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Abstract

In this paper, we explore the feasibility of using the distributed Bragg reflector, grown
on the substrate for a VCSEL (Vertical Cavity Surface Emitting Laser), to provide
waveguiding within the substrate. This waveguiding could serve as an interconnection
among VCSELs in an array.

Before determining the feasibility of waveguide interconnected VCSELs, two anal-
ysis methods are presented and evaluated for their applicability to this problem. The
implementations in Mathematica of both these methods are included.

Results of the analysis show that waveguiding in VCSEL structures is feasible. Some
of the many possible uses of waveguide interconnected VCSELs are also briefly discussed.
The tools and analysis presented in this report can be used to evaluate such system
concepts and to do detailed design calculations.
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1 Introduction

Recent progress in molecular beam epitaxy (MBE) has resulted in the ability to
grow a variety of novel devices. One such device that is receiving much attention is
the Vertical Cavity Surface Emitting Laser (VCSEL). Because of the small cavity
size, the gain length in a VCSEL is short. This necessitates a mirror with high
reflectivity in order for the VCSEL to reach threshhold. For ease in processing, the
high reflectance mirrors in VCSELs are typically semiconductor distributed Bragg
reflector (DBR)) mirrors. While such mirrors are critical te the functioning of the
VCSEL device, they might also play another role in an interconnected system of
VCSELs.

In this paper, we explore the feasibility of using the DBR grown on the substrate
for a VCSEL to provide waveguiding within the substrate. This waveguiding could
serve as an interconnection among VCSELs in an array.

Before this system concept can be analyzed, the waveguiding properties of a DBR
grown on a substrate must be studied. There are two approaches which can be
taken for this analysis. One is a standard thin film analysis of planar multilayer
waveguides. The other is an analysis employing an understanding of wave prop-
agation in periodic media. As the DBR is made up of approximately 25 quarter
wave pairs, it can be considered a periodic medium. Since both these approaches
appear at first look to be applicable, we will present both of the approaches and
explain their appropriateness to the problem of interest. :

With the analysis methods explained, we will then present some results from the
analysis. These results will be discussed, and some general ideas of how waveguid-
ing in VCSEL structures can be used in systems will be presented.

The analysis methods and tools presented and developed here can be used to make
design calculations for any system concept using waveguiding in VCSEL structures.
Issues such as epitaxial tolerances, distances and materials can also be addressed.
This will be the subject of a subsequent report.

2 Analysis Methods

To determine which analysis methods are appropriate to find the waveguiding
properties of VCSEL structures, we must first get a clear understanding of what
we want to analyze.

Consider a typical VCSEL structure. A simplified schematic is shown in Figure 1.
We are interested in perhaps guiding the emitted laser light within the substrate
by coupling it into an appropriate mode via a diffractive optical element (DOE)
on the substrate/air interface.

For our purposes, there are several things required from an analysis of the air-
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Figure 1: Simplified VCSEL Structure

substrate-DBR structure. First, it must be determined whether or not a mode can
be guided in the substrate. Then, the propagation constant of the guided modes (if
any) need to be found. Also, the loss associated with any propagating modes must
be calculated. Based on these results, the feasibility of interconnecting VCSELs
using these waveguides can be assessed.

There are two analysis approaches for this type of structure: (1) the electromag-
netic analysis of propagation in a periodic media [YY84, Yeh88]; and (2) the field
transfer matrix approach for planar multilayer waveguides [BW75, CH84]. In the
following sections, these two methods will be described. The application and ap-
propriateness of each method to the problem of interest will also be discussed.

2.1 Electromagnetic Analysis of Propagation in a Peri-
odic Media— the Bloch Wave Approach

This method follows the standard modal analysis of planar waveguides {Mar91],
with the modification of the field form in the periodic cover layer to accomodate

Bloch waves. [YYHT77]

To review, the Bloch wave function is the form a propagating wave in a periodic
medium takes, according to the Floquet theorem [Blo28]. A Bloch wave propagat-
ing in the z direction (in a medium periodic in z) is given by

E(z,z) = Bx () e??, (1)

where K is a constant, called the Bloch wave number, and Ex(2) is periodic, with
the same period as the periodic media. The periodic medium is shown in Figure 2.
Each repeating period is referred to as a unit cell.

The equations for a Bloch wave are derived using the matrix method and trans-
lation operator applied to a periodic medium. Details can be found in Refer-
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Figure 2: Periodic Medium

ence [YYHTT].

The following equations are used in describing a TE Bloch wave.

; L (kow | kiz ) .
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The Bloch wave in the layer with index ny in the n"" unit cell of the periodic

medium is
E(l‘) — EK(x)ein — [(aoeikm(r—nA) + boe—iklx(x—nA))e—iK(x—nA)} K= (11)
and the Bloch wave number can be written explicitly as

P! (A+D>
= A arccos 9

(12)




ag and by refer to the magnitude of an incident and reflected wave on layer n; in
the first unit cell.

There are several points to note about Bloch waves. First, the waveform consists
of a periodic function multiplied by %%, Regions where

;A;D|<1 (13)

correspond to real K, and hence propagating Bloch waves.

