. Histograms showing porosity values obtained by outcrop sampling of (a) four welded zones
within the Topopah Spring Tuff as subdivided by Scott and Bonk (1984); and (b) separate geographic
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aggregated. Data are from Rautman and others (1993) and Flint and others (1996).
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units are characterized by distinctly different
modal porosity values, the ranges of measured
values clearly overlap one another, and the
units are distinctly heterogeneous. Selecting
the porosity data for one of the four zones (the
upper lithophysal zone of the Topopah Spring
Tuff) and subdividing the data by geographic
location [figure 2(b)] indicates that the within-
unit variability is generally less than the varia-
tion between different welded zones. These
same outcrop studies have also demonstrated
that the internal material properties are spa-
tially correlated (Rautman and others, 1993;
Istok and others, 1994; McKenna and Raut-
man, 1995), although the range of spatial cor-
relation observed depends to some extent upon
the subdivision considered.

Level of Stratigraphic Subdivision

The stratigraphic-comparison chart of
table 1 indicates that there are many different
ways to subdivide a complex volcanic
sequence, such as that present at Yucca Moun-
tain. Given that a number of different
approaches to stratigraphic classification are
possible, an important issue is to determine
what level of subdivision is appropriate for
material-properties modeling? As the number
of small-scale layers increases, additional spa-
tial resolution is possible. However, the model-
ing effort increases as well, and the number of
sample data per unit decreases leading to
reduced statistical confidence. Note that the
modeling effort includes not only the computa-
tional requirements to create the individual
material-properties models, but also the
“bookkeeping” required to put the various
individual models back into a single property
model for physical-process (e.g., flow) model-
ing. For example, if there are k distinct mate-
rial-property layers to be represented in a
material-property model, and subsequent
Monte Carlo evaluation requires that n differ-
ent simulations be evaluated, the total number
of material property models that must be con-

structed is k X n . The number of Monte Carlo
runs involved in a typical uncertainty assess-
ment may easily exceed one hundred. Even if
the number of conditioning data is adequate, if
k becomes as large as indicated by some of the
columns in table 1 (30 or more), the overall
rock-property modeling effort may become
intractable. This is, perhaps, the most serious
difficulty involved in creating detailed, deter-
ministically layered, stochastic rock-property
models.

Another major difficulty with the dis-
crete representation of many separate layers in
a material-property model is that the geometric
position of the various units also must be rep-
resented. This geometric modeling require-
ment raises two separate issues, both involving
the question of certainty in the spatial positions
of these contacts. First, modeling layers as sep-
arate entities implies that there is little or no
uncertainty in the location of the contacts and
thicknesses of these units in three-dimensional
space. If the spatial geometry of the different
material-property layers is being developed
from sparse subsurface data, or largely from
outcrop mapping projected into the subsurface,
the positions and/or thicknesses of the differ-
ent units at various locations may be interpre-
tive at best and speculative at worst. Typically,
however, there is very little attempt to quantify
the uncertainty associated with such geologic
interpretations, and almost never is there an
effort to quantify the effects of such geometric
uncertainty on the higher-level physical-pro-
cess. Some performance assessment modeling
of Yucca Mountain (Kaplan, 1993) has shown
that ground-water travel times (for example)
may be quite sensitive in general to the thick-
ness of different geologic units possessing
markedly different hydrologic properties!
However, most performance analyses have
emphasized uncertainty in (uncorrelated)
material properties and have accepted the geo-
logic framework as a deterministic given (for
example: Barnard and Dockery, 1991, Barnard
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and others, 1992; Wilson and others, 1994). In
a notable exception to this focus on material-
property uncertainty, Wilson and Robey (1994)
demonstrated that it is possible for cumulative
radionuclide releases over a 10,000-year
period (another higher-level performance mea-
sure) from one-dimensional flow columns to
vary over several orders of magnitude when
the thicknesses of geologic units composing
the columns were modeled stochastically.

The second issue of geometric uncer-
tainty involves the nature of the contact
between one unit and its neighbor. Many, in
fact most, of the finer-scale subdivisions in
table 1 involve the distinction of one type or
degree of roughly stratiform alteration from
another, or from essentially unaltered materi-
als. These types of “contacts” are gradational.
Whereas the rock type exposed in one outcrop
may be quite different from that in another out-
crop some distance away, and a contact may
casily be drawn between the positions of the
two observations (this is the principle underly-
ing classical field mapping), the actual change
in rock type from one alteration zone to
another may, in fact, be quite gradational in the
subsurface. Gradations in rock type or in the
nature and degree of alteration add to the
uncertainty in describing and modeling the
positions of these contacts, and somewhat
arbitrary criteria may be required to define a
contact. Unless such criteria are quite explicit
and readily applied, inconsistent application of
those criteria by different investigators
describing the rocks at different locations may
add yet another degree of uncertainty in the
location of specific geologic contacts. Uncer-
tainty in the locations of contacts between rock
units propagates throughout a three-dimen-
sional model, particularly if that model is con-
structed using relatively automated, computer-
based algorithms.

The issues of geometric uncertainty are
only complicated in the presence of faulting or
other post-depositional deformation of the

rock mass. The discussion thus far has
involved only stratigraphic issues related to
the modeling of a particular contact or contacts
at a given spatial position given incomplete
information or a gradational change in rock
type. The question of spatial position related to
structural deformation of the rock units can
increase greatly the uncertainty associated
with the three-dimensional position of a given
contact. The more arbitrary the definition of a
contact, the more difficult it is to reconstruct
the effects of faulting and folding. Confound-
ing palinspastic reconstruction at Yucca Moun-
tain is the fact that there almost certainly have
been multiple episodes of fault displacement,
some of which may have taken place prior to
development of some of the alteration phe-
nomena that are invoked to define stratigraphic
“units” in the more detailed classifications
(table 1).

A mostly separate issue involved in
gradational, and hence arbitrary, contacts is
that the physical behavior modeled numeri-
cally at a sharp contact between two units of
markedly different character may be quite dif-
ferent from the actual physical behavior occur-
ring in real rocks exhibiting a gradational
change in properties. Generally, as the magni-
tude of the discontinuity in material properties
between two adjacent modeling cells
increases, the time steps necessary to solve the
partial differential equations involved in the
numerical process model become progres-
sively smaller, requiring longer execution
times. Thus, a side benefit to a more realistic
representation of gradational material-property
transitions may be enhanced performance of
physical-process modeling codes. This
enhanced performance would be especially
beneficial in a Monte-Carlo modeling exercise
involving many hundreds of flow or flow-and-
transport simulations.
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Material-Property Modeling of Yucca
Mountain and a Proposed Modeling
Technique

A regulatory requirement exists to
model the physical system of Yucca Mountain,
and many different types of models have been
constructed. The data available for use in con-
structing material-property models of Yucca
Mountain vary greatly in their nature, quantita-
tive rigor, number, and geographic distribu-
tion. For example, qualitative, descriptive
information obtained from areally extensive
geologic mapping, small-area outcrop studies,
and linear drill-hole observations of various
types (core, cuttings, geophysical log traces)
are typically used to construct geologic (geo-
metric) models. These different types of
descriptive observations are generally reduced
to three-dimensional spatial coordinates for
various desired contact “picks,” and these
picks are then connected via some modeling
method (interpolation). This modeling method
may be nothing more sophisticated than the
drawing of pencil lines on paper between two
spatially positioned contacts using a straight-
edge (for example, the cross-sectional model
of Scott and Bonk, 1984). Alternatively, one of
several computer-based algorithms may be
used to connect a series of spatially distributed
points and define a complex surface (Ortiz and
others, 1985). The interpolation method may
be applied in a relatively mechenistic and auto-
matic fashion, or a significan: amount of geo-
logic judgement and interpretation may enter
into the final geologic model (Buesch and oth-
ers, 1993; Fridrich and others, 1994). This
interpretive information presumably makes
use of what is known generally about relevant
geologic processes (see, for example “Volcanic
Geology of Yucca Mountain” on page 1). This
type of geologic modeling in a data-sparse
environment is invariably rather interpretive.

