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Preface

These proceedings contain edited versions of the technical presentations of the Workshop on En-
vironmental and Energy Applications of Neural Networks, held on March 30-31, 1995, in Rich- -

land, Washington. The workshop attracted researchers and practitioners from the USA, Canada,
Russia, and Estonia. Participants represented U.S. national laboratories (Pacific Northwest Lab-
oratory, Sandia National Laboratories, and Idaho National Engineering Laboratory), academia
(Washington State University, Colorado School of Mines, Moscow State University, Technical
University of Nova Scotia, University of Alberta, Rollins College, University of Washington,
Tennessee State University, and New York Medical College), industry (Honeywell, Siemens,
Westinghouse Hanford Company, ICF Kaiser, BH Engineering Systems, Dendronic Decisions
Limited, and Computer Science Innovations (CSI)), and research organizations (Electric Power
Research Institute). :

The purpose of the workshop was to provide a forum for discussing environmental, energy, and
- biomedical applications of neural networks. Panels were held to discuss various research and
development issues relating to real-world applications in each of the three areas (environmental,
energy, and biomedicine). The applications covered in the workshop were: ~

¢ Environmental applications Modeling and predicting soil, air and water pollution, envi-
ronmental sensing, spectroscopy, hazardous waste handling and cleanup. _

¢ Energy applications Process monitoring and optimization of power systems, modeling and
control of power plants, environmental monitoring for power systems, power load forecasting,
fault location and diagnosis of power systems.

¢ Biomedical Applications Medical image and signal analysis, medical diagnosis, analysis of
environmental health effects, and modeling biological systems.

The editors would like to thank once again the workshop Keynote speakers: Mr. Gerald L. Work,
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appreciation for the support and assistance of the staff of the Pacific Northwest Laboratory,
with our most sincere thanks to Ms. Janice Gunter, Ms. Pamela J. Stanley, Mr. Cary A. Counts,
‘Mr. Rex (Trav) Stratton, Ms. Krista Gaustad, and Mr. Richard May.
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Neural Network Models: Insights»»an‘d
Prescriptions from Practical Applications

Tariq Samad

Honeywell Technology Center, 3660 Technology Drive, Minneapolis, MN
55418, USA.
(samad@htc honeywell.com)

Introduction

Neural networks are no longer just a research topic; numerous applications are now testament
to their practical utility. In the course of developing these applications, researchers and prac-
titioners have been faced with a variety of issues. This paper briefly discusses several of these,
noting in particular the rich connections between neural networks and other, more conventional
technologies. A more comprehensive version of this paper is under preparation that will include
illustrations on real examples.

Neural networks are being applied in several different ways. Our focus here is on neural
networks as modeling technology. However, much of the discussion is also relevant to other
types of applications such as classification, control, and optimization.

Some importa,nf aspects of neural network applications

Generalization

Neural networks-at least the conventional ones that are currently in vogue for modeling applications—
are essentially nonparametric regression models. Nonparametric modeling is the term used in
statistics for “black-box” or model-free estimation, where a large number of parameters are
used and few structural assumptions are made about the model. A well-known difficulty with
nonparametric models is that they have a tendency te overfit. The large number of parameters
provide a degree of modeling flexibility that the available data may not warrant.

Much has been written about neural networks and overfits. The whole enterprise of neural
network modeling as we know it has been questioned as untenable (Poggio and Girosi, 1990;
Geman, Bienenstock, and Geman, 1992). On the other hand, innumerable applications attest to
the fact that models with excellent generalization properties can be developed if care is exercised.

The resolution of this paradoxical situation lies in how neural network training is usunally
performed and, in particular, on the use of a test set to terminate training before complete
convergence on the training set is achieved (Sjoberg and Ljung, 1992). It turns out that early
termination of an iterative model development algorithm is closely related to “regularization,”
which is a well-known approach in statistics for overcoming the overfitting tendency of nonpara--

Applications of Neural Networks in Envzronmental and Energy Sciences and Engineering. S. Hashem, P.E.
Keller, R.T. Kouzes, and L.J. Kangas (Eds.)
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metric regressions. Regularization ensures that the model satisfies some smoothness constraints
and, in a quantifiable sense, so does early termination. Smoothness is realized in both cases
through a reduction in the number of effective model parameters.

The use of a test set in the termination criterion implies that performance on the test set is not
an accurate measure of model accuracy. A third data set, sometimes referred to as “validation”
data, is recommended in such cases. The validation set is only used to assess the goodness of the
model after its development is complete. This approach may not be feasible if data is limited,
and alternatives such as bootstrap estimates can be used instead (Efron and Tibshirani, 1986).

Another approach to achieving good generalization is to reduce the number. of actual model
parameters. Network pruning algorithms have been developed for this purpose that, during
training, excise weights that are analyzed as not necessary. Although these algorithms are often
complicated, pruning may eventually provide a generic solution to the generalization problem.

Learning or optimization

The subject of supervised learning for neural networks has generated a mini-industry. We of-
ten think of “learning” as a distinctive aspect. of neural network technology, and of learning
algorithms such as “backpropagation” as major novel contributions. In fact, neural network su-
pervised learning is a nonlinear optimization problem (and a relatively simple one in that no
constraints are involved).

Once the learning = optimization equation is recognized, learning algorithms can be related to
well-known methods in the optimization literature. Vanilla backpropagation is an approximate
version of gradient descent—the fidelity of the approximation depends, for example, on whether
weight updates are interleaved with gradient computation or not, whether epoch updating or
pattern updating is in effect, and on the step size. Analogously, backpropagation with momentum
is an approximate version of conjugate gradient (Leonard and Kramer, 1990).

One may well ask why we need to resort to approximations. In fact, true conjugate gradi-
ent (e.g., Fletcher and Reeves, 1964) seems to be gaining increasing popularity as the learning
algorithm of choice for practical applications. Compared to backpropagation with momentum,
conjugate gradient converges faster and does not require the manual specification of learning
and momentum rates. Good results have also been reported in small-to-moderate-size applica-
tions with another nonlinear optimization algorithm, the quasi-Newton Levenberg-Marquardt
(Marquardt, 1963).

It is worth remarking that approximations can sometimes outperform the real item. There
is considerable anecdotal evidence that backpropagation will converge more reliably (although
much less rapidly) than true gradient descent or true conjugate gradient. The occasional uphill
moves that result from the approximations can be effective in escaping local minima, it seems.
(This explanation is not completely convincing, since it does not address issues such as why the
escape should result in a better solution or why the approximate methods do not occasionally
escape into poor local minima.)

A fundamental distinction in nonlinear optlmlzatlon is that between gradient-based and
non-gradient-based algorithms. The algorithms mentioned above are in the former category.
Nongradient-based algorithms, in particular evolutionary computing methods, are attracting
considerable interest and may be-practicable in the foreseeable future. Their primary attrac-
tions are a reduced likelihood of converging to a poor local minimum and a capability to tolerate
nonstandard, and nondifferentiable, optimization criteria. :
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onerous. The greater the dimensionality of the input space, the greater the amount of data
required for accurate modeling in general.

Correlations are a particular source of difficulty when extraneous inputs are employed If un-
detected, correlated inputs can result in models that are accurate on the training (and test) data,
but can give dismal results in operation when the correlations that existed during the time data
for model development was being collected are violated. Data reduction with principal compo-
nent analysis (PCA) is an effective approach to dealing with correlated inputs. Neural networks
can be integrated with partial least squares (Qin and McAvoy, 1992) when the correlations’
are largely linear. Nonlinear correlations can be handled with nonlinear principal component
analysis techniques (Dong and McAvoy, 1993).

Input selection

In the synthetic problems that are the (justified) recourse for testing new modeling technology, an
appropriate sét of input variables is known a priori. This is rarely the case in real applications.
For example, in the process industries—a major target for neural network applications—plants
typically contain a large number of sensors and other measurement sources.

We neural network practitioners sometimes claim that all available variables can be used;
the learning algorithm will essentially ignore the irrelevant ones. This is not the whole truth.
Superfluous variables place a burden on data collection that, in practice, can be infeasibly
onerous. The greater the dimensionality of the input space, the greater the amount of data
required for accurate modeling in general.

Correlations are a particular source of difficulty when extraneous inputs are employed. If un-
detected, correlated inputs can result in models that are accurate on the training (and test) data,
-but can give dismal results in operation when the correlations that existed during the time data
for model development was being collected are violated. Data reduction with principal compo-
nent analysis (PCA) is an effective approach to dealing with correlated inputs. Neural networks
can be integrated with partial least squares (Qin and McAvoy, 1992) when the correlations
are largely linear. Nonlinear correlations can be handled with nonlinear pr1nc1pal component
analysis techniques (Dong and McAvoy, 1993).

The complezities of neural network design

The design space for neural networks is extraordinarily complex. For example, in principle a
neural network can have an arbitrary feedforward structure with each weight having its own
learning rate parameter. Furthermore, the design criterion—what counts as a good neural network
model-is application-dependent: depending on the problem, a different combination of criterion
components such as learning speed, generalization accuracy, and network size may be important.
Also, as noted earlier, even the choice of model inputs is typically not obvious for real problems.

Yet the technology provides virtually no heuristic or analytic guidance to the application
developer to allow her or him to deal with this complexity. The design approach that we perforce
follow is a manual exploration limited to a small region of the potential design space. Thus all
“reasonable” inputs are typically included, structures are limited to one or two hidden layers
with full connectivity between adjacent layers, and one global learning rate is used. While good
results can be obtained with effort, it is clear that the full potential of the technology is not
being realized. :

One approach to confronting the design complexity and taking advantage of the flexibility it
offers is automated design. An optimization algorithm that has been used with some success in
this context is a genetic algorithm. With a genetic algorithm, a search can be simultaneously
conducted for an appropriate set of inputs, network structure, and learning algorithm parameters’
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Algebraic versus dynamic models

Neural network models such as the multilayer perceptron are algebraic structures—they have no
state or memory. Hence the output of a given network at any time depends purely on its current
inputs. In many applications, however, we are interested in capturing the transient behavior
of real systems—i.e., in developing dynamic models. Modeling dynamics requires that history
be taken into account. The common approach is to include appropriate dynamic information
as network input. Thus, in addition to the current value of system input, the network may be
given some number of past values of system inputs and outputs. This is essentially a nonlinear
extension of a linear ARMA-like (Auto-Regressive Moving Average) model widely used in system
identification. . _

With input/output data from a system, a neural network dynamic model can be developed
in straightforward fashion using conventional supervised learning (e.g., backpropagation or con-
jugate gradient). During the training process, actual inputs and outputs from the system are
provided as network inputs and the target output is the value of the system output at the
next time step. The network is trained as a one-step-ahead predictor. For longer term predic-
tions, model outputs from previous time steps must be used as input in place of actual process
" outputs. Unfortunately, model accuracy degrades rather quickly as longer-term predictions are

attempted. i ' _
The better way to develop neural network models that are good long-term predictors is to
" use modeled outputs as network inputs during learning (Su, McAvoy, and Werbos, 1992). This
“externally recurrent” network severely complicates the learning algorithm, since conventional
supervised learning is no longer possible (the collected data no longer includes all the network
inputs, some of which are now neural network outputs from prior time steps). The key issue is the
computation of gradients of the cost function (modeling error) with respect to the model param-
eters (neural network weights). For dynamical systems such as externally recurrent networks, an
efficient algorithm for gradient computation is “backpropagation through time” (Werbos, 1990).
This is equivalent to the adjoint method or the calculus of variations (Bryson and Ho, 1975).
The distinction between these two types of dynamic model development approaches is well-
known in system identification. The approaches are often referred to as “equation error identi-
fication” (for the case where process output is used for model input) and “output error identifi-
cation” (for the case where model output is fed back as model input). For linear dynamic model
identification, equation error identification is a linear algebra exercise that can be solved with a
matrix pseudo-inversion whereas output error identification requires an iterative algorithm.
Finally, we note that dynamic neural networks—neural network architectures that have state
or memory typically implemented through feedback connections—can be used for developing
dynamic models. In this case, dynamic information need not be provided as external input.
Again, backpropagation through time is needed for learning. Dynamic neural networks are an
exciting research topic, although one that has not progressed currently to a point where broad
practical applications can be undertaken. '

Input selection

In the synthetic problems that are the (justified) recourse for testing new modeling technology, an
appropriate set of input variables is known a priori. This is rarely the case in real applications.
For example, in the process industries—a major target for neural network applications—plants
typically contain a large number of sensors and other measurement sources.

We neural network practitioners sometimes claim that all available variables can be used;
the learning algorithm will essentially ignore the irrelevant ones. This is not the whole truth.
Superfluous variables place a burden on data collection that, in practice, can be infeasibly
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(Harp and Samad, 1991, 1994). Genetic algorithms are nongradient-based methods and make
few assumptions about the problem. This is particularly helpful for neural network design since
the optimization can be conducted over a combination of discrete and continuous dimensions
and application-specific design criteria can be specified.

Conclusions -

This discussion has been limited to a selected few aspects of neural network application devel-
opment. A more comprehensive treatment would include discussions of additional issues such
as: adaptation in neural networks (the problem of incremental learning); the choice of opti-
mization criterion for neural network learning; utilizing a priori knowledge (e.g., a rough first
principles model) in neural network application development; selecting an appropriate neural
network type (e.g., multilayer perceptrons or radial basis function networks); and how to deal
with the “black-box” criticism often leveled at neural networks.

In conclusion, one recurring theme in the discussion above bears articulation. There are nu-
merous, and intimate, connections between neural networks and other technologies: many well-
developed methods in statistics, system identification, and nonlinear optimization have direct
relevance. Neural networks are not a technology unto itself. It is by availing of synergies with
conventional technologies that neural networks can revolutionize modeling applications.
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ABSTRACT The objective of this paper is to investigate the relationship between stochastic models and
neural network (NN) approaches to time series modelling. Experiments on a complex real life prediction
problem {entertainment video traffic) indicate that prior knowledge can be obtained through stochastic
analysis both with respect to an appropriate NN architecture as well as to an appropriate sampling rate,
in the case of a prediction horizon larger than one. An improvement of the obtained NN predictor is
also proposed through a bias removal post-processing, resulting in much better performance than the best
stochastic model. ’

Introduction

Time series prediction problems typically deal with either predicting a characteristic process
parameter for the next time step (prediction horizon one), or with predicting a parameter several
steps ahead (prediction horizon larger than one). Commonly, time series prediction problems are
approached either from a stochastic perspective [2] or, more recently from a neural network (NN)
perspective [3, 4]. Each of these a.pproa,ches’ha’s advantages and disadvantages: the stochastic
methods are usually fast but limited in applicability since they usually employ linear models,
whereas the NN methods are powerful enough but the choice of an appropriate architecture and
parameters is a time consuming trial and error procedure. A combination of these two techniques
either into a heterogeneous system or by applying a stochastic modelling for providing some prior
knowledge for the NN learning hasn’t been commonly dealt with.

The first objective of this work is to investigate whether a hint regarding an appropriate neural
network architecture (to be more specific, number of external and context inputs) provided by
stochastic modelling is valid. This hint would also indicate whether a feedforward or a recurrent
NN is more appropriate for a given time.series problem. An additional objective would be to
investigate the relevance of a stochastic hint regarding an appropriate sampling rate for a given
prediction horizon.

ARMA hints for prediction horizon one

In the case of a prediction horizon one, in which just the next value of the time series is predicted,
the following stochastic hints were explored:

~

Applications of Neural Networks in Environmental and Energy Sciences and Eng:;neering. S. Hashem, B.E.
Keller, R.T. Kouzes, and L.J. Kangas (Eds.) ’
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o whether an appropriate AR(p) model indicates the use of a feedforward NN with p external
inputs;

e whether an appropriate MA(q) model indicates the use of a recurrent NN with ¢ context
inputs; '

e whether an appropriate ARMA(p,q) model indicates the use of a recurrent NN with p
external and ¢ context inputs.

An additional context input is allowed in all cases to account for a possible first order differ-
entiation used in the stochastic integrated model. '

As a testbed, a complex real life prediction problem was used - compressed entertainment video
traffic prediction. The results obtained indicated that the order of the stochastic model provided
a good hint regarding the number of external and context inputs needed. They also indicated
that, whereas the stochastic techniques performed better on preprocessed data (smoothed by
applying a logarithmical transformation and stationarized by applying a first order differenti-
ation), neural networks performed much better on raw data. The stochastic models provided
an unbiased prediction; on the other hand, neural networks lead to biased predictors. A bias
removal procedure was proposed that improved the neural network prediction significantly, out-
* performing the best stochastic models. A more detailed report on the prediction horizon one
study will appear in {1].

AR hints for larger prediction horizon

Since for a larger prediction horizon different sampling rates can be employed, the choice of an
appropriate sampling rate based on the stochastic modelling is analyzed.

In addition, similar to the prediction horizon one, the following stochastic hint was explored:

e whether an appropnate AR(p) model indicates the use of a feedforward NN with p external
inputs;

The same video traffic data was used for experimentation, but now with prediction horizon
ten (the tenth step ahead process value is predicted). To predict the process & at time step ¢+ 10
using k process values up to time ¢, different sampling rates are considered:

e sampling rate 1, where the k previous process values are z(t), z(t—1),2(t—2),...,z(t—k+1);

¢ sampling rate 2, where the & previous process values are z(t),z(t —2),z(t - 4), Sz(t— 2%
(k—1));

s sampling rate 5, where the k previous process values are z(t),z(t — 5),z(t — 10),...,z(t —
5%(k-1));

e sampling rate 10, where the k previous process values are z(t),z(t — 10), z(¢ — 20),...,z(t —
10+ (k — 1)). '

The performance of different AR models when sampling at rate 1 are shown in Table 1. Here:
the model was put into state space form and the Kalman filter was applied to obtain the predicted
values. The error mean p = 3.7 e;/n, the root mean squared error RMSE = /3% e?/n and
the coefficient of determination r2 = 1 — M SE?/V AR[z], where the e;’s stand for prediction
errors and V AR[z] for the variance of the actual data and AIC stands for Akaike’s Information
Criterion. For a good predictor, the residuals should be normally distributed with u close to

0, small MSE and r? close to 1 and the AIC should be maximal. The table suggests as most
appropriate the AR(5) model, although there are just slight differences in performance between
the AR(5), AR(6) and AR(?) models.

For thé same sampling rate 1, the effect of different NN architectures on prediction accuracy
is summarized in Tables 2 and 3. The results in Table 2 are obtained without postprocessing,
whereas those in Table 3 are obtained by using the bias removal postprocessing mentioned earlier.
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The table indicates that the NN having 6 inputs yielded the best prediction this being consis-
tent with the hint provided by the stochastic modelling (allowing an additional external input
compared to the most appropriate AR(5) model to account for the first order differentiation).

The most appropriate AR models obtained for different sampling rates are presented in Ta-
ble 4. The table indicates the sampling rate 1 as the most appropriate. For this particular
sampling rate, the AR(5) model (using z(¢),z(t — 1),...,2(¢ — 4) to predict £(¢ + 10)) yielded
the best results.

The NN architectures corresponding to the best AR models for different sampling rates are
given in Table 5 (except for the 4-4-1 architecture used with the sampling rate 10, all the
prediction results are obtained after the application of the bias removal procedure). The results
-confirm the conclusion drawn from the stochastic analysis, according to which a sampling rate
of 1 is the most appropriate. '

Conclusions and further research

Experiments on the entertainment video time series with prediction horizon one indicated that a
useful hint can be obtained through ARMA modelling regarding an appropriate NN architecture.

Preliminary results suggested that the hint is still valid for larger prediction horizons when us-
ing AR modelling. Useful information could also be gained from the stochastic analysis regarding
- an appropriate sampling rate.

The extension study from AR to ARMA: modelling hints for larger prediction horizon is in
progress. Further research is needed to explore the validity of these hints to other time series
predxctlon problems.
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Model | x| RMSE | 72 AIC

AR(2) | -1.639 | 534.648 | 0.667 | 0.004506
AR(3) | -1.641 | 534.648 | 0.667 | 0.004471
AR(%) | -1.639 | 534.649 | 0.667 | 0.004473
AR(5) | -1.635 | 534.640 | 0.667 | 0.004300
AR(6) | -1.643 | 534.657 | 0.667 | 0.004300 |
AR(7) | -1.658 | 534.644 | 0.667 | 0.004303
AR(3) | -1.670 | 534.662 | 0.667 | 0.004303
AR(9) | -1.658 | 534.658 | 0.667 | 0.004316

Table 1: Stochastic Models for' Sampling Rate 1

Architecture

U RMSE r?
3-3-1 -247.2198 | 666.3758 | 0.4920
4-4-1 -232.2317 | 653.1661 | 0.5135
5-5-1  |.-233.4985 | 652.2024 | 0.5158
" 6-6-1 -228.0229 | 649.8688 | 0.5204
7-7-1 -242.1205 | 653.9996 | 0.5152

Table 2: NN Architectures without Postprocessing

Architecture 7 RMSE | r?
3-3-1 -218.4767 | 656.2554 | 0.5074
4-4-1 -189.7234 | 639.2881 | 0.5339
5-5-1 -197.8836 | 640.3158 | 0.5333
6-6-1 -199.4722 | 640.4094 | 0.5342
7-7-1 -202.0774 | 640.2565 | 0.5354

Table 3: NN Architectures with Bias Removal Postprocessing

Sampling | AR Order g. | RMSE | r* AIC
1 5 -1.63 534.640 | 0.667 | 0.004300
2 4 4,042 | 544.573 | 0.442 | 0.006143
) 5 1.759 § 928.670 | 0.131 | 0.005720
10 4 31.118 | 855.588 | 0.361 | 0.013911

Table 4: AR Models for Different Sampling Rates

Sampling | Architecture U RMSE e
1 5-5-1 -197.8836 | 652.2024 | 0.5158
2 4-4-1 -172.9530 | 599.1706 | 0.4044
5 5-5-1 -26.0680 | 886.9009 | 02100
10 4-4-1 27.8088 | 870.7731 | 0.3326

Table 5: NN Models for Different Sampling Rates
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Abstract

This paper is a summary of our work in developing a system for interpreting elec-
tromagnetic (EM) and magnetic sensor information from the dig face characterization
experimental cell at INEL to determine the depth and nature of buried objects. This
project contained three primary components: (1) development and evaluation of several
geophysical interpolation schemes for correcting missing or noisy data, (2) development
and evaluation of several wavelet compression schemes for removing redundancies from
the data, and (3) construction of two neural networks that used the results of steps (1)
and (2) to determine the depth and nature of buried objects. This work is a proof-of-
concept study that demonstrates the feasibility of this approach. The resulting system
was able to determine the nature of buried objects correctly 87% of the time and was
able to locate a buried object to within an average error of 0.8 feet. These statistics
were gathered based on a large test set and so can be considered reliable. Considering
the limited nature of this study, these results strongly indicate the feasibility of this
approach, and the importance of appropriate preprocessing of neural network input
data.

1 Problem Background and Methodology

An estimated 2.1 million cubic meters of hazardous waste has been buried at a variety of DOE
laboratories [Kostelnik, 1993]. This waste includes radioactive materials, toxic organics, and

*This work was supported-by Task Order 13, Master Task Subcontract Number C86-110877 from Lock-
heed Idaho Technologies Co.
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toxic heavy metals. Waste was sometimes dumped carelessly into open pits, which then
accurnulated water, causing the debris to shift. This material was also often stored in 55 .
gallon steel drums, which were crushed and shifted by construction equlpment driven over
the waste site.

An important step in remediating this waste is to characterize its position and shape
before it is either dug up or treated in situ. Careful approaches to waste remediation re-
quire a precise characterization, so that disturbance to the waste can be minimized during
remediation. This requirement may mean that only the uppermost portions of a waste site
can be characterized adequately, so that an on-site dig-characterize-dig cycle is necessary.
This scenario requires that data interpretation be fast, which implies that it be automated
as much as possible, and that fast hardware be used in the automated part of the process.

There are a variety of geophysical methods that can be used to noninvasively detect
buried waste. To maximize characterization accuracy, it seems appropriate to use multiple
sensor types in a co-inversion process where sensor datais converted to a map of the items
being sensed.

This paper describes the performa.nce of a system that uses electromagnetic (EM) and
magnetic sensor data to determine the nature and depth of buried objects. Data is first cor-
rected using a geophysical interpolation scheme, then compressed using a wavelet algorithm,
then fed to two neural networks, which produce an estimate of the depth of a buried object,
and a prediction about the type of object.

An important component of our work has been to evaluate principled pre-processing
methods in order to clean up and reduce the amount of data that is fed to the the neural
networks. Cleaning up of the data amounts to using interpolation techniques to fill in missing
data points, and to improve the signal to noise ratio of the data. A protocol to compare
three of the interpolation algorithms most widely used in geophysics—minimum curvature,
minimum curvature with smoothing, and kriging or least-squares collocation-was devised
and executed. Once the decision had been made to use interpolation to reduce the data
to a regularly-spaced grid, we decided to use wavelet transforms to compress the results of
the interpolation. The transforms not only reduce the amount of data that will need to
be input to the neural network, but also do a feature extraction so that the network can
train quickly on just the important features in the data. It was decided to compare four
wavelet families-Daubechies, Haar, Symmlet, and Coiflet—for this purpose. The purpose of
the interpolation and wavelet transformations were to prepare the Dig Face data for depth
and object type characterization of and location of subsurface objects.

The ability of neural networks to learn from sample input-output pairs makes them
appropriate for the co-inversion task, where models for this process, especially as applied to
real problems, are scarce. Examples of the input and output for this process are relatively
cheap to obtain, however, by constructing forward models of various sensor types.

Neural networks are also attractive for this problem because they are readily implemented
on parallel computers, which can drastically accelerate processing speed, and because they
run quickly even on serial simulations of parallel hardware. The iterative dig face technique
requires that the data for each level be processed quickly before moving on to the next level.

%)
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In.the last few years, neural networks have begun to cross the boundary from research
into deployment in profitable applications settings. For example applications, please see
[Maren et al., 1990]. Neural networks have been applied by a number of researchers to the
automated interpretation of geophysical data. By far the most thorough study on this subject
is described by [Poulton et al., 1992a, Poulton et al., 1992b], who used back-propagation
networks [Rumelhart et al., 1987] to map electromagnetic (EM) data into offset, depth, and
conductivity-area product, and compared back-propagation to several other neural network
algorithms on this task, with favorable results.

As demonstrated in previous work, one reason that neural networks are an appropriate
technology to explore for this problem is that they have been shown to do a good job at
“handling noisy data. In several empirical comparisons of neural networks to more traditional
techniques, tasks which contained noisy data showed the largest improvement using a neural
network approach (cf. [Fisher and McKusick, 1989, Mooney et al., 1989, Atlas et al., 1990,
Pratt and Norton, 1990, Weiss and Kulikowski, 1991, Shavlik et al., 1991]).

2 Experimental Design and Results _

The data supplied by INEL for this project consisted of the results of the six experiments
conducted in the Dig Face Characterization Cell in 1993, described in [Josten, 1993]. As de-
scribed in that report, the majority of the experiments consisted of measurements at a series
of levels of vertical magnetic field intensity, vertical magnetic field gradient, horizontal and
vertical dipole inphase and quadrature electromagnetic field measurements using & Geonics
EM-38 instrument, and in some cases measurements from a volatile organic gas detector.
Because the nature of the data acquired by the volatile organic gas detector is so different
than that from the other sensors, no attempt was made to process the volatile organic gas
data. '

2.1 Interpolation

Interpolation was used to remedy the data of missing points, and to improve the signal to
noise ratio in the data. A huge number of interpolation algorithms for multi-dimensional
data exist. It was decided to concentrate on a careful comparison of a few algorithms on the
selected data. The three algorithms chosen are:

1. Minimum Curvature Interpolation: It is possible to implement minimum-curvature
interpolation in a number of ways. The software used in this project, MINCL, is
a modification of the program published by [Webring, 1981}, which is based on the
technique suggested by [Briggs, 1974].

2. Minimum Curvature Interpolation with Smoothing: This technique is a modification
of the minimum curvature method which takes into account the possible presence of
noise in the data. The software used for this project was GCV [Bates et al., 1990].
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3. Kriging or Least Squares Collocation: Kriging [Matheron, 1963] and least-squares col-
location [Moritz, 1978] are essentially identical interpolation methods [Hardy, 1984].
The software used for this technique was KGRID [Hansen, 1993].

These techniques are probably by far the most commonly used in exploration geophysics; as
the exploration geophysics community makes extensive use of interpolation this is probably
a reasonable selection criterion. _

These data were then systematically degraded, and each of the interpolation programs
were run on the degraded data. To simulate missing data, random numbers were drawn from
a uniform bi-dimensional distribution with bounds equal to the limits of the data distribution
to determine which points to remove. Drawing continued until a pre-set fraction of the data
points had been deleted. The levels of missing data ranged from 5 to 60%. To simulate noise,
random numbers drawn from a gaussian distribution whose variance was a fixed fraction of
the data variance for that variable were added to each data value. The ratios of the variances
ranged from 5 to 60%. The three interpolation algorithms were then used to reconstruct
from the degraded data, and the reconstruction was compared with the baseline clean data
using root-mean-square error. These experiments were run both for the missing data case,
as well as the noise degradation case. .

Results: The two minimum curvature algorithms are consistently better than the kriging
algorithm in reconstructing missing data, but there is otherwise little to choose between
them. For noise-contaminated data, GCV outperformed the other two programs.

To test for the possibility that the comparison between the interpolation algorithms was
being influenced by outliers, a second set of comparisons was made using the supremum
norm rather than the root mean square norm (i.e., finding the maximum absolute values of
the deviations between the interpolated results and the reference data, rather than the root
mean square deviations). The results were substantially the same as for the RMS differences.

It should be noted that the relative running times of the three algorithms varied dramat-
ically: an average interpolation run required 30 seconds on an IBM RS/6000 for MINCL, 15
minutes for GCV and 18 minutes for KGRID. This reflects much optimization of the MINCL
program for production use [Webring, 1981].

~ Despite the run-time performance penalty, we would recommend the GCV program on
the basis of its excellent noise rejection capability. An additional feature of this program, is
that it supports three-dimensional interpolation.

2.2 Wavelet Transforms

There is a wide acceptance that preprocessing neural network input data is a good idea,
especially when it is of high dimension [Hertz et al., 1991][Page 144], [Minsky and Papert,
1969). Networks for dig face data interpretation will need to process extremely large amounts
of input information. In such cases, it is desirable to reduce the amount of data to a minimal
set that retains the salient features of the original data. This reduced data set can then form
the input to a neural network, or to other algorithms for characterizing object depth and
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characteristics. For a neural network, the removal of redundancies in the data afforded by
data compression speeds up training time and improves the trained network’s performance.