Where lﬁ%ﬂl > 1, K is complex with a value of K = %% +1K;. K; is the imaginary
part of K, and m is an integer. In these regions, the Bloch wave is evanescent.
These are considered the forbidden bands of the periodic medium.

For a waveguide, as in Figure 3, with a low, constant index material as one cladding

)
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b
2
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Figure 3: Bragg Reflection Waveguide

and a periodic index medium as the other cladding, the assumed solution for the
electric field of the TE mode is:

t
e(Ia(x"l' ) 5

E(z) = q ¢ cos(kg(z+ 1)) + casin(ky(z + 1)), :—E—t<§ ; <0 (14)
Ex(z)ek=, 0<2
where
@ =[B7 = (22 (15)
and
kg = (%?V~52 (16)
Continuity of the field and its derivative on the two interfaces, z = 0 and z = —¢

must be satisfied. This requires the following dispersion relation to be satisfied for
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TE modes.

o COs kot — kg sin k,t LoetA_ A p
g(q cos kg gsmg) e )

qo sin kgt + kg cos kgt -t e kA _ A4+ B

For confined propagation in the guide, f,q, and &, are real, and the left-hand
side of the dispersion equation is real. In general, the right-hand side of the
dispersion equation is complex. It is only real when the Bloch wave is evanescent,
or equivalently when the Bloch propagation constant is in a forbidden band. This
propagation is lossless, since 3 1s real. '

This type of confined and lossless mode propagation can also be explained in a
more intuitive manner [YYHT77]. In order for guiding, the mode must experience
complete reflection at both interfaces. The reflection at the guide-periodic medium
interfaces requires that the mode correspond to a forbidden gap in the periodic
medium. In order to ensure that the mode propagates, the round trip phase delay
in the guiding region must be a multiple of 27.

In practice, the periodic medium is finite in extent, hence there will not be 100%
reflectance at the guide-periodic medium boundary, resulting in loss. The effective
attenuation can be estimated from the following rationale. [Yeh88]

The reflectivity, R, of a finite Bragg reflector with N unit cells can be written as

e lcp
ICJ2 + ( sinhx;a )2

sinhNK;A

(18)

Let 8 be the angle of incidence of the guided ray in the guide layer. With each
round trip, the ray travels a distance of 2¢ tan § along the direction of propagation.
Therefore, the number of roundtrips a ray makes while traveling a distance L along
the waveguide 1s

L
= 19
2ttand (19)

The attenuation with each round trip is R, therefore the attenuation with A round
trips is BV. Using the standard form for an attenuation constant, «

el = RV, (20)
then R L
o= riamd o5t " F =)
If ¢ is given in units of meters, then the attenuation in (ci_r]?l is given by
——-—2(41'35;)0‘ : (22)




2.1.1 TM modes

The equations for TM modes are the same as the TE mode equations, except for
A, B, C, D and the dispersion equation. The appropriate equations are as follows.

., )
___—ikiga _ i nzkh: n1k2a; nlkosb 923
A=e {cos(ksz) 5 (n%kh + n%ku) sin(kazb) (23)
- /2 2
tk1za t n2k1x n1k2:s .

=e =g - kozb 24
b=e { 2 (n%k21: n%klx) Sm( : )] ’ ( )
C =5 (25)
D=4 (26)
L (™ ? [ ga cos kgt — kgsink,t\ ik e KA _A_B (2

*\ng Qasinkyt + kycoskyt ) 12KhA _ A+ B

2.2 Field Transfer Matrix Approach for Planar Multi-
layer Waveguides

The second method proposed to analyze the waveguiding situation in Figure 1
is based on having a unimodular field matrix, M;, to relate the field amplitudes
U,,V; at a distance z; to the corresponding amplitudes at another point, z;_;.

[CH84]
2]

The total electric or magnetic field waves are sums of positive and negative-going
waves, and have the form

explik(+az + By)] (29)

here a=ncosf =/n? — B (30)
" B=nsind (31)

k=T (32)

20 = % (33)

The geometry is illustrated in Figure 4.

For the TE case, with propagation in the y direction, U refers to F,, and V refers
to —H,. In this case, the unimodular transfer matrix is

M, = { oS ¢; ——;j; sin ¢; } (34)

—vy;sin¢;  cos ¢;
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where

a
Tire) = (35)

Zo
¢; = kaj(z; — zj_1) = phase thickness of the layer (36)

For completeness, in the TM case (propagation in the y direction) U refers to H,,
and V refers to E,. The unimodular transfer matrix is the same as in Equation 34,

with.
oz,

Tirm) = , (37)

For a stack of J films, the field transfer matrices multiply,

M:HM (38)

=1

For a waveguide composed of a stack of thin films, as in Figure 4, the fields in the
cover can be related to those in the substrate by

Uc Us
KRl 8

where M is the transfer matrix for the stack of films.
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Figure 4: Thin Film Waveguide

Solutions to this situation fall into three categories:

e Bound Modes
e Radiaton Modes
e Leaky Modes




2.2.1 Bound Modes

For bound modes, the fields in the cover and substrate must decay exponentially
from the stack (i.e. the radiation condition must be satisfied). Consequently,
the waves in the cover are negative-going waves, and those in the substrate are
positive-going. Equation 39 becomes

{_I]UczM[l}Us | (40)

Yc vs

Equivalently, the condition for a bound mode is

x(B) = Yemi1 + Yoysmaa + mar + Ysmagy = 0 (41)

Only a set of discrete roots (i.e. discrete § values) satisfy the modal condition.

