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Tune Shifts Caused by Horizontal Closed Orbit
Deviations in Sextupoles

I. Introduction

One of the uncomfortable features of the Chasman-Green lattice is
that the chromaticity-correcting sextupoles are all very strong compared with
those in the FODO-type lattice. Because of their strengths, when their
arrangement creates certain harmonic components, the dynamic aperture is
severely reduced and one is forced to add more sextupoles to eliminate harmful

harmonic components. In the 7-GeV ring, four sextupoles are planned in each

cell for this purpose in addition to three per cell for controlling

chromaticities.

| 1. harmonic sextupoles (B"2/Bp) in (meters)-2
S1 {two/cell) 1.902
S2 (two/cell) -3.696

2. chromaticity sextupoles
Sp (two/cell) -4.266
Sk (one/cell) 3.960

It is well-known that vertical closed orbit deviations in sextupoles
effectively create skew quadrupole field which enhances the linear horizontal-
vertical coupling of betatron motion. Horizontal orbit deviations; on the
other hand, create a shift in tunes in both transverse directions. Since the
shift will be coherent, i.e., common to all particles in a beam, it should not
be serious as long as tunes can be readjusted. During the commissioning,

sextupoles are expected to be all off until a good closed orbit is

FwPamiTIAN AF THIS DOCUMENT IS UNLIMITED M A




established. The probTémf5§ffﬁéa ?éd&ced to how well one should align the
position monitor relative to the field center of adjacent sextupole magnet.

During the course of désfgn studies, S. Kramer has made many
computer runs to investigate tune shifts resulting from horizontal orbit
deviations in sextupo]es.1 Recently, W. Chou explained how to estimate the
expected rms value of tune shifts when closed orbit deviations are caused
exclusively by horizontal misalignment of quadrupoles.2 He points out that,
under such a condition, the deviations in sextupoles are highly correlated to
each other so that the statistical averaging must be over the random
quadrupole misalignments and not over the (not-at-all random) orbit deviations
in sextupoles. He has demonstrated that the analytical prediction of the rms
tune shift agrees fairly well with numerical results obtained by S. Kramer and
by Y. din.

A feature in these numerical results that has been noticed by
Kramer remains unexplained in the analysis by Chou who states that " .....
these programs give a finite average tune shift AV in addition to an rms <Av>
eees. ". To be sure, only twenty-four random samples are cited in his report
and the values of AV are rather small, ranging from -0.007 to -0.058
horizontally and from 0.009 to 0.017 vertically. According to Kramer,
however, this small but finite average tune shift persists even with many more
random samples. An interesting observation by him is that the average is
definitely related to the dependence of tunes on the betatron oscillation
amplitudes {(or, equivalently, the transverse emittances). Kramer says some
people have even cast doubts on the reliability of computer programs because
of the seemingly remote (if any) connection.

This note is an "attempt" to explain the connection at least

qualitatively. It is no more than an attempt since the explanation is not yet
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quantitative and it may even be somewhat inconsistent. One by-product of thfs
work is the numerical evaluation of amplitude-dependence of tunes in the
second order of sextupole strength. There are three coefficients and they are
given in the latest CDR.3 The estimate given in this note agrees very well
with the CDR result for one (main) coefficient but disagrees for the other
two. This is the case either with or without harmonic sextupoles S1 and S».
Explicit analytical expressions used for the estimate are given, both in
closed forms and as infinite series in terms of harmonic components. It is
hoped that this note will be of some help to those who may be intérested in

pursuing the questions raised here.

II. Tune and Emittance: Analytical Results

By now, the second-order sextupole effects are common knowledge but
the analytical expressions are not always presented in convenient forms.

Although no standard forms that are accepted by everyone as such
exist, there are two ways to express the amplitude dependence of tunes which
arises in the second order of sextupole strength, one in closed forms and the
other as infinite serjes. For most numerical purposes, the closed forms are
naturally more convenient but the infinite series in terms of harmonic
components can show more clearly "what is going on". That these two entirely
different expressions are mathematically equivalent has been shown explicitly
by K. Y. Ng.4 The closed forms cited in his report contain the so-called
distortion functions that have been defined by Tom Collins in connection with
the distortion of beam shape in phase space.5 Forms given below intentionally

avoid the use of distortion functions for those who are not familiar with the

special symbols.