Wavelet transforms have recently emerged as a sound technique for data compression
[Strang, 1994]. These transforms represent the signal of interest in the form of coefficients
corresponding to a basis consisting of a family of wavelet functions. The proper choice of
the wavelet family leads to a representation where a majority of the coefficients are below
some threshold. Compression of the signal can therefore be achieved by retaining only those
coeflicients that are larger than the threshold and discarding the rest. These transforms have
been used for compression of fingerprint i 1mages compression of signals to be transmitted,
and various kinds of image analysis.

A decision was made to empmcaﬂy test the performance of four families of discrete
wavelet transforms (Haar, Daubechies, Symmlet, and Coiflet) in compressing the dig face
data. In addition to the wavelet transforms, as a baseline test each data set was also
compressed using decimation on a 2-D FFT of the data set. We measured the performance of
each class of wavelets by varying the amount of compression for each class, and reporting the
RMS error from the reconstructions of the data image, in a similar manner to the technique
used for comparing the performance of various interpolation’ methods.

Results: All the wavelet transforms outperformed the FFT as a compression method, es-
pecially at-higher compression levels. At low levels of compression (i.e. 25% of the data
retained), the wavelet transforms tended to perform equally well. However, at high levels of
compression, only those transforms with many coefficients were able to create good recon-
structions. Twenty coeflicients simply store more information in the transform itself than
twelve or sixteen coefficients. For this reason, Daubechies-20 was selected as the wavelet
transform to be used in the next stage of the project.

2.3 Neural Networks

The goal of this project was to construct a system that would locate and characterize the
nature of buried objects, using sensor data representing six different modalities: vertical
magnetic field intensity, vertical magnetic field gradient, EM horizontal in-phase, EM vertical
in-phase, EM horizontal quadrature, and EM vertical quadrature. To achieve this goal, two
neural networks were constructed: the characterization network and the depth network. The
characterization network predicts the nature of material in the center four grid positions of
the input, while the depth network produces a single real-valued number representing the
network’s estimate of the depth of a buried object.

Input to both networks are from a multi-resolution scan of the input (preprocessed) data.
At each position, the networks receive a 4 x4 window of raw data, a 16 X 16 window is wavelet
compressed to 4 x 4, and a 32 x 32 window is also wavelet compressed to 4 x 4 (Figure 1).
Thus, the networks receive high resolution data from the immediate vicinity of a point,
and: successively lower resolution information about points further away. The networks were
trained on extremely large training sets, and a separate validation set is used to determine
when to stop training without overfitting. Finally, the networks are tested on a completely
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Network Input

Multi—Resolution Scanning Window

4 x 4 Raw Data Window

16 x 16 Window Compressed to 4 x 4

32 x 32 Window Compressed to 4 x 4

i Network Input Vector 1x 288

Figure 1: A representation of the multi-resolution input to the neural networks.

separate testing set.

Results: The neural network experiments are still ongoing. However, the preliminary results
are encouraging. The characterization net performed at 87% accuracy, and the depth net
identifies the depth of a buried object within an average error of 0.8 feet. There are a number
of efforts underway that will doubtless improve the performance of both networks.

3 Conclusions

We have evaluated three interpolations schemes and recommend the use of GCV for the dig
face data. Likewise, our experiments lead us to recommend Daubechies-20 as the wavelet
transform best suited to compress this data. Our work shows that principled data pre-
processing is critical in order to speedup training, and increase accuracy of neural network
performance. Finally, we have shown the feasibility of applying neural networks to the site
characterization problem, especially when data from multiple sensors has to be fused to

obtain an accurate prediction. '
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Abstract

In this paper two applications of artificial neural networks (ANNSs) in nuclear spectroscopy analysis are
discussed. In the first application, an ANN assigns quality coefficients to alpha particle energy spectra. These
spectra are used to detect plutonium contamination in the work environment. The quality coefficients represent the
levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra
was labeled with quality coefficients by an expert and used to train the ANN expert system. Our investigation
shows that the expert knowledge of spectral quality can be transferred to an ANN system. A

The second application combines a portable gamma-ray spectrometer with an ANN. In this system the ANN is
used to automatically identify radioactive isotopes in real-time from their gamma-ray spectra. Two neural network
paradigms are examined: the linear perceptron and the optimal linear associative memory (OLAM). A comparison
of the two paradigms shows that OLAM is superior to linear perceptron for this application. Both networks have a
linear response and are useful in determining the composition of an unknown sample when the spectrum of the
unknown is a linear superposition of known spectra. One feature of this technique is that it uses the whole spectrum
in the identification process instead of only the individual photo-peaks. For this reason, it is potentially more useful
for processing data from lower resolution gamma-ray spectrometers. This approach has been successfully tested
with data generated by Monte Carlo simulations and with field data from both sodium iodide and germanium
detectors. )

With the ANN approach, the intense computation takes place during the training process. Once the network is
trained, normal operation consists of propagating the data through the network, which results in rapid identification
of samples. This approach is useful in situations that require fast response but where precise quantification is less
important.

1. Introduction -

Enormous amounts of hazardous waste were generated by more than 40 years of plutonium production at the
U.S. Department of Energy's Hanford site. There are an estimated 1700 waste sites distributed around the 1450
square kilometers of southeastern Washington state that comprise this site [1]. This waste includes nuclear waste
(e.g., fission products), toxic chemical waste (e.g., carbon tetrachloride, ferrocyanide, nitrates, etc.), and mixed
waste (combined radioactive and chemical waste). The Pacific Northwest Laboratory is exploring the technologies
required to perform environmental restoration and waste management in a cost-effective manner. This includes the
development of compact, portable, and inexpensive systems capable of real-time identification of contaminants.
The objective of our research is to demonstrate the potential information processing capabilities of the neural
n¢twork paradigm in real-time, automated identification of contaminants. . ‘

ANNs are used in a wide variety of data processing applications where real-time data analysis and information
extraction are required. One advantage of this approach is that most of the intense computation takes place during
the training process. Once the ANN is trained for a particular task, operation is relatively fast and spectra can be
rapidly processed. Another feature of this approach is that human intervention is not required during system
operation which promotes automation. An ANN coupled to a sensing system, such as a spectrometer, can be used as
a portable, automated systern for identifying contaminants. In this paper, ANNs are applied to two applications: one
for identifying quality of alpha spectra and another for identifying isotopes from their gamma-ray spectra.

l’Ijhis work was supported by the Laboratory Directed Research and Development program and by the Environmental Molecular
_ Sciences Laboratory construction project at Pacific Northwest Laboratory (PNL). PNL is a multiprogram national laboratory
operated by Batteile Memorial Institute for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830. .
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2. Alpha Spectral Quality Assignment

Air quality monitoring for man-made alpha emitting radioisotopes in nuclear processing and storage facilities is
performed by measurement of collected particulates on air filters. The filters collect fine dust particles including
naturally occurring alpha emitters. The filters are observed in real time by alpha spectrometers which create energy
spectra. As dust or overmass builds on the filter, the spectral resolution-and the ability to differentiate isotopes of
interest is compromised.

A desirable goal is to-take corrective action before a spectrum degrades past usefulness. With significant
experience, an operator can determine the usefulness of an alpha spectrum by visual inspection. In the case of too
much overmass, a simple non-scheduled filter change cycle is performed. In other cases, poor spectral quality may
indicate that detector or electronic maintenance is required. Regardless, intervention in the measurement system is
required. However, the dynamics of facility operations preclude. constant watch of spectral accumulations in real
time. Thus, automated early warning based on spectral quality can assure that an isotope of concern is being reliably -
monitored:

The possibility of using an-automated ANN approach to provide real-time inference was proposed as an
alternative to more common methods [2]. Many investigators have attempted to maintain spectral quality through
system design or special algorithms {3]. All are limited by the reality of dynamic operations and the potential for
unexpected and rapid spectral degradation. Some empirical numerical tests have been performed which are complex
a posteriori exercises. None of the methods have proved attractive for real-time application.

3. Approach

The first investigation was performed on 139 alpha particle spectra received from Westinghouse Hanford
Company. The spectra were generated to identify the presence of airborne plutonium in work environments.
Minute levels of plutonium are easily lost in the background noise from degraded alpha ermttmg progeny .of radon
gas. In order to identify plutonium, these spectra must be of high quality.

ANNs were applied to the problem of assessing the degradation in the quality of the alpha spectra, a task that i is
presently performed by human experts. Experts use graphical representations of spectra during assessments. The
ANN technology was chosen because it has the same capability as experts in analyzing spectral channels in parallel.
ANNs have demonstrated then' benefits in other applications of spectral analysis [4-7]. '

The spectra used in this investigation showed various levels of quality degradation due to variables such as
calibration and salt build-up on the filter used in counting the alpha particles. Each spectrum was labeled with a
quality coefficient from O to 10 by an expert. The spectra labeled from O to 3 are acceptable for determining
plutonium levels.. The labels in the midrange (4-6) are marginally acceptable. High labels, above 6, indicate poor
quality spectra and that the filter needs replacement and/or that the instrument needs calibration. The task for the
ANN was to learn to label spectra with quality coefficients using the knowledge of a human expert.
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Fig. 1. Alpha spectra. (a) Optimal spectra with an expert assessed quality coefficient of 1. (b) Degraded spectra
with an expert assessed quality coefficient of 5. Observe that the differences in the scale of the vemcal axis are
insignificant. The vertical axis represent energy count and is not analyzed as absolute values.

The original alpha spectra were sampled at 512 channels and reduced to 256 channcls during the data
collection. During our initial data analysis, it was observed that all the spectral information was found between
channels 40 and 239. These 200 channels were further processed to reduce the amount of data being fed into the
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ANN. The 200 channels were reduced into 20 equal sized channels, with each new channel computed as the average
of 10 consecutive channels. This reduction in the spectral resolution was deemed appropriate for the relatively few
spectra used in this investigation. The channel counts in each spectrum were normalized to the maximum channel
count of the spectrum before presentation to the ANN.

The ANN used to qualify the alpha spectra consisted of 20 inputs for the averaged spectral values, one hidden
layer with 15 nodes, and one output node for the spectral quality value. The ANNs were trained using the standard -
backpropagation algorithm with batch mode weight updates [8]. The learning rate and momentum were kept
constant at 0.01 and 0.9, respectively. The training of the ANNs was stopped at 3000 epochs. This ANN
configuration and these training variables had been previously determined to yield near optimal performance.

4. Alpha Spectra Quality Assisnment Results and Discussion _

The performance of an ANN is evaluated with testing data. An unbiased evaluation requires that these testing
data are separate from the data used in training. In order to test all spectra available for this investigation, we
partitioned the spectra into four equal sized sets and used the K-fold testing approach. Each set was tested using a
separate ANN that was trained with the other three sets. By using four ANNs and rotating the set used for testing, -
all spectra in the four testing sets were labeled. The K-fold testing approach resulted in an RMS error of 1.252
(MSE = 1.567) measured over-all data (which has a range of 0 to 10).
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(Right) Fig. 3. ANN with 20 spectral values as inputs and one 6ufpﬁt which is the assessed quality coefficient for
the spectrum being analyzed. The figure shows that only the values from channels 40 to 239 of the 256 channel
spectra are input to the ANN.

Our investigation shows that the expert knowledge of spectral quality can be transferred to an ANN system. The
histogram in Figure 4 shows that only a small fraction of the spectra on hand have significant errors. Most spectra
were qualified by the ANN system to be within +2 coefficient values from those assxoned by the expert. The
deviation is within %1 for 83.5% of the spectra and within *2 for 97.1%.

It is further noted that where extreme deviations existed, information in the spectra was not included in the
expert's coefficient assignment. In particular, the worst mismatch had good spectral quality but included an




26 Keller, Kangas, Hashem, Kouzes, and Troyer

additional isotope signal not in the majority of training spectra. Thus, it is expected that inclusion of a second
condition for indicating the presence of the interfering isotope would improve the variance while providing an
indicator of isotopic presence as an important side benefit.
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Fig. 4. Distribution of deviation from expert. The figure shows the signed deviation (ANN - Expert) of the ANN
assessed quality coefficients from the expert's coefficients.

S. Gamma-Ray Isotope Identification _
_The traditional approach to isotope identification from gamma-ray spectra can be categorized as finding peaks
and fitting curves. This approach involves an iterative process of spectrum decomposition and regeneration until a
mathematically synthesized spectrum closely matching the true spectrum can be generated. This is both time
consuming and often requires manual intervention. The ANN approach employs pattern recognition on the entire
spectrum. This recognition is performed by a single vector-matrix mulnphcauon that results in rapid, real-time
identification of analytes and can be used in automated systems. ‘
For a sample composed of a combination of 1sotopes, the spectrum of the sample, S, is approximately a linear
superposition of the spectra of each individual isotope, s;. This is illustrated by Equation | where @; is the relative

concentration of each isotope in the sample: A
| $= as;. S

Therefore, the classification system should have a linear response with respect to the input. This deviates from the
majority of ANN applications, such as the prevxous one, which implement a nonlinear response. However, even
with a linear response, the ANN approach has advantages in speed, simplicity, and automation over traditional
approaches.

Input Layer Output Layer

(1/channel) (1is0tope)
Channel 1
Channel 2 22Ng
Channel 3 54Mn
Channel 4
Channel 5 57Co

BOCO

Channel 507 137G
Channel 508 S
Channel 509 182-154g
Channel 510 226R4
Channel 511 230
Channel 512 “Th

Fig. 5. An ANN used to 1dent1fy radioactive i 1sotopes

“An ANN designed to have a linear response employs linear activation functions. A feedforward ANN that imple-
ments linear activation functions can be reduced to a network with a single input layer-and single output layer.
Therefore, the ANN used in this application has a single input and single output layer as illustrated in Figure 5. Two
ANN paradigms were studied for implementing the linear response: the linear perceptron and the optimal linear
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associative memory. Both approaches to gamma-ray spectral analy51s have been applied separately [9 - 12]. In this
paper, these two ANN techniques are compared.
A. Linear Perceptron

Linear perceptron is one of the oldest ANN paradigms.‘ It originally sparked interest in the pattern recognition

community in the late 1950s and early 1960s [13]. However, it was unable to solve pattern recognition problems
that were not linearly separable. The original perceptron implemented a hard-limited threshold as the activation
function. For the gamma-ray spectral analysis application, a modified linear activation function (linear for positive
input and zero for negative input) known as a perceptron function is used. The delta rule is used to train the
perceptron in an iterative process, which is detailed in Table I. With linear activation functions, this training algo-

rithm is mathematicaily identical to the backpropagatlon aloonthm [8] since the derivative terms in backpropagation

would be unity in this case.
Table I
Perceptron Learning Rule

Step 1. Initialize we:ghts with random values.

Step2. Picka labeled pattern (spectrum, xP, and known composition, tP) from the training set and present the
spectrum to the network.

Step 3. Propagate data forward and generate the output classification.
Step 4. Calculate mean-square error between target classification and actual classification.

Step 5. Adapt the synaptic weights by using a delta rule to reduce output error.
AW =n(P - yP)xP (1 = learning rate)

Step 6. If there are more spectra in the training set, loop back to step 2.

Step 7. If the output error is high or the maximum number of iterations have not been met, then loop back to
step 2.

B. Optimal Linear Associative Memory (OLAM)

The optimal linear associative memory (OLAM) approach is based on a simple matrix associative memory model
[14,15]. It was developed in the early 1970s as a content addressable memory and is useful in situations where the
input consists of a linear combination of known patterns (e.g., gamma-ray spectra). It is an improvement over the
original matrix memory approach in that it projects an input pattern onto a set of orthogonal vectors where each
orthogonal vector represents a unique pattern (exemplar). With linear activation functions, the training is a straight
forward matrix orthogonalization process where each pattern from the training set is made to project onto a separate,
unique orthogonal axis in the output space. This process is described in Table II.

Table I
OLAM Weight Specification

Step 1. Form matrices of spectra and isotopic concentrations. Arrange spectra, xP, as columns in an nxp
dimensional matrix X and target concentrations, tP, as columns in an Mxp dimensional matrix T.

Step 2. Generate inverse of the spectral matrix X. Since X is generally not a square matrix, a pseudo-inverse -
technique is used to generate _)_(_T.

( indicates pseudo-inverse)

Step 3. Form the synaptic weight matrix.
W=1xT
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6. Isotope Identification System Layout

Figure 6 illustrates a prototype system that combines a portable gamma-ray spectrometer with an ANN. Figure 5
illustrates the ANN that is connected to the gamma-ray spectrometer. In this prototype, a sodium iodide (Nal)
detector is used, and 512 channels of data are produced by the spectrometer. All channels are fed into the ANN so
that there is one input for every channel. There is a single processing layer (output layer) in the ANN where the
number of output neurons is equal to the number of isotopes being identified (8 in this case). One feature of this
approach to gamma-ray spectral analysis is that the whole spectrum is used in the identification process instead of
individual peaks in the spectrum. For this reason, it is potentially more useful for processing data from lower
resolution gamma-ray spectrometers like those employing Nal detectors. '

Each isotope presented to the spectrometer produces a spectrum that is characteristic of that isotope. By
presenting many different isotopes to the system, a database of spectra is constructed. From this database, training
sets and test sets are generated. These sets are collections of labeled patterns {(specfra of isotopes with known
concentrations) representative of the desired identification mapping. The training sets are used to configure the
ANN. The goal of this training is to learn an association between the spectra and the labels representing the spectra.
ANNs were developed with both the linear perceptron learning rule and with the OLAM weight specification. The
training process for the OLAM is a non-iterative process, while the linear perceptron training process requires
thousands of iterations. For this reason, it took only 200 milliseconds on a SPARCstation 10 to generate the OLAM
ANN, while it took a couple of hours to generate the linear perceptron ANN. Trammg times on an Intel i486 based
personal computer are only a few times greater than this. ’ .

7. Gamma Spectra Results :
Energy Identified

Unknown Spectrum Isotopes
Sample .
. Gamma-Ray Neural |—»
g L Spectrometer  Network —»
Detector >
{Nal, Ge)

Fig. 6. Prototype system combining gamma-ray spectrometer with an ANN.

The prototype system illustrated in Figure 6 was tested with both Monte Carlo simulated spectra and field data
collected from a gamma spectrometer equipped with a sodium iodide detector. Figure 5 illustrates the ANN
configured to identify 8 radioactive isotopes (#2Na, 54Mn, 57Co, 60Co, 137Cs, 152-154gy, 226Ra, and 232Th) from
their gamma-ray spectra. Field operation consists of presenting an unknown sample to the system, generating a
gamma-ray spectrum, passing the spectrum through the ANN, and generating a classification of the unknown
sample. The values on the output neurons are propomonal to the quantities of each radioactive isotope found in the
sample. Figure 7 illustrates the classification of a sample composed of equal amounts of $0Co and 137Cs (sample
4). In this case, the OLAM correctly identified the composition of the samples while the linear perceptron
incorrectly identified a significant amount of >7Co. Figure 8 illustrates the classification of a sample composed of
equal amounts of 22Na, 37Co, 60Co, 137Cs, and 152-154Ey (sample 5). In this case the OLAM correctly identifies
all the isotopes present in the sample though the ratios between identified isotopes are not uniform. The linear
perceptron had a hard time identifying 60Co and often identified 57Co when it was not present. In several cases, the
OLAM indicated a small amount of 54Mn when it was not present. However, the errors with the OLAM were
always smaller than the linear perceptron. Similar results were found with other samples which can be found in
Table 1. Additional studies that were performed with a Germanium detector yielded similar results.

Table IV lists results from Monte Carlo simulated spectra. The linear perceptron and OLAM were tested on
spectra of mixtures and on modified spectra. Spectra of mixtures were generated by combining the simulated
spectra of the different isotopes. Modified spectra were produced by reducing the peak height of some spectra and
by removing everything but the peak of other spectra. Since both the spectrum of the mixtures and the OLAM were
generated from ideal spectra, the OLAM perfectly identified all the isotopes in the different mixtures. The linear
perceptron did not fair well. For the modified spectra, the linear perceptron performed slightly better than the
OLAM. These results indicate that the linear perceptron uses the peak information more than the OLAM does.

The time to identify an isotope from a 512 channel spectrum with 8 possibie isotopes is 20 milliseconds on a 33
MHz Intel i486DX based personal computer. Therefore, the classification process is limited not by the ANN but by
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the time it takes to acquire and generate a spectrum. In applications that can acquire and deliver data much faster,
the ANN can be implemented in specialized hardware. In such a case, three orders of magnitude increase in
classification speed can be achieved. ~
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Fig. 7. Spectrum of a mixture of $0Co and 137Cs (sample 4) with the associated classifications by the linear

perceptron (LP) and OLAM ANNs. ANN outputs in gray indicate incorrect identification of an isotope.

Table IIT -
C1a531ﬁcat10n of actual spectra from Nal detector with linear perceptron (LP) and OLAM . Each column represents
a different isotope. RMS Error is listed in the right-hand column.

22Na . %n Sico  60Co  137Cs  15%gy  226Ra. 2321 Error

Sample 1 (69Co)

Actual 0.00 0.00 0.000 1.00 0.00 0.00 0.00 0.00
LP 0.01 0.08 0.00 1.00 0.00 0.00 0.00 0.07 0.038
OLAM - 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.000
Sample 2 (132-154gy)
Actual 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
LPp 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.000
OLAM 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.000
- Sample 3 (226Ra)
Actual 0.00 0.00 0.00 . 0.00 0.00 0.00 1.00 0.00
Lp . 0.00 0.00 0.00 0.01 0.00 0.00 1.00 0.00 0.004
OLAM 0.00 0.00 0.00 0.00 0.00 . 0.00 1.00 0.00 0.000
Sample 4 (Mixture of 60Co and 137¢s)
Actual 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00
LP 0.06 0.00 0.27 0.62 1.01 0.02 0.01 0.00 0.166
OLAM - 0.02 0.00 0.00 1.15 1.01 0.00  0.00 0.00 0.054
Sample 5 (Mixture of 22N, 57Co, 60Co, 137Cs, and 15XEu)
Actual 1.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00
LP 0.96 0.00 0.38 - 0.00 1.00 1.21 0.02 0.00 0.423
OLAM 0.85 0.00 0.67 1.41 1.00 1.17 . 0.00 0.00 0.203
* Sample 6 Mixture of 80Co, 137Cs, and 15*Eu)
Actual 0.00 0.00 0.00 . 1.00 1.00 1.00 0.00 0.00
LP ) 0.08 0.00 0.40 0.00 0.95 1.13 0.03 0.00 0.385.
OLAM 0.00 0.23 0.00 1.61 097 1.10 0.00 0.00 0.233
_ Sample 7 (Mixture of 22Na, $0Co, 137Cs, and 15"Eu) ;
Actual 1.00 0.00 0.0 1.00 . 1.00 1.00 0.00 0.00
LP 0.96 0.00 0.32 0.00 . 1.05 1.12 0.02 0.00 0.374

OLAM 0.86  0.18 0.00 1.32 1.04 1.09 0.00 _0.00 0.143
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Fig. 8. Spectrum of & mixture of 22Na, 57Co, 60Co, 137Cs and 152-154gy (sample 5) with the associated

classifications by the linear perceptron (LP) and OLAM ANNs.

Table IV
Classification of Monte-Carlo generated spectra simulating a Nal detector with linear perceptron (LP) and OLAM
ANNs. Each column represents a different isotope. RMS Error is listed in the right-hand column.

22Na %M 37Co 60Co  137¢s 15%Xgy  226R; 2321,  Error

Sémple 1 Mixture of 60Co and 137Cs)

Actual 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00

LP © 0.00 0.00 0.00 0.89 0.72 0.00 0.00 0.00 0.106
OLAM 0.00 -0.00 0.00 . 1.00 1.00 0.00 0.00 0.00 0.000

Sample 2 (Mixture of 22Na, 34Mn, 37Co, 60Co and 137Cs)

Actual ©1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 :

Lp - 0.00 0.41 0.70 0.66 0.00 0.00 0.00 0.00 0.441
OLAM 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.000

Sample 3 Mixture of 0.5 22Na, 37Co, and 0.7 137Cs)

Actual 0.50 0.00 1.00 0.00 0.70 0.00 0.00 0.00

LP 0.00 0.00 0.90 0.00 0.15 0.00 0.00 . 0.00 0.350
OLAM 0.50 0.00 1.00 - 0.00 0.70 0.00 0.00 0.00 0.000

Sample 4 (54Mn with peak reduced by 50%)

Actual 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00

LP . 0.00 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.004
OLAM 0.01 0.50 0.00 0.01 0.01 0.00 0.00 0.00 0.006

Sample 5 (54Mn with only peak)
Actual 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
LP 0.00 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0.004

OLAM 000 098 000 000 000 000 000 000 0.006

8. Conclusions - /

The results of our research have demonstrated the benefits of the neural network paradigm in analyzing spectral
data. Some of its advantages over conventional analytical techniques include simplicity, real-time analysis, and the
absence of human intervention. All of these are important in building compact and portable systems for automated
contaminant identification.

Results from the alpha spectral qualification study show that only integrated or low resclution data are requlred
for inferring reasonable decisions about the quality of the data. The results indicate that the ANN based approach is
ready for inclusion into an automatic system for assessing quality of alpha spectra. Because inference is possible
with reduced resolution, the commonly limited resources of in-line process monitoring equipment should still
accommodate the ANN approach. Both quality and isotope identification alarm systems appear feasible and
‘practical.
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Results from the isotope identification system have shown the superior performance of the OLAM approach over
the linear perceptron for gamma-ray spectral analysis in both classification accuracy and training speed. The
classification performance can be attributed to the orthogonalization process used by the OLAM during training.
Since this training process is non-iterative, the OLAM offers a substantially shorter training time than the linear
perceptron. Also, this system illustrates that 1sotopes in a contaminant can be identified in a fraction of a second
once the spectrum is sent to the ANN.

One of the disadvantages of the OLAM is that nearly ideal spectra are needed in the training process. However,
if needed, the OLAM can be provided with Monte Carlo generated spectra. The linear perceptron can be trained
with noisy data or data with defects as long as a large training set is available.

Further work could involve comparison of the ANN approach to more conventional techniques, exploration of
other ANN paradigms, examination of techniques for combining ANN models, and development of field prototype
systems. A field deployable system should work with different source geometries and should compensate for pile-
up and gain shifting. An ANN that handles gam-shlfnng was recently reported by Olmos et. al. [16].

Information on ANN developments at Pacific Northwest Laboratory is available in the World Wide Web
(WWW) pages of the Environmental Molecular Sciences Laboratory which is accessible through such WWW
clients as NCSA Mosaic.

URL: http://www.emsl.pnl.gov:2080/docs/cie/neural/
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ABSTRACT

The determination of transuranic (TRU) and associated radioactive material quantities
entrained in waste forms is a necessary component of wasté characterization. Measurement
performance requirements are specified in the National TRU Waste Characterization Program
. quality assurance plan for which compliance must be demonstrated prior to the transportation and
disposition of wastes. With respect to this criterion, the existing TRU nondestructive waste assay
(NDA) capability is inadequate for a significant fraction of the U.S Department of Energy (DOE)
complex waste inventory. This is a result of the general application of safeguard-type
measurement and calibration schemes to waste form configurations. Incompatibilities between
such measurement methods and actual waste form configurations complicate regulation
compliance demonstration processes and illustrate the need for an alternate measurement
interpretation paradigm.

Hence, it appears necessary to supplement or perhaps restructure the perceived solution and
approach to the waste NDA problem. The first step is to understand the magnitude of the waste
matrix/source attribute space associated with those waste form configurations in inventory and
how this creates complexities and unknowns with respéct to existing NDA methods. Once
defined and/or bounded, a conceptual method must be developed that specifies the necessary
tools and the framework in which the tools are used. A promising framework is a hybridized
neural network structure. Discussed are some typical complications associated with conventional
waste NDA techniques and how improvements can be obtained through the application of neural
networks.

1. OVERVIEW

Techniques commonly utilized to acquire nondestructive assay data on TRU waste forms are
for the most part based on gamma and/or neutron-type measurements. The investigations undér-
taken in this work concern the performance of neural networks with respect to the passive
neutron measurement technique. A comparison of the neural network based system relative to
the conventional passive/active neutron system commonly employed at many DOE sites is then
made.

a. Work supported by the U.S. Department of Energy, Assistant Secretary for Environmental
Management, under DOE Idaho Operations Office Contract DE-AC(07-941D13223,
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Prior to a discussion of the procedure and results, it is necessary to understand those waste
NDA issues that have prompted investigations into alternate methods. This is best accomplished
via an overview of the waste form configurations followed by a discussion of the capability of
existing waste NDA systems and methods. The DOE TRU 208-L waste form inventory spans an
enormous n-dimensional space in terms of matrix and source configurations influencing
conventional NDA system response. For the moment, container sizes other than the 208-L drum
are ignored. Attributes of such configurations can be categorized in terms of the waste matrix,
the entrained radioactive material composition (TRU and non-TRU), and characteristics resulting
from the combination of the previous two categories.

Waste matrix parameters that affect the response of an NDA system include the elemental
composition, the volume averaged density, and element specific density distributions in space.
Characteristics of the entrained radioactive material affecting system response include the
radionuclidic/isotopic composition, the radioactive material chemical compound and/or mixture,
the spatial distribution of the radioactive material, and the density distribution of the radioactive -
material, e.g., diffuse, aggregate, unit pieces or a combination thereof. One then must understand
the- interaction between these two parameters, which further convolutes the measurement task.
Such interactions include gamma attenuation, nuclear reactions («,n), neutron moderation/
absorption, etc.

It is next instructive to look at the functional aspects of the commonly employed passive/active
neutron type system used for waste NDA of 208-L drums. The passive/active neutron system
operates in two modes: a passive neutron coincidence counting mode and an active neutron _
interrogation mode. Response data acquired via these two measurements are used as appropriate
to arrive at a mass value for TRU material entrained within a given 55-gal drum waste container.
The active mode is confined to the lower mass range, less than a few grams of fissile material, and
the passive is employed above this. The two modes are not entirely independent as some minor
response corrections derived from one mode are applied to the other.

The passive/active neutron system is calibrated to quantify the mass of specific isotopes
associated with the source composition associated with a given inventory population. This implies
that in a stand-alone operational mode, the source composition must be a priori known. The
source composition used for measurement purposes in this study is one which comprises a
significant fraction of the DOE inventory, weapons grade plutonium (WG Pu). For this
composition, the passive neutron mode signal comes from the #*°Pu isotope, and in the active
mode, it is due to Z°Pu. The balance of radionuclides associated with the WG Pu (**Am), can
be established in terms of relative mass ratios with respect to the quantified #**Pu and Z°Pu
isotopes, provided a means is available such as high-resolution gamma spectroscopy. This is one
method whereby a measure of the total mass and associated quantities, alpha activity, thermal
power, etc., can be acquired.