According to the propagation directions and conventions assumed earlier, Equa-
tion 41 requires as and a¢ to have positive imaginary parts.

For a lossless dielectric waveguide, 3 is real, and 8 > n.,ns. As a result, x(f) is
imaginary.

2.2.2 Radiation Modes

For radiation modes, the field in the cover and substrate is a standing wave. Tech-
nically, the mode could decay exponentially on one interface and be a standing
wave on the other. For a full radiation mode (standing wave on both claddings),
B < ng,ns. Equation 39 still is valid, but the modal condition, Equation 41, is
not satisfied. There is a continuum of g values for radiation modes.

2.2.3 Leaky Modes

Leaky modes are extensions of the bound modes that occur below the cutoff of
the standard bound mode. For leaky modes, the modal condition, Equation 41, is

satisfied, but # takes on complex values. Complex  values for leaky modes are
discrete.

The derivation for x(8) in Equation 41 relied on the choice of positive-going or
negative-going waves in the bounding media to satisfy the radiation condition.
When £ is complex, it is only the inward-traveling (i.e. going toward the stack)
wave that can satisfy the radiation condition. Therefore, for leaky modes, the
assumptions for the waves in the cover and substrate are opposite the assumptions
made for guided modes. Consequently, in order to use Equation 41, as and a¢
must have negative imaginary parts. Because the real and imaginary parts for any
« in a lossless medium are of opposite sign, the previous condition is equivalent to
requiring the real parts of ag and a¢ to be positive.

8




3 Comparison and Appropriateness of the Anal-
ysis Methods

The two methods described above are very similar in their approach of assuming
general forms of the solutions for the fields, and then choosing appropriate con-
stants to ensure that Maxwell’s equations and boundary conditions are satisfied.
The key difference, however, is in the assumed wave forms.

For the case shown in Figure 3, the assumed wave form in the periodic media for
the first method is given by

E(.’E, 2’) _ EK(x)ein — [(aoeiklx(:h-nA) + boe—iklz(x—nA))e—iK(x-—nA)] 6in6iﬂz (42)
Here, (3 is real, and K is complex.

The assumed wave form in the periodic media for the second method is given by
E(ZE, Z) — (Cleika:c + C2e—ikax)eikﬂz (43)
In this case, § is complex.

Comparing Equations 42 and 43, there are some differences.

In Equation 42, the terms in the square brackets form a periodic function. There-
fore, the assumed wave form is a periodic function multiplied by a complex expo-
nential in . The propagation constant (in the z direction) is real; hence there is
no loss with propagation in the z direction.

In Equation 43, there is no complex exponential in z multiplying the periodic
terms in parentheses. Also, the propagation constant (in the z direction) in this
case is complex, so there is loss with propagation in the z direction.

In the Bloch analysis, the solution is a confined, lossless mode (assuming a periodic
medium that is semi-infinite in extent). In the thin film analysis, the mode is
confined, but it is not lossless.

This now brings up the question of which method to use. According to the Floquet
theorem, the Bloch wave is the appropriate form for a wave propagating in a
periodic medium. Therefore, the appropriateness of the two methods depends
on whether or not the layered medium can be considered a periodic semi-infinite
medium.

We refer to Reference [CYYT7T7], in which the confined propagation was observed
in a Bragg reflection waveguide. Although the oscillatory behavior in the layered
Bragg medium could not be resolved in their experimental setup, attenuation !
measurements eliminate the possibility that the observed mode is a leaky mode.

Also, calculations show that the K values for such a Bragg reflection waveguide
are such that the field has severely decayed after a few periods. Consequently, a

IThere is attenuation, because the Bragg reflector has a finite number of periods.

9




finite number of periods can be a good approximation to the semi-infinite layered
medium, initially assumed for the Bloch waves.

4 Bloch Wave Implementation

The electromagnetic analysis of the propagation in a periodic media using Bloch
waves has been implemented in Mathematica [Wol91]. The code is shown in Ap-
pendix A. The structure modeled in this example is shown in Figure 3, with
parameter values given in Table 1. Values for A, ny,n9,ng,n,,%,b and a fully de-
scribe the structure.

Parameter | Value

A 0.98010°¢

n 2.984

g 3.5235

Ne = Ng 1

t to be determined
0.069510~¢

a 0.0821107¢

Table 1: Parameter Values for Example 1

The program has built in functions for the evanescent condition (Equation 13),
the left hand side and right hand side of Equation 17, the Bloch wave number
(Equation 12) and the effective attenuation constant (Equation 21).

Figure 5 is a plot of [4Z2]| — 1 vs. k. When the curve in Figure 5 is greater
than zero, the Bloch propagation is in the forbidden region. This is required for a
guided mode.