Avx = sz + Zey; Avy = Yey + Zex

where €, €ys = horizontal and vertical beam emittances.

X =={3/((128 = sin(mv )]} ] Sy S; cosf)wx(k) - wx(j)l - )

-{ 1/(128 7 sin(3mv )]} | s, S cos(3|w£k) - ¢£j) | - 3mv )

7 ={1/(32 « sin(nvx))} ) Sk §j cos(lwx(k) - wx(j)l - wvx)

-(1/64 7 sin(rv )} T 5, 3 cos(Ju, () -y, ()}~ );
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¥x, ¥y = betatron phase angles (0 to 2m vy ),
‘pi- = z‘py 1 wx
vi, = 2\’y t Vy
- 3/2 ] o o == n
sk = (B3 T)y (B"S/Bo)ys 8 = (/B 8,)) (B"2/Bo)

In all these formulas, double summations should be

N N
Y ¥ ; N = total number of sextupoles in the ring.
k=1 j=1

For the 7-GeV APS ring, the summation over (j) should be for all (7x40=280)

sextupoles but the summation over (k) can be replaced by 40 times summation

(2)

(3)

over seven sextupoles in one cell. In the above expressions for X, Y and Z,

the terms related to the orbit distortions are clearly the first of two lines

with the familiar expression




cos(lwx(k) - wx(j)l - m )/sin(mv )

Expressions for X, Y and Z in terms of harmonic components are given

in Ref. 6, and only the one for X is given below.

. 22 |
X =507 M+ 18] 30 (5)
m X m X

where the summation is for m = -= to +°. Harmonic components Ay, and A3, are

given by
Aiqm = (1/48r) IE Sk exp[i(wx(k) - V.8 + mek)]|, (6)
Asp = (1/48n) |§ S exp[1(3¢x(k) - 3v 8, +mo,)]| (7)

Summations over (k) are for all sextupoles in the ring but they are equal to

40x (summations over seven sextupoles in a cell). Because of the mirror

symmetry of lattice, both Aj, and Az, are real. Moreover, they are all zero

except for those with m = 0, +40, 80, etc. The connection to the orbit

deviations in sextupoles comes from the fact that, for the 7-GeV ring, the

term with A7 49 is the most important in (5); of all possible values of m, 40
. is the closest to v, = 35.216.

Numerical values of coefficients X, Y and Z can be found easily from

Eq. (2) through Eq. (4) once the Tattice and sextupoles are specified. In




order to compare with results given in the CDR, tune shifts are expressed as a

function of N, and Ny, keeping in mind that

€y = (8x10'9 m x NE . and €y = (4x10'9 m) x N§ (8)

1. Chromaticity-correcting sextupoles only (Sp and Sp)

avy = 2.85x10°4 N2+ 0.20x107% N2

0.57x10% N+ 0.55x107% N3

Av y

y

From CDR, p. II.1-13,

avy = 2.87x10°4 N2 4+ 0,60x10-4 NZ
svy = 1.20x10"4 NS + 0.39x10"% N§
2. With harmonic sextupoles (Sp, Sg, S, So)
Avy = 6.00x1~7 N§ - 0.74x107% N§
Avy = -1.48x1-4 N2 + 0.50x10-4 N2

From CDR, p. II.1-17,

Avy = 0.00 N2 +0.72x1075 N2
avy = 1.48x10°5 NF  + 0.98x10°5 Nf

With or without harmonic sextupoles, the agreement on d(Avx)/d(Ng) js very

good but the disagreements for other coefficients are not trivial.




Independent checks of Eq. (2) through Eq. (4) together with their numerical

re-evaluations are desirable in order to remove any uncertainties.