- This NDA measurement approach works reasonably well and, in general, complies with
applicable National TRU Waste Characterization Program quality assurance objectives when the
waste form is compatible with the response characteristics and capability of the system. In other
words, the design of the passive/active neutron instrument as well as the-calibration scheme
employed is based on a conceptual understanding of the physical properties of the DOE complex
waste form inventory. The performance and capability of the instrument are a function of the
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degree of agreement between the actual waste form and the instrument demgn/cahbranon
concept.

Certainly, it is not possible to devise a simple measurement scheme based on a single
modality, neutrons (supplemented by high resolution y spectroscopy), which accommodates the
~myriad of waste form configurations throughout the complex, let alone a subpopulation residing at

a single site. Indeed, experience has shown that the passive/active neutron system capabilities are
confined to a definite waste matrix/source configuration realm. For example, the performance of
the passive neutron coincidence-counting technique employed in this type of system is sufficient if
the moderating properties and density of the matrix are within certain values. Additionally, this
technique works well if the source isotopic and chemical composition does not produce an («,n)
neutron component of sufficient magnitude to interfere with the coincidence-counting technique.
Unfortunately, actual waste forms are comprised of matrix and source configurations that strongly
interfere with the passive neutron technique. Additional and, in fact, more serious interferences
are associated with the active mode of the neutron system. The high-resolution gamma
spectroscopy system is also subject to complications arising from commonly encountered matrix/
source configurations.

This is not to say every waste container exhibits matrix/source properties that confound the
measurement system. There are several matrix/source configurations that do not possess
inherently complicating characteristics allowing the acquisition of meaningful data. This is fine,
but the result of this situation is to force one into the less desirable situation of attempting to
define what waste forms the measurement system can handle and those it cannot. Thus, we no
longer have a viable waste NDA capability, but rather a system with specific functional boundaries

‘that require significant resources to establish and maintain. Even with this type of method in.
place, an on-line method of determmmg which waste containers are within the system capablhty
and which must be returned to storage is necessary. Depending on the waste form, the
proportion of drums that are returned to storage can be significant.

In summary the general state of waste NDA capability as it exists today is inadequate.
National TRU Waste Program requirements dictate a 100% completeness criterium, i.e., assay
data are required for all waste containers. As it is presently an undeniable fact that there are
many waste forms for which valid assays cannot be acquired or be demonstrated to comply with
applicable quality assurance objectives, alternative methods programs must be pursued.

2. APPLICATION/METHOD .

The waste NDA technique used to generate response data for the neural network utility
investigations is the passive neutron coincidence-counting technique. Measurement data are
acquired by inserting the waste container, a 208-L drum in this study, into the counting chamber
and passively recording neutron events. To allow for an evaluation of neural network passive
neutron data interpretation performance, the response of a passive/active waste NDA system
commonly employed at DOE sites is used as a baseline. Measurement data are recorded
simultaneously in both systems by simply extracting neutron event signals from the passive/active
neutron system and routing them to a separate coincidence counting system used as the data
source for the neural network training and testing. Therefore, the measurement apparatus/
detector front-end signal processing chain is identical, providing for a convenient means of system
performance comparison.
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In order to make a meaningful evaluation of the neural network capability, it is necessary to
define the realm or n-dimensional space that the measurement sets encompass. This is
accomplished by simplifying the response through the elimination of complications arising from
matrix interactions. Thus, the first measurement set is acquired on an empty 208-L drum where
only the position, mass, and neutronics of the drum are varied. Approximately 80 separate
measurements were made for differing configurations of source spatial location, mass values, and
source density distributions. Two-thirds of this data set were used for training with the balance
serving as a test set. The measurement range in terms of source spatial distribution is determined
by the internal dimensions of the drum. The mass of WG Pu associated with the data set ranged
from 22 to 160 g. Neutronic effects were introduced primarily through source orientation and
source proximity variations. '

In addition to the empty drum measurement set, a number of acquisitions were performed
using a simulated waste matrix. This matrix is comprised of hundreds of borosilicate glass vials,
5 cm? each, loaded into a number of 1-gal polyethylene bottles. A total of 20 such glass vial/
polyethylene bottles are fitted into the 208-L drum, providing a quite accurate representation of a
common TRU waste form. In manner similar to the empty drum measurement series, a number
of measurements were made on the glass vial/polyethylene bottle matrix drum by varying source
mass (20 to 260 g), position, and the neutronics.

3. EXPERIMENTAL RESULTS

A backpropagation neural network was trained on the empty drum measurement series data.
As expected, the nonlinearity and complexity of the system required a network with two hidden
layers. The network did train after about 80 epochs, which indicates that the network
architecture is appropriate for this problem. The training and test set data as processed through
the network are illustrated in Figure 1, expressed as a relative percent difference between the
neural network derived WG Pu mass value and the actual mass value ratioed to the actual mass,
the quantity of interest.

Evident are reasonable deviations from the true value despite the range of variations through
source mass, position, and neutronics. The largest percent deviation is less than 5% as
compared to the response of the conventional passive/active system variation of +30%. Such an
improvement is significant as it represents the capability to decrease measurement uncertainty
components by a magnitude useful in the compliance demonstration process. It also depicts the
neural network capacity to quickly capture a complex phenomena without employing laborious
analytical methods. In fact, the existing conventional system is such an analytical technique
derived through a calibration routine.

The glass vial/polyethylene bottle data set was trained using a network with two hidden layers
and also converged relatively quick. The largest percent deviation is slightly greater than +5% as
compared to the response of the conventional passive/active system variation of +35%. The
relative percent difference ratios are shown in Figure 2. Due to the paucity of measurement data,
only the training data are shown. Nevertheless, it is evident that the network can and does
embody the complex interaction of the matrix and source variations that are embedded in the
system response. ‘
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A third network was trained simply to yield information regarding the realm of applicability of
a given network. For example, how well can a network trained for the empty drum and glass vial/
polyethylene case perform if a similar network architecture is employed. The results of combining-
the measurement sets associated with these two measurement configurations is shown in Figure 3.
It is clear that the performance of such a network is not as good as the networks trained on '
either the empty or glass vial/polyethylene matrix separately. This indicates that there is
“additional complexity introduced into the model that cannot be managed by the architectures used
for either the empty drum or glass/polyethylene networks. Certainly, a network architecture could
be devised to suit the combined glass polyethylene data. The important point is that the
performance of the trained network is domain specific.
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Figure 3. Combined empty drum and glass vial/polyethylene with inappropriate network
architecture.

4. CONCLUSIONS ‘

It is clear that the neural network tool is applicable to the complex waste NDA problem. The
successful adaptation of such a method is strongly dependent on ensuring that the waste container
to be assayed for its TRU content is within the realm of the network capacity. As indicated, the
indiscriminate use of a network trained for one waste form attribute set or configuration applied
to another yields less-than-desirable results. Future work will concern mechanism to preprocess
and categorize waste form populations such that characteristics associated with a given waste
container can be identified as a member of a predefined category for which the response space is
bounded. At this point, it is a straightforward procedure to process the data yielding those
parameters of interest. It is exceedingly important that such a system have an inherent means to
ensure that non-unique containers are not falsely categorized with a pre-specified degree of
confidence. ' ' '
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Moisture has been identified as one of the critical tank waste parameters that impacts the safety

status of the wastes, particularly tanks containing ferro/ferricyanide materials. Since water
content is affected by a number of factors, including gravity, one hypothesis, currently being -
tested by Westinghouse Hanford's Waste Tank Safety organization, is that the surface of the
waste contains a minimum of water compared to the material deeper in the tank. Assuming this
hypothesis is correct, a minimum internal waste water content will be obtained by measuring the
surface water content. Near infrared analysis is a nondestructive technique that takes advantage
of the tendency of water molecules to absorb specific wavelengths of NIR energy. When a
sample containing water is exposed to those wavelengths, a certain portion of the energy will be

- absorbed by the water, and the remainder will be reflected. By measuring the reflected energy,
the concentration of water in the sample can be determined.

An initial investigation into the feasibility of remote sensing for hot cell and waste tank
applications was performed at the University of Washington's Center for Process Analytical .
Chemistry (CPAC) under the direction of Westinghouse Hanford Company. The BY-104 waste
tank simulant test data showed that for these samples, ten percent of the incident radiation is
scattered. When collected, this signal is available for determining moisture content because the
moisture content of the waste affects the scattering. However, atmospheric relative humidity
causes a signal attenuation that will impact any in situ measurements being obtained.

For simulation, this spectra was used along with software generated atmospheric transmission
data from 0-60 meters to produce a modified sample set. These data are analyzed using a
backpropagation neural network algorithm to construct a model that would predict surface
moisture content. Predicted results are compared to moisture values generated using a Partial
Least Squares algorithm. ' :

Sponsored by the U.S. Department of Energy, EM-50 Program Office. .b

Applications of Neural Networks in Environmental and Energy Sciences and Engineering. S. Hashem, P.E.
Keller, R.T. Kouzes, and L.J. Kangas (Eds.)
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Abstract.

Rapid diagnosis of pollution is one of the key tasks in the fleld of ecological monitoring of natural and
tcchnogencous environment, Onc of the promising methods of fluorescent diagnosis of organic pollution of water
environment is the registration and analysis of two-dimensional Spectrat Fluorescent Signatures (SFS).

The neural networks - based system suggested in this paper is intended for solving the problem of detection,
identification. and concentration measurement ol water environmental pollution. The suggested system uses SFS as
inpul pattern and allows one to build a rapid diagnosis system for ecological monitoring. ‘

METHOD OF SPECTRAL SIGNATURES

In the SFS method [1]. the natural waler is treated as an integral spectroscopic sample and is characterized by a
certain specific two-dimensional SFS-spectrum, which is a matrix of emission intensity recorded in coordinates of
excitation and emission wavelengths. For the fluorescent diagnostics of organic pollution an excitation range of
240-360 nm was used. and the spectral response was registered in the 200 nm wide window. red-shifted by 10 nm
against the excitation wavelength. The standard size of the intensity matrix was 25 x 40 elements.

The analysis of SFS is hampered by the foilowing {2]:

{a) camouflaging of the poliutant spectrum by the Dissolved Organic Matter {(DOM) spectrum which depends on
~the season and on the geographical location:
(b) the dependence of the SFS shape on concentrations of the pollutant and DOM.

These reasons make it difficult to build a fixed sct of all possible reference spectra that are necessary for
classification by traditional mcthods (e.g. “nearest neighbor™ method). The presence of the camouflaging spectrum
decreascs the reliability of anaiysis at low pollutant concentrations, i.e. in the most important cases. The ability of a
neural nct to learn by examples and 1o generalize received information makes its use in this case very attractive.

TRAINING PROCEDURE OF THE NEURAL NET

Our catalogue of potential water pollutants at the moment consists of morc than 70 samples. including crude oils.
diescl oils. light oil fractions. technical oils. residual oils and different phenols (reference spectra of solutions and
cmulsions of pollutants in bidistilled water).

The catalogue of spectral signatures of DOM for different aquatoria at present includes more than [35 samples
mainly from the Baltic and the North Scas.

As recording conditions preclude saturation of the detector, and there is no chemical.interaction between DOM,
water. and the pollutant. the resulting spectrum appears (o be a linear combination of three components: Raman
Scattering Signal (RSS) of water molecules. fluorescence of DOM and fluorescence of the poilutant. The

Applications of Neural Networks in Environmental and Energy Sciences and Engineering. S. Hashem, P.E.
Keller, R.T. Kouzes, and L.J. Kangas (Eds.) :
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components ratio in the spectrum depends on the concentration and fluorescence efficiency of the poliutant and
DOM.

This allowed to synthesize the training spectrum for any given concentration of the pollutant just before presenting
spectrum to the NN. To make the NN insensitive to variations of DOM spectra. different types of DOM spectra
were used. All spectra were normalized to unity at the point of maximum intensity.

All NNs used in the suggested svstem are multi-layer perceptrons [3] trained by error back-propagation [4].
Training is based on the method of gradual complication of the task [3]: first. NN is trained to classifv mixtures
containing pollutants at high concentration. then. concentration of pollutants in the presented mixtures is gradually
decrcased. The training proceceds while the NN is able to maintain its performance at the acceptable level.

SYSTEM DESCRIPTION

Depending on the amount of DOM concentration. onc may distinguish two extreme cases of utilization of ecological
monitoring system:

{a) at low DOM concentrations (c.g. during monitoring of open sea areas) the system should detect very low or
trace concentrations of a pollutant '

(b) at high DOM concentrations that correspond. as a rule. to the situations of moderately or highly polluted waters
(c.g. at initial stages of scwage treatment) the svstem should determine pollution components (presented
generally at relatively high concentrations) as well as to detect dangerousiy high DOM concentrations.

In both of the above cases. the suggested system can work in either of the three modes:

. Tt can detect “stress™ conditions of the cnvironment. namely. detect that technogeneous pollution exceeds a
predetermined - level. Such mode is sufficient for some applications. e.g. for monitoring of pollution -
accumulation in the areas ol intensive navigation. In this case the system gives a qualitative answer (yes/no)
and exact pollutant classification is not required.

2. The system can identifv the poliutani(s) and measurce it’s concentration. In this casc pollution classification is

performed on the basis of end-user library of possible pollutants. A multistage procedure was claborated for

solving this task previously |6]. After rough classification into broad classes. pollutant identification within a

previously determined class is made by a NN corresponding to the given class. Finally, concentration of the

pollutant is determined by a lincar NN corresponding to the identified pollutant. For this procedure a set of

NNs arranged in a hierarchical tree-like structure can be used.

The system can perform pollution classification on the basis of “generalized” classes of pollutants. Our

investigations show that all possible important technogeneous pollutants may be divided into 4 “generalized”

classes: phenols. light oil products. medium oil products, and lubricants. This classification is based on the
analysis of the spectral features of wide range of pothitants and is in good correlation with the pollutant’s
physical and chemical propertics. Treating cvery pollutant in terms of “generalized™ classes allows one to
create rather universal system. thus widening the area of possible applications and increasing the number of
potential users. On the other hand. identification of a pollutant is not possible in this case. Also. it should be
noted that fluorescence cflicicney of pollutants within a given “generalized™ class may differ significantly. It
mecans. that the accuracy of determination of concentration of a pollutant may be poor. if this pollutant has low

Mluorescence efficiency in comparison with that typical of a given “generalized™ class. Nevertheless, in this case

concentration of “generalized” pollutant may also be estimated.

)

RESULTS

[3 SFS of different pollutants and 6 SFS of different DOMs were used for preparation of patlerns during training of
a NN ~generalized™ classificr. All possible combinations of “gencralized™ classes were allowed for mixture
preparation. Thus the trained NN could recognize correctly mixtures of pollutants from up to four “generalized”
classes. After presentation of some pattern the system should determine concentrations of detected ™ generalized”
pothutants in the mixture. To solve this task. a sct of 135 linear NNs was trained. Each lincar NN corresponds to one
of the 13 possible combinations of 4 “generalized”™ classes detected in the presented mixture: 4 NNs for each class.
6 NNs for all pairs of classcs (“double mixtures™). 4 NNs for all triads of classcs (“triple mixtures™). and 1 NN for
simultancous activity of all classes ("quadruple mixtares™),
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Tvpical minimal detectable pollutant concentrations and accuracy of concentrations determination for the system
working with “gencralized™ classes are prescented in the Table 1. Two values of DOM concentration correspond
approximately to the low and high limits of possible DOM concentrations. Accuracy of concentration determination
for differcnt types of mixturcs of “generalized”™ classes is presented in the Table 2.

For comparison, in the Table 3 minimal detectable pollutant.concentrations typical for the system configured to
work on the basis of end-user library (i.c. with identification of pollutant) are presented [6].

One can sce that accuracy and scasitivity of the system using “generalized” classes are not as good as the ones
tvpical of the system with pollutant identification. Nevertheless. the possibility of recognizing complex mixtures of
pollutants. and wide range of pollutants that can be classified under such approach. make this system very
attractive.

Table 1. Minimal detcctable concentration and accuracy of concentration determination for “generalized” classes.

Minimal detectable concentration of pollutant, : :
“Gencralized™ class ppm. for DOM conc.. mg/l organic carbon . '| Accuracy of concentration
of potlutant 0.3 1 . 10 : determination. ppm
Phenols ~0.06-0.13 3-5 0.2
Light oil products 0.2-0.4 ) 6-14 0.3
Medium oil products 0.1 -0.4 4-13 0.25
Lubricants (.03 -0.23 o 3-10 0.3

Table 2. Accuracy of concentration determination for different types of mixtures of “generalized” classes.

Tvpe of mixturc of Accuracy of concentration
pollutants determination. ppm

Double 04-10

Triple 043-14

Quadruple 1.7

“‘Table 3. Minimal dctcctable concentration for different types of pollutants (system with identification of
pollutant)}6]. Concentrations of pollutants arc determined with a typical accuracyof 0.05 ppm.

Minimal detcctable concentration of pollutant, ppm. for DOM conc.,

Tvpe of pollutant : mg/l organic carbon

: 0.3 10
Phenols <0.1 0.5-0.8
Light oil products : 0.5-0.75 . 1-3
Medium oil products 0.13-0.5 0.5-3
Lubricants 0.1-1 0.75 - 10
CONCLUSIONS

The suggcested system is able to detect and to classify organic pollution in natural and technogencous environment.
The performance of the system is madce insensitive to the DOM spectrum variations. The system gives an adequate
answer to presentation of SFS-corresponding to mixtures of pollutants. For “gencralized” classes. the system is able
to classify up to quadruple mixture of pollutants from different classes. and concentrations of the pollutants in the
mixture arc determined by a linear NN that is selected according to the detected combination of classes.

Future development of the svstem compriscs automatic detcrmination of optimal separation of pollutants into
classes used by hicrarchical structure. and automatic adjustment of an existing structure to end-user library
cexpansion.
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This paper discusses preliminary research at Sandia National Laboratories into the application of artificial
neural networks for reliability and risk analysis. The goal of this effort is to develop a reliability based
methodology that captures the complex relationship between uncertainty in material properties and
manufacturing processes and the resulting uncertainty in life prediction estimates. The inputs to the .
neural network model are probability density functions describing system characteristics and the output is
a statistical description of system performance. The most recent application of this methodology involves
the comparison of various low-residue, lead-free soldering processes with the desire to minimize the
associated waste streams with no reduction in product reliability. Model inputs include statistical -
descriptions of various material properties such as the coefficients of thermal expansion of solder and
substrate. Consideration is also given to stochastic variation in the operational environment to which the
electronic components might be exposed. Model output includes a probabilistic characterization of the
fatigue life of the surface mounted component.

Introduction

This paper discusses an alternative to the parametrically based methods for modeling the fatigue life of a

solder connection. One of the more popular parametric expressions for fatigue life is the Coffin-Manson

relationship. However, this function relates various parameters to the median fatigue life and therefore is
‘limited in applications where reliability of solder joints is a concern. This is a concern since it is possible
for two alloys to have different life characteristics and yet have the same median fatigue life.

Clearly, it is difficult to capture the complex nature of the fatigue process with such simple parametric
expressions. Alternatively, an advantage of neural networks over classical modeling methods is the
increased accuracy in characterizing complex failure processes. However, a major benefit of using
parametric methods is the ability to model the uncertainty in the failure process and identification of those
design parameters that significantly impact the reliability of the solder joint. This has typically been
explored using first or second order reliability methods in conjunction with a parametric based model
such as the Coffin-Manson. '

A major draw back in using first or second order reliability methods is that they assume that the
parametric relationship characterizes the process being considered with absolute accuracy. However,

" This work was supported by the United States Department of Energy under Contract DE-AC04-94AL85000.
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estimation of this function is typically approximate at best and often, as in the case of the Coffin-Manson
relationship, requires the introduction of ‘fudge’ factors to improve the accuracy of the model.

While neural networks are generally more accurate in modeling complex input/output relationships,
neural networks have been limited to deterministic input (or a series of random realizations) and
deterministic output. This has limited their usefulness in the identification of those input parameters that
are significantly contributing to uncertainty in the output. In modeling the life-length characteristics of
solder connections, neural networks can be expected to provide an optimum estimate of the median
fatigue life, but have been of little use in characterizing the reliability.

The suggested alternative involves a combination of experimental design, neural nets and probabilistic
design theory. The initial design space is established using experimental design principles. With this set of
input parameters (or training set), a neural network is developed as an accurate model of the
manufacturing process. Finally, probabilistic design theory is applied to this model and is used to identify
those manufacturing process parameters that are contributing to variability in the manufacturing output.

The advantage of the proposed method over classical methods is that a more accurate model
representation results and there is therefore increased accuracy in predicting the expected life
characteristics of the failure process. Fundamentally, the approach provides a direct link between the
experimental results and the reliability analysis; the reliability analysis is not restricted by the assumption
of a particular functional form of the expected fatigue life. The experimental data drives life prediction
rather than some arbitrary parametric function.

Neural Networks Background

Definition of Terms: ‘

W, Wweight between node j in layer (k-1) and node i in layer &

I, - inputtonode i in layer k

O,,  output of node i in layer k.

Z; I, input to the network at node i

¥i O, , observed output of the network at node i _

0.,  parameter chosen to control the maximum output from node i (> 0)
B:.  parameter chosen to control the slope of the input/output sigmoid (> 0)
n; number of nodes in"layer 1

Artificial neural networks are an attempt to mimic the processes used by the human mind to construct
models of very complex systems. Such networks have been successfully applied since the early 1970's to 2
variety of problems. Of particular interest is the recent suggestion that they can be used as alternatives to
statistical methods for modeling a number of manufacturing process [1-3]. -

A typical neural network consists of k layers of nodes. Each layer consists of n, nodes each of which is

connected to each of the nodes in the layers immediately above and below. Information in the form of an
input vector z is processed forward to each successive layer until the final output is available. The '
network output is compared to the desired output and the resulting error is processed backward through
the network and the model is adjusted. This #raining cycle continues until the error achieves some
minimum criteria. This type of neural network model is commonly referred to as a feed-forward error
back-propagation model and is one of the most common structures used in the design of a network.
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For a three layer, backpropagation system, with only one output, the following partial differential
equations can be developed:

0,
(gzy_o (911 )ﬁJIEer?.Wr]Z

J

Or ny =1
Vi = Or,l( 9 L~ l]ﬁrl 271,_,,3‘“:,,,3
r2 5=l

o, . v
= 0,,2( 2 l]ﬂr.ZYLI,Bwl.r,B

6r,2

Vs = y[%,z_ 1}81.3

. These partial derivatives will be an integral element in the probabilistic design phase of the analysis.

and:

Probabilistic Design Background

Given a failure process with parameters: Z=(Z,,Z,,...,Z). The fatigue process is observed and the -
response, e.g. cycles to failure, is measured and recorded. The objective is to identify, and subsequently
influence, those parameters which are significantly contributing to the variability in the life-length
characteristics. Through the identification of these factors and their subsequent control, the uncertainty in
the system response can be decreased and the overall reliability of the soldering process is improved. It
will be assumed that the input to the neural network, Z, is a realization from an m dimensional random
process.

Let G(Z) =0 be a function describing the performance of the system. This function partitions the design
space into a region where combinations of Z result in acceptable system performance, G(Z) >0, and
combinations where system performance is unacceptable, G(Z) < 0. The hyper surface defined by

G(Z) =0 is generally referred to as the limit state surface. For the two dimensional case it is clear that, if
Z, and Z, are random variables with joint probability density function f(z,,z,), even though the mean
behavior of the system is clearly acceptable, there is a finite probability that there will be realization of
these two variables that will result in unacceptable performance. An exact evaluation of the probability of
this event is available through the solution of the m-dimensional integral:

Pr{unacceptable performance} = p, = j J J f(z24,.052,)dzdz,.. . dz,,

Solution of this integral can be a very difficult task except in the very simplest of situations. An
alternative is an approximate solution available through the use of first order probabilistic design
methods. Given the distance from the origin to the failure surface: d = (z"z)"? define the index fB:

B=mind =(z"z)"*

subject to: G(z)=0
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The point z° =(z,,z,,...,Z,) on the failure surface which is identified as closest to the origin is referred to

as the most probable point. An approximate expression for the risk of being in the unacceptable region
can then be shown to be: risk = ®(-f3), where ®(—f) is the standard1zed Gaussian den31ty function
evaluated at —f3

Define the gradient vector:

It can be shown that the minimum distance from the origin to the limit state surface is given by the
expression [4]:

-V'z
P= v

i
=6z

Where the mean and standard deviation of G(Z) are approximately:

u=-v'z
o= (VYR

To find the point z* = (z;,z,,---,Z,,) an iterative procedure can be incorporated. It should be noted thata -

subtle, but significant difference from traditional methods is that z #( Hosbly sy ). A number of

schemes can be employed to find those values of z~ that minimizes the distance to the limit state surface
and thus the index B. For well behaved G(Z) where multiple solutions are unlikely, a simple calculus
based search algorithm, such as a that described above, can be used. Alternatively, if the limit state
function is particularly complicated, the use of genetic algorithms has been successfully applied [6].

Relationship to Neural Networks

From our previous discussion, it is clear that the neural network represents the function G(Z) y(Z) and
the gradient vector above can be expressed:

vo(2d &
<\ )

_..VT *

and the index § is therefore:

B=
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Following the solution of the index B, the most probable point can then be decomposed: z; =—¢.,f3 .
Where the direction cosines:

-V™.

@= (VT.VZ.)"2

indicate the relative contribution of the ith variable to the probability of failure p, and are often referred to

as the importance factors. Those process parameters associated with large importance factors will be those
parameters significantly contributing to uncertainty in the fatigue process. It should be noted these
importance factors are generally not available when traditional Monte Carlo based methods are applied.

Application

The specific application of the above methodology involves the characterization of the fatigue life of a
solder joint. Of particular interest will be the reliability of new environmentally friendly solder alloys
being developed. While a number of solder joint failure mechanisms are possible, the dominate mode for
surface mount solder joint reliability is fatigue damage resulting from cyclic differential thermal
expansion. This damage mechanism results primarily from thermal expansion differences between the
component, solder and substrate materials. These differences induce cyclic shear strains which in turn
lead to an accumulation of fatigue damage. A relationship commonly used to describe the expected -
fatigue life of a solder joint in this environment is the Coffin-Manson relationship:

1

Nf =l A’}—,— ,
2| 2¢,
N, = Mean fatigue life

¢ = fatigue ductility exponent :

=—0.442-6x107*T,, +1.74x107 ln[l +3§9] ~ 447

Ip

Define the following parameters:

€, = fatigue ductility coefficient = 0.325 for eutectic Sn - Pb solder

Ay = cyclic total plastic shear strain range
=F % A(aAT)

F = fudge factor to account for inaccuracies in model = 1.0

2L, = maximum distance between solder joints = 1200mils
h = solder joint height = 8mils
A(0AT) = absolute cyclic differential thermal expansion
between component / substrate and solder
=AcAT

Ao =la, —agl
o, 0 = coefficients of thermal expansion (CTE) for solder
and component / substrate

AT = cyclic temperature swing
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The major source of fatigue damage results from the CTE differences between the solder and the
component and substrate. The following discussion outlines the fundamentals of the validation of the
modeling and analysis approach used.

Since experimental data are not available at this time, an artificial data set was simulated under the
assumption that the Coffin-Manson relationship in some sense characterizes the fatigue process.
Preliminary investigations have been of limited scope to permit a tractable validation. Specifically, the
fatigue life will be assumed to follow a simplified Coffin-Manson relationship where only

Q5,0 and AT are considered sources of uncertainty.

These parameters are assumed to be lognormally distributed random variables with the following
statistical properties:

o, ~ Ln(@, =6x107° ppm/C°,C, =0.2)
Ocs ~ Ln(@ =25x10ppm / C°,C, =0.2)
AT ~ Ln(T, =100 C°,C, = 0.5)

where &,,0, and AT are the median values of the parameters and C,, C,,and C; are the associated

coefficients of variation. Given these modeling assumptions we can simulate test data for training and
exercising the neural network model.

A total of twenty seven random values each of the three CTE’s and cyclic temperature ranges were
generated. Twenty seven was chosen since the actual data would presumably result from exercising a full
factorial experimental design of three factors each at three levels. Each of these combinations was input
to the Coffin-Manson relationship and an ‘observed’ fatigue life calculated. The data is then used to train
a feed-forward error back-propagation neural network.

N eural Network Model

The NN model of the fatigue process is depicted in Figure 1: The topology is rather straightforward with
only three layers: three input nodes, one hidden layer and one output node. Each of the input nodes
corresponds to ¢y, &g and AT respectively, while the output corresponds to the estimated fatigue life.
Using the 27 input vectors, the model is trained to an acceptable level and the connection weights
estimated. The result of this step is a neural network model of the relationship between the solder joint
design and operational parameters and the fatigue life of the joint.

Results

Once the interconnection weights have been established from the training process, the ANN accurately
transforms combinations of input vectors to the expected output. The network topology, when combined
with these weights, provides all the information necessary to estimate the required partial derivatives, the
most probable point, an estimate of the safety index and finally the probability of failure. Figure 2
summarize the results of one such investigation. This figure contrasts the results from an advanced first-
order, second-moment risk analysis, the results from the new ANN approach and ﬁnally the results from a
Monte Carlo simulation.
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N

Also presented in Figure 2 is the density of the safnple input data. Note that over 80% of the simulated
times-to-failure occur between 0 and 22 cycles to failure. Out of the 27 data simulated-data sets, only 5
resulted in failures greater than 22 cycles. Since there was very limited data upon which to train the
ANN, this is an area where the greatest error between the Monte Carlo results and the ANN occurs.
However, the AFOSM method depends only on the assumption of a particular function and, once this
function is estimated, is independent of the amount of data available. In defense of the ANN method, the
analyst also runs the risk of choosing a poor underlying functional relationship.

Conclusions .
The goal of this effort was to develop an alternative reliability analysis methodology that:

¢ Permits material characteristics of the solder alloys and substrate, as well as geometry of the
solder connection, to be included in the analysis. Characteristics included are currently limited
to coefficients of thermal expansion of substrate and alloy

» Does not require a presupposed form for the relationship between the model parameters and
the response of the system. Typically, a specific functional form is assumed based primarily
on historical literature rather than strong physical or empirical evidence..

e Captures relationship between uncertainty-in material properties and manufacturing processes
and uncertainty in fatigue life estimates.