At the opposite end of the modeling
spectrum, numerical models of material prop-
erties are generally constructed from quantita-

tive laboratory or other measurements of
specific physical properties (porosity, hydrau-
lic conductivity, compressive strength). Typi-
cally, these measurements involve samples of
subsurface materials from drill holes or under-
ground excavations. Drill-hole measurements
are frequently spatially biased, with abundant
measurements available along a drill-hole
trace; the number of individual drill holes may
be relatively limited. Although definition of
the process by which quantitative material
properties will be modeled also involves a sig-
nificant amount of geologic experience and
judgement, once the modeling parameters are
defined, the modeling activity itself is gener-
ally highly automated and mathematical in
execution. In this respect, numerical properties
modeling is frequently considered “objective.”

Geostatistical modeling comprises one
set of mathematical algorithms for modeling
material-property values from spatially distrib-
uted quantitative observations. What distin-
guishes geostatistical methods from other
algorithmic property-modeling approaches is
the use of a calculated measure of spatial cor-
relation, the spatial covariance function, which
is more generally referred to as the variogram.
Although geostatistical modeling methods
attempt to use measures of spatial continuity
developed from the specific data being mod-
eled, there are limits to the ability of the meth-
ods to produce geologically reasonable models
from sparse data. Beyond the range of spatial
correlation, there is little information con-
tained in a set of data that bears directly on the
local values present or likely to exist at a given
location, especially if “units” containing dif-
ferent properties have been aggregated. Geo-
statistical algorithms are unable to interpret
general geologic principles to supply addi-
tional information not available in the data
provided to the modeling algorithm (Rautman
and Robey, 1994).

A potential solution to difficulties
encountered in modeling material properties
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quantitatively in a data-sparse environment is
to combine interpretive geologic (geometric)
modeling methods that can incorporate docu-
mented quasi-deterministic trends and features
with geostatistical modeling techniques that
provide a relatively objective means of inte-
grating information from different sources and
of quantifying the resulting uncertainty. A
three-dimensional, computer-based geologic
model of Yucca Mountain is used as soft infor-
mation to constrain the material-property val-
ues that are allowed to be simulated within that
domain. Such a model contains a geologist’s
understanding of the overall geologic environ-
ment, and it allows interpretation of the geo-
logic unit present at every point within the
modeled domain. The geologic information is
“soft,” in that there is no one-to-one corre-
spondence of geologic unit with some “repre-
sentative” (or average) material property.
Additionally, the control exerted by the inter-
pretive geologic model is soft, in that the pres-
ence of “hard,” quantitative measurements of a
particular material property will override the
soft information at the locations of that hard
data. The degree of influence of measured data
on the simulation of unsampled locations not
corresponding to a hard datum is described by
the model of spatial continuity used in the
modeling process.

More specifically, the incorporation of
soft, constraining data into geostatistically
simulated material-property models should
enhance reproduction of geologically reason-
able spatial continuity. Lateral variability will
be well-described with little uncertainty near
conditioning observations. Where there are
few or no hard conditioning data, uncertainty
will be greater (i.e., there will be increased
variation among individual simulations), but
the persistence of the material-property unit
and the value about which the simulated values
vary will be constrained by the expected value
obtained from the framework model. Contacts
of all types will be well defined where con-

strained by data. Sharp changes in material
properties will be fairly abrupt and conditioned
to the hard measurements. Gradational transi-
tions will, in fact, be gradational. Away from
actual measurements, however, both types of
contacts will be relatively uncertain, reflecting
the increased uncertainty that is associated
with a lack of hard data. In summary, models
generated using this integrated approach
should be spatially correlated, stochastic repre-
sentations that are consistent with both known
properties data and geologic interpretations.

In the sections of this report that fol-
low, we describe a specific implementation of
this approach of using stratigraphic models as
soft information to constrain stochastic model-
ing of rock material properties. The strati-
graphic framework model consists of a
geologic interpretation of data from the Yucca
Mountain site similar to that described by Bue-
sch and others (1993). The model has been
developed using the Lynx Geotechnical Mod-
eling System (GMS), a comprehensive geo-
logic-modeling software package marketed by
Lynx Geosystems, Incorporated, of Vancouver,
British Columbia.” The geostatistical material-
property modeling algorithm is taken princi-
pally from the program SGSIM, in the GSLIB
library of geostatistical algorithms and ancil-
lary programs developed at Stanford Univer-
sity (Deutsch and Journel, 1992). GSLIB
programs are public-domain software. The
software code that implements this integration
of GSLIB geostatistical modeling with soft
information taken from a Lynx geologic model
is termed the GSLIB-Lynx Integration Mod-
ule, or program GLINTMOD.

*The use of trade, product, industry, or firm names is
for descriptive purposes only and does not imply
endorsement by the U.S. Government.
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Theoretical Foundation of
Integration

Review of Geostatistical Simulation

Geostatistical simulation is a modeling
technique used to produce an attribute field
that honors the spatial variability and global
character of the sampled values of a variable.
Simulation is relevant in situations where
extreme (high or low) values of a vari-
able—and particularly the connectivity of
those extreme values—may strongly influence
the operation of a physical process, such as
hydrologic flow or radionuclide transport.
Simulation is also relevant in situations in
which it is necessary to assess characterization
uncertainty, the type of uncertainty that results
from less-than-exhaustive description and
sampling of a geologic site.

A number of different simulation algo-
rithms have been described historically. We
have adopted the sequential simulation
approach first described by Journel and Ala-
bert (1989), and implemented in published
algorithms by Gomez-Hernandez and Srivas-
tava (1990) and Deutsch and Journel (1992).
To construct a simulated model using the
sequential approach, a random path is defined
through a discretized (gridded) domain that
will visit each grid node once and only once.
At each location, a search is conducted for
nearby measured data (or previously simulated
values), and a local, conditional, cumulative-
distribution function (ccdyf) is estimated. The
ccdf is interpreted as a probability distribution
function, and a value is sampled randomly
from that probability distribution. The gener-
ated value is assigned to that grid node, and the
simulation process moves to the next location
along the random path. Note that simulated
values are added sequentially to the collection
of values that are used in the estimation of the
ccdf at subsequent grid nodes. Values simu-
lated early in the process influence the simula-
tion of later locations, and thus contribute to

the propagation of spatial correlation structure
within the resulting model.

Because geostatistical simulation is
based on sampling from the appropriate local,
conditional cumulative-distribution function of
the random variable being modeled, it is nec-
essary to describe the expectation and form of
that ccdf. The expected value of the local ccdf

- is estimated through kriging data values that

have been transformed to represent the posi-
tion of each measured datum on the population
cumulative probability distribution. To under-
stand this type of transformation, consider the
sample population portrayed in figure 3(a).
Each measured value is represented by a value
along the x-axis. If the data are rank ordered,
each measurement also corresponds to a value
measured along the y-axis, representing the
cumulative probability value associated with
that measurement. For example, in figure 3(a),
a value of 0.1 (assume 10 percent porosity)
corresponds approximately to the 80" percen-
tile of the cumulative distribution function, or
0.80. Furthermore, as figure 3(b) indicates,
each measurement can be converted through
this quantile-preserving process to an equiva-
lent value of a computationally-friendly distri-
bution, such as the standard normal (or any
other valid distribution). In the example, the
original measurement value of 0.1 corresponds
to a standard normal (u=0, 6’=1) transformed
value of 0.85; the relationship is that both of
these values represent the 80™ percentile of
their respective cumulative distribution func-
tions (cdfs).

Use of the normal-score transformed
values offers several computational benefits.
Any kriged estimate represents the theoretical
expectation of the relevant spatially distributed
random variable (Journel, 1983; Isaaks and
Srivastava, 1989). If we can assume a multi-
variate Gaussian random variable, then the
shape or form of the distribution is fixed, and
the probability distribution of that random
variable is specified completely by its mean,
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Figure 3. Graphical representation of transformation from the space of (a) a real-world variable to
(b) normal-score space. The transformation preserves the quantile rankings of the data (redrawn

after Isaaks and Srivastava, 1989).

its variance, and its spatial covariance. The
covariance enters into the calculation through
the kriging process and the use of the specified
variogram model of spatial continuity. If, for
convenience, we work with a standardized
normal distribution, the variance is one by def-
inition, and we have now specified the single
remaining parameter, the expected value,
through kriging the nearby transformed data.
We have thus completely specified the local,
conditional cumulative-distribution function
required for generation of the simulated value
simply through the process of kriging the
transformed, surrounding data

This estimation process is represented
conceptually in figure 4. The left side of the
diagram represents measured values located by
a search of nearby data for two different neigh-
borhoods surrounding two unsampled loca-
tions to be simulated. These several values are
transformed to their normal-score equivalents,
as shown graphically in the figure (center), and
the expected normal-score value for the spe-
cific location considered is computed through
kriging. For simplicity, the values shown on

the figure assume an isotropic spatial continu-
ity structure and equal distances from the mea-
sured values to the point being simulated
(leading to equal weighting of the data). For
neighborhood number 1, all of tne surrounding
measurements represent low vaiues of poros-
ity; accordingly, the associated normal scores
are low, and the ccdf at this location has a rela-
tively low expected normal-score value of
-1.15. For neighborhood 2, the nearby porosity
measurements are much higher, the normal-
score transformed values are high, and the
expectation at this unsampled location is for a
porosity with a normal-score value of 1.65.

