CERRARPR-45-H5

GONF-9505)2——32S5"

DOIZT/Eﬂé 0150-735-3
Rapid Application Development Using the Tcl/ i Langu’afée(fE’VE D
Johannes van Zeijts, CEBAF, 12000 Jefferson Avenue, Newport News, VA 2360&”- 2 5 {935

Abstract

During the last year high level applications at CEBAF
were written using the Tcl/Tk scripting language [1]. This
language is rapidly gaining in popularity, in part due to
the ease of constructing programs with X11 graphical user
interfaces, and in part due to the ease of adding compiled
user code for specialized purposes. Extensions to the lan-
guage provide object oriented programming [2], [3], which
was used to develop a hierarchy of classes relevant for high
level accelerator control.

We describe the basic language features, some 3rd party
add-on packages, and local additions to the toolbox. Next
we describe the featurec of the accelerator object hierarchy,
and finally describe applications written using this toolbox
such as the ModelServer prototype, Slow Orbit and Energy
Lock, the Linac Energy Management System, and other
applications.

I. Introduction

Tel is an interpreted scripting language with only one
data type: strings. The language is not intended for num-
ber crunching but rather to provide scripting control to
user contributed compiled packages. Tk is one such pack-
age written by the author of Tcl. Tk provides a way to
create spectacular X-11 graphic user interfaces in a mini-
mal amount of time without any knowledge of underlying
GUI library packages [4], [5]. Interface elements are sim-
ply addressed by a string name and can be placed on the
screen and configured by scripts or interactively. A rich set
of commands is available for event driven programming.

Locally developed code provides access to control system
information, lattice simulation codes, and matrix calcula-
tions [6]. Additionally we use the ‘expect’ extension [7] to
provide a programmed interface to existing 3rd party pro-
grams like Mathematica and Matlab, and the ‘blt’ exten-
sion [8] to provide line and bar graph support. Finally the
Tcl-DP extension [9] was used for the network connections
between server and client programs.

The goal of the object oriented approach in this context
is to provide a set of classes with a well defined interface
to allow non-expert users to create high level applications
without having knowledge about the implementation of any
of the lower level functionality. We provide two sets of
class hierarchies, one for beam line elements like correctors
and beam position monitors, and one for applications like
orbit and energy lock, and autosteering. Additionally, the
object oriented extensions provide a clean way to produce
and maintain large amounts of code.

*This work was supported by the U.S. Department of Energy, under
contract No. DE-AC05-84ER40150.

MASTER

II. Accelerator Objects. O S T l

Accelerator beam line elements are well described in a
hierarchical way. An ‘Element’ class has placeholders for
properties common to all beam line elements like posi-
tion and lattice function information. ‘Magnet’ and ‘Bpm’
classes specialize the Element class and add element spe-
cific information. ‘Dipole’, ‘Corrector’, and ‘Quad’ classes
are again a specialization of the ‘Magnet’ class. Tables with
live information about beam line elements can be generated
with just a few lines of code. Here we show the beam po-
sition panel (1) and the corrector panel (2). User defined
columns can be easily created and filled. -

BPM Actions Selections [

Name on pos beam status gold |
IPMIEC2 W x 0 -666 [n.0066
0 My 000 NoBeam [B.0415° .
IPMIADL M x 0 -666 02353
000 Wy 000 NoBeam 1452,

~J |~ /

Figure. 1. Beam Position Monitor Panel

Corrector Actions Selections '
angle
0.0 A
2435 0.394585 _J
MBTILWH W h BOESTEIES 0.0789287
0.0
0.0
MBTILOSV 0.255759
MBT1LO6H ; ~0.0206492
MRTI1.06V 1 v RUn00Sbaa Com s 0.0
~J - /

Figure. 2. Corrector Magnet Panel

III. Application Classes

Application classes are less obvious. In this case we have
decided to provide a basic ‘BpmLock’ class which handles

This report has been reproduced from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and
Technical Information, P.O. Box 62, Oak Ridge, TN- 37831; prices available
from (615)576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