Characterizing the reliability of a solder connection has historically been based upon some variation of the -
Coffin-Manson relationship. This function relates a variety of dimensional, material and environmental
characteristics to the expected fatigue life of the connections. However, it has been increasingly evident

in the literature that various ‘fudge factors’ must be applied to get a good match between this relationship
and actual test data.

In addition to potential inaccuracies associated with assuming a particular functional form, the approach
provides at best an estimate of the expected life of a solder connection. The mean alone provides almost
no useful information with which to compare various solder alloys. One reason for this is that the Coffin-
Manson approach is extremely limited in dealing with information about the material properties of the
solder alloys beyond coefficients of thermal expansion. Preliminary results indicate that neural networks

Process

Parameters Fatigue Life

Figure 1. Example of Neural Network of Fatigue Process
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hold the promise of more accurately characterizing the complex process and can be extended to include
uncertainty in the process parameters.
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ABSTRACT

Compact, portable systems capable of quickly identifying contaminants in the field are of great importance
when monitoring the environment. In this paper, we examine the effectiveness. of using artificial neural
networks for real-time data analysis of a sensor array. Analyzing the sensor data in parallel may allow for
rapid identification of contaminants in the field without requiring highly selective component sensors. A
sensor array combined with a data analysis module is referred to as an electronic nose.

In this paper, we investigate the trade off between sensor sensitivity and selectivity relating to the applica-
tions of neural network based-electronic noses in environmental monitoring. We use a prototype electronic
nose which consists of nine tin-oxide Taguchi-type sensors, a temperature sensor, and a humidity sensor.
We illustrate that by using neural network based analysis of a sensor data, the selectivity of a sensor array
may be significantly improved, especially when some (or all} sensors are not highly selective.

Keywords: neural network, sensor array, environmental monitoring, sensor selectivity.

Introduction

One of the missions of the Pacific Northwest Laboratory is to examine and develop new technolo-
gies for environmental restoration and waste management at the U.S. Department of Energy’s
Hanford Site [1] (a former plutonium production facility). Enormous amounts of hazardous waste
were generated during more than 40 years of plutonium production at the Hanford Site. There
is an estimated 1700 waste sites distributed around the 1400 square kilometers (560 square
miles) of southeastern Washington state (USA) that comprise the Hanford Site. This waste
includes nuclear waste (e.g., fission products), toxic chemical waste {e.g., carbon tetrachloride,
ferrocyanide, nitrates, etc.), and mixed waste (combined radioactive and chemical waste). The
current mission at the Hanford Site is environmental restoration and waste management.

As part of this mission, the Pacific Northwest Laboratory is exploring the technologies required
to perform environmental restoration and waste management in a cost effective manner. This.
effort includes the development of portable, inexpensive systems capable of real-time identifica-
tion of contaminants in the field. The objective of our research is to demonstrate the potential
information processing capabilities of the neural network paradigm in sensor analysis.

A difficult problem in identifying contaminants in the field is the need for highly sensitive
and selective sensors, which are often expensive and sometimes difficult to achieve [2]. This
led to research on sensor arrays compromising a set of sensors whose responses are collectively
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analyzed [2, 3, 4]. When a sensor array is analyzed in parallel, more analytes can be identified
than by relying separately on the individual sensors [3]. :

The use of artificial neural networks (ANNs) for analyzing sensor data allows for real-time
parallel processing of the data. Artificial neural networks are widely used in data processing
applications where real-time data analysis and information extraction are required. One advan-
tage of the neural network approach is that most of the intense computation takes place during
the training process. Once the ANN is trained for a particular task, operation is relatively
fast. Real-time classification of unknown samples mainly involves simple matrix manipulation
and application of look-up tables (activation function). Thus, unknown samples can be rapidly
identified in the field.

Sensor data analysis

feature values labeled patterns
(measurements: electrical  (e.g., chemical composition,

= response, wavelength, etc.)  isotope identification, etc.)
& Sensing System - o —
c » Neural |,
9 5 g ~ Network |
= T I | <
() = = = =3

FIGURE 1. Sensor system combined with an ANN

There are many real-time (rapid response) and remote sensing applications that require an
inexpensive, compact, and automated system for identifying an object (e.g., target, chemical,
isotope). Such a system can be built by combining a sensor array with an ANN. A generic system
is shown in Figure 1. '

The quantity and complexity of the data collected by sensor arrays can make conventional
analysis of data difficult. ANNs, which have been used to analyze complex data and for pattern
recognition, could be a better choice for sensor data analysis. A common approach in sensor
analysis is to build an array of sensors, where each sensor in the array is designed to respond
to a specific analyte. With this approach, the number of sensors must be at least as great as
the number of analytes being monitored. When an ANN is combined with a sensor array, the
number of detectable analytes is generally greater than the number of sensors [3]. A sensor array
is composed of several sensing elements, where each element measures a different property of
the sensed sample. Each object (e.g., target, chemical, isotope) presented to the sensor array
produces a signature or pattern characteristic of the object. By presenting many different objects
to the sensor array, a database of signatures can be built up. From this database, training sets and
test sets are generated. These sets are collections of labeled patterns (signatures) representative
of the desired identification mapping. The training sets are used to configure the ANNs. The
goal of this training is to learn an association between the sensor array patterns-and the labels
representing the data.

When a chemical sensor array is combined with an automated data analysis system (such as
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an ANN) to identify vapors, it is often referred to as an artificial or electronic nose [4]. Several
researchers have developed electronic noses that incorporate ANNs for use in applications in-
cluding monitoring food and. beverage odors [5, 6, 7], analyzing fuel mixtures [8], quantifying
individual components in gas mixtures [9], and environmental monitoring [10]. Several ANN con-
figurations have been used in electronic noses including backpropagation-trained, feed-forward
networks; Kohonen’s self-organizing networks; Boltzmann machines; and Hopfield networks [11].
This paper extends the work by Keller et al. [10] in the area of environmental monitoring. We
here examine some aspects relating to identifying mixtures of analytes.

A prototype chemical vapor sensing system

This system consists of an array of nine tin-oxide gas sensors, a humidity sensor, and a tem-
perature sensor to examine the environment. Although each sensor is designed for a specific
chemical, each responds to a wide variety of chemical vapors. Collectively, these sensors respond
with unique signatures (patterns) to different chemicals. During the training process, various
chemicals with known mixtures are presented to the system. In the initial studies, the backprop-
agation algorithm was used to train the ANN to provide the correct analysis of the presented
chemicals. _ ' '

The nine tin-oxide sensors are commercially available Taguchi-type gas sensors obtained from
Figaro Co. Ltd. (Sensor 1, TGS 109; Sensors 2 and 3, TGS 822; Sensor 4, TGS 813; Sensor 5,
TGS 821; Sensor 6, TGS 824; Sensor 7, TGS 825; Sensor 8, TGS 842; and Sensor 9, TGS 880).
Exposure of a tin-oxide sensor to a vapor produces a large change in its electrical resistance [12].
The humidity sensor (Sensor 10: NH-02) and the temperature sensor (Sensor 11: 5KD-5) are
used to monitor the conditions of the experiment and are also fed into the ANN.

An ANN was constructed as a multilayer feedforward network and was trained with the
backpropagation of error algorithm [13] by using a training set from the sensor database. The
network has one hidden layer with four hidden units. The activation function for the hidden
units as well as the output units is the logistic sigmoid function g(s) = (1+e~*)~1. The training
set consists of 177 patterns which corresponds to five household chemicals: acetone, ammonia,
isopropanol alcohol, lighter fluid, and vinegar. We used another category, “none,” to denote the
absence of all chemicals except those normally found in the air. This resulted in six output
categories from the ANN. Figure 2 illustrates the network layout.

Chemical Chemical | | Identified
Vapor Sensor Array Chemical

9OO2@®
Q@ OO
o ®0e 0

Neural ____i
Netw_ork I

e

YYYYYYYY

FIGURE 2. ANN used to identify household chemicals.
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During operation, the sensor array “smells” a vapor, the sensor signals are digitized and fed
into a computer, and the ANN (implemented in software) then identifies the chemical. This
identification time is limited only by the response time of the chemical sensors, which is on the
order of a few seconds.

Sensor Inputs ANN Outputs

.v a 5 None >
: ¢ /4 ¢y Acetone
3 A %\:!?;-6 Ammonia
824 SBLE '
g () .
3 : ’{4’,}‘ }‘.}6 _Isopropanol
842 L, SN :
880, TN 19%‘%@9 Lighter Fluid
Ve Z=E A\
KD-5__ > Vinegar

FIGURE 3. Network Structure

Discussion and conclusions

Figures 4 and 5 illustrate the responses of the sensors and the ANN classification for a variety of
test chemicals presented to the network (shown in Figure 3). The network was able to correctly
classify the test samples, with small residual errors.

While the ANN used here was not trained to quantify the concentration level of the identified
analytes, it was trained with samples which have different concentrations of the analytes. This
allowed the network to generalize well on the test data set. :

From the responses of the sensors to the analytes, one can easily see that the individual sensors
in the array are not selective (Figure 4). In addition, when a mixture of two or more chemicals
is presented to the sensor array, the resultant pattern (sensor values) may be even harder to
analyze (see Figure 5 c,d,and e). Thus, analyzing the sensor responses separately may not be
adequate to yield the classification accuracy achieved by analyzing the data in parallel.

These results demonstrate the pattern recognition capabilities of the neural network paradigm
in sensor analysis, especially when the individual sensors are not highly selective. Besides, the
prototype presented here has several advantages for real-world applications including compact-
ness, portability, real-time analysis, and automation. Further work will involve comparing neu-
ral network sensor analysis to more conventional techniques, exploring other neural network
paradigms, and evolving the preliminary prototypes to field systems.

Information on ANN developments at Pacific Northwest Laboratory is available in the World
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Wide Web (WWW) pages of the Environmental Molecular Sciences Laboratory.
URL: http://www.emsl.pnl.gov:2080/docs/cie/neural/
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The development of an intelligent gas sensor system to identify and quantify hazardous airborne
compounds is discussed in [2]. Semiconductor gas sensors (SGS) with partially overlapping selectivity
have been used as gas detecting devices. Because of its low selectivity, one SGS alone can not
accurately specify the type of gas and its actual concentration.

The application of an array of SGS’s combined with Kohonen feature map (KFM) neural networks,
allows identifying and quantifying unknown species of gases if the gas sensor system has been
calibrated earlier using this gas type. The influence of different network parameters, e.g. the
number of nodes in the network and the number of pattern vectors used to train the KFM are
discussed. The KFM is found to be able to identify all compounds which have been used for
calibrating the gas sensor array and for training the KFM.

2 The Overall Scheme

The setting for the work presented in this paper is illustrated in Figure (1). This is a partial
illustration of the ingredients of optimal operation of an electric power system recognizing
environmental  effects. The first block involves load forecasting for which CNN have been
successfully applied [3]. The second block involves the optimal dispatching function whose objectives
may be economic or environmental or both. Again, CNN have been successfully applied in this
regard. Based on the dispatch results, the power output of each thermal units is adjusted [4].

The level of emissions such as SOx and NOx at the source will of course depend, among other
things, on the level of power output of each individual unit. The associated ground concentration
of pollutants .is determined by the corresponding,\ diffusion process which is dependent on dispersion
patterns which in turn depend on meteorological and other conditions. Successful prediction of
pollutant coneentrations is needed to meet various environmental regulatory requirements.
Enhancements to the prediction ability are expected to be achieved by use of CNN. Three
opportunities are discussed in this work.

FORECAST : INDIVIDUAL CONCENTRATION
OF POWER SYSTEM g?;:ﬁ%iﬁ:;mn uNIT 3,‘,?‘}2:?,‘2 N LEVELS
LOADS : EMISSIONS

Figure (1) Overall Scheme

3 Principal Plume Dispersion Patterns

The principal patterns of stack gas dispersion are generally classified descriptively in terms

of the plume shape and the manner of their dispersion in the ambient atmosphere [5].
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Abstract

The paper deals with the problem of predictfmg' i)ollution concentration levels at a specific
ground location as a result of emissions from fossil electric power gemeration sources. The level
of pollution concentration depends .on physical atmospheric conditions (such as wind direction
and velocity), stack height, plume rise and selected plume dispersion model. In addition, ‘source
pollution concentration levels depend on the active power generation of the units involved.

We report on work in progress employing the Back-propagation model of computational neural
networks in order to predict ground level pollution concentration at a specific site. The -problem
formulation allows the user the choice of using the neural network as either an alarm processor or
as a discrete predicting processor. The input pattern consists of site coordinates, plume dispersion
model parameters relevant to the site, atmospheric conditions, and active power conditions.
Computational experiments with test data demonstrate that the proposed approach is viable.

1 Introduction

It is generally acknowledged that computational neural networks (CNN) have been widely applied
in many areas- of engineering and science. However, not many research results are found on the
application of CNN in-the area of sensing and predicting pollutants and assessing their environmental
impacts. This paper_ presents an overview of the application to problems of predicting pollution
concentration levels at a specific ground location as a result of emissions from fossil electric power
generation sources.

A recent search of the literature reveals some related examples. Reference [1], uses a neural network
in a rapid system for sea water pollutant diagnosis. Pollutant classification 1is based on total
luminescent spectroscopy (TLS) and is not sensitive to variations in the spectrum of the dissolved
organic matter (DOM). The gradual complication of the task during learning is used to reach the
minimal decision threshold value. The CNN is successful in presenting a mixture of pollutants
spectra, or spectra of unknown substances. Determining pollutant concentration is done in the
three steps of classification . of a pollutant by the basic net, its identification by an auxiliary net,
and concentration determination by a linear neural net with a typical accuracy of 0.05 ppm. It is
shown that neural network with two hidden layers for classifying TLS-spectra of low resolution
produces classification thresholds close to those of standard TLS-spectra.
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3.1 Coning Dispersion Pattern

The effluent plume of the coning model is shaped somewhat like a cone with an extended

horizontal axis as shown in Figure (2). It generally occurs under near-neutral stability and moderate
to high wind speed conditions, on cloudy and windy days or windy nights.

Coning dispersion is identified with maximum surface concentrations for generating plants
with ratings up to 200-250 - MW, with 75 to 120 m stacks. The level and location of maximum

surface concentrations are primarily dependent on the effective stack height (plume rise plus actual
stack height), wind speed, and atmospheric stability.

Figure (2) Coning Dispersion Pattern

3.2 Fanning and Inversion Breakup

Fanning ‘occurs when a plume 'is emitted into a stable atmosphere and transported downwind
as a compact flat ribbon, i.e. the fanning plume spreading laterally with minimum vertical dispersion.
Inversion breakup occurs when a fanning' plume is uniformly dispersed to the ground when
thermally induced vertical mixing develops upward through the plume. Maximum surface
concentrations from inversion breakup dispersion may be high, but their duration is short, persisting

30-45 min within a relatively narrow band bencath the originally stable plume at distances up to
30 km from source.
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Figure (3) Fanning Dispersion Pattern

Figure (4) Inversion Breakup Dispersion Pattern

3.3 Looping

This pattern is associated with sources that have relatively low heat emissions and short
stacks. It is usually observed on warm days with clear skies and low-to-moderate wind speeds. The
vertical temperature structure is usually unstable, creating large thermally induced eddies which
bring the plume to the surface near the emission source.

Surface concentrations associated - with looping have short durations and sometimes exceed
the levels of the more persistent surface concentrations experienced with the coning pattern.

T SR R T T T T e NS A S S 2
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Figure (5) Looping Dispersion Pattern

3.4 Trapping or Capping Type Dispersion Limited Mixing Layer

The trapping dispersidn pattern is also referred to as the limited mixing layer dispersion
pattern. This pattern is important because the resulting maximum surface concentrations may be
as much as three times that estimated under coming conditions. Maximum surface concentrations
m.iy persist for 2-4 hours, usually occurring from mid-morning ‘to mid-afternoon.

Figure (6) Trapping Dispersion Pattern

3.5 Relative Maximum Concentration Values for Dispersion Patterns

‘The value of maximum concentration due to any dispersion . pattern depends on unit size, stack
height and meteorological conditions. For early small units, the coning dispersion pattern occurs

more frequently than other patterns. As a result, the maximum concentratiom due to the coning
pattern was considered as the critical plume dispersion pattern.
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With the increase in unit sizes there has been a increase in the height of stacks and therefore the
plume dispersion pattern which results in maximum concentration has also changed. The magnitude
of maximum surface concentrations from the coning pattern decreased, and the magnitude (relative
to the coning pattern) of concentrations from the inversion breakup pattern increased.

However, the trapping pattern became more prominent for larger units with higher stacks and by
the time unit size had increased to 900 MW and stack height to about 245 m, the frequency and
magnitude of surface concentrations associated with trapping dispersion had increased to such a
degree that this pattern became the critical pattern identified with plants of this size.

Although the magnitude of surface SO, concentrations is important, it alone does not necessarily
establish the criticality of a particular plume dispersion pattern. The frequency of occurrence of
a pattern and duration of the resulting concentrations must also be considered. Thus, for a particular
.power plant, a pattern resulting in maximum surface concentrations once or twice a year may be
considered less critical than another which induces some lower concentrations 10 to 20 times a
year.

36 Potential use of CNN as Plume Pattern Classifier

Two field methods for characterizing the rise and dispersion of plumes from tall chimneys are
presented in [6]. Plume samples and meteorological data can be obtained from instruments on board
aircraft to determine plume direction of travel, horizontal dispersion coefficients, rise, and
emission fluxes. Photography of visible plumes can provide data on plume rise and vertical width,
if orientation and scale are known. Aerial and ground-based photography were used to study
plumes from a power station and copper smelter in Australia.

It is clear that the features of plumes and associated meteorological data can be used to drive a
computational neural network that acts as a classifier to determine plume dispersion patterns. The
result enables the next step of choosing the appropriate dispersion model for the pattern identified.

4 Plume Dispersion Models

Most work on environmental power dispatch has used the steady state pollution dispersion
model, which is based on the assumption that the emission from a stack, during coning dispersion
conditions, can be described by the Gaussian Plume Model (GPM) in the downwind and crosswind
directions. The model was developed by Pasquill and Meade [7], Turner [8], and is derived in
Viegell and Head [9] as a solution to the turbulent diffusion equation of a non-reacting pollutant
in the atmosphere.

With steady state wind speed and direction, the pollutant concentration can be expressed in
terms of source emission, field, and meteorological parameters:

X(x,y,z)=n———=exp ’ (1)

where:
X = ground level concentration (  pg/m3)

Q = release rate of steady emissions of pollutant ( png/s)
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1 i

h = effective source height (m)
x = downwind distance

y = crosswind distance

z = vertical distance

g, = crosswind plume standard deviation of the distribution (m)

g,= vertical plume standard deviation of the distribution (m)
u = mean wind speed (m/s) ath
The coning dispersion parameters, o, and o, are functions of the distance from the source, x, and

A
Az

atmospheric  stability

Figure (7) Illustrating the Steady-State
Gaussian Plume Model -
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5 Plume Rise Estimation

To calculate concentrations at ground level, it is required first to find the height to which a stack
effluent will rise in the -atmosphere. Much ambiguity exists with respect to the numerous formulae
postulated to approximate the effective plume height for defined meteorological and operational
conditions. The elevation of effective stack height, H,, is the sum of the actual height of the stack,
H,, and of the plume rise, Ah [10]. A number of models of plume rise exist, the most commonly
cited is the " g Power Law" )

(2/3) Plume Rise Model

The " g Power Law" relation for calculating Ahis given by:

Z
:

Ah=CFin 'y _ (2)
where:
u = The average wind speed between stack top and plume top,
x = horizontal downwind distance from stack.

C is a stability factor calculated using [1]:

ABYm
C=1.065-6.25| — |— 3
1 562(A2)°C. (3)
with:
g; . Average potential temperature gradient with height in © C /100 m
F is the flux due to buoyancy and momentum, expressed as:
F= ngrz(—A];2 : (4)
T o
with
g = Acceleration due to gravity = 9.81 m/ sec?

r = Stack exit radius {m)

T = Ambient air temperature (K)

AT = Temp. difference between stack gas and ambient air (K)
V s = Stack gas exit velocity (m/sec)

It is noted that the wind speed and heat emission rate are the principal determinants .in calculating
plume rise. The gpower law formula embodies the principal quantities normally associated with
the plume rise and permits some accounting for up to 15% difference in plume rise attributable
to variation in atmospheric stability.
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6 The NN model

Our studies begin with the most popular neural network -classifier, the multilayer perceptron (MLP)
[11-12], with a continuous sigmoidal activation function. We use the back-propagation training
algorithm with a momentum term o We note that the success of the proposed network depends on
careful consideration of the following aspects: '

Selection of the initial weights

- Choice of scale factor m, steepness of the activation function A, and momentum term a

Choice of architecture versus data representation.
- Network size, number of hidden layers, pruning and growth of the network [13-14].

For example in [14], it is shown that networks with one hidden layer perform better than those
- with two hidden layers. Further, a lower bound on the number of nodes in the hidden layer is
derived and found to be d+1, where d is the dimension of the data patterns. The optimal number
of nodes is shown to be somewhat larger than this  (approximately :3d). In addition the network
performance is shown to be relatively insensitive to overspecification of the network size. Finally
it is shown that for near-optimal performance the number of training samples should be
approximately 60d (d+1).
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. Figure (8) A Multi-layer Perceptron Neural Network
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7 Synthetic Plume Height Experiment

7.1 Typical Plume Height Model Data

Typical values cited in [10] are as follows:

Stack height H; m 1829 1524 762 1219 914
Stack diameters m 7.9 7.6 43 43 - .50
In addition:

u = 1.0-16.8 m/sec
X =1219m

Representative values of  C given in [10] are:

ae
Az

Class 1 .C =107 Inversion >1

Class 2 C =104 Stable 0 <52<1

Class 3 =~ C =098 Neutral and unstable %% <0 .

with the rahge:

Y]

== -0.53 to -374 ° C (100 m)l

r = stack exit radius (m)

T = ambient air temperature = 273 - 304 ° K

T, = stack gas temperature 106-145 © C convert to K by adding 273.15
K=C+27315

AT = temp. difference between stack gas and ambient air (K)

V s = stack gas exit velocity = 7.7 - 29.2 m/sec

In [5], the following vertical potential temperature gradients are quoted:

Neutral: =2 = 0.00

Az

Slightly stable: &= = 0.27

Az

Stable : 7= = 0.64
Isothermal 22 = 1.00

Az

Moderate inversion 2—:= 1.36

Strong inversion g =173

152.4
63
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Calculates F = 984.64 m* sec 3

x=1219m
AT = 120 (K)
Vs= 156 m/sec

T=291K

C =096

As a result:

Ah=114 CF@/3) g (D) =128 m

7.3 QObserved Plume Rise Data
Stability Class

NN N DN NN NN RN DN RN NN N DWW

C .

19
33
34
3.7

41

4.5
47
52
52
6.0
77
8.0
8.4

© 100
10.6
10.8
11.4
13.8

Wind Speed Observed

Plume Rise

¥

331
363
457
363
295
329
195
308
182
188
219
191
154
94

165
110
135
150
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2/3 Power Law

ye
645
374
354
323
298
266
255
249
266
194
156
172
158
134
127
125
106
96
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2 2.1 555 528
2 21 476 526
2 22 460 506
2 2.5 303 447
2 25 347 a2
2 28 312 389
2 2.9 317 383
2 3.1 250 396
2 32 1251 335
2 46 259 252
2 5.0 207 230
2 50 220 220
2 5.1 226 216
2 52 359 219
2 54 208 211
2 58 215 197
2 59 165 190
2 6.9 180 162
2 104 165 110
2 22 333 520
2 24 316 492
2 34 304 337
2 4.1 301 290

2 48 155 243
2 52 138 231
2

6.5 136 ’ 181

7.4 Preliminary Test Results

For the set of observed plume rise data, we tested a number of proposed NN configurations with
two hidden layers. In each case, we selected H; =20 and H, =2. The momentum term is taken as
a=0.9 with the following error results:

n==07 ~ SSE =0.0312

n==05 SSE = 0.0297
n==03 SSE =0.031

Each case was allowed to run for 1,500,000 iterations.
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8 Synthetic Coning Dispersion Data
8.1 Typical Data for Coning Dispersion Model

Our initial experiments are based on training using and then predicting the ratio of X to Q for .

situations associated with -characteristics given in Carpenter et. al. shown in Figures (9-10)

§

Average potential tamperature gradient with height
A8 (ex/100 maters)
b 4 1 } 4 2 ¢ 131318 1 111
S mertimma
MNeutral 0.00° K/100 meters T
— Slightty stable 0.27° K/100 maters | ; >
— Stabie . 0.64° K/100 meters ,eg"'
Isothermal . 1.00° K/100 meters : & :
Moderate inversion 1.36° K/100 meters 41— '3? cp«o’
Strong inversion 1.73* K/100 meters =<
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o
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0
A

100

wxoz 103 - 104 105
: Downwind distancs from the source, x (meters)

Hovizontal Gaussian standard devialion of pluma distribution, ¢, (meters)
N

Figure (9) Horizontal Gaussian Standard Deviation
of Plume‘ Distribution as a Function of Downwind Distance from Source




82 El-Hawary
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2 — Stable 0.64° mgg meters ]
= tsothermai 1.00* K1 metars 1 x> %
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" Figure (10) Vertical Gaussian Standard Deviation
of Plume Distribution as a Function of Downwind Distance from Source

8.2 Coning Dispersion Model Test Data:

Initial tests are conducted using the coning dispersion model for h =150 m with:

g,=0,=200m

The resulting model has two independent variables U and y. For our expeiiments, we vary U from
2 to 10 in steps of 0.5 m/s and y from 200 to 2000 in steps of 100, for training. We use the trained
network to predict the output for U from 2.1 in steps of 0.5 and y from 250 m in steps of 100.
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Investigation of Neural-Net Based Control
Strategies for Improved Power System Dynamic
Performance

Dejan J. Sobajic

Electric Power Research Institute, 3412 Hillview Ave Palo Alto, CA
94304-1395, USA.
(dsobajlc@msm epri.com)

The ability to accurately predict the behavior of a dynamiic system is of essential importance
in monitoring and control of complex processes. In this regard recent advances in neural-net
based system identification represent a significant step toward development and design of a
new generation of control tools for increased system performance and reliability. The enabling
functionality is the one of accurate representation of a model of a nonlinear and nonstationary
dynamic system. This functionality provides valuable new opportunities including:

1. The ability to predict future system behavior on the basis of actual system observations,

2. On-line evaluation and display of system performance and design of early Wa.rmng systems
and

3. Controller optimization for improved system performance.

In this presentation, we discuss the issues involved in definition and design of learning control
systems and their impact on power system control. Several numerical examples are provided for
illustrative purpose.

Applications of Neural Networks in Environmental and Fnergy Sciences and Engineering. S. Hashem, P.E.
Keller, R.T. Kouzes, and L.J. Kangas (Eds.)
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Abstract‘

In this feasibility study, an adaptive logic network (ALN) was trained to predict failures of turbine-driven
compressor units using a large database of measurements. No expert knowledge about compressor
systems was involved. The predictions used only the statistical properties of the measurements and the
indications of failure types. A fuzzy set was used to model measurements typical of normal operation. It
was constrained by a requirement, imposed during ALN training, that it should have a shape similar to a
Gaussian density, more precisely, that its logarithm should be convex-up. Initial results obtained using
this approach te knowledge discovery in the database were encouraging.

Keywords

knowledge discovery, data mining, adaptive logic network, ALN, neural network, prediction.

Introduction

The company for which this study was done maintains a database of sensor measurements from various
compressor unit components recorded at regular intervals. The database also contains the dates and times
that each compressor unit was started and stopped, and the reason for each stoppage. The number of
measurements made on each unit in each interval is quite large (around 130) so, given this wealth of data,
some automated method of determining a unit’s health based on these measurements was thought to be
feasible. It was felt that savings could be realized in the maintenance of compressor stations if a
predictive maintenance strategy were used instead of a run-to-failure or scheduled-maintenance strategy.
The savings achieved would be greatest if the prediction methods were very accurate, and could predict
failure several hours or even days in advance.

The prediction method discussed here is applicable not only to compressors, but to many situations where
~ data monitoring some process is continuously collected. It is a technique for doing what has been called
“knowledge discovery” or “data mining”. Companies are creating “data warehouses” for the purpose of
filtering, summarizing and archiving data that they collect during their operations so the data are
available in a homogeneous format for subsequent analysis and decision-making. Many tools developed
in the area of artificial intelligence have been used to analyze data, including rule induction and machine
learning paradigms {1]. Adaptive Logic Networks (ALNSs) are used in the present study to analyze
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compressor data. Their other areas of application include particle physics [2], rehabilitation of persons
with spinal cord injury [3, 4, 5} and real-time control of mechanical systems [6].

Adaptive Logic Networks

The ALN discussed in this paper is a type of feedforward mululayer perceptron which uses linear
threshold units in a first hidden layer, and logic gates AND and OR in other hidden layers and in the
output layer. The units form a tree with a single boolean output. ALNs cannot output analog values
directly, so in that case, the goal is to get the net to produce a 1 output for points on and under the graph
of a_function, and a 0 otherwise, as suggested in Figure 1.

ALNs implicitly represent piecewise linear functions. Linear functions L;:

X, = W, +Ww,,X,+..+w,, X, (shown as thin lines in Figure 1) are joined using a tree

m im—

expression of MAXIMUM and MINIMUM operations (corresponding to the OR and AND units in the
ALN tree) to form a piecewise linear
A o _ function: x,, = f(x,,...,%,_,)
" (shown as the thick curve in Figure 1)
Each linear piece L; in a trained ALN
can be thought of as the being learned
by least squares fitting (or linear
regression) on the data pointsin a
certain portion of the input space. L;is
required to fit a data point
(xy5...,x,,) if for the given values of

the first m - 1 components, L; is the
piece determining the value of f
according to the MAX/MIN

' | | [ ' | expression. It is the active linear piece
in the function graph for that input.

Oﬂ’\ef VGinbieS Like other supex;vised networks, ALNs

learn functions from empirical data
Figure 1 How an ALN represents a function. . presented to them during a phase
: called training. In training, the ALN
does least squares fitting using many linear pieces at once. The difference between this ALN adaptation
algorithm and many separate least squares procedures running in parallel is this: as linear pieces shift
during training, they each gain or lose points of the training set according to which piece is active for a
given training point, so the problem is always changing for each individual linear piece.