The remainder of the simulation pro-
cess is illustrated conceptually in figure 5. A
random number, uniformly distributed in the
inclusive interval from zero to one ([0,1]) is
generated, and the cumulative-probability
position of this random number is projected to
the corresponding cumulative-probability
value of the locally conditioned Gaussian ccdf.
In figure 5, the illustrated ccdf represents that
determined for neighborhood number 1 of fig-
ure 4 (E{Z(u)}= —1.15). In the example, a ran-
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Figure 5. Conceptual representation of the simulation process. A random number uniformly
distributed in the interval [0,1] is drawn and projected onto a local ccdf with an expected value
computed by kriging nearby, standard-normal-transformed, measured values. Ultimately, this
simulated normal-score value is projected back onto the standard-normal cdf of the original

variable and the simulation process is complete.

dom value of 0.71 is generated, which
translates through the projection process to a
normal-score value of approximately —0.60.
This value of —0.60 is added to the set of infor-
mation available to condition as-yet unsimu-
lated grid nodes, and it will influence the
normal-score values assigned to those nodes in
association with all other measured data and

previously simulated values as weighted by the
spatial covariance structure. When the simula-
tion is complete, the value of ~0.60 will be
back-transformed to the space of the original
variable, as suggested by the right-hand por-
tion of figure 5, corresponding to a value of
approximately 0.066 (6.6 percent porosity).
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Note that a variable that exhibits a non-
Gaussian histogram may still possess multi-
variate Gaussian spatial behavior. In fact, as
illustrated by the example of figure 3, virtually
any distribution may be transformed so that it
exhibits a “normal” histogram without chang-
ing the spatial covariance structure of the data.
This univariate transformation of a population,
which preserves the quantile relationships of
the original data, does not alter the spatial cor-
relation structure exhibited by the variable.
The variogram of the transformed values is
virtually identical to the variogram of the orig-
inal values, because the variogram [2y(h)] is a
function of the differences between values at
two locations (Journel and Huijbregts, 1978):

2y(h) = J%,Z[Z(u)—zunh)]z, eq. 1

where Z(u) is the value of the measured vari-
able at spatial location u, and Z(u + h) is the
value of the variable at another location a vec-
tor distance h from u. N is simply the number
of such pairs considered. Thus, although the
absolute magnitudes of the original and trans-
formed variables are different, for each separa-
tion distance (h), the difference term involves
values of essentially the same quantile units for
a spatially correlated variable. If, for h=h,,
[Z(u) —Z(u+h)] is a small value on aver-
age relative to that corresponding to h=h,, it
will be a small value whether computed in the
space of the original variable or computed in
the space of the transformed variable. The
range of spatial correlation, defined as the sep-
aration distance at which the variogram value
reaches an essentially constant level equal to
the univariate variance of the data, remains
constant, and the quasi-constant sill value is
rescaled by the variance of the original distribu-
tion.

A practical test that the variable of
interest exhibits multivariate Gaussian spatial
behavior is to show that the bivariate cumula-
tive distribution function (or variogram) is

approximately normal. Journel (1983) states
that if a random variable is bivariate normal,
the sills of the indicator variograms for any
particular threshold corresponding to the
univariate, cumulative distribution function
value, F(z), can be computed as:

S =FQ@)-F() , eq. 2

where 5° is the magnitude of the indicator vario-
gram sill and F(z) is expressed as a decimal in
the range [0,1]. For the median indicator
threshold [F(z)=0.5], the sill should be a maxi-
mum at 0.5-0.5" = 0.25, and the sill should
decrease symmetrically for quantiles F(z) =
1 - F (z2). Highly asymmetric indicator vario-
gram sills for equivalent high and low quantile
thresholds (first and third quartile or first and
ninth decile, for example) are fairly good evi-
dence that a variable is not completely multi-
variate Gaussian in nature.

If the variable does not exhibit an
acceptable degree of multivariate Gaussian
spatial behavior, determining the form of the
probability function is more difficult, and the
ccdf must be estimated in a more brute-force
manner using nonparametric techniques, such
as indicator coding of the histogram (Journel,
1983). Indicator simulation would then be
required to estimate the appropriate ccdf at
each location to be simulated (Gomez-Hernan-
dez and Srivastava, 1990; Deutsch and Jour-
nel, 1992). A full description of indicator
geostatistics is beyond the scope of this discus-
sion.

Simple and Ordinary Kriging

The proposed method for incorporating
soft information, such as that contained in the
Lynx geometric model, builds upon the basic
linear-regression algorithm known as simple
kriging (Journel and Huijbregts, 1978; Clark,
1979; Deutsch and Journel, 1992). In its most
general form, simple kriging attempts to esti-
mate the deviation of a spatially distributed
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random function at a given location from the
local expected value of that function based on
a weighted linear combination of the devia-
tions of nearby measured values from their
appropriate expectations. Thus,

Zr sl (w)-m (w)] =

> A () [Z(uy) ~m(uy)]

a=1

eq. 3

where Z*gp(u) is the simple kriging (SK)
estimator at an unsampled location, u; Z(u) is

the random function model at location u; the

Z(u,) are the n data at locations u, a=1, 2,...,n,
being used to construct the estimate; and
m)=E{Z(u)} is the location-dependent
expected value of the variable Z(u). The
weights (A,) applied to the data-value devia-
tions to obtain the simple kriging estimate are
determined from the appropriate two-point
covariance matrices, involving both the data-
to-data covariance, C(ug.u,), o=1, 2,...,n; B=1,
2,...,n, and the data-to-unknown-location cova-
riance, C(u,u,), =1, 2,...,n.

This generalized formulation of the
simple kriging algorithm requires prior knowl-
edge (i.e., knowledge external to the estima-
tion problem) of the n+1 location-specific
expected values, m(u) and m(u ), a=1, 2,...,n.
Because of this restriction, practical imple-
mentation of simple kriging as an estimation
procedure typically requires a prior decision of
stationarity of the random function Z(u), such
that E{Z(u) }=m(u)=m(u_ )=m is constant
across the model domain. This simplification
allows the simple kriging estimator to be
reduced to its stationary form:

Z¥sg (m) =
n n

DA WZ@y) +|1- Y, A, (u) |m(w).
a=1 a=1 eq. 4
The covariance function necessary to calculate

the various weights, A, is similarly simplified

through the assumption of stationarity to
depend only upon the separation distance
between two locations, (u—u_ ), and not upon
the actual positions, u and u,,

Equation 4 offers us an opportunity to
solve the problem of modeling material prop-
erties in a probabilistic manner throughout a
domain that is locally data-poor. If we can esti-
mate an expected value, E*{Z(u) }=m*(u), at
all locations within the model domain rather
than simply assuming a global expectation, m,
this value can be substituted in eq. 4 and used
to constrain the expected value of the probabil-
ity distribution used for simulation, even at
those locations for which no “nearby” data or
previously simulated values can be found.

A properly constructed three-dimen-
sional geologic model (one without overlaps or
gaps in the various volume components)
shows the geologic unit interpreted to be
present at every physical location within the
modeled volume. The interpretation may or
may not be correct in actual fact, but a well-
constructed geologic model will provide a
plausible and logically consistent geometric
arrangement of rock types and other geologic
units that can incorporate the full extent of a
geologist’s understanding of that and other
similar physical systems. If there are a reason-
able number of measured values for a desired
material property that can be tied to the geo-
logic units used in the geometric modeling
process, it should be possible to develop an
estimated expected value, E*{Z(u) }=m*(u),
for that material property corresponding to
each appropriate aggregation of modeled geo-
logic units, (u). Note that here u corresponds
to both a spatial location [(x,y,z,)] and the geo-
logic unit present at that spatial location. This
development of a material-property expecta-
tion follows directly from the logic shown by
the histograms of figure 2(a).