It should be noted here that the amplitude dependence of tunes
discussed so far is based on perturbation in its lowest order (which is
second-order in sextupole strength). If tunes are found as a function of
amplitudes through numerical beam tracking and Fourier transform of its
results, the dependence may not agree with the lowest-order analytical
estimates presented above, especially for large amplitudes approaching the

stable boundary of some resonance.

ITI. Possible Source of Average Tune Shift

If linear coupling of transverse betatron motions is introduced
through the effective skew quadrupole component, one must deal with two
eigentunes instead of v, and Vy and this complicates the analysis. It is
therefore assumed here that closed orbit deviations in sextupoles are in the
horizontal direction only. This is not unphysical; one can in principle (if
not in practice) establish a purely horizontal motion as long as the field is
"normal" (i.e., no skew component). Convention for suffix used throughout

this section is:

quadrupoles = i, j, k (10x40 in the ring)

sextupoles m, N (3x40 or 7x40 in the ring)
Since horizontal direction alone is considered, suffix to distinguish
horizontal from vertical will be omitted.

Orbit deviation (Ax)m in the m-th sextupole is caused predominantly

by é-function kicks at misaligned quadrupoles but there may be similar kicks




by sextupoles contributing to (Ax)p,. One writes, for the normalized deviation

= X,

Em = ; Amiby * g angﬁ (9)
with
Ami = (1/2sin<av>) g5 cos( ¥y - v, | - mv) | (10)
Bnn = (1/2sin<mv>) (-sp/2)cos([¥y = ¥p| - wv) (11)
9 =V/BI(B'/Bo) , sy = ()3/2 (B"2/Bo), | (12)

In Eq. (9), for small orbit deviations, one may use the lowest-order

expression

2 _
gy = % Anj Aj E Ak Ay (13)

The tune shift arising from the m-th sextupole is

(89) = by (14)

with by = (sp/4m). In the lowest order, contributions from many sextupoles

are simply added (M = total number of sextupole magnets in the ring),

where

c; =) by Ap; and dp = Yb_B (16)
m n




Remembering that (Ai’ Aj, A, ) are all random misalignments of
quadrupoles, one can perform average over many sample cases. The average tune

shift is
=[] d ] A2l (17)
n4%tnj
n J
where A is the rms value of quadrupole misalignments A;. From Eq. (10),

. = (1/4sin2

D =7 A
i J

2
n n

av>) J & cos?(]¥, - vs] - ) (18)
j J J

In evaluating this quantity for a given sextupole (n), the summation over (J)

must be for all 400 quadrupoles in the ring. One then finds that D, is

practically independent of (n),

287 m1 < b, < 294 w1

It is thus allowed to use 0 the average value of D,, in Eq. (17),

av =277 d
n n

= {82/ (16rsin<nv>)} T s

-9 | -= (19)
m,n cos([¥y - ¥y *) v

m>n
which is, aside from trivial factors, precisely what one found as a part of
d(av,)/d(N2), the first line of Eq. (2).

If Eq. (19) is taken as something "quantitative", the average tune

shift is +0.01 when all sextupoles are used with A = 1x10-% m. Compared with
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the numerical results cited in Ref. 2, the magnitude is not inconsistent but
the sign is!

There are at least two shortcomings in the treatment here if its
results are to be considered "quantitative" so that they can be compared with
results from various computer programs. The first is the ever-present
question of coupled vs uncoupled motions and their tunes. In handlina results
from any computer pngram, one must be certain what quantities are calculated
as "tune", Of course, the uncertainty can be easily eTiminated by removina
vertical orbit deviations in sextupoles. The second is more difficu]t and
more serious in nature. In estimating the average tune shift Av, contribu-
tions from many sextupoles are simply added in Eq. (15). This ié not really
consistent. Since & given in Eq. (17) is proportional to A2, one must
include in Eq. (15) contributions coming from many pairs of sextupoles having
the form « £m En which is proportional to A? also. lUnless this defect is
taken care of, the argument presented in this note cannot be taken as the

right explanation of the origin of average tune shift.
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