Xm

output =

After training, a decision tree (DTREE)is created that partitions the (m-1)-dimensional input space into
blacks, in each of which the function is represented by a simple expression containing a few linear pieces
connected by MAXIMUM and MINIMUM operations. (Dividing the horizontal axis in Figure 1 near
midpoints of the thick line segments results in intervals By, each involving one or two linear pieces only.)
Each such expression is much smaller than the expression representing the whole ALN. By not having to
do all the arithmetic operations to evaluate all linear functions, the decision tree approach makes
evaluation of each individual output very fast and efficient. The “open architecture” of DTREE evaluation
also allows scrutiny of the leamed function in a way not possible with other multilayer neural networks,
unless they are shallow or have few nodes. Examination of DTREESs has been used in our study to
determine the important variables for predicting specific types of compressor unit failure. In other cases,
the DTREE can be used to check that the net will not give any unexpected outputs.
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Most neural nets do not allow convenient use of human expertise, which is particularly unfortunate if
there is some guidance that an expert could provide about the function being learned ~- some of its
qualitative properties, say. In the present study, no expert knowledge was used, but an ad hoc assumption
was made that the function of the measurements representing normalcy of operation of the compressor
was unimodal and had a simple shape. By choosing the network architecture of an ALN and restricting
values of weights during training, the desired shape could be achieved.

Further details of use of the above type of ALN may be found in [6]. The program used in this study was
Atree 3.0 beta release 2, a commercial product being developed by Dendronic Decisions Limited. An
Atree 3.0 demonstration program that runs under Windows 3.x on the IBM ® PC and compatibles and
that has considerable on-line documentation can be obtained electronically{7].

Finding possiblé predictors of failure

In order to determine if there is a possible indication of failure contained in the measurements of any
individual parameter, a statistical analysis was performed on all parameters to (1) determine whether a
failure of any (unspecified) type could be predicted from the chosen parameter, and (2) determine whether
a failure of a specific subsystem could be predicted from the chosen parameter. There was not enough
data present for the single compressor station targeted to do these studies for all possible types of failure.

For failure runs, the mean and standard deviation of each parameter were calculated for the first 50% of
the run, and then again for the last six hours of the run. The ratio of the absolute value of the difference
in means of the two sets to the standard deviation of the normal set was used as an indicator of the relative
importance of the parameter in detecting a change to the failure state from the normal state.

Table 1 gives the idea of some of the measurements and their analyses (actually there were close to 200
parameters measured or derived).- The meanings of the columns in the tables are as follows:

Parameter: The number of the parameter.

MeanNorm: The mean value of the parameter in the normal set.

DevNorm: The standard deviation of the parameter in the normal set.

MeanFail: The mean value of the parameter within the last six hours before the failure event.
| MeanNorm - MeanFail | /DevNorm: Relative deviation in the means of the parameter.

Table 1. Parameter statistics for all failure types (truncated)

Parameter MeanNorim DevNorm . - _MeanFail - = | MeanNorm - MeanFail | / DevNorm
1 0.661642 0.10828  0.64987 ' 0.108717
2 9.68249 26.6494 7.06494 : 0.098222
3 88.5379 1.35222 88.474 0.0472354
4 2.81525 12.0579 1.66883 0.07849
5 18.4023 5:40602 18.987 ) 0.108153
<) 987.459 390.765 1041.08 0.137215
7 620.693 . 82.311 630.078 0.114013
8 . 6110.59 391.197 -6153.19 0.108819
9 0.543992 0.211078 0.55026 0.0296929
10 44,7623 7.13785 440584 0.0986141
11 24.5751 0.822201 24.6494 0.0903105
12 25.8062 0.667883 25.7922 0.0209886
13 21.2 1.18058 21.013 0.158408
14 4528.33 456.669 4427.29 ] 0.221271
15 5726.8 219.124 = 5885.77 0.187281

It can be seen that parameter 14 is likely to be more significant for prediction of failure than parameter 12,
No parameter (except for one with an anomaly) showed a relative deviation in means beyond 1.0, so the
conclusion from this analysis was that no single parameter could reliably predict general unit failure.
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A more careful analysis of subsystem specific failure was carried out as before. Again, no single
parameter showed itself useful as a predictor of any of the subsystem failure types examined.

Although analysis revealed that no single parameter can be used to reliably predict unit failure, taking the
parameters with the greatest ratios |(MeanNorm - MeanFail)| / DevNorm was conjectured to be likely to
pick out a useful subset of parameters for study using ALN prediction. Twenty variables with the largest
ratios were chosen for further analysis. This is certainly not the best set possible. Although one of the
parameters with a large ratio had been shown to be irrelevant for predicting failure, it was included as a
training parameter to verify that an ALN can learn to ignore unimportant variables.

Setting hp traini'ng and test sets

Training sets were built using two parts extracted from all the failure runs that Iasted longer than a fixed
minimum duration. The measurements from first the 50% of each such run were deemed to indicate that
the unit was running in a normal state. This data is called the normal set. The measurements from the
last six hours of the run (before failure shutdown) are deemed to indicate that the unit is in a failure state.
That set is called the failure set. The test sets were composed of all the failure runs. During testing, the
ALN evaluates considerable data it has not seen during training, however the first half of the training runs
as well as the last six hours of training runs must be excluded in attempting to measure generalization.

Using the twenty parameters X,,X,,..., X,y and the normal/failure classification, a training set for a
function x,, = N(x,,%,,...,%;,) could be
generated as follows. The desired output xz
would be set to 1 in a training sample if the

. unit is in a normal state. The other
measurement vectors would be associated with
a certain x,, value close to 0. If there were just
two parameters x, and x;, then a normal set
might look like the black dots in the shaded
part of Figure 2. During normal operation, the
compressor’s measurements should usually
stay within the shaded region. The second
curve, outside the boundary of the shaded part,

- is such that outside of it, the compressor is in a
Figure 2 Normal operation in shaded area. “failure” state requiring shutdown and repair
or adjustment. The area outside the shaded
part but inside the other curve is an area of uncertainty about the health of the compressor. Several black
squares are intended to indicate measurements in the failure set, made just before shutdown.

To indicate the degree to which any possible vector of measurements (X,,X,,...,X,,) indicates normal

behavior, we used the fuzzy setf concept. The “fuzzy set” N (“normal”) is a function which has the
following properties:

e the value of N on points of the shaded region is close to 1
e the value of N outside the outer curve is close to 0

- o the value of N between the two curves is in the interval [0,1] and tends to increase as a
measurement vector gets closer to the shaded region.
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In order to use ALNs effectively by taking advantage of the possiblility of specifying qualitative properties
of a function, we didn’t try to learn the fuzzy set N directly, but rather the value of In N. To motivate this

N A

e

Figure 3 Fuzzy set "normal operation”

InN A

Figure 4. Fitting the natural logarithm of the fuzzy set with
linear pieces.

Figure 5. Approximating a convex surface with an AND of
three linear pieces.

we consider the situation if normal operation was
guaranteed at only one point, and the uncertainly
about normalcy of a measurement varied
somewhat like a Gaussian density. Then, looked
at from the side, our function N would appear as
in Figure 3.

The natural logarithm of N is shown in Figure 4.

It is a convex set. In the case of the Gaussian (for

a single random variate) the density has the form
- 1 -i

N = e ?¢*  and the logarithm has the form

2ro

1 2
InN = l:( J x The latter is the

rzo _20'.2 )

. e'quétion of a parabola. Passing to the logarithm

of N can thus simplify the of the shape of the
curve by removing the inflection points and
making it easy to approximate by linear pieces.
The thin lines in Figure 4 show several linear -
pieces fitting the parabola.

The situation in higher dimensions is similar.
The logarithin of the Gaussian density isa
paraboloid, and the surface can be fitted with
high-dimensional planes using as structure of an
ALN just one AND node. The density functions
whose logarithm is convex form a larger set than
the class of Gaussian distributions; we refer to
them as the “log-convex” distributions. We
know of no other studies using this class.

The ad hoc assumption that the uncertainty about
the health of a compressor can be captured by a
log-convex fuzzy set was used to set up an ALN.
The training set described above was replaced by
one that had the values of the natural logarithm

of x;¢ in place of x;0. The thin lines of Figure 5
approximate a convex surface with a plateau. At
the top of the plateau are the known normal-
running measurements, while further down are
the measurements close to shutdown. They are
represented by the dark squares. The level of the
horizontal line they are placed on is unimportant, -
since that merely changes the task to be learned
by the ALN by a constant scale factor. It was
decided to use a shutdown level of -10,
corresponding to a fuzzy membership of the

points in the normal set of ¢™® = 0.000045.
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Training the ALN and testing generalization

Using this training set, an ALN was trained to have a final root mean square error on the training set of
about 1.0. When used to classify input points, it generated a classification value in the range [-10, 0],

“which indicates the natural log of the membership in the normal set. A threshold of -2 corresponding to a

fuzzy set membership of e~ =0.1353 was chosen so that an ALN output in the range [-10, -2] was
classified as being in the failure set, and an ALN output in the range (-2, 0] was classified as being in the
normal set. Using this threshold, the trained ALN correctly classified 83.1% of the failure set points and
99.6% of the normal set points in the training set.

To test generalization of the trained ALN, it is presented with portions of the failure runs not seen during
training. Table 2 illustrates a trend to classify the points closer to the end of a failure run as being in
the failure set and shows that the ALN has a tendency to correctly predict failure.

Table 2 Testing Generalization of the Trained ALN

% of failure run duration 50-60 60-70 70-80 80-90 90-100
proportion classified as failure 0.13 . 0.26 0.28 0.33 0.52
proportion classified as normal 0.86 0.73 0.71 0.66 0.47

The last six hours of readings, only two or three points per run, contained in the “90-100% of failure run
duration” category, were present during training. Hence the right-hand column is not an entirely valid
test of ALN generalization, but the other columns are. The results in table 2 reveal an important
ability of the trained ALN: in some cases it started to predict failure well before shutdown of the

‘compressor.

Predicting the failure type

In a complex system like a compressor station, predicting that a failure is likely to occur is much more
useful if accompanied by some indication of what kind of failure may be. The results indicated that the
ALN can sometimes predict the type of failure. After an ALN is trained, it can be converted to a human
readable DTREE format. When a DTREE is used to evaluate an input point, the program indicates the -
linear piece that was used to calculate the value of the function. For example, when the DTREE derived
from the trained ALN in this study calculates a value less than -2.0 (indicating failure) for the failure runs
of a specific type, say X, the value was always calculated from one of the linear pieces indexed 4, 9, 11, or
21. With another failure type, Y, the linear pieces indexed 19 and 15 were responsible for predicting
failure. Hence the linear pieces seemed be providing useful information about the failure type. The

weights on these pieces are important in connecting a failure type to variables which are important for
predicting it.

Temporal behavior of the predictor

The following graphs show how the performance measure learned by the ALN declines before a failure
shutdown. Note that time within a run advances to the left. Low values at the left indicate a prediction of
breakdown. These are a selection of “good” examples, though in one case the prediction of failure seems,
to say the least, premature. There were also examples where the prediction was quite wrong.
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Conclusion

The conclusion of this feasibility study, mainly derived from Table 2, is that ALNs show some promise in
predicting compressor failures several hours, sometimes days, in advance of the actual shutdown time.
Analysis of the fuzzy set indicating normalcy of operation suggested that one may even be able to predict
the failure type by noting which linear piece is active for the measurement vectors obtained from the
compressor system before failure,

A more comprehensive study incorporating expert knowledge of the compressor system could be expected
to lead to more accurate predictions. In particular, further analyses of the piecewise linear functions
produced by an ALN would reveal the most useful combinations of measurements for predicting specific
failure types. We emphasize that the above results are preliminary, and this paper is intended onlytec
illustrate an approach to predictive maintenance using ALNs.
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Abstract

A number of researchers have investigated the application
of multi-layer perceptrons (MLP’s), a variety of neural
network, to the problem of short-term load forecasting for
electric utilities (e.g., Rahman & Hazin, IEEE Trans.
Power Systems, May 1993). “Short-term” in this context
typically means “next day”. These forecasts have been
based upon previous day actual loads and meteorological
factors (e.g., max-min temperature, relative humidity).

We describe the application of radial basis function net-
works (RBF’s) to the “long-term” (next year) load fore-
casting problem. The RBF network performs a two-stage
classification based upon annual average loads and meteo-
rological data. During stage 1, discrete classification is
performed using radius-limited elements. During stage 2,
a multi-layer perceptron may be applied. The quantized
output is used to correct a prediction template.

. The stage 1 classifier is trained by maximizing an objec-
tive function (the “disambiguity”). The stage 2 MLP’s are
trained by standard back-propagation.

This work uses 12 months of hourly meteorological data,
and the corresponding hourly load data for both commer-
cial and residential feeders. At the current stage of devel-
opment, the RBF machine can train on 20% of the
weather/load data (selected by simple linear sampling),
and estimate the hourly load for an entire year (8,760 data
points) with 9.1% error (RMS, relative to daily peak load).
(By comparison, monthly mean profiles perform at c. 12%
error.) The best short-term load forecasters operate in the
2% error range. The current system is an engineering pro-
totype, and development is continuing.

notions {(e.g.,

More significant than the present (modest) performance fig-
ures are the techniques being used for development. Of par-
ticular importance are:

The RBF paradigm and “safe intérpoiation”
Data coding and quantization

Taxonomic Decomposition
This research has been conducted under IR&D at Computer
Science Innovations, Inc. (CSI), Melbourne, Florida from
1991-199s.

Technical Background / Nomenclature

Classification Problems

Classification is a special case of the general regression
problem, for which the range of the regression function is a
discrete set. Desired classification decisions are specified at
examplars, and extended throughout the problem domain by
tuning the parameters of a decision function. Inputs to the
classifier are usually M-dimensional vectors of “features”,
and the finitely many discrete outputs are the “classes”.
Given this understanding, many conventional statistical
RMS error, type 1/type 2 errors) apply.

Feature Space, Goal Space, and Parameter Space

The M-dimensional Euclidian space spanned by the vectors
of features for a particular classification problem is called the
problem’s “feature space”. Feature space is the domain of
the decision function.

The decision function assigns to each feature vector a
“class”. The set of all classes is “goal space”. Goal space is
the range of the decision function; it is just a set, and has no
topological or algebraic properties.

. Applications of Neural Networks in Environmental and Energy Sciences and Engineering. S. Hashem, P. E.
Keller, R.T. Kouzes, and L.J. Kangas (Eds.)
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A decision function is an instantiation of a parametrized
decision function model; let this model have >0 tunable

parameters. Each decision function, then, is represented -

by a point in L-dimensional Euclidian space. This space is
called “parameter space”. (For a trainable classifier,

parameter space will be the domain of an “objective func-

tion”, which measures the performance of the classifier.)

Trainable Classifiers

If training is understood to be “incremental improvement
of performance through experience and self-adjustment”,
then trainable classifiers can be built.

We describe a typical variant of so-called “supervised”
training [1] (examples of known classification available).
The process is a closed-loop optimization (see Figure 1),
during which a fixed collection of feature vectors (the
“training set”) is repeatedly presented to the classifier.
After each cycle of presentations (“epoch™), the overall
performance of the classifier is measured via an objective
function. The parameters of the decision function are then
adjusted in an attempt to increase the objective function’s
value on the next epoch.

FIGURE 1. Learning by “Feedback and Adaptation”
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Training can be regarded, then, as a search of parameter
space for global maxima of the objective function with
respect to the given training set. Standard optimization
_ techniques may apply (e.g., gradient search, least squares,
“filtering” techniques), and emerging techniques are the
_subject of current research (e.g., back: propagation, simu-
lated annealing, genetic algorithms, cascade correlation)

21

RBF Networks: Brief Conceptual Tutorial

RBF’s attack the regression problem in much the same
way “partitions of unity” {3] attack the spectral problem.
They operate in the feature space itself, exploiting its
geometry to directly mode] clusters and their boundaries,
using many local interpolators of compact support.

. RBF’s can be regarded as neural networks in the sense that

they operate by aggregation of the outputs of many dis-
crete units which are trained rather than programmed. In
distinction to most other neural paradigms, however, the
elements in an RBF do not communicate with each other.

Stage 1 of the RBF: The basis functions

Stage 1 of an RBF’s is constructed by positioning at each

. exemplar in feature space a compactly-supported pseudo-
“metric. These “basis functions” can be viewed as locally

conditioning feature space with a “belief” field, much as
an electric charge conditions nearby space with an electric
field.

An individual basis function establishes a field of belief
that a point in its region of feature space is in the same
class as the basis function’s exemplar. This belief
decreases as we move away from the exemplar, becoming
zero at a finite distance. The basis functions are therefore
referred to as “radius-limited elements”.

To use the basis functions to classify a point in feature
space, the outputs of the basis functions in whose support
it lies are combined by superposition according to an
aggregation rule. This gives a vector of beliefs, compo-
nent j being the belief that the point is in class j. The larg-
est vector component designates the stage 1

classification. The relative sizes of the beliefs can be used
to form a stage 1 classification confidence.

Stage 2 of the RBF: The Perceptron

The stage 1 classification can be used as the RBF output.
1t is customary, however, to apply a multi-layer perceptron
[4] using the original feature vector and its stage 1 belief
vector as inputs. The output of the perceptron then
becomes the RBF output. (The rationale for using stage 1
as a pre-processor for a perceptron is that the stage 1 pro-
cedures can eliminate non-separability, which is problem-
atic for perceptrons.)
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The Bayesian Classifier is ““almost™ a stage 1 RBF

The Bayesian classifier is seen to be very similar to a stage
1 radial basis function classifier, with each class repre-
sented by a single element located at the class mean, and
having local pseudo-metrics given by weighted quadratic
exponentials. The only difference is that the exponentials
do not have compact support (though in all real implemen-
tations, they will have).

The genci'al stage 1 RBF will have many elements repre-

senting each class, and possibly a variety of pseudo-met-
rics. The level-sets of the pseudo-metric give the
fundamental shapes being used to cover clusters in feature
space.

Other Interpretations of RBF Classifiers

The stage 1 RBF may also be regarded as a spatial decom-
position of the density function for the given classification
problem. Properly speaking, of course, the basis functions
constitute a frame rather than a basis. This is the sense in
which the “partition of unity” analogy with RBF’s is
instructive.

" It is possible at this point to enter a discussion of RBF
implementations of fuzzy logic [5]; the connection is obvi-
ous, and we forego this.

The Characteristic Strengths of RBF Classifiers

+ Unlike most neural paradigms, RBF’s radius-limited
elements do not extend their interpolation arbitrarily
far away from their control points (the examplars).
This gives them good false-positive rejection charac-
teristics by avoiding uncontrolled regression.

* Because the elements do not communicate with each
other, it is often possible to add/remove/combine goal
classes without retraining existing elements.

*  Because the elements have compact support, it is only
necessary to fire those in the relevant region of feature
space.

+ RBF’s are insensitive to the number of output classes.
(We have successfully built and trained RBF’s with
over 300 output classes.)

+- The decision parameters ofRBF s have geometric s1°«
nificance.

+ The components of the belief vector can be used to
produce “confidence factors”.

* The geometric/analytic nature of RBF’s is eproxtable
using many conventional, mature mathematical tools.

+ RBF’s have been shown to have the theoretical power
to handle arbitrary well-posed classification problems;
non-linearly separable problems pose no special diffi- -

- culty.

+  Super-fast hardware implementations of RBF’s are
commercially available (c. 2 microseconds/classifica-
tion, pipelined). The INTEL Nil00O0 chip is the best
example.

+ RBF’scanbe desxgned to produce classifications of
hierarchical “granularity”. See the discussion of taxo-
nomic decomposition below.

The Characteristic Weaknesses of RBF Classifiers

*+ Because RBF’s model the data from many local
approximations rather than from a few population
parameters, they typical use more decision parameters
than most other techniques (10,000 parameters is not
unusual). '

+ RBF’s are easy to “overtrain”, that is, they can merely
memorize idiosyncrasies of the training set rather than
classification knowledge that will generalize.

* Because superposition is a “voting” strategy, RBF’s
can be sensitive to the presentation cardinalities in the
‘training set.

+ Management and use of the large number of RBF
parameters can cause software implementations of
RBF’s to be slow.

- If every vector in an unambiguous training set is used
as an exemplar for some basis function, the RBF will
generally give a nearly perfect score on that training
set; this makes RBF’s hard to evaluate without using
separate training and evaluation sets.

RBF Training

To train an RBF, we define an objective function, and per-
form non-linear optimization in parameter space. In gen-
eral, this includes adjustment of both basis function
locations, and parameters. Geometrically, the RBF level-
sets “float around and change shape” in an attempt to best
cover clusters and portions of clusters present in the train-
ing set.

RBF Networks: Formal Definition

~ Mathematical construction of the Stage 1 RBF:

Let Feature space be RM,
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Let goal space G = {1, 2, ..., K}, so that points in RM fall
into one of K classes.

Recall that “exemplars™ are feature vectors which repre-
sent a particular class. Denote the ith of I exemplars for
class & by:

Fri = Ui Frind

Define the basis function associated with Fy; by:’

2

M
R, (%)= l—Min( LY PrinFrim= %))
=1

where & = (x,,..., X0 eRM

and P; = (P ps o0 Priag)

is a vector of (tunable) non-negative parameters. (Hence,
for this implementation, parameter space is RM).

Ry establishes a hyper-elliptical (scalar) field of “belief”
in k-membership around the exemplar Fy;.

Ry; has the following properties:
+ the semi-major axes of the field are determined by the
parameter vector P;

- it is a monotene decreasing function of “elliptical dis-
tance” from F;

it attains its maximum of 1 precisely at Fy;
it is non-negative and has compact support

it has continuous partials with respect to the parameters
P, for all points having Ry; > 0.

R, (%) is the contribution of exemplar F; to our belief ~
that ® isinclass & .

Typically, there will be multiple exemplars for each class,
so the “total belief” that a point 2 is in class  is an aggre-
gation of the beliefs of the class & exemplars:

It
bp(2) = 1= ] (1-R,;(2)
i=1

This naturally gives rise to a vector field of beliefs
B:RM —RK defined by:

B(R) = (5, (D), ..., 5,(D))

B (%) can be interpreted as.a joint-membership function,
akin to a £ -ary probability density.

B is the radial basis function constructed from the exem-

plars. It is trained by optimizing P,;.

Touse B to classify points in feature space, select the
index of the largest component of B(2) . The by’s can be
used to build confidence factors.

For points far away from all exemplars (“uncontrolled”
regions of feature space), B (%) = 0.The RBF refuses to
make “wild guesses”. '

The Long-Term Load-Forecasting
Problem

Long-term load forecasting is the prediction of load at an
arbitrary future time. Since no “previous day” actual load -
data will be available to support such a forecast, long-term
load prediction must be based exclusively on phenomeno-
logical (temporal and meteorological) factors.

Data Collection

For this work, actual load data was provided at two feed-
ers: feederl served just commercial users, and feeder2
served just residential users. Load was expressed in amps
at 11kv. Data were collected every 30 minutes (on the
half-hour), 24 hours/day during the entire period from
November 1, 1993 to October 31, 1994, a total of 17,520
load values for each feeder. All data were stamped with a
date-time group..

Weather data was collected by a government meteorologi-
cal station in the area. Weather data consisted of:

Wet-bulb temperature (degrees Celsius)

Dry-bulb temperature (degrees Celsius)

Relative humidity (%) '

‘Wind direction (degrees of bearing) - c'

Wind speed (knots) v

Cloudiness factor (unitless, 1-10)

Data were collected every hour (on the hour), 24 hours/
day during the entire period from November 1, 1993 to
October 31, 1994, a total of 8,760 sets of readings.
(Exception: cloudiness factor was collected only every 3
hours, at 0200, 0500, 0800, 1100, 1400, 1700, 2000, and
2300 hours).
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NOTE: Commercial load forecasting and residential load
Sorecasting were treated as completely separate problems.
The commercial and residential data were not mixed or
used jointly in any way for this study.

Selecting the Features

Because weather data was available only on the hour, the
half-hourly load data was not used for this study. This left
a common set of hourly load-weather data consisting of
8,760 data points for each of the commercial and residen-
tial sets.

Cloudiness factor was not selected, because it was avail-
able only for some hours.

For prototyping efficiency, it is desirable to keep the
dimensionality of feature space as low as possible. The
correlation coefficient of wind direction with load was
very low, and the correlation coefficient of dry-bulb with
wet-bulb temperature was very high (0.94). Therefore,
wind direction and wet-bulb temperature were deemed
irrelevant and redundant, respectively, and not selected.

This left a set of meteorological features consisting of dry-
bulb temperature, relative humidity, and wind speed.

Graphical display of the load data versus time showed
consistent daily profiles. Three fundamental “day types”
were observed: week-days (Monday-Friday); weekend-
‘days (Saturday and Sunday); and holiday-days (e.g.,
Christmas Day). “Day type” was selected as a feature.

Month and hour-of-day were seen to be correlated with
load, and were selected as features.

This gives a set of temporal features consisting of month,
day-of-week, and day type.

Thus, the selection process yielded a set of six temporal- v

meteorological features: Month, day type, hour-of-day,
dry-bulb temperature, relative humidity, and wind speed.

NOTE: We were told by the providers of the load data that
other useful features existed, buit were proprietary. These
Jeatures are anticipated to be available for follow-on
work. .

Coding the Feature Vectors

How shall features be represented within the feature vec-
tor? A naive representation of time by hour number would
tell the RBF that 11 p.m., which has representation “23”, is
very far in feature space from midnight, which has repre-
sentation “0”. Similarly, December (“12”) would be pre-
sented to the RBF as very far in feature space from
January (*17).

Also, relative humidity represented in percentage points
attains much higher numeric values, and has greater
dynamic range than any other feature, for example. And,

“what should be the representation of day type?

A partial solution to the representation problem is offered
by principle component analysis (PCA). This handles
range and centering variations, but destroys the semantic
identify of the features, which is needed for experimental
work. (Note: The Karhunen-Loeve transform is a stan-
dard PCA technique used in classification work for feature
set conditioning.) PCA was not applied in this study.

For this study, month and hour-of-day were coded by their
corresponding average temperature. That is, the month
January was represented in the feature vector as 20.4, the

" average temperature during January. Similarly, for exam-

ple, 8 a.m. was represented as 13.8, the average tempera-
ture (over the whole year) at that time. (It would be
preferable to code these variables by average load, the
variable to be predicted, but we wanted to avoid overuse
of the load data.)

The humidity data were linearly rescaled to be in the range
0.- 20 (and so roughly commensurable with the tempera-
ture data.) Wind speed data were not coded.

Day type was coded to show that holidays and weekends
had similar average load levels, both of which were very
different, and less than, weekday levels: holiday = 1,
weekend = 4, weekday = 12.

The Load-Forecasting Problem as a
Classification Problem

Since load is a continuous random variable, an RBF classi-
fier might appear ill-suited to load prediction. We posed
the problem in terms of classification to exploit the RBF’s
controlled regression, and guarantee the existence of a
development path to an ultra-high-throughput hardware
implementation.
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Day Profiles and Quantized Correction Factors

For each of the seven days of the week, a load profile was
computed. This profile was the entire year’s arithmetic
average of the 24 hourly loads for that day of the week.
for example, the Monday profile consists of 24 loads: the
hour-0 load is the average of the entire year’s Monday at
12 a.m. loads, etc. The Monday profile, then, is the wave-
form of hourly loads for the “average Monday”. A profile
was also prepared for the average holiday, giving a total of
8 day-of-week load profiles. ‘

Because the day profiles are only gross averages, and do
not take phenomenological features into account, they will
be weak predictors. For any particular date and time, the
actual measured load will usually be different from the
profile load for that day of the week. The ratio:

F = (actual load) / (profile load)

gives a correction factor for that date and time. If we
could predict, from temporal and meteorological features,
what correction factor to apply to the profile load, the pro-
file could be corrected to a predicted load.

This is the approach taken under this study. In this way, by
quantizing the range of correction factors observed (0.5 -
1.5, roughly), the load prediction problem is recast. It
becomes the problem of selecting the correct one of
(finitely many) quantization bins for the correction fac-
tor: we have a classification problem.

The approach may be stated:

* The interval from 0.5 to 1.5 is divided into a finite
number of bins. The midpoint (for example) of each
bin is its reconstruction value, F.

+ For each of the feature vectors in the training set, we
compute what the correction factor F from profile load
to actual load is. The bin number containing this mul-
tiplier F becomes the desired output of the RBF for this
feature vector. This output is an integer.

+ The RBF is trained to produce the desired bin number
~ asits output.

To use the RBF as a load predictor:

+ Input a feature vector of temporal and meteorological
features. Using these feature as input, the RBF returns
a bin number, which corresponds to a known correc-
tion factor, F. '

- Multiply the profile value for the desired hour/day-of-
week by the correction factor F to obtain the load pre-
diction.

The study RBF is seen to be a machine which computes
single-point corrections to a template based upon phenom-
enological data. Notice that the RBF must be run for each
prediction desired, so prediction of an entire day’s data
requires 24 runs. :

The Training Set

Examination of the 365 days of available feature vector
revealed 14 days with corrupted data (typically, drop-outs
resulting from sensors going off-line). These days were
not considered during exemplar selection, leaving 351
days of data, having a total of 24 * 351 = 8,424 feature
vectors. :

Training the Stage 1 RBF

A recursive “taxonomic” decomposition of the feature
space was performed. )

To begin the decomposition, a single exemplar was com-
puted for each class. This synthesized exemplar was the
unweighted mean of the feature vectors of that class. For
each of these COG’s (“centers of gravity”) semi-major
axes were computed to be the standard deviations in each
dimension. Hence, the initial untrained RBF was essen-
tially a k-means classifier. By a nearest-neighbor rule, this
decomposes feature space into regions by proximity to
exemplars. '

Since, in general, classes will not manifest as disjoint con-
vex clusters in feature space, the initial decomposition will
have ambiguous (i.e., multi-class) regions. We optimize,
adjusting the RBF examplars (COG’s) and semi-major
axes (parameters) by maximizing an objective function.
This optimization is performed using a gradient-assisted

‘generate-and-test algorithm in parameter space.

When optimization is complete, feature space has been
decomposed into subregions which are, to the extent pos-
sible, homogeneous by class (as determined with respect
to the training set). This decomposition procedure is then
applied to each of these subregions. A hierarchical taxo-
nomic decomposition of feature space results. This pro-
cess is continued until the regions at the bottom of the tree
consist of disjoint convex clusters, or can be handled by an
individual MLP tied to that terminal-subregion.




The taxonomic decomposition is similar to a quadtree
decomposition, except that the space partitioning is driven
by the class-distribution of exemplars. The stage 1 RBF
classifies feature vectors by determining into which termi-
nal subregion they are placed in accordance with the hier-
archy.