It is important that the expected values
(m*) be as unbiased as possible, because any
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bias in this term of will be propagated globally
throughout the model. If portions of the model
domain are particularly data poor, the expecta-
tion may, in fact, be the principal source of
information used in the simulation process.
Over- or undersampling of different geo-
graphic regions or geologic zones may contrib-
ute to development of biased expected values.
Clustering of sampling in geologically “inter-
esting” or conveniently accessible regions is
nearly inevitable in most site-characterization
investigations; however, it is geostatistically
undesirable and should be eliminated or com-
pensated for in developing material-property
expectations (Journel, 1983; Deutsch, 1989).

As to precedent for the practice of sub-
stituting an estimate, m*, for the true-but-
unknown expectation, E{Z(u)} in eq. 3, and
the degree of error that is introduced through
that substitution, consider another, alternative
method of estimating the random function
Z(u). This modeling method is also based on a
linear combination of surrounding data, but it
involves eliminating the second term of eq. 4
by requiring that the weights sum to one. This
alternative method of estimation has been
termed ordinary kriging (OK) and the estimator
is obtained by simplifying eq. 4, and substitut-
ing a different set of weighting factors, v, for
the A,, which are constrained such that
Zua (u) = 1. Thus, we can write:

n

Zog () = Y, v, (w)Z(u,),

a=1

eq.5

where Z* 55 (u) is the ordinary kriging esti-
mator at location, u. The covariance function
for the ordinary kriging system is identical to
that defined for the stationary simple kriging
system, with the addition of matrix entries nec-
essary to assure that the weights sum to one.

If there are many data involved in an
estimation problem, the computations
involved in solving large matrix equations
generally restrict the number of data values

that can be considered in computing the neces-
sary weights from the applicable covariance
function. For this reason, kriging is generally
applied only to the n nearby data, where the
neighborhood of nearby data for consideration
moves along with the location u being esti-
mated.

Now if we estimate the random func-
tion Z(u) using, for practical computational
reasons, only a limited number of nearby data
values in eq. 5 (n is chosen smaller than the
total number of data available, N), it is appar-
ent that we are giving greater weight to the n
nearby data than to the remaining, N-n, more-
distant data (in OK) or to the global, stationary
mean, m (in SK). Indeed, in both eq. 4 and 5,
the overall weight assigned to the global mean
is explicitly zero. This amounts to implicitly
re-estimating that prior expected value for
each such neighborhood of nearby data. If we
conduct a separate data search for each loca-
tion u being estimated, we are estimating m as
a function of u, thus we have a location-spe-
cific estimate, m*(u).

Although m*(u) is only an estimate of
the true (but unknown) location-specific
expected value, m, it seems more satisfying
intuitively to hold that local estimates would
be reflected more accurately by deviations
about a local mean (in contrast to deviations
about a global and constant mean), assuming
there are sufficient data to provide a good esti-
mate of that local mean.

Substituting our local, estimated
expectation, m*, into eq. 4, we can write

Zrog (W)= X v, (w)Z(u,) =

a=1
n n

> A (w)Zuy) +|1- X, A, (u) |m* (w),
eq. 6

a=1 a=1

which demonstrates that the ordinary kriging
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estimator is effectively a simple kriging esti-

mate incorporating a location-dependent esti-
mate of the prior expected value, m*(u) =
E{Z(u)}. It is this implicit re-estimation of the
local mean at every point that accounts for the
well-known robust nature of the ordinary krig-
ing estimator (Armstrong and Boufassa, 1988;
Boufassa and Armstrong, 1989; Englund,
1990).

Were there sufficient measured mate-
rial-property data to use ordinary kriging in the
estimation of the local ccdfs in a simulation
problem, there would be no need for an exter-
nal source of soft data. It is precisely because
we are forced to model in a data-sparse envi-
ronment that the ability to add that external
information, the E[Z(u)}=m* in eq. 4 and 6,
can greatly improve the geologic reasonable-
ness and robustness of the resulting models.

GSLIB-Lynx Integration

Development of a piece of computer
software necessarily becomes an undertaking
that emphasizes specifics. The development of
GLINTMOD is no exception. However, the algo-
rithm underlying the integration of GSLIB
simulation subroutines with geologic frame-
work models constructed using the Lynx GMS
is completely general. The critical feature is
the ability to extract from a geometric frame-
work model the identity of the geologic unit
inferred to exist at an arbitrary, unsampled
location within the model domain, at which a
simulated material-property value is required.
Beyond the specific coding necessary to read
and write common file formats and to execute
the necessary translations and rotations of
potentially different model-coordinate sys-
tems, neither the GSLIB subroutines nor the
Lynx GMS are mandatory components of the
integration process. The methodology is
closely allied with the concept of sequential
Gaussian simulation, because of the simplicity
and general applicability of this approach for
modeling continuous variables (Deutsch and

Journel, 1992). However, the GSLIB subrou-
tine SGSIM is only one possible implementation
of the sequential simulation concept. In similar
manner, there are many three-dimensional
geometric modeling packages available. Virtu-
ally any other program that produces three-
dimensional geometric models of geology
could be substituted for the Lynx GMS as a
source of soft information in the GLINTMOD
integration approach.

Conceptual Development

Conceptually, the integration process
incorporated into the initial implementation of
GLINTMOD is fairly straightforward. The pro-
cess is essentially nothing more than a check
of the results of the standard SGSIM data
search, followed by a call to the Lynx model
export file if appropriate. The logic of the
Lynx-GSLIB relationship is illustrated in the
flow diagram of figure 6. The major part of the
conventional SGSIM simulation procedure is
located on the left-hand side of the flow dia-
gram (part @ of figure 6). Additions to the
simulation logic are indicated by boxes and
logical connections shown in the heavier line-
weight items mostly on the right-hand side of
the figure (®).

The sequential Gaussian simulation
process is initiated in the conventional manner
(Deutsch and Journel, 1992) by mapping the
hard conditioning data into model coordinates
and defining the random simulation path
through the model domain. At each node to be
simulated, SGSIM searches a user-specified
neighborhood surrounding that location for
hard conditioning data. These data presumably
provide the most reliable, local conditioning
information, and thus they are examined first.
The algorithm then searches for previously
simulated grid nodes. SGSIM allows the user to
specify both a minimum and a maximum num-
ber of original data to use in simulating a
vacant grid node, as well as to specify the
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Figure 6. Flow chart illustrating the logic of the GSLIB-Lynx integration algorithm. Circled
numbers are keyed to discussion in text.

GSLIB-Lynx Integration 17




maximum number of previously simulated val-
ues for consideration.

The number of previously simulated
values that can be located by the search strat-
egy during the early stages of simulation is
small. In a data-sparse modeling environment,
it is also likely that the search process will not
find any of the original conditioning data. The
unmodified SGSIM algorithm handles this
lack of local information either by leaving the
grid node unsimulated or by selecting a value
at random from the global cumulative distribu-
tion function. However, as indicated by the
first decision point in the logic diagram of fig-
ure 6 (@), GLINTMOD recognizes that inade-
quate conditioning information has been found
within the search neighborhood and issues a
call to the Lynx export file containing the
stratigraphic-unit information for soft data.

GLINTMOD then reconciles the SGSIM
model coordinate system with the Lynx model
coordinate system and uses the proper three-
dimensional spatial description to locate the
proper Lynx-model cell containing the grid
node to be simulated. GLINTMOD assumes that
the simulation grid forms a subset of the host
Lynx model. If the current simulation node
falls outside the Lynx model domain, GLINT-
MOD returns a null value to the simulation algo-
rithm, effectively skipping simulation at that
location (@). This procedure restricts simula-
tion to regions of interest defined by the Lynx
geologic model. The principal reasoning
behind this procedure is to allow simulation to
be limited to “meaningful” Lynx volume ele-
ments, such as below the topographic surface
or to a specific geologic unit.