-

Price: Printed Copy ZIOZ
Microfiche AO1

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

all basic actions of high level application which concern
bpms, like selecting, reading gold values, beam loss checks,
etc. The ‘CorrectorLock’ class inherits all this from the
bpmlock class and adds all actions concerning correctors.
At this level virtual functions are introduced for building
response matrices, solving for new correctors, checking so-
lutions, setting correctors, and communication with the
Matlab based compute server. These methods provide the
basic functionality needed for an orbit lock application but
are redefined in more specific classes like ‘autosteering’. At
the same level, inheriting from the bpmlock class, we pro-
vide a class for controlling cavities. This one provides the
basic functionality needed for an energy lock application.
New high level applications like Quad Centering simply de-
fine a new class deriving from the correctorlock class and
add their specific methods [10]. A new autosteer program
for the CEBAF arcs was brought on line in a very short
time by inheriting from the existing autosteer class and
only redefining a very limited number of methods respon-
sible for the correction algorithm {11].

IV. Linac Energy Management

This application is required to calculate gradients for the
RF Cavities in the CEBAF linacs given a requested en-
ergy increase. After successfully setting the gradients, the
program is to set the quadrupoles in the linac to provide
either a 60 or 120 degree fodo lattice. The main extra in-
put to the program is a ‘fudge factor’ which accounts for
non-crested cavities and gradient calibration errors. The
program has been operational for more than a year, with
only slight adjustments to the exception handling over this
period. Figure (3) gives the main control panel.

Won Apr24 14:13:571995 | Actions Selections Quit |
Injector Energy North Linac Increase Total Energy
025 INCETT! + - 4450
Fudge factor | | Sumof GSET's/2
R015 25 s nitiganti sl ° - 406.0
EsstArcissetupfor: 444.99925267062 Sumof DRVHop = 4268325 |

Figure. 3. Linac Energy Management Control Panel

V. Model Server

All optics related information at CEBAF is concentrated
in a ‘Model Server’ application. This application is to store
all relevant beam line element information and is to serve
up transfer and response matrices between two arbitrary
points in the machine to requesting client applications on
the control network. The optics calculations are usually
performed by Dimad [12] but hooks are available to include
space charge and polarization codes.

Applications connect to the model server by declaring
a ‘Model Client’ object. This object supports query calls
to retrieve beam line elements and provides methods to
retrieve response matrices. It is also the conduit through
which beam line elements get element specific information

———— ——

from the model server like layout and lattice functions. As
an example we provide the code used to produce figure (1):

ModelClient new

Bpm :: addlist [new elements bpms arci]
Bpm :: on pos

Bpm :: Window .b

.b on pos status gold

The model server does not have a graphic user interface,
but a ‘model sniffer’ application is available in the control
room to update the information after lattice changes, see
figure (4). Producing the model server in Tcl with lat-

Do not Kill me, I am the GOLD model server
ModelServer gold

&-"‘ % f&ﬂq.g..g #IL'%MQ o

o - . TV 2, xva
: .-:,.:uskii‘;:rﬁm’.ﬁ&

PELCETEERN
et B8 'a‘

SRR 1845 =
R RS A AT

3:5‘: %@%ﬁln“
i ﬁéﬁé;gll 645, v &.g_a-m;!.u..\,—.ai' LD

ank
3% 23792 Ad
254 %\, SN
iy **3312045 PR

LN &
T

R : [2445 W«V ,\\‘g :,- "‘*33”‘5:& T
l2845 IE B T L
P At &—t“h -\. . 'X&'}hzwb\%xu:- .

2, §l324s‘: : \-;},_;-,-’ i

:.&fm-. S5 :ﬂ

ﬂ k"bm\\;§ SEadla]

Figure. 4. Model Server Status Panel

tice information for the whole machine turned out to be
a bit of a challenge due to the memory overhead of the
‘[incr tcl]’ object package. Process sizes routinely reached
the machine limit. For this and other reasons the model
server application was the first chosen to be converted to
C++ [13]. That application will maintain the existing
model server in functionality and interface, and is expected
to improve memory usage and data throughput by a sig-
nificant amount.

VI. Slow Orbit and Energy Lock

One of the most important high level applications pro-
duced were the slow feedback loops. Their task is to pro-
vide a means to obtain reproducible results for the setup of
linacs and arcs. They maintain a ‘golden’ orbit at certain
beam position monitors and maintain the design energy by
obtaining an energy offset value from the beam position
monitors throughout the arcs. On start up, response ma-

-e

trices are collected from the model server and dispatched to
the matrix package. Singular value decomposition is used
to obtain correction values for orbit and energy while at the
same time protecting against singular equations. A ‘mem-
ory’ factor is introduced to facilitate the running of several
locks simultaneously without introducing spurious oscilla-
tions. Figure (5) shows the control panel for the energy
lock.