Determining when the Stage 1 RBF has improved

The objective function has two parts, called scores. Score
A is the percent of feature vectors in the training set cor-
rectly classified by the stage 1 RBE. Score B is the “dis-
ambiguity”. For training, the RBF is considered to have.
improved when:

- score A increases, without respect to the change in
score B .

* Score A is unchanged, and score B increases

It remains to describe the disambiguity. In general, cluster
centers and sizes have been well-chosen when intra-cluster
distances are small, inter-cluster distances are large, and
clusters are widely separated.

Let S1(i) be the sum of the distances of all class i feature
vectors from the class i exemplar (the “intra-score™). Let
S2(i) be the sum of the distances from the class i exemplar
to all feature vectors not in class i (the “inter-score”). Let

S3 be the sum of the distances of all examplars each other. -

Let X1 be the sum of the S1(i), and let X2 be the sum of
the S20).

Good clustering will have a smaller X1 value, and larger
X2 and 83 values. To capture this in a single value, we
set: :

Disambiguity =Score B=X1/(1+X2* S3)
Smoothing as a Post-Process

The study prototype does not take into account the fact
there there is a “behavior lag” inherent in utility loads:
consumers do not respond to weather conditions continu-
ously and in real-time; rather, they tend to set their con-
sumption based upon recent experience and perceived
trends. It was found that this could be partially compen-
sated for by spatial smoothing of the predicted load wave-
forms with a rastered average filter. A 3-hour wide,

~ centered-output window with uniform weights was used.
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Results

Evaluation testing was against the whole 365 days of fea-
ture vectors (includes “bad” days), and so constituted a
test which was over 80% “blind”, and included nearly 4%
“real-world” anomalous input. '

The current customary error measurement for load predic-
tion in the literature seems to be “RMS % of peak load”
(RMS%pl). That is, an RMS error is computed over the
entire prediction period (usually 24 hours), divided by the
period’s peak load, and multiplied by 100%.

Short-term load predictors typically use previous-day load
data, and perform at a nominal 2% error (RMS%pt). Our
stated error is the average of the 365 RMS%pl errors for
the year.

Residential Feeder

The RBF was trained on the residential feeder data. Using
six output quantization bins, the study RBF reconstructed
the entire year’s residential loads from the corresponding

meteorological data. It performed at 9.1% error. .

FIGURE 2. An RBF Prediction for a Residential Day

WERTHER DATE: 84-1L93 TEMP (DRY)

10AD DATE: 84,1193 DAY : Thursday RELH

INTER FOR NEXT DRV, Q 70 QUIT:fuu’s binpisy) WIND SPEED
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NEURAL PROCESSING FOR HOUR 23 OF 931184 REVARL Long
NAX EXROR

NEURRL PXERICTION ERROX {RNS): S.14423083586347
MAK NEURAL POINI EXROR (AMPS): 14.8185274589684

Commercial Feeder

The same RBF was retrained on the commercial feeder
data. Using six output quantization bins, the study RBF
reconstructed the entire year’s commercial loads from the
corresponding meteorological data. It performed at 6.9%
error.

(Note: Of the 1,685 feature vectors that were in the train-
ing set, the RBF returned the correct quantization bin
1,682 times, an accuracy of 99.8%).
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Experiments were conducted at various quantization lev-
els, using upto 120 bins. Results did not vary much with
the number of quantization bins, though ambiguities in the
training set (i.e., same weather data, different desired load)
did show up when using more bins. '

Implementation/Performance

The RBF software for this study was developed under pre-
vious IR&D. The analysis and development for this study
was conducted under a rapid prototyping methodology in
30 man-days. It has a simple semi-graphical color MMI,
and consists of about 1,200 lines of high-order compiled
code running on a 486 50 MHz PC clone. Several analysis
routines and support utilities were developed as part of
this effort.

The prototype produced under this study requires about 2
hours to train, and performs a single-point load prediction
in about 300 milliseconds.

_ Note that the effectiveness of any predictive model is
affected by the user’s ability to predict the input parame-
ters. For load prediction, these parameters include
weather data.

Future Work

The resuits obtained under this study exceeded expecta-
tions in terms of predictive power and throughput. Based
upon these results, commercial funding for additional
work is now being negotiated.

There are 11 enhancements proposed for future work:
+ Use more than 1,685 training vectors, from multiple
years, and select these-intelligently.

* Use finer stratification (e.g., monthly) for generating
day templates.

- Do not include corrupt data in the test suite.

+ Use some load data in preparing/coding feature vec-
. tors.

+  Apply better conditioning (e.g., PCA) to feature sets.
+ Use proprietary features.

+  Optimize code for throughput.

- Apply/evaluate other RBF models.

-+ Optimize quantization of reconstruction values {(e.g.,
Max quantization).

+ Use incremental confidence factors to evaluate output.
* Account for behavior lag.
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Abstract - This paper reports on the developments and findings of the Distribution Short-Term Load Forecaster
(DSTLY) research activity. The objective of this research is to develop a distribution short-term load forecasting
technology consisting of a forecasting method, development methodology, theories necessary to support required
technical components, and the hardware and software tools required to perform the forecast. The DSTLF consists of
four major components: monitored endpoint lead forecaster (MELF), nonmonitored endpoint load forecaster (NELF),
topological integration forecaster (TIF), and a dynamic tuner. These components interact to provide short-term
forecasts at various points in the distribution system, e.g., feeder, line section, and endpoint. This paper discusses
the DSTLF methodology and MELF component, MELF, based on artificial neural network technology, predicts
distribution endpoint loads for an hour, a day, and a week in advance. Predictions are developed using time,
calendar, historical load, and weather data. The overall DSTLF architecture and a prototype MELF module for
retail endpoints have been developed. Future work will be focused on refining and extending MELF and developing

NELF and TIF capabnlmes.

I. INTRODUCTION
A. New Regquirements on the Distribution System

A number of recent developments have resulted in several
challenges to the electric power industry. Among the most
influential factors are increased power flow on existing
systems, the expansion of distributed automation and demand-
side management (DA/DSM) activities, deregulation, and the
installation of generation at the distribution level. Each of
these factors has the potential to significantly alter the design,
operation, and maintenance requirements of the distribution
systems. A proposed method of alleviating anticipated
technical difficulties is to automate the distribution system.
Appropriate automation can increase operating flexibility and
speed, defer requirements for costly transmission and genera
tion improvements (by increasing utilization of available
resources), and improve power reliability and quality.

The ability to make accurate short-term load predictions on
distribution feeders will be vital to optimizing distribution
system operations and maintenance. In particular, the ability
to plan for system power requirements an hour to a week
ahead is critical to a number of real-time control requirements
( e.g., econoomic generating capacity scheduling, fuel
purchase scheduhng, security analysis, transaction evaluation,
power flow and switching cycle optimization, and disribution
reconfiguration). Such capability is necessary to ensure power
system stability under high load demands, to perform DSM
load management activities, to optimally configure the system
for current/near-term conditions, and to economically optimize
system operation with respect to power flow/generation.

B. Objective

The Pacific Northwest Laboratory (PNL) is currently
conducting a multiyear research project to develop a core
technology for building short-term load forecasters. These
forecasters will accurately predict load requirements at the
distribution level of the power system. The project.supports a
recently initiated research activity focused toward appropriately
applying intelligent information technology (IIT) to the
electric power industry transmission and distribution sector.

The Distribution Short-Term Load Forecaster (DSTLF)
consists of four major.components: monitored endpoint load
forecaster (MELF), nonmenitored endpoint load forecaster
(NELF), topological integration forecaster (TIF), and dynamic
tuner'. . These components interact to provide short-term

forecasts at various points in the distribution system, i.e,,
substation, feeder, line section, and endpoint. Loads will be
predicted for a period of time between one hour and one week
into the future.
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Because load characteristics in a power system change over
time as a function of economics, technology, conservation,
and population demographics, the DSTLFs must be able to
monitor their own performance and self-tune, shouid that
performance fall below a specified threshold. This self-tuning
capability will also increase flexibility during the installation
process. It is also anticipated that as monitoring capabilities
for distribution systems are upgraded, an insufficient amount
of historical data will be available to pretrain DSTLFs for site-
specific load characteristics. Self-tuning forecasters trained for
a site with load characteristics similar to those for the desired
location can be installed and allowed to improve their accuracy
over time as experience is gained.

This paper reports on the first year of the DSTLF research
efforts. The general DSTLF methodology and initial MELF
development efforts will be discussed in detail.

II. LOAD FORECASTING BACKGROUND

Load forecasting is the process of predicting the-electrical
load on a power system for some period of time in the future.
The forecasts are typically based on knowledge of system
composition, historical load behavior, and weather. Load
forecasts are made for both long and short periods of time.
Short-term forecasts are used in near-term decision processes
and to maintain the day-to-day operation of the power system.
Applications requiring short-term load forecasting (STLF)
capabilities include power system control, scheduling, and
security.

A. Short-Term Load Forecasting (STLF) Methods

At the transmission level, STLF has traditionally been
performed using either a time-series or regression method.
Time-series methods treat the load pattern as a time-series
signal with known periodicities and predict the future load by
using various time-series-analysis techniques such as Kalman
filtering, autoregressive-moving average (ARMA), and Box-
Jenkins [1}. In contrast, regression methods use a linear or
piecewise-linear function to represent the functional
relationship between pertinent variables (e.g., weather,
customer usage) and system load. Load is predicted by
inserting the weather information into the -predetermined
functional relationship [1].

Both time-series and regression methods involve complex
modeling techniques and have heavy computational
requirements resulting in long computational times and a
tendency to experience riumerical instabilities. These inherent
drawbacks have stimulated development of forecasters based
on artificial intelligence (AI). Both expert systems and
artificial neural networks have been apphed to the load
forecasting problem.

Expert systems use the knowledge of a human expert to’

develop rules for forecasting. Artificial neural networks

(ANNs) do not rely on human experience but attempt to draw

a link between sets of input data and observed output.
Although the accuracy of load predictions made by expert
systems and ANNs is relatively the same, the difficulty in
acquiring and transforming the knowledge of an expert to a set
of rules makes ANN technology slightly more attractive for
STLF applications.

ANN technology has proven to be a viable option to
statistical techniques such as regression analysis, time-series
prediction, and classification. The advantages of ANNs in
statistical applications include robustness to probability
distribution assumptions, their ability to classify in the
presence of nonlinear separation surfaces, and their ability to
perform reasonably well with incomplete data [2]. ANN
technologies have been selected to form the basis of PNL’s
distribution system MELF development. An overview of
ANN technology can be found in [1 - 4].

-Although a significant amount of research has been
conducted in the past five years with respect to the use of
ANNs in short-term load forecasting, much of the
development has been focused on predicting load at the
transmission level. Inherent differences in the makeup and
operating characteristics of distribution and transmission
systems will prevent the direct transfer of traditional
transmission-level statistical techniques and AI STLFing
technologies to the distribution level. The development of an
efficient method of predicting loads at the distribution level
will depend on an understanding of distribution system
characteristics that complicate the short-term load forecasting
process.

B. Distribution Short-Term Load Forecasting Issues

The unique features of the distribution system could
impede DSTLF development efforts. Distribution system
characteristics that will complicate the development of
DSTLFs include the lack of historical data, dynamic changes
in distribution system configuration, sparse sensing, and the
increased randomness associated with single endpoint load
shapes.

Independent of the forecasting technique used, the
fundamental requirement for successful STLF is access to
historical hourly data of the proper quality and quantity.
Presently, distribution systems can be characterized as data-
poor with respect to both data quality and quantity. ANN
(and other) STLF techniques are based on knowledge of the
load shape provided by historical hourly load and weather
data. The ANN training data needs to be as accurate and
complete as possible. '




An additional difficulty associated with predicting
distribution system loads is the dynamic nature of the
distribution system physical configuration. To maximize the
reliability of the system and maintain services to the
customer, the physical layout of the distribution system is
reconfigured. This reconfiguration is performed manually or
automatically, often with little warning. The number and
nature of endpoints on a feeder can change, thus changing
characteristics of the loadshape. A DSTLF must be able to
adapt, in real time, to any topological changes in the
distribution network. The concept of the TIF component of
the DSTLF and the self-tuning capability were developed to
address the issues associated with the dynamic nature of the
distribution system.

Finally, the very nature of the load at the distribution level
complicates development of a DSTLF. The number of
individual loads represented by a distribution feeder is much
smaller than the number of individual loads that comprise a

_transmission line. Load forecasts made at transmission levels
benefit from the larger number of endpoints based on the law
of large numbers. The law of large numbers dictates that the
impact of unusual characteristics and anomalies tends to be
minimized when a large number of data points is included in
the analysis, thus increasing the accuracy of predictions. In
addition to the statistical difficulty associated with analysis of
a large number of endpoints, the load shape of a single
endpoint will have larger relative changes in load and will be
significantly affected by unusual events or sudden changes.

Current developments in the power industry are bringing
the need for automated short-term prediction capabilities to the
forefront of distribution system improvement efforts. The
unique features of the distribution system will complicate
STLF development efforts. The success of the DSTLF core
technology will depend, in part, on how well the DSTLF
methodology and its associated elements (MELF, NELF, TIF,
and dynamic tuner) address the limited monitoring, dynamic
state, and variability of load.

[I. DSTLF METHODOLOGY

PNL has defined a DSTLF methodology that addresses the

changing utility industry’s needs and the unique distribution
system forecasting environment. The methodology is
designed to facilitate the development of a core forecasting
technology that is pervasive across-all distribution systems
and independent of a utility’s monitoring scheme, physical
layout, and endpoint characteristics. The capabilities required
to develop the methodology elements include a load
forecasting method, load shape group/type identification,
endpoint load aggregation, and dynamic self-tuning.

A. Methodology Basis

Methods for forecasting load at any level of a power
system are constrained by the type and amount of data

An Api)roac}i to Distribution Short-Term Load Forécasting 105

gathered from the network. Because of the lack of data at the
distribution level, the forecasting method is based on limited
monitoring of endpoint loads but will accommodate and, in
fact, be more accurate with increased monitoring. In a limited
monitoring environment, a certain percentage of endpoints is
contimiously monitored. Loads for the monitored endpoints
are directly forecasted from the gathered data. Loads for
nonmonitored endpoints are estimated based on analysis of
load characteristics of similar monitored endpoints using a
group/type characterization scheme that matches endpoints
with similar properties and load shapes.

Because current distribution systems are poorly monitored,
the development of a robust group/type characterization
scheme is essential for forecasting load at the distribution
level. At this time, a proven group/type method that
characterizes load shapes of endpoints based on the load
behavior of other endpoints in the same group/type does not
exist. PNL’s research will answer a fundamental question:
can grouping schemes be developed that cluster endpoints
with similar load shapes to a dégree that meets the industry’s
performance requirements?

Once both monitored and nonmonitored endpoint loads

‘have been predicted, line, feeder, and substation loads can be

estimated by employing an aggregation method that sums
endpoint-loads located on the respective line sections and
feeders. Line losses should be accounted for in the summing
process.

The self-tuning feature allows the DSTLF to adapt to the
changing network environment. Self-tuning is a gradual
process. Following a change in the physical configuration or
in the nature of the loads on the system, the accuracy of the
DSTLF will decrease and then improve as tuning progresses.
Because of the initial decrease in performance, the DSTLF.
system should be able to anticipate potential configuration
scenarios. An automated configuration management system is
necessary to support DSTLF activities and provide the
information necessary to pretune the DSTLF based on
expected physical layouts. ‘

The DSTLF development process and core components
were defined to address the issues associated with the limited
monitoring environment as well as the group/type,
aggregation, and dynamic self-tuning requirements that form
the basis of DSTLF methodology.

B. Methodology Description
The DSTLF methodology is described in terms of the data

. requirements, the processes the data undergoes, and the

DSTLF components that perform the data processing
activities. Layered data process modules are used to illustrate
the interactions between the data and core .component
processing elements, the interactions between the various core
component processing elements themselves, and the process
flow required to obtain the desired forecasted load.
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The input data required by the DSTLF, shown in Fig. 1,
is dependent on the forecasting technology, the group/type
theory, and the aggregation and self-tuning methods. Input
data typically consists of historical load, historical
temperature, current load, current temperature, and the forecast
request.
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Fig. 1. DSTLF

The approach for predicting a load is to estimate the load
of monitored endpoints, use the resulting forecasts, in
conjunction with group/typing schemes, to predict the loads
of nonmonitored endpoints, and aggregate the individual
endpoint forecasts, as necessary, to estimate line and feeder
. loads. These processes are performed by the monitored
endpoint load forecaster (MELF), nonmonitored endpoint load
forecaster NELF), and topologlcal integration forecaster (TTIF),
respectlvely

The MELF consists of a forecasting element based on
ANN technology trained from historical data to predict the
load of an endpoint (or a specific location on a distribution
system). The MELF ANN design and development processes
have been conducted with the goal of eventually automating
the process. The MELF’s ANN has two operational modes: a
learning mode, during which the weights associated with the
interconnecting nodes are optimized, and a forecasting mode,
during which requested load forecasts are made. The learning
mode is invoked prior to integration with the other DSTLF
elements and as needed by the dynamic tuner element.

The MELF-predicted forecasts are used either directly (if
the load is for a monitored endpoint) or as input to the NELF.
The relationship between the MELF and NELF is shown in
Fig. 2. The NELF consists of a group/typing scheme and one
or more transform algorithms. A NELF operates by using a
group/typing scheme to identify MELF(s) with similar
behavior characteristics. The forecast, generated by the
MELF, and the nonmonitored endpoint historical and real-
time data are analyzed by the NELF to identify the transform
- algorithm needed to forecast the desired endpoint’s load. If

the group/type analysis determines that an endpoint belongs to
multiple groups, additional transform algorithms will be
required to individually assess the -contribution of each group
to the endpomt s total load."
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Fig. 2. NELF

If the reqhested,load is for a point in the distribution

system that consists of multiple endpoint loads (e.g., a line

section, feeder, or substation) and the point is not directly
monitored, the TIF estimates the load by summing the
endpoints associated with the location. The TIF uses a
topological model to identify the endpoints associated with a

specific location in the distribution system. The model
. describes the system in terms of endpoints, cable, and

switches, fuses, and other components that can change the
configuration. Predictions can be made for both the current
and potential physical configurations. The TIF also address
issues associated with the aggregation process such as line
losses. Fig. 3 shows the relationship between endpoint, line,
and feeder forecasts.
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Fig. 3. TIF




Input data is used directly by the line and feeder forecasters
if the line or feeder is directly monitored. Endpoint forecasts
are used as input data if they are not directly monitored.

C. Al Technology Requirements

A number of AI technologies will be used to develop the
DSTLF capability. Previous research experience in building
intelligent software systems has indicated a benefit associated
with integrating diverse AI paradigms. The DSTLF will
employ ANNSs, fuzzy logic, and model- based reasoning.

Because the nonlinearity and statistical nature of endpoint
load profiles are well suited to prediction by neural networks,
ANNSs form the basis. of the load forecasting technology used
by the MELF.

* Fuzzy logic is well suited for forecasting the loads of
nonmonitored endpoints because of the subjective group/type
schemes and issues associated-with membership. The
group/type theory will provide a crisp definition of ideal
group types. However, actual endpoints will most likely not
be ideal and may share properties with more than one
group/type. Fuzzy logic is an appropriate technology for
capturing inexactness in grouping processes and provides
logical inferencing and computation capabilities.

The TIF will use model-based reasoning techniques to
identify the preferred configuration for a given set of
operating conditions and requirements. The TIF will examine
models representing the current and potential physical layouts
of the distribution system and power system analysis models
representing the current and potential operating conditions of
the distribution system.

Model-based reasoning technology will be used also in
developing a dynamic self-tuner. - The basic approach will be
to combine a performance reasoner with the ANN learning
algorithm. The performance reasoner will detect the need for
adjusting the weights of the MELF and, based on this
detection, will implement the learning algorithm. Subsequent
to implementing the new weights, the performance will be
compared to the existing forecaster’s accuracy. Based on the
results of the comparison, the revised weights will be

substituted for the current weights, or further evaluation and

training will take place. .
IV. SUMMARY

Accomplishments during the first year of the DSTLF
development include the establishment of a DSTLF concept,
partial development of an overall DSTLF methodology, and
completion of proof-of-concept prototype MELFs.

The first year of DSTLF research has provided sufficient
proof of concept to continue development efforts. In addition,
it has produced a framework to guide future development
efforts. Ongoing efforts that will be continued include general
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MELF prototype development and completion of the DSTLF
methodology. Remaining elements of the DSTLF that will
also be pursued include the group/type theory, NELF,
topological integrator, and self-tuning capability. Because of
the distribution industry’s nearly universal limited endpoint
monitoring environment , near-term activities will focus on
development of a group/type theory.
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Using twin signal sensing we propose a method to monitor, detect and localize shorts in power
system devices with windings: including rotors, transformers and motors. There has, to date,
been no effective way to do so. The most obvious approach, time domain reflectometry, fails due
to the reactive coupling of the windings.

Twin signal signature sensing of shorts results from identical signals being simultaneously
injected in both sides of the windings. The reflected signals are measured and the difference
amplified to produce the signature signal. The signature signal characterizes the current state of
the windings. When winding shorts are present, the electrical characteristics of the device will
~ be different and thus the signature signal will also change. The changes in the signature signal
can be monitored to detect shorted windings.

While a device is in operation, the signature signals can be monitored and the development
of winding shorts can be diagnosed through the process of novelty detection. After a device is
cleaned or otherwise known to be functioning correctly (no winding shorts), signature signals can
be collected which represent the healthy device. If a sufficient number of signals can be collected,
the signal space representing healthy windings can be characterized. A detection surface can be
placed around the healthy signature signals to provide a partition of the signal space into two
regions: healthy and faulty. Any signature signal which is not within the healthy signature
partition will indicate a faulted device. '

Early tests of this technique have shown promise. Using an autotransformer, signatures were
recorded and a spherical surface constructed around the healthy signals. Shorts were then in-
troduced in the windings of the transformer and the signatures recorded. The novelty detector
correctly identified all signatures, healthy and faulted. Since the transformer was not in operation
and represents a rather easy detection problem, signature signals for two large turbogenerators
were collected for further analysis. The signature signals for a rotating machine will differ sig-
nificantly from the signatures of a dismantled rotor due to the effects of the brushes and the
additional reflection path available through the excitation source. Rotation of a device will also
affect the signature signals. Therefore, signature signals collected while the rotor is dismantled
cannot be used for detecting shorted windings in an operational rotor. '

Dismantling and reassembling a large turbogenerator is extremely expensive and time con-
suming. The introduction of artificial shorts in the windings is thus not possible. Due to the
inability to induce shorts into these large machines while in operation, tests have been incon-

Applications of Neural Networks in Environmental and Energy Sciences and Engincering. S. Hashem, P.E.
Keller, R.T. Kpuzes, and L.J. Kangas (Eds.)
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clus1ve so far. Work is now underway to allow testmg of the novelty detection technique omn a
small laboratory machine.

When a device is out of service and shorts can be induced, signature SIgnals can be collected.
Windings which have been previously fingerprinted can be subjected to tests to localize the
shorts. The standard layered perceptron neural network appears ideal to make these decisions.
When the device is out of service, shorts can be introduced at a variety of locations, and a neural
network trained to recognize the signature signals and identify the shorted turn location.

The signature signals are sampled and represent high dimensional vectors. Since these high
dimensional vectors prohibit rapid learning by the neural network, features are extracted prior
to training. The features are extracted by computing the area under the signature signal within
specified time intervals. The signature signal is divided into 13 regions, more closely spaced near
the origin, to provide adequate features. _

- The neural network performs pattern classification by identifying the shorted turn number
given the signature signal. In normal pattern classification applications, a neuron is required
for each output class. In the localization of shorted windings, a neuron would be required for
each winding. Since the number of windings can be rather large and a large number of output
neurons can cause slow learning, the concept of a fuzzified neuron is used [1]. The output of
each neuron is trained to produce a standard triangular membership function..T'wo membership
functions overlap the same space and the neuron outputs sum to one. This technique reduces the
dimensionality of the network output by allowing interpolation and provides a filtered output
from the network. See [1] for details. A

The rotor of a 60 MVA turbogenerator was used to test these ideas. The rotor had 14 coils
with 17 turns in each coil. After training of the neural network, the network correctly identified
all coils with shorted turns and predicted the shorted turn number to within 7 turns.

Preliminary work, performed on both downed and rotating loaded rotors, has been quite

promising in demonstrating the effectiveness of the twin signal signature sensing approach to
* winding short evolution monitoring.

[1] M.A. El-Sharkawi, R.J. Marks II, S. Oh, S.J. Huang, I. Kerszenbaum and A. Rodriquez,
“Localization of Winding Shorts Using Fuzzified Neural Networks,” Proceedings of the 1994
IEEE PES Winter Meeting, New York, February 3, 1994. ' :
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Abstract

There are thousands of small communities in various parts of the world, even
in developed countries, that are too far away to be economically connected to an
electric supply system. Clean water is essential for health and well being and electric
energy is essential for economic development, of the community. This paper describes
the design of a "hybrid” Wind/Diesel power generation and storage system, and the
electric power distribution system for a small rural community of 50 persons and live
stock. The most cost effective and reliable system designed to ‘satisfy reasonable
growth over the next twenty-five years consists of three 10 kW wind turbines, a
30 kWh storage battery and a 17.5 kW backup diesel generator. This paper also
describe efforts to train a neural network to predict wind power over the next time
interval and few more time intervals. This is very essential for significant penetration
of wind power systems.

Introduction - |

Availability of clean water and reliable electric energy supply are very impor-
tant for the health and economic well being of a community. There are over two
million homes in the United States that have no electric power supply and are too
far away from a power grid to be economically connected to it. Furthermore with
the world population projected to reach about 8.1 billion in 2020 [1,4], most peo-
ple will probably find accommodations that may be too far away from any power
station. They may find alternate renewable energy’sources more economical than a
connection to an utility line. .

About 78% of the energy produced today is from fossil fuels. These fuels
produce CO,, and other gases that lead to the greenhouse effect or global warming
[1]. Also, coal burning produces SO; which leads to acid rain effect. The Clean
Air Act Amendments of 1990 (2] and the recently passed Energy Policy Act of
1992 along with state regulatory commissions are encouraging electric utilities to
use cost-effective renewable energy systems as part of their generation mix. The
US ”"Climatic Change Action Plan” calls for greenhouse effect related emissions
to not exceed the 1990 levels by year 2000 [3,4]. If the present trend in energy
production continues, the CO, emission will increase from the current level of 358
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parts per million to 600 parts per million in 2100 [3,5] which may lead to serious
health problems for many people. ‘

In the past remote communities and towns that needed electricity, relied upon
diesel/generator sets as sources of electric power. As our society is getting techni-
cally advanced, there is an ever increasing need for more reliable, environmentally
safe, and cost effective means of producing and distributing electric energy. With
a capacity of providing up to ten percent (10%) of America’s energy needs, wind
turbines are available to generate electricity over ninety-seven percent (97%) of
the time, and can operate over 6,000 hours per year [6]. Already next generation
wind turbines are bidding to produce electricity for four (4) cents per kilo-watt-

" hour by 1995. The advances in wind turbine technology and improvements in PV

have made these sources very attractive to meet the energy needs of remote com-
munities through a combination of wind turbine/battery storage/PV and backup
diesel/generator systems.

This paper describes the design of a hybrid wind power storage and generation
system and the electric power distribution system to provide the water and electric
supply needs of a remote community.

Specifications and Constraints

For the purpose of this design, a farm community which comprises fifty (50)
residents, with live stock of 40 cows, 10 steers, 30 pigs, 30 goats, 150 chicken and
five 1000 square-foot garden plots for vegetables is considered. The electric supply
system which should provide a fairly reliable, safe and economically justifiable source
for pumping water and electric energy for lighting, heating, cooking and refrigeration
of perishable goods and medical supplies. As a critical case of no wind for three
days in a week, the system should be able to provide "critical load” for reserve
potable (suitable for drinking) water supply and the necessary electric power for
minimal lighting and refrigeration of medical supplies and perishable food items.
The average wind speed at this location is assumed to be 14 miles per hour (class
3 site). '

Some of the constraints include that the largest wind turbine size available is 10
kW. The battery must be sized to meet the peak and fluctuating load requirements
while being only sixty percent efficient. Also the battery should not be depleted
beyond twenty (20%) percent of its storage capacity. The diesel/generator is
considered to be only 80% efficient and must be able to meet the emergency load
demand. The total cost of the system should not exceed $500,000. PV is not
considered to be a viable source at this location.

The projected daily water supply need of the community at the end of 23 years
is shown in Table 1. The requirement for a reserve of drinkable water supply in the
case of no wind for a three (3) day period is met through a storage tank of 122 cubic
meters capacity. A 1.5 kW electric motor/submersible water pump was selected to
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meet the daily water requirements and to provide sufficient storage. The water well
is assumed to be 230 ft or (70 m) deep with a static water level of 184 feet.

Table 1
Community Daily Water Usage Requirement [7]
| Descriptidn Consumption Total Use Future
- Rate in Liters in Liters

Dairy Cattle (40) 70 Liter 2.800 © 4,000
Steers (10) 60 Liter 600 - 985
Pigs (30) ' 20 Liter 600 . 985
Goats (30) 10 Liter ‘ 300 T 492
Chickens (150) 0.3 Liter . 45 74
Bathtub/Filing 130 Liter 6,500 10,670
Flush Toilet 10 Liter 300 820
Dish Washing/day 80 Liter 4,000 6,564
Laundry 190 Liter 9,500 15.586
Misc. Uses 90 Liter 4,500 7,385
Gardens 7 2,270 Liter 11,350 18,625
Total Water Usage 40,695 66,786

The power demand ratings for various appliances used in this sfudy are given
in Table 2.

Table 2

Power Demand for Various Appliances

Device Description Demand (kW)/Device

Compact Fluorescent Lamp 0.015
"Space Heater 1.500
15 ft3 Frost-Free Freezer : 0.114
20 ft® Frost-Free Freezer . 0.114
Electric Cooking Range 1.250
Electric Oven 1.330
Washing Machine 0.250

The total numbers of various appliances used by the whole community include;
33 - compact fluorescent lights (CFL), 13- electric stoves, 19 - electric space heaters,
13 - 15 ft3 frost-free freezers, one - 20 ft3 frost-free freezer, 6 - washing machines,
13 - electric ovens and one submersible water pump with a 1.5 kW motor. Knowing
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the total numbers of each type of appliance in use, and the rating of the appliance,
the total diversified demand per appliance is then calculated. Using the hourly
variation factor for each appliance, the numbers of appliances, the total load for
that hour is calculated through an accumulation of each load [8]. Because of lack
of actual load data this hourly load data is used as the peak load curve for the
community. This load is then projected for the next twenty-five (25) years at a
growth rate of two percent (2%) and is shown in figure 1.