Figure 6, which is a plot of A+ D vs. kf3, is useful to check that the correct sign
for the square root is used in Equation 6. The sign of the root should be the same
as the sign of A+ D.

For any value of 3 that satisfies the requirement of propagation in the forbidden
region in Figure 5, the right hand side of Equation 17 is real. This is seen in
Figure 7, which is a plot of the right hand side of Equation 17 vs. k. There exists
a corresponding confined, lossless mode when Equation 17 is satisfied. Figure 8
shows a combined plot of the RHS and LHS of Equation 17 as a function of guide
thickness for k8 = 3.44. The intersections correspond to phase thicknesses of
2m for the mode propagating with angle # = arcsin[-2-]. For these thicknesses,

nglk
a confined, lossless mode with corresponding value exists. A similar plot for

kB = 3.2 is shown in Figure 9.
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Figure 5: Plot of |4X2| — 1 vs. k8 .

Figure 6: A+ D vs. kf8
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Figure 7: Plot of the right hand side of the dispersion equation vs. kf3.
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Figure 8: Combined plot of the RHS and LHS of the dispersion equation as a function of
guide thickness for k8 = 3.44 '
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Figure 9: Combined plot of the RHS and LHS of the dispersion equation as a function of
guide thickness for k8 = 3.2

5 Field Transfer Matrix Approach

For completeness, code written to implement the unimodular matrix method is
included in Appendix B. There are two versions, depending on the structure to be
analyzed. In both cases, the thickness and index of each layer must be specified.
In one version, each layer is explicitly described. In the other version, which is
appropriate for the periodic layered structure in Figure 3, the thicknesses and

indices to describe one unit cell are explicitly given, along with the number of unit
cells.

The way these implementations work is to provide a function x[3], which is a
complex function of a complex argument. Roots of x{f] correspond to bound and
leaky modes, as described in Sections 2.2.1 and 2.2.3. Roots to this function can

be found by plotting the function and graphically looking for the roots, or by using
built-in functions in Mathematica.

The correctness of the implementation with explicitly described layers has been

verified by applying it to a conventional, 3-layer, dielectric slab waveguide. Results
agree with other methods.
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6 Examples of Confined Lossless Modes in a
VCSEL Structures

In this section we present the results of the Bloch analysis method applied to two
examples. A schematic for the structure for both cases is given in Figure 3.

6.1 Example 1

The parameters for the first example are given in Table 1.

Five confined, lossless modes of the structure are shown in Table 2. The table shows
for each mode the Bloch number, ray angle, and attenuation with varying number,
N, of unit cells in the periodic medium. To find the modes, the 8 values were first
chosen, making sure that Equation 5 is satisfied. Then values for thicknesses that
satisfied Equation 17 were found. With this information set, the other values can

be calculated.

kf 3.2 3.3 3.4 3.44 3.5
thickness[m) 0.0000993317 | 0.000100015 |0.000115019 | 0.000100275 | 0.000101343
K; 3.8836410° |8.4339510° [1.09502107 |1.1764107 |1.28627107
angle 65.2561 69.4831 74.7854 77.5016 83.379
a,N=1 1.2819510" | 1.2346110% [1.0419810' | 1.1812910' [1.1488110™
dB/em,N =1 [[1.1127310%° |1.0716410™ [9.0444210° | 1.0253610™ | 9.97166 10°
a, N =2 2.2960210° [2.2112410° [1.8662310° |2.1157410° |2.0575610°
dB/cm,N =2 | 1.9929510®% |1.9193510% |1.6198910% |1.8364710% |1.7859610°%
a, N =3 4.4289410° |4.2653810° |3.5998910° |4.0811810° |3.9689510°
dB/ecm,N =3 | 384432. 370235. 312470. 354247, 344505.
a,N =4 8271.3 7965.86 6723. 7621.85 7412.24
dB/em, N =4 || 717.949 691.436 583.556 661.577 643.383
a,N=25 15.4462 14.8758 12.5548 14.2334 13.8419
dB/em,N =5 |[[1.34073 1.29122 1.08976 1.23546 1.20148

a, N =10 0. 3.7995210°° | 0. 0. 0.
dBJem,N =10 | 0. 3.2979910°7 | 0. 0. 0.

Table 2: Propagation Information for Guided Modes from Example 1

6.2 Example 2

The parameters for the second example are given in Table 3.