Once GLINTMOD has identified the
appropriate Lynx-model cell, the algorithm
queries the Lynx export file and obtains the
identity of the dominant geologic unit con-
tained within that cell. The expected material-
property value corresponding to that geologic
unit is then identified, transformed to normal-

score space using the same normal-score trans-
form used for the hard conditioning data, and
passed back to the main SGSIM simulation pro-
gram (®). This process effectively repositions
the central tendency of the cumulative distri-
bution function, conditioning it to the subglo-
bal, unit-specific expected value. The actual
material-property value assigned to the current
grid node is sampled randomly from this new
unit-specific ccdf (®), and the likelihood is
that the simulated value will be consistent with
the material-property values that are generally
associated with that unit. However, uncertainty
considerations dictate that there is a finite
probability that the simulated material prop-
erty may be quite different. The newly simu-
lated node is added to the set of “previously
simulated values,” and the simulation process
continues until the entire simulated grid is
completed.

Gridded Model Representation

The Lynx GMS currently has dimen-
sion limitations that allow a maximum of 200
uniformly spaced grid cells in each principal
direction. This limitation makes it likely that
the Lynx grid, in any particular model, will
need to be constructed in such a way that will
maximize its areal coverage and minimize het-
erogeneity of unit classifications within each
grid cell.

The two modeling packages must use a
consistent method to transfer information
between the Lynx geometric model and the
GSLIB simulation routine. The most direct
method of passing consistent location informa-
tion between the two software packages is to
use “real-world” coordinates. On the Yucca
Mountain Project, these consist of Nevada
state plane coordinates (east, north, and eleva-
tion). The Lynx GMS package simultaneously
maintains internal references to grid blocks
both in terms of real-world, global coordinates
and of a user-specified model-grid coordinate
system. The user-specified grid may be
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defined in any desired orientation and consists
of volume elements that are identified by their
centroid coordinate location. GSLIB model-
ing algorithms, however, rely solely upon an
integer-indexed orthogonal grid that is refer-
enced to a user-specified origin.

If both the Lynx geometric model and
the GSLIB simulated material properties
model use the same directions as their princi-
pal coordinate axes [e.g., (X,y,z) = east, north,
elevation], conversion between coordinate sys-
tems is relatively straightforward, and consists
simply of multiplying the relevant index by the
grid-block size and adding offsets related to
local grid origin. However, if the geology
being modeled requires use of an off-angle
local grid, translation between model coordi-
nates and global coordinates will require both
rotation and translation computations.

Programming Considerations

GLINTMOD was developed using struc-
tured Fortran-77 programming consistent with
that of the GSLIB software library. A single
main subroutine executes the integration of the
two models by calling both new and existing
subroutines and functions from the SGSIM sim-
ulation program of GSLIB. Most of the major
steps in the integration process (figure 6) are
written as independent subroutines. This pro-
gramming approach imparts a modular nature
to the overall integration. However, the
approach also requires consistency in coding
between the pre-existing GSLIB subroutines
and the new subroutines that provide the link
between the two main packages. Each subrou-
tine is independent of its calling program. As
such, each program segment could be devel-
oped separately and tested against manual cal-
culations for verification of proper function.

Prototype Model Demonstration

The completed GLINTMOD interface was
tested in a prototype mode to demonstrate the

functionality of the module. Prototype, syn-
thetic models were devised that tested specific
aspects of the desired integration function.
One prototype modeling exercise consisted of
a simple, two-dimensional model grid in
which the coordinate axes of the Lynx “model”
file and the sGSIM model were parallel to each
other. Another test exercise consisted of a sim-
ulated model for which the axes were rotated
with respect to the global coordinate system
used by the constraining geometric model.

Parallel-Grids Example

The parallel-grids prototype modeling
exercise was designed to test performance of
GLINTMOD in a situation that was known to pro-
duce geologically unrealistic results when soft
information was not incorporated. This type of
model would be similar to some of those pro-
duced by Rautman and Robey (1994; Wilson
and others, 1994) in three-dimensions, in
which conditional simulations were con-
structed in regions extending significantly
beyond the range of available conditioning
data. These earlier models, while statistically
similar to one another and to the hard, condi-
tioning measurements, exhibited the presence
of stochastic artifacts that appear as rock units
in locations incompatible with geologic under-
standing (figure 7).

A hypothetical model of layered
stratigraphy was defined consisting of four
geologic units, as shown in figure 8. This con-
ceptualized geologic model is broadly similar
to the layering exhibited by ash-flow deposits
at Yucca Mountain. The overall layering was
defined as horizontal and parallel to the
orthogonal simulation grid used for SGSIM. The
hypothetical model was then discretized to
simulate the format of an export file from a
typical Lynx geometric block model. Soft
information, consisting of an “expected”
porosity value appropriate to each different
geologic unit, was assigned to each discretized
block location.
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Figure 7. Cross section showing simulated stochastic artifacts that appear as high-
porosity rock units in geologically unreasonable positions in the right-hand three-quarters
of the figure. Geology consists of horizontal, alternating low-high-low porosity units as
represented on the left-hand portion of the figure. Arrows indicate positions of conditioning
drill holes. From information in Rautman and Robey, 1993.

A set of artificial drill-hole records
(figure 9) was fabricated based on the concep-
tual geologic model to serve as hard, condi-
tioning data for the simulator. These data were
generated in a manner intended to be consis-
tent with the general nature and availability of
field data encountered during previous model-
ing exercises at Yucca Mountain. The data are
irregularly spaced in the horizontal dimension,
in a manner intended to represent somewhat-
clustered drill-hole locations. The vertical
spacing is much closer than the horizontal
spacing, again consistent with the actual spac-
ing of samples along drill holes. The vertical
extent of data along any particular drill-hole
trace varies as well; some drill holes contain
intervals of missing data, much as might be
encountered in the field as a lost-core zone. A
statistical summary of the hypothetical condi-
tioning data is presented in table 2. ‘

The drill hole records have been posi-
tioned within the model domain to demon-
strate how the addition of soft, constraining
information will improve the simulation of
porosity values consistent with the underlying
geologic model, specifically in those portions
of the domain that are beyond the range of spa-
tial correlation captured by the variogram.
Drill holes 1 and 2 are relatively close to each

other. Together, these conditioning data plus
the range of spatial correlation provided as
input to the simulator will constrain stochastic
modeling in this portion of the model. Note
that these holes do not extend vertically
through the entire model domain. Drill hole 3,
on the other hand contains a long record that
provides information on every unit. However,
there are no supporting data within the range
of correlation (arbitrarily set equal to 1,000
feet or one quarter of the domain width) that
will allow this information to propagate
beyond the immediately adjoining region, as
required by the underlying conceptual geo-
logic model. This is the modeling situation that
has, in the past, allowed unconstrained genera-
tion of stochastic artifacts inconsistent with the
conceptual geologic framework (figure 7).

Geostatistical simulation of porosity
was performed on a two-dimensional grid dis-
cretizing the domain shown in figure 9. The
simulation grid consists of 40 cells horizon-
tally and 30 cells vertically; dimensions of
these cells are assumed to be 100 feet long and
50 feet high. The geometric model (figure 8)
was discretized to represent a Lynx block
model comprised of blocks 200 feet long by
100 feet high covering the same model extent.
This difference in scale of resolution is
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Figure 8. Hypothetical, four-layer geologic model used as the basis of the parallel-grids
prototype model. Locations of hypothetical drill holes indicated, as are sampled intervals
within drill holes. Discretization of Lynx model uses 100x200-t cells (illustrated in lower left
corner). Dimensions in feet.
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Figure 9. Three fabricated drill-hole porosity records generated based on the
hypothetical, four-fayer geologic model of figure 8. Dimensions in feet; porosity as a
fraction.

Table 2: Statistical Summary of the Four Hypothetical Geolbgic Units from the Parallel-Grids
Prototype Model

[Values are assumed porosity as a fraction; the coefficient of variation is defined as the standard deviation divided by the mean]

Layer 1 Layer 2 Layer 3 Layer 4 Composite

Mean 0.23 042 0.27 0.60 0.37
Standard Deviation 0.04 0.05 0.10 0.07 0.16
Coefficient of Variation 17% 12% 37% 12% 44%
Minimum 0.20 0.35 0.10 0.50 0.10
Maximum 0.30 0.50 0.90 0.75 0.75

No. of Data 7 9 21 11 48
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intended to capture an anticipated emphasis on
detailed resolution of material properties for
subsequent physical-process (i.e., flow) mod-
eling while geometric information probably
will be extracted from a framework model of
the entire Yucca Mountain site, for which the
block size is controlled by the 200-cell limita-
tion (see page 18).