Quit Program
v On @ Off _i Diagnosticsmode UpdateResponse
X = 0 X = 0
y= 0 Y= 0
dp/p = 0 dp=
dP/P setpoint =

PN wx ot sAlE bt 3
JO.000 2% sl o5 2y Algorithm
- YO
S e e .
Mﬂm!s = !0'.5"“{‘-;:[9;&(:::&&’..
MG R v
Fudge =

10752000 0 s
Figure. 5. Control Panel for slow Energy Lock

sl 7

VII. Auto Steering

Linac autosteering is required to on demand steer the
beam to golden values while maintaining small corrector
values. The algorithm is identical to the orbit lock appli-
cation and the corrector goal has been achieved by only
using correctors at positions with large beta functions. As
usual the main exceptions are in detecting and handling of
malfunctioning beam position monitors. A typical result-
ing corrector pattern is given in figure (6). The Arc Auto
Steering algorithm is based on the linac steering but uses a
much more complex algorithm [11], executed by Mathemat-
ica. A typical corrector change chart is shown in figure (7).

VIII. Conclusion

‘We have found the Tcl/Tk environment to be an ideal
tool for rapidly producing fully functional prototypes of
high level applications. Emphasis of application develop-
ment can be put on the physics of the problem and on the
exception handling, since long learning curves for windows
programming are cut out of the process.

References

[1] J. K. Ousterhout, Tcl and the Tk Toolkit, Addison-
Wesley Professional Computing Series (1994)

[2) M. J. McLennan, fincr Tclj: Object-Oriented Pro-
gramming in Tcl, Proceedings of the Tcl/Tk Work-
shop, UCB, June 10-11, 1993.

(3] IXI Limited, Object Tel, http://www.x.co.uk

[4) B.Welch, Practical Programming in Tel and Tk, Pren-
tice Hall (1995)

[5] Tcl/Tk is available from ftp.aud.alcatel.com: /tel

orrectore Xy

<> 0.0993933

N //\/ /\/ N

L)) M

& (rmaters)

Correctore Vv
«<>ee 0.201605

- (rrzeters)

Figure. 6. Corrector Display, in Gauss-cm and mrad

Hertmmsal Corracters

&
.
[

nrarsdxtion
H i
¥~ BEMBTIA14AHUNN *
T reducien
"
4 i L
————
W
v
]
R
Nowngy
‘—
—
S—
w—y
7V sw—
‘weany
a——

. !!! !!‘!!::!’!z!x T l
sreliigafifaiaizt e lunaennce
AFEEESEECEEEEEREERE firrrere
%%m E%%E%Em [-X-¥-X-X-R--¥-] e e e e e e e S S oYY
2}22}:.:532!525}!2552!!}2
) i iiiiii i o illlllllllllllllllllllll
YT T T TTIT T YT TITT L lllllllllllllllllllllﬁ_r
2 2 9 ¢80 879 PN UMNS t - ::t<tlr-u-nnuu--nunuunnu
i [
Herimetal Corraciars Vartial Derractacs
209 o : 9
Q. 1 o |
g] 3 I
1 N -
"I 'll |||||i
b =
n |

T T TTT 11" T T T i
18834887 BRI LBME 8D

-~ o

Figure. 7. Arc AutoSteering corrector change barcharts

(6] J. van Zeijts, High Level Application Prototyping,
CEBAF-TN-94-038

(7] D. Libes, Ezploring Ezpect: A Tcl-based Toolkit for
Automating Interactive Programs, O Reilly and Asso-
ciates, Inc. (1995)

[8] G.Howlett, Bacon, Lattice and Tomato graphs for Tel

[9] L. A.Rowe et.al., Tcl Distributed Programming

[10] R. Li, Quad Centering, CEBAF MCC procedure

[11] Y. C. Chao, An Orbit Correction Algorithm for Gen-
eral Beam Lines, submitted to N.LM.

[12] R. Servranckx et. al., DIMAD meanual

[13] B.Bowling et. al., Integrated On-Line Modeling ot CE-
BAF, these proceedings.