15




Parameter | Value

A 0.98010°°

ny 2.984

e = Ng 1

t to be determined
0.0715107%

a 0.082110°°

Table 3: Parameter Values for Example 2

kB 3.2 3.3 3.3 3.4 3.5
thickness|m] | 0.000100027 | 0.000100814 | 0.0000924816 | 0.000100185 | 0.000102551
K; 6.30089 10° | 9.6006810° |9.6006810° |1.17859107 | 1.35309 107
theta 65.2561 69.4831 69.4831 74.7854 83.379

a, N =1 1.4040910"" | 1.35091 10" | 1.4726310"" | 1.3194110"" | 1.25214 10"
dBfem, N =1 | 1.2187510% | 11725910 | 1.2782410™ | 1.1452510° | 1.0868610™°
o, N =2 3.2862310% | 3.1617710° | 3.4466410° | 3.0880410° | 2.930610°
dBJcm,N =2 || 2.8524410° | 2.7444110° | 2.9916810° |2.6804210° | 2.5437610°
o, N=3 6.4310410° | 6.1874710° |6.7449510° |6.0431910° | 5.73509 10°
dB/cm, N =3 || 558214. 537073. 585462. 524549, 497806.

o, N =4 12010.7 11555.8 12597. 11286.3 10710.9
dBJem,N =4 | 1042.53 1003.04 1093.42 979.655 929.708
a,N=5 22.4293 21.5798 23.5241 21.0766 20.002
dBjcm, N =5 | 1.94686 1.87313 2.04189 1.82945 1.73618

a, N = 10 0. 0. 0. 0. 0.
dBJem, N = 10 || . 0. 0. 0. 0.

Table 4:

Propagation Information for Guided Modes from Example 2
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Table 4 shows the same type of information as in Table 2. However, instead of
showing five different k3 values, the second and third columns refer to the same
mode, but with a different guide thickness.

6.3 Discussion

Tables 2 and 4 show that various confined, “lossless” modes can be supported by
a structure such as in Figure 3, depending on the guide thickness.

The imaginary part of the Bloch constant, K, gives an indication of how fast the
Bloch wave is attenuated in the direction of the gradient of the periodic medium.
The smaller the value of K;, the further away from the guide-periodic medium
boundary the Bloch wave can be seen. Consequently, for smaller K;, a larger
number of unit cells in the periodic medium are required to make the Bloch analysis
valid.

It is seen that as the number of unit cells, NV, in the periodic medium increases,
the effective attenuation decreases. This is to be expected, because as IV increases,
the reflectivity increases, and more energy is reflected back into the guide at the
guide-periodic medium boundary.

The effective attenuation is also a function of the thickness of the guide. For an
imperfect reflector, (R < 1), each “bounce” in the guide corresponds to energy
going into the periodic medium. For a given mode and a given length along
the guide, there are fewer bounces in a thicker guide. Therefore, the effective
attenuation is less for a thicker guide, assuming no scattering in the guide.

Although it i1s difficult to make exact comparisons because of different guide thick-
nesses, the effective attenuations for Example 2 are greater than for Example 1.
This makes sense, because the distributed Bragg reflector in Example 2 has a
smaller An between the two layers of a unit cell and, hence, is not as good a
reflector as the DBR in Example 1.

7 Waveguide Interconnected VCSELSs

As we have seen in the previous section, various confined, lossless modes can be
supported by a structure as in Figure 3, depending on the guide thickness. For a
fixed guide thickness, a discrete number of confined, lossless modes are supported.
Figure 10 is a plot of the LHS and RHS of Equation 17 as a function of £ for the
structure described in Example 1 and a guide thickness of 100 gm. Intersections
of the two curves correspond to supported modes. Each of these modes propagates
with a different propagation constant, and corresponding angle in the guide.

As in Figure 1, a diffractive optical element (DOE) could be placed on the guide-
cover interface, to couple the laser light into one of the confined, lossless modes
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Figure 10: Solutions to the dispersion equation for the structure described in Example 1 and
a guide thickness of 100 pm.

described above. The DOE could also be designed so that it couples into a number
of the supporting modes.

Different lasers with different wavelengths can also be grown on the same sub-
strate. For each color, there are likely supported confined, lossless modes. This is
demonstrated in Figure 11, which shows the dispersion equation for the structure
in Example 1, with A = .98 x 107%, A = .99 x 107® and A = 1.3 x 1075.

DOEs are sensitive to both incident angle and wavelength. By placing other DOEs
along the cover-guide boundary, the output laser light may be directed in a large
variety of ways. This could be used to implement broadcast or selective coupling
among VCSELs on the same substrate.

In addition, this type of guiding can allow the light from a number of VCSELs
to be easily coupled out into a single fiber, whose dimensions are the same as
the substrate {guide) thickness. This light could be composed of different modes,

corresponding to different modes from the same VCSEL and/or from different
VCSELs.

There are many possible scenarios in which waveguide interconnected VCSELs
could be useful. Using the tools presented in the previous sections, system concepts
incorporating waveguide interconnected VCSELs can be evaluated. The tools are
also useful in making the design calculations for specific implementations.
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Figure 11: Solutions to the dispersion equation for a) A = .98 x 107%; b) A = .99 x 107%; and
c) A = 1.3 x 107° for guide thickness of 100um.
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8 Conclusion

In this report the feasibility of using the DBR grown on the substrate for a VCSEL
to provide waveguiding within the substrate has been shown. The guided modes
in such a structure are confined, but not strictly lossless, due to the finite extent
of a manufactured DBR.

Before determining the feasibility of waveguide interconnected VCSELs, two anal-
ysis methods were presented and evaluated for their applicability to this problem.
Both methods were implemented in Mathematica. The Bloch wave method was
shown to be the appropriate analysis method for the structure under consideration.