Modeling parameters for the simula-
tion were selected specifically to demonstrate
the impact of soft information on portions of
the model not adequately constrained by hard
drill-hole data. A simple variogram model was
constructed using a single spherical structure
with a horizontal range of spatial correlation
equal to one quarter of the model domain
(1,000 feet). This range of correlation is neces-
sarily a composite range, such as that dis-
cussed by Rautman and Flint (1992). The
vertical range of correlation was provided
through assignment of a vertical-to-horizontal
anisotropy ratio of 0.15; thus the vertical range
of correlation is 150 feet. A small nugget effect
of one-tenth the total sill was added to reflect
added variability of values at very short sepa-
ration distances.

The search neighborhood for the simu-
lation algorithm was specified as 300 feet in
the horizontal dimension, with an anisotropy
ratio of 0.15. This value is smaller than might
be used in a real modeling exercise of similar
size and extent. The restricted search neigh-
borhood was imposed to force GLINTMOD to
refer to the Lynx export file for soft informa-
tion. Recall that the initial version of GLINT-
MOD branches to the Lynx model “on demand”
only at those grid nodes where no hard data or
previously simulated values are found within
the search neighborhood.

Figure 10 shows a single stochastically
simulated model of porosity values for the
model domain produced using only the hard
drill hole data (no GLINTMOD). This model hon-
ors the hard data at the location of those data

(by construction), and the statistical character
of the overall model is quite similar to that of
the input data (figure 11). The model is some-
what horizontally layered as specified by the
input variogram model and its associated
anisotropy ratio, and these layers, which are
identifiable as lenses of similar grey level, can
be observed to persist for distances of up to
about 1,000 feet (one-quarter of the 4,000-foot
model domain). Correlation within individual
lenses is stronger at short distances, and the
degree of that correlation progressively dimin-
ishes as separation distances approach 1,000
feet.

However, the layers of figure 10 are
markedly more lenticular and discontinuous
than the desired, underlying conceptual geo-
logic model (figure 8). Closer observation
indicates that the concept of a four-layer model
is captured to a slight degree. Generally, there
is a tendency for higher porosity values (darker
greys) to occur in the lower one-half of the
model and again somewhat in the middle part
of the upper-half. A weak band of lower poros-
ity values (lighter greys) occurs approximately
in the middle of the figure and again, although
to a lesser extent, near the top. Nevertheless, it
is clear that this model is only poorly condi-
tioned by the data. This effect of inadequate
conditioning data has been accentuated by the
choice of a limited search neighborhood,
which allows data values to be located only
within about one-third of the actual range of
spatial correlation.

Figure 10 serves as a basis of compari-
son for a property model incorporating the soft
information from a Lynx-style geometric
model, which is shown in figure 12. During
simulation of this porosity model, if no condi-
tioning data (or previously simulated values
that presumably already reflect the influence
of hard conditioning information) were located
within the 300 by 45-foot, elliptical search
neighborhood, the GLINTMOD main program
issued a call for soft information from the
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Figure 10. Simulated porosity model generated using only the hard conditioning drill-
hole data of figure 9. Dimensions in feet, porosity as a fraction.
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Figure 11. Histograms comparing (a) drili-hole data from figure 9; (b) porosity model
simulated using only hard conditioning data; and (c) porosity model simulated using hard
conditioning data and soft information from conceptual model of figure 8. Vertically shaded
regions each represent one standard deviation.
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Figure 12. Simulated porosity model generated using both the hard conditioning drill-

hole data of figure 9 and material-property expectations from conceptual geologic model
of figure 8. Dimensions in feet, porosity as a fraction.

GSLIB-Lynx Integration 23




Lynx export file (figure 6, ®@). The soft infor-
mation represents an a priori expectation of
the material property, given that the otherwise
unconditioned grid node belongs to a specified
geologic unit. After a specific value for the
simulation node is sampled from the unit-spe-
cific distribution having that a priori expected
value, the simulation process moves to the
next node along the random path, and the sim-
ulated value enters the set of grid nodes that
will be searched and incorporated into subse-
quent simulated nodes as appropriate.

The differences between figures 10 and
12 are obvious. Porosity values are distinctly
more continuous across the entire model
domain in the simulation produced using soft
information extracted from the geometric
model via GLINTMOD. In particular, reproduc-
tion of the lowermost, high-porosity unit,
which was conditioned by only the one drill
hole (hole number 3; figure 8) is much
improved over the model of figure 10. The
existence and persistence of this particular unit
at distances of more than about one-half the
spatial correlation length away from the drill
hole location is due solely to the soft informa-
tion incorporated into this model. The persis-
tence of the alternating low- and high-porosity
units in the upper portion of the model is also
much improved over the model that uses only
the hard data.

Similar to the model shown in figure
10, the GLINTMOD version of figure 12 honors
the conditioning data at the drill hole locations.
The variogram is honored as well; compare,
for example, the horizontal and vertical extent
of the various distinct-color lenses within the
four generalized geologic units. However, as
indicated by the histogram of the GLINTMOD-
produced model in figure 11, the statistical
character of the input data is not strictly repro-
duced. Additional information not contained in
the histogram has been added to the model,
only in this case, that additional information
consists of a geologist’s conceptual representa-

tion vis-a-vis the Lynx export file. It is unclear
exactly to what degree the statistics of the hard
conditioning data should be reproduced. If the
available drill hole data are representative of
the overall domain to be modeled, presumably
the two different types of information are con-
sistent, and the statistics of the simulated
model will resemble those of the input hard
data. If the sampled hard data are biased with
respect to the overall geologic model, it is only
reasonable to expect that the statistical proper-
ties of that overall domain will depart from
those of the limited and nonrepresentative hard
data. In the present case, note that the lower-
most high-porosity unit of figure 8 is repre-
sented only poorly by one drill hole (compare
figure 9). The histograms of figure 11 reflect
the influence of this undersampling of a later-
ally extensive, high-porosity layer.

Note that although the lateral continu-
ity of the four conceptual geologic units is
much improved in the GLINTMOD-generated
version of figure 12, the exact position of the
“contacts” between units and the exact magni-
tude of porosity values at any specific location
is uncertain. This uncertainty 1s as it should be
for real geologic units sampled by only three
drill holes extending through only part of the
vertical extent of those units. Although soft,
interpretive geologic information, such as
would be represented by a real Lynx geometric
model, has been added, that addition does not
result in a single-valued, deterministic repre-
sentation of material properties.

Figures 13 and 14 illustrate aspects of
this geologic uncertainty. Figure 13 shows an
expected-value profile for the model generated
using only hard drill hole data. Figure 14 is the
equivalent expected-value representation of
the model generated using GLINTMOD and the
Lynx export file. Both illustrations were pre-
pared by simulating ten different stochastic
realizations, all of which are equally likely and
depend only on the random number seed used
to initiate the simulation process. The ten sto-
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chastic images were then averaged, pixel by
pixel, and the resulting mean (expected) value
displayed on the cross sections. As the number
of simulations combined into an expected-
value summary becomes large, the result typi-
cally approaches the value modeled through
the geostatistical algorithm known as ordinary
kriging (Deutsch and Journel, 1992; Rautman
and Istok, in press).

The resemblance of figure 14 to the
conceptual geologic model of figure 8 is par-
ticularly noticeable. All four layers are repro-
duced quite well, although there is a modest
amount of internal variability that may be
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related principally to the small number of sim-
ulations (10) averaged to produce the
expected-value representation. Some variabil-
ity is also caused by the different values con-
tained in the drill hole data. The expected-
value profile of figure 13 does a significantly
poorer job of reproducing the expected, con-
ceptual geologic model. This failure is attrib-
uted principally to the unrealistically small
search neighborhood specified for the model-
ing exercise, a neighborhood that was selected
specifically to push the limits of hard-data sim-
ulation.
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Figure 13. Expected-value profile produced using only hard drill-hole data from figure 9
to condition ten individual stochastic realizations of porosity. Compare to single realization
of figure 10. Dimensions in feet, porosity as a fraction.
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Figure 14. Expected-value profile produced using both hard drili-hole data from figure 9
and soft geometric information from figure 8 to condition ten individual stochastic
realizations of porosity. Compare to single realization of figure 12. Dimensions in feet,

porosity as a fraction.
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Rotated-Grids Example

A second prototype modeling exercise
was developed to test the software in situations
where the simulation grid and the soft-infor-
mation grid are not aligned. In this exercise,
the hypothetical geometric model consisted of
four geologic units, essentially identical to
those of the parallel-grid prototype; however,
the strata were rotated 6 degrees in the x-z
plane to represent dipping stratigraphic units
(figure 15). The geometric block model used
to discretized this dipping geology (pseudo-
Lynx export file) was oriented parallel to the
dip. The hard, drill-hole porosity data were not
rotated, but were positioned as vertical drill
holes located in the same three positions. The
objective of this modeling exercise was to
examine the performance of GLINTMOD in a sit-
uation requiring rotation of two completely
independent grid systems.