'Alternatives Considered and Selection of A Proposed Design

Because of the assumptions and constraints specified earlier, only wind turbines
and wind turbines in combination with battery storage and backup diesel generator
system were considered. None of the other renewable energy sources were considered
because they were not available at this location. »

Considering that the maximum demand is only 36 kW and it occurs at 6:00 pm.,
the following eight different alternatives consisting of wind power as the main source
of energy but with various sizes of storage battery and backup diesel generator
systems were considered.

Table 3 ‘
~ Alternate Designs Considered

Alternative Description
Design I. . 5 - 10 kW Wind turbines _
Design 2. 4 -10 kW and 5 - 1.5 kW Wind turbines.
Design 3. 4 - 10 kW Wind turbines and 1-10 kW Diesel Generator.
Design 4. 3 - 10 kW Wind turbines and 1-25 kW Diesel Generator.
Design 5. 3 - 10 kW Wind turbines, 1 - 1.5 kW wind

turbine and 1 - 120 kWh Storage battery.
Design 6. 4 - 10 kW Wind turbines, 1 - 100 kWh

storage battery.
Design 7. 4 -10 kW Wind turbines, 1 - 30 kWh Storage

battery, and 1 - 10 kW Diesel Generator.
Design 8. ' 3 - 10 kW wind turbine, 30 kWh Storage battery,

and 1 - 17.5 kW Diesel Generator.

An additional constraint in the selection of a cost effective design was that it
provide the minimum power for lighting, and refrigeration of perishable food items
and medicine even during the worst case scenario of the system not having wind
power for three consecutive days any time during the year.

The fixed and operating costs of each design are tabulated in Table 3 along with
the annualized costs over the 25 years at an interest rate of eight (8%) percent. This
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provides the basis for the selection from among various alternatives. The “worst
case” requirement eliminated most of the wind only design alternatives. Based upon

minimum annual cost over the 25 year period, design #8 was selected as the most
cost effective.

Table 4
Capital, Operating and Annual Costs of Design Alternatives

Design Capital O&M  Fuel Annual
Alternative Cost Cost Cost Cost
Design # 1. 115,220 1,047 0 11,841
‘Design # 2. 136,532 1,241 0 14,031
Design # 3. o 94,319 916 1,405 11,157
Design # 4. 72,853 1,182, 6,599 14,606
Design # 5. 102,663 933 0 10,550
Design # 6. 111,920 1,017 0 - 11,502
Design # 7. 100,920 987 318 10,758

Design # 8. 78,903 1,228 1,675 10,294

Design of Electric Distribution System

Next step is the design of an electric distribution system to provide power to
each individual building in the community. The most favorable location for the
wind turbine system was two miles away from the community center. One of the
constraints in the design is that the maximum voltage drop allowed is five (5%)
percent at any point of the system from the source. The selected distribution
system design consists of a 3-phase, 7,200/240-120 step up transformer, a two mile
long, #336,400 ACSR primary feeder, 2 - 10 kVA, four 25 kVA volt step down
distribution transformers and service drops to individual loads.

The total annual cost of the complete system including the distribution system
is $14,919 which is less than $500,000 over the 25 year life span assumed. The
complete distribution system is shown in figure 3.

Application of Neural Networks for Wind Power Prediction

Available wind sources in the US could provide up to 10% of its energy needs.
However, one of the reasons for low level of wind energy penetration into the
generation mix is the lack of prediction of the wind power available at any time:
interval. A knowledge of available power over the next time interval of one hour,
one day and even a month is very useful for operational control and generation
scheduling. So it is important that a reliable tool to predict the availability
of wind power over the next interval, an hour, next 24 hours, or a month be
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available. Neural networks have proven themselves to be very fast, reliable and
fault-tolerant especially for pattern recognition, function approximation, and non-
linear prediction.

In our effort to develop a suitable Artificial Neural Network (ANN) architecture
for predicting wind power available over several time intervals, we have used back-
propagation based feed forward neural networks with single and double hidden layers
and with different numbers of neuron in each layer. The wind data used in training
was taken from the HYBRID I software provided by University of Massachusetts.
The total data is 720 points for one month at one hour intervals. The data was
first normalized and a portion of it was used for training the network and some of
the other part of the data was used for testing the performance of the predictor.
Figure 4 shows a neural network configuration and iterative prediction structure
where the network is given an initial set of past data and it produces the predicted
future values by iterating the output back into the input of the network. Figure 3
shows the actual and neural network-based predicted values of 10 next data points
using smgle hidden layer architecture. The network had 10 neuron in the first layer, -
20 neuron in hidden layer and one in the output layer. Figure 6 shows pred1ct1on
results using a two hidden layer network. But this is different from Figure 5 because
only one data point is predicted at a time. This network had 4 neuron in first layer,
6 in first hidden layer and 10 in second hidden layer. The difference in actual and
predicted data is in normalized form.

Conclusions and Recommendations

This was a very good design project for an undergraduate student and provided
the student an appreciation of the renewable energy sources as a viable alternative
to meet the energy needs of remote communities in developed and under-developed
countries. The neural network prediction work is continuing for further development
of an optimum architecture.
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ABSTRACT The future explanatory power in biomedicine will be at the molecular-genetic level of analysis
(rather than the epidemiologic-demographic or anatomic-cellular levels). This is the level of complex systems.
Complex systems are characterized by nonlinearity and complex interactions. It is difficult for traditional
statistical methods to capture complex systems because traditional methods attempt to find the model that
best fits the statistician’s understanding of the phenomenon; complex systems are difficult to understand and
therefore difficult to fit with a simple model. Artificial neural networks are nonparametric regression models.
They can capture any phenomena, to any degree of accuracy (depending on the adequacy of the data and the
power of the predictors), without prior knowledge of the phenomena. Further, artificial neural networks can
be represented, not only as formulae, but also as graphical models. Graphical models can increase analytic
power and flexibility. Artificial neural networks are a powerful method for capturing complex phenomena,
but their nse requires a paradigm shift, from exploratory analysis of the data to exploratory analysis of the
model. :
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h f(w Xt 2xz+ +anxn) )]

0j=g(w1h.1+w2h2 +etwWlh ) | (2)
hj in equation 1 is the output of each of the hidden nodes j, f is a nonlinear transfer function, wh

is the weight from predictor i to hidden node j, and x; is an input variable. oj in equation 2 is the

prediction of the network, g is a nonlinear transfer function, w? is the weight to the output node,
and 4 is the hidden node output. It should be noted that equation 2, without equation 1 input, is
equivalent to logistic regression, where g is the logistic function, w is the beta coefficient, and 4 is
the x covariate. Artificial neural networks with sufficient hidden units can approximate any -
continuous function to any degree of accuracy (Homik et al, 1989; Leshno et al, 1993).

CLINICAL EXAMPLE

We have compared the prognostic accuracy of the TNM staging system (Beahrs et al, 1992)
“and an artificial neural network according to five year cancer-specific survival.

Data. We have used three data sets in these analyses: two from the American College of
Surgeon, the Patient Care Evaluation (PCE) breast cancer and colorectal cancer data sets; the
National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) breast cancer
data set; and the Mayo Clinic prostate cancer data set. The variables in the PCE, SEER, and Mayo
data sets are either binary or monotonic . The factors were selected in the past for collection
because they were significant in a generalized linear model, e.g., logistic regression. There is no
predictive model that can improve upon a generalized linear model when the predictor vanables
meet the assumptions of the model and there are no interactions.

Accuracy. There are three components to predictive accuracy: the quality of the data, the
predictive power of the prognostic factors, and the prognostic method's ability to capture the
power of the prognostic factors. This work focuses on the third component. Comparative accuracy
is assessed by the area under the receiver operating characteristic curve (Hanley and McNeil,
1982). The receiver operating characteristic area varies from zero to one. When the prognostic
score is unrelated to survival, the score is .5, indicating chance accuracy. The farther the score is -
from .5 the stronger the prediction model. Specifically, the TNM staging system's predictive
accuracy is determined by comparing (using the area under the ROC curve) its prediction for each
individual patient, where the prediction is the fraction of all the patients in that stage who survive,
to each patient's true outcome.

Model. The artificial neural network results reported in this paper are based on backpropagation
training which uses the maximum likelihood criterion function and the gradient descent
optimization method and the "NevProp"” software implementation for training. Significant
differences in the receiver operating characteristic areas between the TNM staging system and the
artificial neural network are tested following Hanley and McNeil (1982). The training data set is
divided into training and stop-training subsets. Training is stopped when accuracy starts to decline
on the stop-training data subset. All analyses employ the same training and testing (vahdauon) data
sets, and all results are based on the one time use of the testing data sets.

Results. A comparison of the accuracy of the TNM staging system and the artificial neural
network (Table 1) using the PCE breast cancer data set, which examines breast cancer-specific
five-year survival accuracy for only the TNM variables, demonstrates that the artificial neural
network's predictions are significantly more accurate (TNM .720 vs. ANN .770, p < .001).
Adding 51 commonly collected variables to the TNM variables further increases the accuracy of the
artificial neural network (.784). Extending these results to the SEER breast cancer data set, with a
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In the past, most biomedical phenomena were analyzed at the demographic-epidemiologic
or anatomic-cellular levels. Since phenomena at these levels is largely linear or nearly linear,
traditional statistical models were very helpful. One result of these analyses is that, today, most
biomedical variables are linear or nearly linear variables. But the future will not be like the past.
The future explanatory power in biomedicine is at the molecular-genetic level of analysis. This
level is characterized by complex systems, i.e., nonmonotonicity (the outcome probability, in
terms of the variable, is not constantly increasing or decreasing, for example, nonlinearity) and
complex interactions. Complex systems are difficult for traditional statistical models to capture
because traditional methods require a priori information about the variables in order to represent the
variables in the model. Thus, the traditional statistician must "explore" the data, and must explicitly
model what is discovered. But exploration and explicit modeling is not always practical at the
molecular-genetic level, where there can be twenty or more variables, and where the variables may
interact in three-way and higher combinations.

There is evidence that cancer is a complex system and that future prognostic factors will be
nonmonotonic and exhibit complex interactions. Cancer is primarily a genetic disease (Fearon,
1990; Fishel et al, 1993; Leach et al, 1993) and a complex system. Cancer genes do not act in
isolation; oncogenes, suppressor genes, and genetic mutations cause cancer through the complex
interaction of the genes and their products (Papadopoulos et al., 1994; Steel, 1993). A cascade of
genetic abnormalities is required to produce a cancer (Knudson, 1985; Fearon and Vogelstein,
1990). Thus, it cannot be assumed (1) that a gene or its product will be monotonic or that it will
have an independent prognostic value before it is combined with other genes and/or their products,
(2) that gene interactions are binary, or (3) that there will only be a few simple genetic interactions.
Furthermore, it will probably not be possible to specify in advance of the analysis which complex
genetic interactions exist. The need to capture nonmonotonicity and complex interactions exists -
because the prognostic value of the genetic changes and their products can depend on their
nonmonotonic characteristics and interactions (Fearon and Vogelstein, 1990).

ARTIFICIAL NEURAL NETWORKS

Artificial neural networks are a class of nonlinear regression and discrimination statistical
methods, and they are of proven value in many areas of medicine ( Westenskow et al., 1992;
Tourassi et al, 1993; Leong and Jabri , 1992; Palombo, 1992; Gabor and Seyal, 1992; Goldberg et
al., 1992; O'Leary et al, 1992; Dawson et al, 1991; Wu et al., 1993; Astin and Wilding, 1992;
‘Weinstein et al., 1992). In medical research, the most commonly used artificial neural networks are
multilayer perceptrons that use backpropagation training. Backpropagation consists of fitting the
parameters (weights) of the model by a criterion function, usually square error or maximum
likelihood, using a gradient optimization method. In backpropagation artificial neural networks, the
error is propagated back from the output to the connection weights in order to adjust the weights in
~ the direction of minimum error. Artificial neural networks are usually composed of three
interconnected layers of nodes: an input layer, a hidden layer, and an output layer, with each input
node corresponding to a patient variable. All nodes after the input layer sum the inputs to them and
use a transfer function (also known as an activation function) when they send the information to
the adjacent layer nodes. The transfer function is usually a sigmoid function such as the logistic.
The connections between the nodes have adjustable weights that specify the extent to which the
output of one node will be reflected in the activity of the adjacent layer nodes. These weights,
along with the connections among the nodes, determine the output of the network.

The mathematical represéntation of a multilayer perceptrdn (artificial neural network) can be
viewed as a series of regression equations within a regression equation, where there can be as
many regression equation as is necessary to fit the phenomenon. Thus,
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breast cancer-specific ten year survival endpoint; using only the TNM variables, the artificial neural
network's prognostic accuracy is significantly greater than the TNM staging system (TNM .692
vs. ANN .730, p < .01).

Table 1. Comparison of TNM staging system and artificial neural networks (all
comparisons are for five year, cancer-specific survival).

DATA SETS . TNM ANN
PCE 1983 Breast Cancer - TNM v 720 770
PCE 1983 Breast Cancer - 54 v 720 784
SEER 1977 Breast Cancer - TNM v, 10 yr  .692 730
PCE 1983 Colorectal Cancer - TNM v 737 815
PCE 1983 Colorectal Cancer- 87 v 737 ,869
Mayo Clinic Prostate Cancer A 563 705 -

Using the PCE colorectal data sets, the predictive accuracy of the two methods can be
compared. For only the TNM variables, the artificial neural network's prognostic accuracy is
significantly greater than the TNM stage model in predicting colorectal-specific five year survival
(TNM .737 vs. ANN .815, p <.001). Adding 84 commonly collected factors to the TNM
variables further increases the accuracy of the artificial neural network (.869).

__The Mayo Clinic data set demonstrates that, for prostate cancers represented in its corpus, the
TNM staging system has a low prognostic accuracy (.563),-and that the artificial neural network,
with other commonly collected variables, is significantly more accurate (TNM .563 vs ANN .705,
p < .001).

THE FUTURE OF ARTIFICIAL NEURAL NETWORKS

To demonstrate the power of the artificial neural network to capture unanticipated
nonmonotonicities and complex interactions, a constructed nonmonotonic variable is added to the
54 PCE breast cancer variables. The constructed nonmonotonic variable consists of two normal
distributions centered at zero, one having a standard deviation of 1 for patients who are alive at five
years, the other having a standard deviation of 10 for patients who are dead by five years. If the
artificial neural network cannot capture nonmonotonicity without a priori specification of the
phenomena, then its accuracy should remain at .770 with the TNM variables and .784 with the 54
variables, on the test set. The artificial neural network does capture the predictive power of the
nonmonotonic factor, and its accuracy increases to .948 with the TNM variables and to .961 with
the 54 variables, on the test set (Table 2).

Table 2. PCE 1983 Breast Cancer Data: 5 year Survival Prediction Accuracy,
nonmonotonic variable added or three-way interaction added.

nonmonotonic variable three-way
PREDICTION MODEL TNM va.nables 55 vanable 57 variable
accuracy” accuracy” accuracy™
pTINM Stages 720 720 720
Stepwise Logistic Regression 762 ‘ 776 776
Backpropagation ANN .948 .961 942 -

™ The area under the curve of the receiver operating characteristic.
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A constructed complex three-way interaction is added to the 54 PCE breast cancer variables. The
artificial neural network captures the informative three-way interaction; from among the 29,260
possible three-way interactions, its accuracy increases from .784 to .942 on the test data set. It is
the case that anticipated nonmonotonicity has, with varying degrees of success, been modeled by
classical prediction models. Although it is computationally intensive, classical prediction models
can test for a predictive three-way interaction among 29,260 possibilities, but it is not clear how
they would discover four-way and higher interactions of nonlinear variables. It can be concluded
that artificial neural networks are powerful models; they can capture the explanatory power mherent
in complex systems.

. At the present time, using variables selected by traditional statistical methods, it is not
required that an artificial neural network be more accurate than traditional statistical methods in
order for it to be an appropriate statistical method for cancer prediction. Artificial neural networks
can be recommended for cancer prediction because: (1) they are as accurate as the best traditional
statistical methods (results not presented), (2) they are able to capture complex phenomena (e.g.,
nonmonotomcuy and complex interactions) without a priori knowledge, and (3) they are a general
regression method, therefore, if the phenomenon is not complex, so that accuracy can be
maintained using a simpler model, artificial neural networks can be reduced to simpler models
resulting in simpler representations. :

» There are several possible objections to artificial neural networks, mcludmc (1) they .
require an analysis of the model. They capture phenomena without requiring prior explorauon of
the data, but they require exploration of the model. More will be said regarding model analysis later
in the paper. (2) Some believe that artificial neural networks are overparameterized because they
can have a large number of weights. Overfitting can be prevented by keeping the weights small,
thereby reducing the effective number of degrees of freedom. This can be accomplished by
penalizing large weights, or stopping the iterative fitting algorithm before the weights have grown
to their full size. It is often the case that, when one of these methods is used, predictive accuracy is
better than it would be if we used a smaller model and fit the data without restricion. When a
method is used that reduces the weights that are not being increased by the input variables, the
weights to the hidden layer shrink, and when there are only linear relationships present, as the
hidden layer weights approach zero the neural network approximates a generalized linear model.

(3) 1t is thought that artificial neural networks are less "transparent” (the importance of the
variables is less obvious), than traditional statistical models. This view of transparency
fundamentally misunderstands the situation. Artificial neural networks are as complex as is
necessary to capture the phenomenon. Generally, if the phenomenon is complex, the model must
be complex. If the. phenomenon is simple enough to be captured by simple models, then artificial
neural networks can be reduced to a simple model, and the importance of covariates is easily
observed. For example, if the phenomenon is linear, then a two layer (no hidden layer) artificial
neural network with linear transfer functions, is mathematically identical to linear regression, and
the weights of the artificial neural network are identical to the beta coefficients of the linear
regression model. Therefore, model transparency (i.e., ease of variable interpretation) is properly
understood as a function of complexity and accuracy. For a simple phenomena, a properly chosen
simple model is easily interpretable. For a complex phenomenon (e.g., complex interactions) and a
properly chosen model, increases in model complexity result in increases in accuracy if overfitting
1s avoided. Increases in model complexity reduce the transparency of both traditional statistical
models and artificial neural network statistical models.

DOMAIN KNOWLEDGE AND MODEL KIN OWLEDGE
Domain knowledge is 1nformat10n regarding the phenomena acquired by examining the

data, model knowledge is S information regardm g the phenomena acquired by examining the
empirically derived model. Both are required for understanding phenomena, but their relanve
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importance in the overall analysis can differ, In traditional statistics domain knowledge is the
dominant approach. The statistician talks to the researcher, who suggests where the statistician can
explore the data. The statistician then examines the data, finds the best fitting model, and performs
inferential calculations to determine variable - significance and importance. But this is not the only
possible approach to understanding phenomena. Selection of the best (most accurate predictions)
model can be based on either knowing the relationships between the predictors and the relationship
of the predictors to the phenomenon, and selecting the model that best captures these relationships,
or, if the relationships are not known a priori, selecting a model that is capable of capturing any
relationships. This latter approach, selecting the model that can capture any phenomena, is very
different from the traditional approach. It requires that the model be explored rather than the data.
The relationships are captured in the model, and one decomposes the model in order to discover the
phenomena.

It should be noted that, in terms of models, there is no difference between prediction and
classification. Prediction and classification differ in the questions being asked, i.e., the character of
the data and the type of outcome. Thus robotic control, from a model theoretic perspective, does
not differ from cancer outcome prediction: vision is classification and movement is prediction.

There are some aspects of the analysis of a phenomena that are domain specific, and some that
are model specific. For example, the number of hidden layer nodes (i.e., subregression equations)
is domain specific. The number of hidden layer units cannot be determined, a priori, by any
analytic method because the number of units depends on the complexity of the phenomena; a
simple phenomena requires no hidden units, a complex may require five or ten hidden units.

An example of model analysis is the determination of whether the phenomenon exhibits
nonmonotonicities or complex interactions. The approach is to compare the results of a two-layer
neural network with those of a three-layer neural network. If the two-layer is significantly less
accurate than the three-layer neural network, then there are nonmonotonic relationships,
interactions, or both. If there is no difference between the two models, then the model can be
simplified. If there is a difference, then a complex (three-layer) model must be used to capture the
nonlinearities and interactions.

For simple phenomena, e.g., phenomena that do not require the use of a hidden layer in an
artificial neural network, artificial neural networks are as transparent as other statistical models. For
complex models sensitivity analysis can determine the contribution of input variables in the
artificial neural network prediction (Intrator, 1993). But sensitivity analysis is not adequate because
complex relationships, represented by complex mathematical equations, are not easily understood.
To understand these complex relationships visual models are needed. Buntine (1994) points out
"Graphical operations manipulate the underlying structure of a problem unhindered by the fine
detail of the connecting functional and distributional equations. This structuring process is
important in the same way that a high-level programming language leads to higher productivity
over assembly language.”(p 160) The ability to represent and manipulate artificial neural networks,
in terms of graphical models, provides power and flexibility in model analysis.
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Abstract

Persons with incomplete spinal cord injury are generally at least partially paralyzed and are often unable
to walk. Manually-controlled electrical stimulation has been used to act upon nerves or muscles to cause
leg movement so such persons can achieve functional walking. They use crutches or a mobile walker for
support, and initiate each stimulus by pressing a button. Artificial intelligence and machine learning
techniques are now making it possible to automate the process of stimulus-injtiation. Supervised training
of an automatic system can be based on samples of correct stimulation given by the patient or by a
therapist, accompanied by data from sensors indicating the state of the person’s body and its relation to
the ground during walking. A major issue is generalization, 1. e. whether the resuit of training can be

. used for control at a later time or in somewhat different circumstances. As the possibilities grow for
increasing the number and variety of sensors on a patient, and for easily implanting more numerous
stimulation channels, the need is increasing for powerful learning systems which can automatically
develop effective and safe control algorithms. This paper explains the foundations of adaptive logic
networks, and illustrates how they have been used to develop an experimental walking prosthesis used in a
laboratory setting. Successful generalization has been observed using parameters from training which
took place minutes to days earlier.

Introduction

Today it is possible to apply advanced mechanical, electronic and computing technology to problems of
rehabilitation of persons with spinal cord injury (SCI). One of the major thrusts has been in the area of
functional electrical stimulation (FES) to cause paralyzed limbs to move and thereby restore a measure of
walking capability [Stein 93]. One goal of using FES instead of a wheelchair is to be able to walk
reasonably long distances and thereby provide a better blood supply to the paralyzed extremities. Another
goal is to be mobile and independent in restricted spaces, such as in a kitchen or an ordinary bathroom
where wheelchair access may be impossible. The most reliable method of control is using hand switches,
but this is not appropriate for incomplete quadriplegics and stroke subjects who may not have adequate
hand function. In addition, operating a hand switch requires repetitive voluntary intervention and can
introduce delays and vanablhty Automatic control of FES is therefore desirable or necessary for some

. persons. ~

FES-aided walking is usually introduced into the rehabilitation program of selected spinal cord 1n)ured
subjects in three distinct phases:

1. In the first phase, the subject has to increase the physical strength of his or her whole body,
strength which has possibly been significantly reduced by hospitalization. The subject becomes
familiar with basic FES principles and learns how an appropriate FES-system operates.
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2. Standing with the appropriate mechanical aid (paralle] bars, harness, frame, four-point walker)
and fitted with the FES system, the subject learns how to operate the switch or switches to be
used to start and stop stimulation. These are often mounted on the support aid.

3. The subject’s gait training starts by extending the walking distance from a few steps between
parallel bars to as many steps as he or she is comfortable with, using a mobile mechanical
walking aid (a metal frame on wheels). A therapist will begin controlling the walk, but the
patient is encouraged to take over as soon as possible.

Taking a step, which is an automatic process for people having norrnal voluntary control over their
extremities, is a very complex process for someone whose extremities are paralyzed. In one case, to take a
step, a subject with one completely and one only partially disabled leg has to perform twelve distinct
actions to assure that her posture and the position of the walker produce a safe movement. The two most
important and hazardous phases of this procedure are the shifts of weight to and from the disabled leg,
and they usually take most of the subject's attention during walking, no matter which way the walking is
controlled. These are the moments when it is not very clear to the subject which leg is in charge of
supporting the main body weight.

Despite important advantages, manual control of FES has a few disadvantages. It doesn’t provide the
subject with the possibility of improving the quality of walking or of reaching distant points with less
energy (efficiency of walking). Further improvement in locomotion requires stabilization of the stance
phase and reduction in its duration, which can best be achieved by an automatic controller. The goal in
designing an automatic control system for FES-assisted walking is to preserve or even improve the
reliability and safety of a manual system, and to bring more functionality and more efficiency to the
disabled gait. A major task in automating the control of walking for stroke or incomplete SCI subjects is
to automatically recognize the intention to take a step with a disabled leg and to provide the required
control signals to the stimulator. -

Recognition can be based on physical measurements. An early means of automatic control in the case of
foot drop used a heel switch which activated a single channel of stimulation to assist in the swing phase
whenever the heel came off the ground. This simple system does not work reliably in subjects where
contractures or spasticity prevent a good heel contact with sufficient weight bearing or in subjects who
suffer from clonus (rapid contraction and relaxation of a muscle), which can cause the heel to lift and
touch the ground several times during the stance phase. A rule-based system using threshold logic
applied to the signal from a force sensor installed under the toe of the normal leg has been proposed as an
alternative method to detect the subject's intention to take a step. The duration of the stimulation was
either preset or it was determined by means of another force sensor installed under the toe of the
stimulated leg.

The current study investigated automatic control of FES switching commands for straight-line walking
based on the patterns of switching by a skilled subject or physiotherapist. Feedback as to the state of the
body was derived through forces measured under the feet. The adaptive logic network (ALN), a type of
artificial neural network, was used for supervised learning of the control. If the ALN could be trained to
reproduce stimulation switching patterns, then the ALN could also be used to transform input sensory
signals into output control signals for stimulation. ‘This method is intended for subjects who are already
trained to step periodically by manually pressing on a switch to turn stimulation on or off. Automatic
control can then be added to manual control to enable the subject to concentrate on other functions during
walking, such as shifting the body weight from one leg to another, avoiding obstacles, moving assistive .
devices, carrying objects, etc. Manual control or remaining capabilities after an incomplete SCI may be
used to initiate and terminate walking.

At the present time, technology is advancing very rapidly in the areas of miniaturization and techniques
for ease of implantation of sensors and stimulators. Many channels of information can be used at once to
sense the state of a person’s body and its relation to the ground, and many channels can be used to apply
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stimuli. The major problem is becoming one of controlling the stimuli as a function of sensor inputs, both
present and past. This must be done not only with great economy of means, e.g. with a portable device
that can cause complex patterns of stimulation, but it must ultimately be done without excessive cost for
the individual’s particular solution. Every case has to be handled on its own merits; for example there
may be only partial paralysis of the legs, and a prosthesis can potentially use the remaining human
sensory [Popovic 93] and motor capabilities to increase speed and stability, or to signal to the system that
the person has the intention to take a step in a certain direction. Individualized development of hardware
and software is very costly. Besides the initial development cost, any solution will likely have to be
modified as the person changes, adapts and wishes to take on new challenges. Changes to the person’s
muscle tone, strength, tendency to fatigue, the presence of a temporary illness, and new challenges to
mobility such as inclines or steps, will require changes to the control software.

A practical automatic FES control system is subject to constraints on size, weight, reliability, power
consumption and cost. It must be fast enough for real-time operation, and permit upgrades when
technology advances. In addition, the system must be such that, as far as possible, there will never be any
unexpected stimuli generated: a sudden inappropriate stimulus could result in a serious fall. The cost
factor suggests using inexpensive off-the-shelf components, while the need for real-time control means
that a very efficient computational approach is required. In the following we report on a technique to
automate FES control using adaptwe logic networks (ALNs) that shows prorruse in solving these
problems.

1

‘Adaptive Logic Networks

Artificial intelligence techniques, particularly artificial neural networks [Hecht-Nielsen 90], offer hope for
an effective solution for automatic control of FES in walking. A simple perceptron or linear threshold
unit (L.TU) accepts input vectors (x,, x,,...,x,) having n real values as components, and outputs a

Boolean value 1 if w, +w,x,+...4+#w,x, 20. Otherwise it outputs 0. The sequence of weights w,,...,w

is.called the weight vector of the LTU. The function computed by the LTU is determined by its weight
vector. A neural net called a feedforward multilayer perceptron consists of a loop-free interconnection of
units that typically form an inhomogeneous linear combination of their input signals ] '

u = wy + w,x,+..-+w,x, and pass this through a non-linearity of the form @(u) = l/ (I1+e™). The
so-called input layer of the net just distributes input values to the next layer of units, the first hidden layer.
There follow other hidden layers and an output layer. The reason for using a differentiable non-linearity

in multilayer perceptrons instead of the hard limiter (the greater-than-or-equal-to operator used in the
simple perceptron) was that no training procedure was known for the network of LTUs. The
backpropagation training algorithm overcame this problem and multilayer perceptrons have been used
successfully in solving control problems[ Miller 91]. :

n

In our study, ALNs provided the learning and execution power necessary. There have been, at various
times, three quite distinct versions of the ALN concept:

1. Systems that learn Boolean functions by means of choosing functions AND, OR, LEFT or RIGHT at
nodes of a fixed binary tree of flexible logic gates [Armstrong 91].

2. Systems that encode real values into Boolean vectors by means of a variety of fixed thresholds on the
real inputs, then submit those bit vectors to several systems of type 1 operating in parallel, and finally
decode the resulting output bit vectors to produce a real value [Armstrong 92, Armstrong 93].

3. Systems which have LTUs with adaptive weights in the first hidden layer, and have only AND and OR
gates in other hidden layers and the output layer [Armstrong 94, Armstrong 95].

The distinctive feature of all ALNs as compared to other multilayer perceptrons is their use of logic gates
in all hidden layers but the first. Version 1 ALNs are generally unsuitable for FES applications because
they are limited to Boolean inputs.
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ALN version 2 involves networks of logic gates whose inputs are computed by fixed thresholds on
continuous input variables (sensor measurements). If a measurement value is greater than (or
alternatively less than) a fixed threshold, then the input to the net is a logical 1, otherwise a 0. More
complex schemes of encoding, in particular a technique for random walk encoding used in Atree 2.0 and
2.7 [Armstrong 92] fail to preserve the monotonicity of the output signal as a function of input signals
when it is desirable to make use of this property. An ALN version 2 is shown in Figure 1.