There are many possible uses of waveguide interconnected VCSELs. The tools and
analysis presented in this report can be used to evaluate such system concepts and
to do detailed design calculations.

A Bloch Wave Method

lambda = 0.980 107-6;
nl = 2.984;

n2 = 3.5235;

ng = 3.5235;

na = 1;

b = 0.0695 107-6;
a = 0.0821 107-6;

k := 2 Pi/lambda;

qalveta_] := Sqrtlveta~2 - (k*na)"~2]
kglveta_] := Sqrt[(k*ng) "2- veta"2]
kilveta_] := Sqrt[(k*n1)"2- veta~2]
k2[veta_] := Sqrtl[(k*n2)"2- veta~2]

capAlveta_] := Exp[-I ki[veta] alx*
(Cosl[k2[vetal b] - I/2x(k2[vetal/ki[veta]l + ki[veta]/k2[vetal)*
Sin[k2[veta] b]l)

capD[veta_] := ConjugatelcapAlvetal]
capClveta_] Conjugate[capBlveta]l]

capBlveta_]

Exp[I kilveta] al*
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(- 1/2%(k2[veta] /ki[veta] - ki[vetal/k2[veta])x*
Sin{k2[veta] b])

evancond[veta_] := Abs[(capAlvetal + capD[veta])/2]
emikl[veta_] := (capAlveta] + capD[vetal)/2 +
Sqrtlevancond[veta] "2 -1]

LHS[veta_,t_] := kglveta] *
(qalvetal*Cos[kglvetal t] - kglvetal*Sin[kglveta] t])/
(qalvetal*Sin[kglveta] t] + kgl[vetal*Cos[kglveta] t])

RHS[veta_] := -Ixki[veta]lx
(emikl[vetal-capA[vetal-capB[vetal)/
(emikl[veta]-capA[vetal+capB[vetal)

thetalbetaeff_] ArcSin[betaeff/ng]

BlochNum[veta_] 1/(a + b) * ArcCosh[(capAl[vetal+capD[veta])/2]
Rlveta_,NumCells_] := Abs[capC[vetall~2/

(AbsfcapClvetal]~2 +

(Sinh[Im[BlochNum[vetall*(a+b)]/ Sinh[NumCells*Im[BlochNum[vetall*(a+b)])"2)
alpha[thickness_,veta_,NumCells_] :=

- Log[R[veta,NumCells]]*kg[veta]/(2*veta*thickness)

]

(*
Plot[evancond[k*x]-1,{x,n1,ng}]
Plot[capA[k*x]+capD[k*x],{x,evancond>1},PlotRange->A11]

gl = Plot (LHS [k¥neff,t],{t,100%10°-6, 110%x10"-6}]
g2 = Plot [RHS [k*neff],{t,100%10"-6, 110%10"-6}]
Show[gl,g2]

FindRoot [LHS [k*neff,t]-RHS [k*neff]==0,{t,100%10°-6, 101%10"-61}]
*)

input={{3.2,99.3317%10"°-6},
{3.3,100.015%10"-6},

{3.4,115.019%10" -6},

{3.44, 100.275%10°-6},

{3.5,101.343%10"-6}};

oObeta = Table[N[input{[1,1]1],{i,5}]
o0thick = Table[N[input[[i,2]1],{i,5}]

ol = Table[N[BlochNumf{k*input[[i,1]11]1],{i,5}]
02 = Table[N[thetalinput[[i,1]]]1/Degreel],{i,5}]
03 = Table[N[alphalinput[[i,2]],input{[i,11],1] 1,{i,5}]
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03a = Table[N[2%4.34/100%03[[i]] J,{i,5}]

04 = Table[N[alphalinput{[i,2]],input{[i,1]],2] 1,{i,5}]
o4a = Table[N[2*4.34/100%04[[1]1] 1,{i,5}]

05 = Table[N[alphalinput[[i,2}],input[[i,117,3] 1,{i,5}]
o5a = Table[N[2%4.34/100%0o5[[i]1] ],{i,5}]

06 = Table[N[alphalinput[[1,2]],input{[i,11],4] 1,{i,5}]
o6a = Table[N[2%4.34/100%06[[i1] 1,{i,5}]

o7 = Table[N[alphalinput[[i,2]],input{[i, 111,51 1,{i,5}]
o7a = Table[N[2*4.34/100%07[[i]] 1,{i,5}]

08 = Table[N[alphalinput[[i,2]],input{[i,1]3,10] 1,{i,5}]
o8a = Table[N[2*4.34/100%08[[i]] 1,{i,5}]

NumberForm[{oObeta,o0thick,Relo1],02,03,03a,04,
o4a,05,05a,06,06a,07,07a,08,N[08al},{6,4}]

PutAppend [OutputForm[TableForm[%1],"case2table"]

gl = Plot[RHS[k#*x],{x,3.2,3.5},PlotStyle->Thickness[0.01]]

t = 100 10°-6
g2 = Plot[LHS[k*x,t],{x,3.2,3.5},PlotStyle->Thickness[0.001]]