All other modeling parameters and grid
specification details were identical to those
used in the parallel-grids example. The simula-
tion consisted of 40 cells horizontally by 30
cells vertically; each cell was 100 feet by 50
feet. The geometric model consisted of cells
double the dimensions of the simulation grid:
200 feet by 100 feet. The range of spatial cor-
relation was set arbitrarily at 1,000 feet in the
direction of maximum continuity, dipping 6
degrees from the horizontal toward the “east,”
with an anisotropy ratio of 0.15. The search
radius was also set to dip 6 degrees from hori-
zontal, with a range of 300 feet in the direction
of maximum continuity and with a 0.15 anisot-
ropy ratio. Because the two local coordinate
systems are aligned in different directions, a
portion of the “horizontal” simulation grid lies
outside the physical volume represented by the
constraining, “dipping” geometric model.
Thus there is no soft information in the geo-
metric model to constrain the simulation of
certain material-property nodes. Although a
number of alternative actions could have been

defined in the case where GLINTMOD issued a
call to the non-existent portion of the geomet-
ric model, the simplest solution, not simulating
the node at all, was adopted for this prototype
modeling exercise. This alternative might cor-
respond to interpreting the upper limit of the
dipping geometric model as surface topogra-
phy and “missing values” in the corresponding
portion of the simulation grid to represent
“air.”

Expected-value profiles representing
ten separate stochastic simulations of this
rotated-grid model are presented in figures 16
and 17. Figure 16 represents the base case in
which only the hard drill-hole data are used to
condition the simulations, and figure 17 repre-
sents the case where GLINTMOD accessed the
geometric model at those grid nodes for which
no conditioning data or previously simulated
values were located within the search ellipse.

The general impression from these
rotated-grid expected-value profiles is much
the same as that gained from examination of
the parallel-grid examples in figures 13 and
14. The model created using only the limited
hard data values is relatively unstructured and
does a poor job of reproducing a well-layered
geologic system of contrasting porosity units.
The conditioning drill-hole data are propa-
gated away from the drill-hole locations in the
proper manner; a definite dip of lenticular
units toward the east is apparent in the figure.
However, without the ability to constrain sim-
ulated nodes to the appropriate unit-specific
expected material property or a measured
value (an effect purposely produced by the
short search distance), widely varying porosity
values are generated at the same position in
different simulations and then propagated into
adjoining regions. When these lenses of
widely varying porosity values are averaged
across the suite of ten realizations to create the
expected-value profile, they largely “cancel”
each other and yield the “visually bland,” aver-
age porosity cross section of figure 16.
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Figure 15. Hypothetical geometric model corresponding to the rotated-grid example.
Four geologic units dip at 6 degrees to the east. Drill-hole locations shown in figure 8.

Dimensions in feet, porosity as a fraction.
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Figure 16. Expected-value profile for the rotated-grid model created using only the hard
drill-hole data shown in figure 9. Direction of maximum spatial continuity has been rotated
6 degrees from horizontal toward the right. Dimensions in feet, porosity as a fraction.

DH #3 DH#2 DH#
0.5

2500

2000

Porosity

1500

1000 0

1000 2000 3000 4000 5000 0.

Figure 17. Expected-value profile for the rotated-grid model created using calls to
GLINTMOD and the conceptual framework model of figure 15. Dimensions in feet, porosity

as a fraction.
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The GLINTMOD-generated expected-
value profile of figure 17, however, faithfully
reproduces the four-layer conceptual geomet-
ric model, complete with dipping strata. The
white region in the upper right-hand corner of
the model domain corresponds to the region
that is undefined in the rotated Lynx-model
export file. Although distorted by the 100x50-
foot grid-cell discretization, this “topographic”
surface between low-porosity “rock” and
“sky” dips at the desired 6-degree angle, as do
the various geologic layers. Note that even
though the four geologic units are relatively
well defined and distinct from one another,
there is definite internal heterogeneity repre-
sented in the expected-value profile.

An interesting feature can be observed
in geologic layer 2 near the right-hand side of
the model. This region is strongly influenced
by drill holes 1 and 2 (figure 8), as the two
holes are close together geologically (well
within the range of spatial correlation), and
close enough physically that simulated grid
nodes between the two holes are influenced by
the presence of data from both holes within the
search neighborhood. Layer 2 is relatively well
developed on the left-hand side of the model.
The layer extends as a discrete entity across
the model, dipping at about 6 degrees, until it
reaches the vicinity of the two drill holes. Here
the layer breaks-up, almost appears to bifur-
cate and then reforms immediately adjacent to
the right-hand boundary of the model. This
“modeled confusion” is a consequence of
inconsistency between the hard, drill-hole-
based information and the soft (interpretive),
geometric information.

The drill hole porosity data (figure 9)
were fabricated to represent a horizontally lay-
ered geologic conceptual model. When these
data were applied to the rotated-grid example
case, the spatial “intercepts” of high- and low-
porosity samples in the drill holes were not
adjusted in keeping with the newly imposed
concept of dipping layers (mostly for the sake

of simplicity). Therefore, GLINTMOD calls at
grid nodes located far from the hard condition-
ing data generated simulated values consistent
with a dipping higher-porosity unit throughout
the left-hand two-thirds of the model domain
and also adjacent to the right-hand boundary.
The laterally extensive unit to the west almost
certainly was conditioned to measured poros-
ity values in drill hole number 3. However,

' grid nodes within about 300 feet on either side

of the two closely spaced drill holes were sim-

- ulated in light of both an externally imposed

dipping correlation structure and hard data
indicating equivalent porosity values at essen-
tially the same vertical positions, indicating a
near-horizontal correlation structure. The
“breakdown” of the conceptual model in the
presence of actual hard data conflicting with
that conceptual model is interpreted as a good
indicator that soft information from the geo-
metric model does not overly constrain the
simulation process. GLINTMOD was developed
to provide a numerical-simulation algorithm
with guidance in cases where actual knowl-
edge is effectively absent: a model is then sub-
stituted for observations. If sufficient
observations are present, the data take priority
and drive the simulation process.

Discussion

The prototype test modeling conducted
using GLINTMOD indicates that the integration
of soft, constraining information from a geo-
metric geologic model is feasible, and that it
results in simulated numerical material-prop-
erty models that do reflect the underlying
model conceptualized in the geologic-model
output files. Turning the GLINTMOD interface
“off” destroys this reproduction of the concep-
tual model and results in effectively uncon-
strained property models that would be judged
geologically unreasonable in an actual model-
ing application.

Whether the prototype version of
GLINTMOD is producing truly geologically real-
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istic models in an actual application is another
question. Most numerical modeling algorithms
involve the specification of a large number of
modeling parameters, some of which have
immediate and obvious influences on the mod-
eling output and others of which have more
subtle or obscure influences. GLINTMOD is no
exception. Early application of GLINTMOD to
modeling of Yucca Mountain geology as part
of ground-water travel time modeling exer-
cises for 1995 (GWTT-95) has indicated that
there are a number of these secondary, subtle-
influence parameters that require modeling
judgement. This section discusses a few of the
more notable observations resulting from early
application of GLINTMOD in attempting to gen-
erate material-property distributions for sev-
eral cross sections of Yucca Mountain that are
compatible with the general conceptual model
of the site. Although resolution of these issues
is beyond the scope of the prototype model
development and testing exercise described in
this report, these issues and their associated
work-around or modifications suggest that
additional development and testing activities
with respect to GLINTMOD will be required.

When to Use Soft Information?