B Field Transfer Matrix Approach

B.1 Explicit Layer Definition

(*
nc = the cover index
ns = the substrate index

theta = incident angle
z0 1s the impedance of free space

betal = n*Sin[theta]

n = index of incident material = nc

lambda = wavelength

k0 = wave number in free space = 2 * Pi /lambda




*)

(* First step is to read in Data file *)

mu0 = 1.2566 10°-6
ep0 = 8.8542 10°-12
nc = 1.0
ns = 3.5

lambda = 1.3 107-6

(*nl is closest to coverx)

nl = 1.45

di =4 10°-6

n2 = 3.50

d2 = .1019 10°-6
n3 = 1.45

d3 = 2.0985 10°-6

(%

nb =

db =

*)

(%

theta = ArcCos[lambda/(2*n([1]]1*d[{1]]1)
n = nc

beta0 = n*Sin[theta]

*)

z0 = Sqrt[mu0/ep0]

k0 = 2%Pi/lambda

(*

acs := nc"2 - beta”2

argacs := Arglacs]

magacs := Abs[acs]

alphac := magacs”~(1/2)*(-Coslargacs/2] - I*Sinl[argacs/2])

ass := ns"2 - beta”2




argass := Arglass]

magass := Abs[ass]

alphas := magass”(1/2)*(-Cos[argass/2] - I*Sinlargass/2]) /; argass <0
alphas := magass™(1/2)*(Cos[argass/2] + I*Sinlargass/2])

gammac = alphac/z0
gammas = alphas/z0
*)

gammac: :usage =
gammac[b_] := (
acsq = nc”2 - b72;

argacsq = Arglacsq];

magacsq = Abs[acsql; '
N[magacsq~(1/2)*(-Cos[argacsq/2] - I * Sin[argacsq/2]1)1/20 ) /;
(Re[b]> nc) && (Arglnc~2-b72]<0)

gammac[b_] = (

acsq = nc”2 - b72;

"get the appropriate sign for gamma imn cover"

argacsq = Arglacsq];
magacsq = Abslacsql;
N[magacsq~(1/2)*(Cosl[argacsq/2] + I * Sin[argacsq/2])]1/20 )

gammas: :usage = "get the appropriate sign for gamma in substrate"
gammas[b_] := (
assq = ns"2 - b"2;
argassq = Arglassql;
magassq = Abs[assql;
N(magassq~(1/2)*(-Cos[argassq/2] - I * Sin[argassq/2])1/z0 ) /;
(Re[b]> ns) && (Arglns~2-b"2]<0)

gammas[b_] := (

assq = ns"2 - b~2;

argassq = Arglassql;

magassq = Abs[assq];

" N[magassq~(1/2)*(Cos[argassq/2] + I * Sin[argassq/2])]1/z0 )

alphal := Sqrt[(n1"2 - beta"2)]
phil := kO*alphal*dl
gammal := alphal/z0  (*TE polarizationx)

mia = N[Cos[phi1l];

milb = N[-I*Sin{phill/gammall;
mic = N[-I*gammal*Sin{phi1l];
mid = N{Cos[phi1l];
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ml = {{mla,mib},{mic,m1d}};

alpha2 := Sqrt[(n2°2 - beta~2)]
phi2 := kO%alpha2*d2
gamma2 := alpha2/z0  (*TE polarizationx)

1}

m2a = N[Cos[phi2]];

m2b = N[-I*Sin[phi2]/gamma2];
m2¢c = N[-I*gamma2*Sin[phi2]];
m2d = N[Cos[phi2]];

n2 = {{m2a,m2b},{m2c,m2d}};

alpha3 := Sqrt[(n3"2 - beta"2)]
phi3 := kO*alpha3*d3
gamma3 := alpha3/z0 (*TE polarizationx)

m3a = N[Cos[phi3l];
m3b = N[-I*Sin[phi3]/gamma3];
m3c = N[-I*gamma3+*Sin[phi3]];
m3d = N[Cos[phi3]];

m3 = {{m3a,m3b},{m3c,m3d}};

(*

alpha4 := Sqrt[(n4"2 - beta"2)]

phi4 := kO*alphad*d4

gamma4 := alpha4/z0  (*TE polarizationk)

m4a = N[Cos[phi4]l];

m4b = N[-I*Sin[phid]/gammad] ;
mdc = N[-I*gammad4+*Sin[phi4]];
m4d = N[Cos[phid]];

m4 = {{m4a,m4b}, {mdc,mad}};
*)

(* MTotal := ml.m2.m3.m4.m5 *)

MTotal = ml.m2.m3;

xilveta_] := gammac[veta]l*MTotall[1,1]]+
gammac [veta] *gammas [veta]*MTotall[[1,2]]+

MTotal[[2,1]] + gammas[vetal*MTotal[[2,2]] /. beta->veta

Plotxi[x_,y_.] := (z = x + I y; xilz]l )
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(% ,

Plot3D[Abs[Plotxilx,y]],{x, 1, 1.5},{y, 0, 0.1},PlotRange->{0,10}]
Plot3D[Re([Plotxilx,y]l],{x, 1, 1.5},{y, 0, 0.1}]
Plot3D[Im[Plotxilx,y]1],{x, 1, 1.5},{y, 0, 0.1}]

*)

FindRoot [{Re[Plotxi[x,y]l]==0,Im[Plotxi[x,y]l]==0},{x,1, 1.5},{y,0,0.5},
MaxIterations->100]

Plot[Re[Plotxi[x,0]1],{x, 1.3, 1.44}]

Plot[Im{Plotxil{x,0]1],{x, 1.3, 1.44}]
Plot[Abs[Plotxi{x,0]],{x, 1.3, 1.44}]

B.2 Periodic Layer Definition

(*
nc = the cover index
ns = the substrate index

theta = incident angle
z0 is the impedance of free space

beta0 = n*Sin[theta]
n = index of incident material = nc
lambda = wavelength

k0 = wave number in free space = 2 * Pi /lambda
*)

mu0 = 1.2566 107-6

ep0 = 8.8542 107-12

nc = 1.0

ns = 3.5235

lambda = .980 10"-6

(*n1 is closest to coverx)

3.5235
100 1076

ni
d1
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n2 = 2.984

d2 = .0695 107-6

n3 = 3.5235

d3 = .0821 107-6

(*

nb =

ds =

*)

(*

theta = ArcCos[lambda/(2*xn[[1]1]1*d[[1]])
n = nc

betad = n*Sin[theta]

*)

z0 = Sqrt[mud/ep0]

kO = 2%Pi/lambda

gammac: :usage = "get the appropriate sign for gamma in cover"

gammac[b_] := (

acsq = nc”2 - b72;

argacsq = Arglacsql;

magacsq = Abs[acsq];

N[magacsq~(1/2)*(-Cos[argacsq/2] - I * Sin[argacsq/2]1)1/z0 ) /;
(Re[bl> nc) && (Arglnc~2-b72]1<0)

gammac[b_] := (

acsq = nc”2 - b"2;

argacsq = Arglacsql;

magacsq = Abslacsql;

N[magacsq~(1/2)*(Cos[argacsq/2] + I * Sinl[argacsq/2])]1/z0 )

t

gammas: :usage = "get the appropriate sign for gamma in substrate"
gammas[b_] :=
assq = ns"2 - b72;
argassq = Arglassql;
magassq = Abs[assql;
N{magassq~(1/2)*(-Coslargassq/2] - I * Sinlargassq/2])1/z0 ) /
(Re[bl> ns) && (Arglns~2-b"2]<0)

1]
~~

gammas [b_]
assq = ns"2 - b72;
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argassq = Arglassql;
magassq = Abs[assq];
N[magassq~(1/2)*(Cos[argassq/2] + I * Sinl[argassq/2])1/z0 )

alphal := Sqrt[(ni1"2 - beta"2)]
phil := kO*alphal*dl
gammal := alphal/z0 (*TE polarizationk)

mia = N[Cos[philll;
mib = N[-I*Sin[phil]/gammal];
mic = N[-I*gammal*Sin[phi1]];
mid = N[Cos[phiill;

mli = {{mla,mib},{mlc,mi1d}};

alpha2 := Sqrt{(n2"2 - beta~2)]
phi2 := kO*alpha2%*d2
gamma?2 := alpha2/z0 (*TE polarizationx)

m2a = N[Cos[phi2]];
m2b = N[-I*Sin{phi2]/gamma2];
m2c = N[-I*gamma2*Sin[phi2]];
m2d = N[Cos[phi2]];

m2 = {{m2a,m2b},{m2c,m2d}};

alpha3 := Sqrt[(n3"2 - beta~2)]
phi3 := kO*alpha3#*d3
gamma3 := alpha3/z0 (*TE polarization)

m3a = N[Cos[phi3]];

m3b = N[-I*Sin[phi3]/gamma3];
m3c = N[-I*gamma3*Sin[phi3]];
m3d = N[Cos[phi3]];

m3 = {{m3a,m3b},{m3c,m3d}};

]

MIntermediate = m2.m3;

numpairs = 10;

mpower = MatrixPower[MIntermediate,numpairs];
MTotal = ml.mpower;

xilveta_] := gammac[vetal*MTotall[[1,1]1+
gammac [veta] *gammas [veta] *MTotal[[1,2]]+
MTotal[[2,1]] + gammas[vetal*MTotal[[2,2]] /. beta->veta
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Plotxil[x_,y_] := (z = x + I y; xi[z]‘)

€

Plot3D[Abs[Plotxilx,yl],{x, 1, 1.5},{y, 0, 0.1},PlotRange->{0,10}]
Plot3D[RelPlotxilx,yl],{x, 1, 1.5},{y, 0, 0.1}]
Plot3D[Im[Plotxilx,y]],{x, 1, 1.5},{y, 0, 0.1}]

FindRoot [{Re[Plotxi[x,y]]1==0,Im[Plotxil[x,y}]==0},{x,1, 1.5},{y,0,0.5},
MaxIterations->100]

*)

Plot[Re[Plotxilx,0]]1,{x, 1.1, 3}]
Plot [Im[Plotxil[x,0]],{x, 1.1, 3}]
Plot[Abs[Plotxilx,0]1],{x, 1.1,3}]
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