As described in the section on “Con-
ceptual Development” on page 16, the proto-
type version of GLINTMOD calls for a material-
property expectation from the Lynx geologic
model only when no neighboring data or, more
generally, inadequate data, are found (figure 6,
®). What, then, determines an “adequate”
quantity of conditioning information? Origi-
nally, the intent was to call GLINTMOD only in
the case where the number of hard data or pre-
viously simulated values located by the neigh-
borhood search was equal to zero. The
examples shown in this report were produced
in this manner (figures 8 through 17).

In applying GLINTMOD to actual model-
ing of Yucca Mountain, it quickly became
apparent that models produced using this

approach appeared more random than sug-
gested by the conceptual geologic model.
Experimentation with the triggering flag for
issuing the subroutine call to the Lynx export
file (figure 6) suggested that setting the test
value to eight (or fewer) conditioning points
produced simulations that followed the input
geologic model reasonably well. Examination
of the behavior of this flag during execution of
an individual simulation indicates that the
Lynx framework model is accessed frequently
during the earliest stages of the simulation pro-
cess (figure 18). However, because the sequen-
tial path through the model domain is random,
the soft information extracted from the frame-
work model is spatially distributed throughout
that domain and quickly constrains the entire
simulated property model so that the number
of external calls plateaus rapidly at approxi-
mately 5 to 10 percent of the total number of
nodes in the domain.
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Figure 18. Graph showing the cumulative number
of GLINTMOD calls to the framework Lynx model as
a function of the total number of nodes simulated.

Use of Unit-Specific Variances

Another parametric value involved in
the geologic reasonableness issue involves the
variance of the ccdf from which the simulated
value is generated (figure 5). The unmodified
SGSIM sequential Gaussian simulation algo-
rithm (Deutsch and Journel, 1992) uses two
alternative values in this simulation process.
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First, if sufficient data are located by the
search algorithm, SGSIM computes both a
kriged value and a kriging variance, which are
taken as the expectation and variance (respec-
tively) of the location-specific cdf. This fol-
lows from multivariate Gaussian spatial
theory: the kriging variance is equal to zero at
a data location, and it increases to a limit of the
variogram sill value (= 1.0) at large distances
from data. Second, if sufficient data (original
plus previously simulated values) cannot be
located by the spatial search, the algorithm
assumes a standardized normal Gaussian dis-
tribution with =1 as the basis of this locally
unconditioned cdf. This, too, follows from
spatial theory: if no additional information is
available, the uncertainty associated with an
unsampled location ought to approach the vari-
ability associated with the data taken without
regard to spatial position. The difficulty with
these rules is that additional information is
being incorporated at unsampled locations
through the GLINTMOD approach. However, that
information is “soft” and consists of the rock
unit inferred (but not known) to exist at an
unsampled location.

Note that although globally the normal-
score variance of the population is, in fact,
equal to one, the variances of the subpopula-
tions within individual geologic units are not.
If the identity of the subpopulation (the rock
unit) is known, the global variance of one
probably overestimates the uncertainty at any
specific (local) unsampled grid node. To
understand this difference between global and
local statistics, refer to the illustration of figure
4. In this conceptual diagram, the variance of
the overall population (left-hand side distribu-
tion) is transformed so that it equals one for the
standard normal distribution (right-hand side
of the main figure). However, for neighbor-
hoods similar to neighborhood number 1
(which could be considered to represent low-
porosity welded rocks), or separately for those
similar to neighborhood number 2 (high-

porosity nonwelded rocks), the variances of
values from these local neighborhoods are
demonstrably less than one. When data are
present (the case actually shown in figure 4),
this variability is captured through the simple
kriging variance. The problem remains to
determine an appropriate variance for use
when data are not present but when the likely
rock-unit identity of the simulation node is
known.

An obvious solution for determining
the proper “width” of the probability density
function is to tie the variance of the empirical
cdf at all unsampled-but-soft-conditioned loca-
tions to the variance of the hard data used to
estimate the unit-specific expected value.
Thus, instead of looking up only an expecta-
tion to use in the case of “inadequate condi-
tioning data found,” the call to the Lynx export
file would return both an expected value and
an “expected” variance. This alternative is log-
ically appealing, and it probably will be the
alternative ultimately implemented, should
development of GLINTMOD continue. Unit-spe-
cific variances will need to be estimated care-
fully, as estimates of the second moment of
any distribution are significantly more sensi-
tive to bias in the underlying data than is esti-
mation of the first moment (mean or
expectation). Outliers resulting from measure-
ment error, misclassification of samples, local
departures from true multiGaussian spatial
behavior, or simply locally anomalous physi-
cal samples exert a disproportionate influence
on the second moment through the squared-
deviation term in the computational formula
for a variance.

Because there has not yet been ade-
quate time to develop and evaluate unit-spe-
cific variances for the prototype version of
GLINTMOD and to implement the necessary
software calls after identification of the issue,
a reasonable heuristic device has been imple-
mented for preliminary modeling. After pro-
gressively reducing the variance by
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experimentation and comparing the resulting
models in a semiquantitative manner, the
within-unit variance was set to a value of 0.2
[relative to the standard normal (6%=1) distri-
bution]. The rationale underlying this appar-
ently arbitrary value is based on the
coefficients of variation of porosity data avail-
able for Yucca Mountain. The coefficient of
variation is a standardized measure of variabil-
ity, and it is defined as the standard deviation
divided by the mean. The observed coeffi-
cients of variation for porosity are essentially
constant across many different geologic units
at Yucca Mountain (see also table 2). Prelimi-
nary analyses indicate that the standard devia-
tions of unit-specific porosity data were
roughly 4045 percent of the standard devia-
tion of the combined porosity data. Therefore,
if the standard deviation of the normal-score
transformed data is one by definition and con-
struction, the appropriate standard deviation of
values for an individual geologic unit is
approximately 0.40 to 0.45. Converting these
values to variances (by squaring) suggests that
the variance of the appropriate ccdf should be
on the order of 0.16 to 0.20. We selected the
larger value of (.20, corresponding to a some-
what more variable probability function.

Resolution of Thin, Hydrologically
Significant Units

A final, preliminary issue involved in
modeling a real-world cross section of Yucca
Mountain involves the coarseness of resolution
available through the Lynx GMS. A Lynx
model is currently limited to a maximum of
200 uniformly spaced grid cells in each princi-
pal direction. This absolute limit and the
requirement that the cells be evenly spaced in a
particular dimension means that it is difficult
to achieve fine-scale resolution of thin, poten-
tially very significant hydrologic units in a
thick vertical sequence that also contains large
vertical intervals of relatively similar material.
Although the Lynx export file contains a com-

plete listing of all model components con-
tained within each cell, GLINTMOD by default
simply reports the volumetrically dominant
geologic component as “the” unit present
within each cell.

Because the Tiva Canyon and Topopah
Spring Tuffs at Yucca Mountain contain quite
thin, but also laterally extensive low-porosity
vitrophyre units near their upper and lower
margins (units Tpcpv3, Tptrvl, and Tptpv3 in
table 1) that are thought to influence ground-
water flow and transport disproportionately to
their volumetric representation in the Lynx
model, a modification to the Lynx export-file
query subroutine has been developed. Specifi-
cally, the look-up routine was modified so that
if one of the vitrophyres composes more than
approximately 10 percent of the volume of the
Lynx grid cell corresponding to a simulation
node requiring soft information, the subroutine
returns “vitrophyre” as the rock type regard-
less of the actual, volumetrically dominant unit
present in that grid block.

Conclusions

Prototype modeling using GLINTMOD
has successfully demonstrated the viability of
a proposed approach for integrating soft, inter-
pretive information contained in geometric
framework geologic models into stochastic
numerical-properties modeling using a geo-
statistical simulation methodology. The
method involves selection of a unit-specific
expected value to control the distribution of
potential values from which the material prop-
erty of interest at an unsampled location is ran-
domly selected. In the current Fortran
implementation, GLINTMOD refers to the under-
lying geologic framework model only at those
locations for which the standard simulation
search algorithm is unable to locate either
hard, measured conditioning data or previ-
ously simulated grid nodes within a user-speci-
fied search neighborhood. The concept is that
if there are no relevant observations close to
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the location to be simulated, the best prior esti-
mate of the material property likely to exist at
that point is the expected (mean) property of
that overall rock type.
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