X212 Y<4.38

Figure 1 Structure of an ALN version 2 network. Note the use of fixed thresholds at the leaves.

ALN version 2 networks adapt the functions at the nodes of the logic tree, which can be any of four kinds:
AND, OR, LEFT and RIGHT. The last two, LEFT and RIGHT are the Boolean functions of two inputs
whose outputs simply output the value on the specified left or right input of the nodé. After training is
completed, all LEFT and RIGHT units are removed and replaced by the connections their function
represents. Version 2 ALNs have been tested successfully for control [Supynuk 92] and for FES

applications [Kostov 95a], however the complexity of encoding and decoding gives rise to doubts about
their ease of understandmg and hence their safety.

ALN version 3 involves using a logic network of ANDs and ORs w1th inputs from LTUs. An ALN
version 3 network is shown in Figure 2.
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Figure 2 An ALN version 3 network.

Version 3 ALNS, though not capable of outputting real values, are capable of representing functions from
reals to reals by classifying the set on and under the graph of a function as the 1-class and the rest of the
inputs as the O-class. Version 3 ALNs are just special cases of the earliest multilayer perceptrons where
the units in hidden layers except the first are specialized to perform fixed Boolean logic operations AND
and OR. Version 3 ALNSs can be used in contexts where feedforward multilayer perceptrons are used. In
addition, they can be used where additional knowledge is needed to constrain the properties of the learned
function. ALN version 3 has been used in controlling a mechanical model of a vehicle active suspension
system. [Armstrong 94]. The ease of inverting monotonic functions derived by ALN training was
important in that application. The particular characteristics of functions synthesized by version 3 ALNs
are as follows: '

s  ALNs allow arbitrary bounds on slopes (i.e. partial derivatives) to be imposed on functions
during training. In particular, the learned function may be constrained to be weakly or strongly
monotonic increasing (or decreasing) in any variable.

e The architecture of the logic tree can be used to impose qualitative constraints, such as convexity,
on parts of learned functions. Qualitative a priori knowledge may be a result of general physical
laws holding (conservation of energy, conservation of momentum, Le Chatelier’s principle, etc.).

e  Evaluation of the function represented by a trained ALN is done by a separate program and is
very rapid. It is based on a decision tree DTREE which narrows down the computation for a
particular input vector to involve as few as n linear computations, where 7 is the dimension of the
space (including n -1 input variables and one output variable). The linear pieces are combined by
maximum and minimum operations. Real-time bounds can be guaranteed even though the
function graph may be made up of a very large number of linear pieces.

¢ There is no “black Box”. The behavior of a learned, piecewise linear function can be checked
completely for conformity to a specification by examining all of the blocks of the input space
determined by the decision tree and the simple combinations of linear pieces using maximum and
minimum operations which compute the output in that block. '
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e  The result of ALN training can be converted into a DTREE computation with a different output
variable. A function inverse is obtained in this way. The variable must be one in which the
original ALN output was forced to be monotonic.

The adaptation algorithm produces functions which are piecewise linear and continuous. We shall now
illustrate how these arise, beginning with a one-LTU ALN in Figure 3.

ALN oufput = 0O

Figure 3 The half space under the lineL: 1.4 -0.57x -y =0.

The set of vectors which satisfy w, +w x, +...+w‘,l x, 20 will be referred to as the 1-set of the LTU

(shown shaded in figure 1 for the case n = 2). Its complement is the O-set (the white area above the 1-set
in figure 1).

Since an LTU is unable to compute some simple functions, such as a function which is 1 inside a
rectangle and 0O outside, it is natural to use multilayer networks composed of such units to increase the
repertoire of computable functions. Then the inputs to layers after the LTUs are all Boolean, and the units
at higher levels compute Boolean functions. We can'see how an LTU could be used at a higher level in
-the net to compute an AND function. The value computed by the LTU would be 1 if and only if

-n+x, +x,+..+x,20. An OR would be obtained by —1+x, +x,+..+x, 20. A negation, if required,

could be computed by an LTU using the formula 05-x, 20. Clearly ALNs version 3 are special cases of
early multilayer perceptrons, though with a new training algorithm. '

During training of an ALN, there are changes to the weights of the LTUs. It is possible to allow changes
to the logic functions at nodes of the tree, or to the architecture of the tree, but these will not be explored
in this article since it was thought important for FES to have control over the qualitative properties of the
synthesized function. Fixing the architecture and node functions of the logic tree allows one to constrain
qualitative properties of the function-to be learned. For example one can force it to be convex-up or
convex-down. '

The 1-set of an ALN is formed by taking unions and intersections (corresponding to OR and AND
operations, respectively) of such half-spaces as are shown in figure 3. In figure 4 the shaded set of figure
3 is intersected with the union of two half-spaces suggested by the dotted lines Al and A2, and the union
is taken with the intersection of two half-spaces as suggested by the solid lines B1 and B2. Note that the
order of these two operations cannot be interchanged without cutting off a part of the shaded area.
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Figure 4 The I-set of a small ALN (shaded).

The shaded set of figure 4 is the 1-set of the ALN shown in figure 5.

Al A2

Figure 5 The ALN representing the shaded set in ﬁgure 4.

If a larger ALN is used, it is possible to approximate any continuous function to any precision uniformly

on a compact set, as illustrated in Figure 6. The proof is quite simple: Riemann sums approximate the

area under a continuous function, and the only modification which has to be made in a Riemann sum is to

slant the edges of each pillar slightly so that a function is obtained which is represented by a two-layer

ALN in the form of an OR of ANDs of linear functions. The weight on the output variable of each linear
. piece can be normalized to -1.
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Figure 6 Result of learning a sinusoidal shrface by an ALN using 576 linear pieces.

ALN training

The fundamental operation behind the adaptation of an LTU for an ALN is least-squares fitting of a
collection of data points. The goal of adaptation is to determine weights that allow the LTU to separate
vectors of the two classes. We are also going to use the LTU as a classifier, but the meaning of the classes
will be quite unique to the ALN approach. Given a function, the 1-class will be defined as the set on and
under the graph of the function. This is illustrated in figure 7.

Figure 7 Fitting non-linear data with a single LTU.

The shaded part of figure 7 represents a 1-class, and the part above the 0-class. In order to train a single
LTU, a least-squares fitting algorithm is used (linear regression in statistical terminology). This training
procedure supposes that we have a collection of points that represent function values, i.e. values on or near
the boundary between the two classes. For example, in figure 7, the dashed line shows a boundary
between classes that might be estimated by linear regression.

In much of the work on the perceptron, it was trained not by giving points on the boundary between the
classes, but by giving samples of the two classes, whether on the boundary or in the interior. In later
work, the perceptron, fitted with a sigmoidal function, was used to approximate functions by means of its
output. Networks of these units are a major force in neural network applications today. The work on
ALNs has restored the use of the LTU as a classifier, and uses a network of LTUs and logic gates AND
and OR to represent a piecewise linear function, but not to compute it directly.
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Figure 8 Fitting non-linear data with an ALN containing five LTUs.

We consider the situation when five LTUs are used to approximate the 1-set of the function in figure 8.
The logical expression for the 1-set according to these five lines is OR(L1, AND(L2, L3), AND(L4, L3)).

The vertical lines in figure 8 indicate the parts of the horizontal axis where each of the five lines is active.
For example, L1 is active on the left end of the horizontal axis. The line L1 could be determined by linear.
regression on the leftmost five data points. Then L2 could be determined by the four points in the next
interval, and so on. Performing a piecewise linear regression is well understood, and the only
complication here is that as a linear piece moves to fit its data points, the very set of data points that
belong to it may be exchanged with other linear pieces. ALN training is an iterative procedure which uses
iterative methods to adjust the linear pieces computed by each LTU. It is recursively determined at each
step which LTU is responsible for fitting the data point being presented to the net. Responsibility of an

- LTU is computed recursively from the root of the ALN tree based on the AND and OR gates at the nodes
of the tree. For example, if two functions are represented by subtrees entering an AND gate, then the one
which has the minimum value is the one which is responsible for the given data point.

Real-time computation

If we look at the linear pieces as functions of the variable on the horizontal axis of figure 8, we can write
the function represented by this logical combination of LTUs as MAX(L1, MIN(L2, L3), MIN(L4, L5)).
This “MIN/MAX” expression computes the function represented by the ALN on the whole space. To

- evaluate the MIN/MAX expression, it is possible to compute the values of all the linear pieces at a point
and then evaluate the MIN/MAX expression shown. A much faster way will now be suggested. As
shown in figure 8, we take a partition of the horizontal axis as follows:

1.- Divide the axis sb that aboui half of the active line segments into which the curve is divided lie to
the left, and half to the right.

2. Keep repeating the procedure for the resulting partitions until at most two linear pieces are active
in any partition.

Figure 8 shows the horizontal axis divided into four partitions. Using this division scheme, at most two
linear pieces are involved in the computation of the function in any division or block of the partition.
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02 61 63

Figure 9 Partitioning the input space 1o reduce computation.

In the leftmost division we have to evaluate the expression MAX(L1, L2), in the next division MIN(L2,
L3), in the next MAX(L3, L4), and finally MIN(L4, L5). The correct division is determined by a decision
tree:

1. If x< 8, then go to step 2. else go to step 3.
2. If x< 8, then go to step 4 else go to step 5
3. If x<6, thengoto s‘tep 6 clse go to step 7.
Compute MAX(L1, L2).

Compute MIN(L2, L3).

Compute MAX(L3, L4).

Compute MIN(L4, L5).

N A

The number of pieces in the partition ultimately depends on the complexity of the function being
represented. At each comparison of the decision tree, the number of linear pieces that have to be
evaluated drops by about half. In general, some pieces will cross the dichotomy, which makes the
reduction less than half. Ultimately, the number of linear pieces in a division of the space is at most equal
to the dimension of the space. If more pieces than the dimension of the space intersect at a point (giving
.an overdetermined solution to a system of linear equations), some pieces can be slightly perturbed to
correct the situation. With this kind of hard bound on the number of linear pieces that have to be
evaluated, it becomes possible to guarantee hard real-time bounds on the computation.

Training ALNs to control FES

Most of the results reported below were obtained by A. Kostov [Kostov 95a}. Two forms of ALN were
used: ALN versions 2 and 3. For the application to FES, it is preferable to have an ALN structure that is
composed of few linear pieces. One of the main reasons for this is the safety of the patient. A simple
network, if it is adequate for the task of controlling a prosthesis, will be more easily understood by an
expert who is checking the result of training. In addition, its operation will more quickly become familiar
to the patient. In the case of one patient, a simple AND of several linear threshold elements was adequate
for control, and the patient expressed satisfaction with the result. As inputs to the ALN, we have used the
: current measurements from force sensors at several points on insoles put into the patient’s shoes, as well
as several stored values which have been acquired a fixed interval of time earlier.
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During a walking session, training data is accumulated from the sensors and the therapist’s or patient’s
switching actions. The data is analyzed using ALN learning, a process requiring about thirty seconds on a
486DX2-50 PC, and then the learned functions, turned into decision trees, are ready for use in automatic
control. Figure 10 shows traces of the force sensors in the shoes, the stimuli given manually, and the
automatic stimuli obtained by replaying the original signals after ALN training. '

The prosthesis is not entirely dependent on ALN learning for its operation. Restriction rules (RR) are
used to prevent a stimulus being given in a situation where it might not be safe, for example in the case of
clonus. The rules were implemented separately from the ALN, though it will be possible in future to
implement them as part of the a priori knowledge constraining ALN training.
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Figure 10 Signals of force sensors and manual stimulation during data capture. ALN +R. R. is the result of training
- shown upon replay. Excellent agreement must still be checked for generalization.

~

Restriction rules embody one type of a priori knowledge that can be used to constrain the system. Other
types of expert knowledge could be used as is done when using the fuzzy set concept for control. Fuzzy
control often uses piecewise linear functions like the ALN, the difference being that a designer can
express information about measurements in the form of linguistic terms. For example, it might be a
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requirement to take a certain action when the pressure on the left heel is “high”. The extent to which
pressure is high could be represented by a piecewise linear function with values between 0 and 1. We feel

that fuzzy control ideas could be valuable in setting up ALNs initially, based on expert knowledge, and the -

initial state would be changed by ALN training to better reflect empirical data.

ALNs were evaluated for cloning the manual skill of a skilled subject or therapist in controlling one
channel of stimulation for FES-assisted walking. The capability of ALNs to generate control rules from
manually controlled stimulation was demonstrated. In addition, it was demonstrated that the quality of
ALN learning depends on the number of sensory feedback channels, and that the use of more sensory
inputs reduces both training and test errors. To introduce the time-dimension into the learning and
prediction process, previous sensory signal samples were used together with the current ones. An
important feature for control was introduced: an early prediction of stimulation events, which provides a
time interval during which the subject can be informed about coming stimulation. ALNs were tested in
predicting the stimulation events up to two seconds in advance [Kostov 95b].

After the training, ALNs were tested on the data set used for ALN training. If their approximation of the
output control signal did not contain any functional errors {extra or missing stimuli), they were tested on
new data which were not used during the training. If there were no functional errors in predicted output
control signals, a similar test was repeated, but this time during real-time manually controlled walking.
The subject still controlled the stimulation manually, but this time she heard a buzzing noise from the
controller interface every time the ALNs predicted the stimulation should be ON. The conditions of this
test were the closest possible to those of ALN real-time control of the stimulation. After this test was
passed without any functional errors, the next task was to apply the ALNs in real-time control of
stimulation for FES-assisted walking. The subject, after standing up from the wheelchair, took one or
more manually controlled steps and then the ALN control was switched ON and put in parallel with the
manual control, which remained active as a functional override.

Results obtained so far demonstrate the capability of ALNs trained on manually controlled FES-assisted
walking to generalize to automatically controlled FES-assisted walking. It was also demonstrated that the
generalization is satisfactory not only over the same walking session, but also over several days [Kostov
95a]. This result implies that, using this approach to design, a control system may be quite robust and
frequent retrainings of the ALNs (calibration) may not be necessary. It remains to be seen how fast the
walking pattern changes, requiring new ALN training or retraining of the existing ALNs. In the case that
ALNs can generalize over long periods of time, an integrated control system (ICS) can be built consisting
of two parts: an FES control fitting station and the FES controller itself. The FES controller can be
miniaturized and built into a portable neuroprosthetic device. The control rules can be generated in the
laboratory or at home using an FES control fitting station, which can be based on a small notebook
computer with data acquisition extensions. After the control rules are produced, they can be downloaded
to the portable FES controller, which can be used independently.

Inductive learning (IL) was also tested for control of FES [Kostov 95¢c]. It was used to measure the
relative importance of sensors: the sensory set was reduced from ten sensors to only four sensors of highest
importance. IL was evaluated in a complex environment for cloning the control rules for walking of a
subject with complete spinal cord injury. It was demonstrated that IL is also capable of cloning the skill
of skilled subjects in controlling two-channel stimulation for FES-assisted walking. ALN and IL
techniques were compared on a larger sample recorded from six subjects [Kostov 95b]. It was
demonstrated that, although IL generates its decision trees faster and with lower training error, the ALNs
have better generalization. A practical implication of this result is-that IL may be better suited for use in
control systems where the training data set represents the domain very well. It is obvious that training
sets acquired during walking of subjects with SCI cannot represent all possible situations, because some
high-risk situations that would be of interest as a part of a training set could give rise to possible injuries
(e.g. instability leading to a fall). Both techniques give better results if previous samples are used together
with current ones. Also, both techniques are capable of predicting future stimulation events. Overall
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performance was better with ALNs than with IL, which was crucial for deciding which machine learning
technique to use for the design of an integrated control system.

Conclusions

The primary target of this work was the design of a coordination level controller for a neuroprosthetic
device to control FES for walking in SCI patients. To prepare for automatic generation of control rules,
manually controlled FES-assisted walking of subjects with incomplete spinal cord injury was studied.
Manually controlled stimulation for walking is important in the rehabilitation of SCI subjects as it
provides the subject with a complete, easy and reliable way to learn how the muscles react to different
stimulation conditions. It also remains the backup control system for stimulation during the development
of more sophisticated control systems. Various sensors were evaluated for use as a source of sensory
feedback information. It was concluded that an affordable array of force sensors built into the subjects’
shoe insoles can provide a rehable and reprodumble source of feedback information for design of control
tules.

Automatic control of walking using a rule-based system resulted in faster walking (a shorter gait cycle)
and longer walking sessions. Although successful, this form of automatic control revealed the difficult
problem of generating control rules, originating in the subjects’ differing stimulation needs, walking skills
and walking patterns. Hand-crafting rules for one person does not guarantee transferability to other
patients. Machine learning techniques which can generate the control rules automatically were proposed
as a solution to this problem.

ALNs were evaluated for cloning the manual skill of a skilled subject or therapist in controlling one
channel of stimulation for FES-assisted walking. The capability of ALNs to generate control rules from
manually controlled stimulation was demonstrated. The ALN was also successful in predicting
stimulation events up to two seconds in advance.

After ALN training, the result was tested on the training set, on a data set not used in training, and in
real-time walking, where stimuli were given by the patient and the ALN automatic stimulation was
indicated by a buzzer. After these tests were passed without any functional errors, the ALN could be used
in real-time control of stimulation for FES-assisted walking. The subject, after standing up from the
wheelchair, took one or more manually controlled steps and then ALN control was switched ON and put
in parallel with the manual control, which remained active as a functional override.

Results obtained so far demonstrate capability of ALNs trained on manually controlled FES-assisted
walking to generalize to automatically control FES-assisted walking. It was also demonstrated that the
generalization is satisfactory not only within the same walking session, but also can extend over several
days.

This result suggests that the controller resulting from ALN training may be quite robust, and that frequent

retrainings of the ALN may not be necessary. It remains to be seen how fast the walking pattern changes
in a way requiring new ALN training or further trammg ‘of the existing ALN.
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Abstract

Results-are reported from the application of tools for synthesizing, optimizing and
analyzing neural networks to an ECG Patient Monitoring task. A neural network was
synthesized from a rule-based classifier and optimized over a set of normal and abnormal
heartbeats. The classification error rate on a separate and larger test set was reduced by
a factor of 2. When the network was analyzed and reduced in size by a factor of 40%, the
same level of performance was maintained.

Introduction

It has been pointed out that learning in complex domains is intractable without sufficient
domain knowledge [1]. Consequently, the instantiation of domain knowledge in neural network
models used in learning is of considerable interest. Once instantiated in a neural network
model, domain knowledge can be refined by methods of nonlinear numerical optimization
using gradient descent. This optimization results in domain knowledge which has been refined
in a statistically disciplined manner.

In this paper, we describe several tools for synthesizing, optimizing and analyzing neural
networks and present some results of applying these tools to a signal processing and classifica-
tion task. The task is to detect the presence of potentially life-threatening arrhythmias in an
electrocardiogram (ECG) signal. Domain knowledge in the area of arrhythmia detection was
provided by Siemens Medical Electronics (SME) in the form of rules which were designed to
distinguish ventricular premature beats (VPBs) from normal beats.

Synthésis

It has Beeq shown that a neural network can be synthesized from any set of Boolean clauses (5,
6]. That is, the architecture, unit offsets and interconnection strengths of a neural network can
be determined directly from a set of disjunctions, conjunctions and negations of binary-valued
propositions. The network architecture derives from the syntax of the Boolean expressions and
the weight values are constrained by the functional form of the network and the representation

of TRUE/FALSE.

*This paper appeared previously in the Proceedings of the Third International Congress on Air- and
Structure-Borne Sound and Vibration”, June 13-15, 1994, Montreal, Quebec, pp. 997-1004.
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Given the binary-valued logic of Boolean clauses, a binary-valued representation of TRUE/FALSE
has to be chosen in implementing the corresponding neural network. Call V7 the representation
of TRUE and Vr the representation of FALSE. Neural network units are generally chosen to
be continuous valued functions with continuous derivatives so that optimization of the network
by gradient descent can be carried out. Since the unit function selected for use in this neural
network was the sigmoidal function, y(z) = (1 + e~®)~?, which has values between 0 and 1,
V7 and Vr were chosen to be symmetric about 0.5 and were parameterized by § as 1 —~ 6 and 6
respectively. Call Cr and Cr the input values of z for which the output is TRUE or FALSE,
respectively; consequently, Cr = f and Cr = -3, where 8 = 1n(l-§-§). :

Happily, the set of rules comprising the SME arrhythmia detection portion of the ECG
patient monitoring algorithm were easily translated into Boolean clauses. The Boolean clause
formulation consisted of a single disjunction of 14 conjunctions of subsets of 24 propositions.
These propositions were defined with respect to a set of 8 waveshape and timing features
derived from the QRS complex extracted from the ECG signal.

Propositions

In the case of the SME classifier, the propositions were expressed as relational operators applied
to a single integer-valued feature with respect to a critical value. Since most propositions were
expressed using the relational operators that include equality (< and >), the proposition was
clearly TRUE when the input was at the critical value; that is, Cr. However, it was still
necessary to determine the input value Cr for which the proposition became false. Since the
critical values varied over several orders of magnitude, it was decided to have the proposition
become false if the input fell short of the critical value by a fixed percentage rather than by
a fixed amount. Those propositions which were expressed without equality were modified to
include equality, based on the fact that the input features are integer valued.

Once the input values for which the proposition became true (C7) or false (Cr) were
established, the neural network instantiation was straightforward. For each proposition, a unit

. was synthesized with a weight w= E'T—ZE%F and an offset § = -3 (%)

Clauses

The synthesis of a network from Boolean clauses is simplified if the clauses are expressed in
disjunctive or conjunctive normal form. For each disjunction/conjunction, a single unit is
synthesized with the link weights and offset chosen so that the output of the unit has the value
Vr only when the corresponding logical relation is TRUE.

For the case of conjunction, assume there are n positive antecedents (i.e., a,ntecedents which
must be true) and m negative antecedents (i.e., antecedents which must be false) Assume that
the conjunction is instantiated as a single unit with weights w* from the positive antecedents
and weights w™ from the negative antecedents. Recall that the propositions take on the values
Vr or Vg according as they are TRUE or FALSE.

The conjunction requires that:

nwtVe+ mw™ Vp+8 =0 (1)

wherea;s if a single positive antecedent is false, or a single negative antecedent is true, the
conjunction is false. Solving these constraints leads to the following values:

Qﬁ :
ot =75 ~ . )
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with w™ = —w™ and
0=f-wt(n-(mimp) 3)

For the disjunctive case, the relation is FALSE only if all its antecedents are false, whereas
if a single positive antecedent is true, or a single negative antecedent is false, the disjunction
is true. These constraints are aga.m satisfied by wt = ﬁ 1255 and w™ = —w™, while

f=-p +w.+(m—(m+n)5) (4)

Instantiation of SME Classifier

A neural network instantiation of the SME classifier was synthesized with propositions satis-
fying the condition that a relative difference of 1% in the input at the critical value caused
the proposition to change from TRUE to FALSE. The resulting network, depicted in Figure 1,
yielded identical performance to the original set of rules.

Optimization

The gradient of the output of a neural network with respect to the parameters of the network
can be efficiently computed [4]. Consequently, the network can be optimized by standard
nonlinear methods of gradient descent.

For the ECG application, there are several large da.ta bases available, including the MIT /BIH
database, which contains approximately 100,000 heartbeats that have been labeled by expert
cardiologists. A subset of this data base was used for training purposes and the remainder for
testing. :

It has been shown that minimization of the mean squared error (MSE) leads to an estimate
of the posterior probability of the class given the input [3]. This measure includes the prior
probability of the class, which is assumed to be represented in the distribution of the training
samples. Since examples of arrhythmias are relatively rare in the standard ECG data bases,
the prior probability of a normal beat is quite high. However, since the cost of misclassifying an
abnormal beat as normal is high, this cost should be reflected in the function being minimized
in training. Alternatively, the data used for training can be filtered to balance the distribution
of normal/abnormal beats to effectively increase the prior probability of an abnormal beat.

Consequently, a clustering algorithm was used to select beats that were maximally dis-
tinct according to a standard distance metric. In selecting maximally- distinct examples, the
clustering algorithm focussed attention on what might be considered prototypical rather than
frequent instances. The clustering algorithm nearly equalized the number of normal and abnor-
mal beats, which increased the effective prior probability of an abnormal beat and the effective
cost of misclassifying an abnormal beat. Clustering also had the advantage of reducing the
number of training samples by a factor of 50. ,

A neural network synthesized from the SME rule set was optimized on selected heartbeats
from 20 patients chosen from the MIT/BIH data base by minimizing the mean squared error
between the classifications given by the network and the correct classifications. The perfor-
mance of the optimized network was compared with that of the original rule base on these
patients and it was found that the classification error rate had been reduced by a factor of 2.
A similar improvement in performance was obtained on the remainder of the MIT/BIH data
base. The error rate was reduced on two other standard data bases by factors of 4 and 5.
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Analysis

0.1 Sensitivity Analysis

Having instantiated the SME classifier in the form of a differentiable neural network, it became
possible to compute the sensitivity of the classifier output to its input features.

Following a method introduced by Kuhn [2], the sensitivities were ordered by the value of
the output unit; this allowed the sensitivities to be interpreted with respect to the correctness
of the classifier. Shown in the upper panel of Figure 2 are the sensitivities of the output of
the SME classifier to input features for normal beats, sorted from left to right by increasing
correctness of the response.

Note that sensitivity is near zero, as represented by a medium gray level, for most features
across most templates; there are only a few darker and lighter regions corresponding to positive
and negative sensitivities, respectively. These regions are sporadic both in their relationship
to the output of the classifier and in their values which occasionally alternate between black
and white. For the most part, the regions of nonzero sensitivity occur when the classification
decision is fairly stable. This suggests that fine tuning the features may have little effect on the
performance of the classifier. This is important because improvements to individual features
which are pursued on the basis of their role in a few classification errors may not have the
desired effect of overall performance, because the classification is decided on the basis of other
features. '

The sensitivities of the optimized neural network classifier are shown in the lower panel of
Figure 2. Note that the nonzero sensitivities are now concentrated in the region of transition
between correct and incorrect classification. Generally, the sensitivities are near zero in the
regions where the classifier is definitely correct or definitely incorrect. Furthermore, there is
a high positive sensitivity to a certain feature which is not balanced by a negative sensitivity
for other tokens. This was considered unusual and suggested a possibly erratic feature; this
possibility was later confirmed by SME.

0.2 Network Interpretation

Analysis of the optimized network revealed that the critical values for the proposition units had
changed by different amounts for different propositions. It was also found that the steepness
of transition from TRUE to FALSE was essentially unchanged. This suggested the proposition
units might be convertible back into binary rules with new threshold values.

The weighted contribution of each feature and antecedent to each conjunctive or disjunctive
unit was also analysed, working backward from the output unit. Units which contributed a
constant (or zero) amount were replaced by adding the same constant value to the unit offset.
By an analysis of this kind, 6 conjunction units were identified that could be replaced by
constant values. When these conjunction units were removed from the network, an additional
8 propositions became unnecessary and were also removed. This reduced the network from 39
to 24 units and from 121 to 76 links. When tested on the training set and the test set, the
reduced network yielded identical performance. Thus, an optimized network, reduced in size

by 40%, maintained an increase in performance over the unoptimized network of a factor of
2. ’
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Conclusions

We concluded from our experience that the instantiation of a set of hand-tuned rules in a
differentiable nonlinear model:

1. Permits the disciplined acguisition of a refined model Which represents a statistically
validated theory, when combined with numerical optimization over a large data base.

2. Provides a means for evaluating the utility of the input data, when combined with sen-
sitivity analysis.

3. Makes it possible to simplify the optimized network by deleting extraneous units, when
combined with other analysis tools.

4. May also enable optimization of the features extracted from the original signal, if they
can be similarly expressed in a differentiable form.

We also concluded that these tools are likely to be applicable to a very large number of
signal processing and classification systems, whether medical, automotive, or industrial.
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Figuré 1: Neural Network Instantiation of the SME Classifier.
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Figure 2: Sensitivity of SME Classifier to Input Features of Normal Templates. The inputs
are ordered from left to right by the activation of the output of the classifier, which is shown
in the upper swath, from less correct to more correct. Zero sensitivity is shown as a medium
gray level with positive sensitivities increasingly black and negative sensitivities increasingly
white. The upper panel shows the sensitivities of the original classifier and the lower panel
shows the sensitivities of the optimized classifier.




156 Watrous, Towell, and Glassman



Diagnostic System for Detection and Analysns of
Auditory Evoked Potentials

Yuriy V. Orlov I.G. Persiantsev!, S P. Rebrik!, A.A. Deviatovl,
Ju.S. Shugail, and AV. Kurgansku

(1) Microelectronics Department, Nuclear Physics Institute,

(2) Psychological Department,
Moscow State University, Moscow, Russ1a
(orlov@neuro.npi.msu.su)

Abstract

The diagnostic system using artificial ncural ncts (ANN) for an objective hearmg, loss examination of humans by
‘the auditory evoked potentials (EP) method. has been developed and tested.

INTRODUCTION

Auditory cvoked potentials (AEPs) are clectric signals of the brain that appear in the response to auditoh stimulus.
Most widely used AEPs arc short-latency brainstem auditory response (BAER) and long-latency cortex AEP. that
are often called long-i: uenC\ response (LLR).

For BAER acquisition, a very short (about 0.1 ms) and consequently broad-band auditory signal is used. This means
that the results of a paticnt examination based on BAER are frequency-insensitive and cannot be used to delermine
degrcee of hearing loss at specific frequencies. BAERs are reliably detected at 1-2 months-old children, and can be
used for hard-of-hearing detection at carly ages.

For LLR acquisition, a relatively long (about 40 ms) tone burst is used. This provides a possibility to determine
hearing loss versus frequency and 1o usc this dependency for hearing correction. with the help of hearing aids. LLR
are rcliably detected at 1-2 ycars-old children. ’

As all EPs are registered by the signal accumulation method. in the process of examination one should provide for
reliable level of EP averaging at which the resulting wavcform becomes stable and have no tendency to change with
further accumulations. For BAER and for LLR signals typical number of accumulation cycles is about 1000-2000
and 40-30 respectively.

Using of BAER and LLR make it possible o detect hard-of-hearing problems at early ages and to help in the
hearing aids fitting for children. AEP audiometry-having a high diagnosis value is al the same time a laborious
process for a physician and a tircsome procedure for a patient. High qualification required from an expert
interpreting EP waveforms. precludes (0 some extent from wide EP introduction into clinical practice. Significant
duration of the procedure (40-30 min) is also a serious obstacle on the way to wide method’s application for
screcning purposcs.

DATA COLLECTION

(EP recording was performed at otorhinolarvngology dept. of The First Moscow child's hospital. Basic
characteristics of the andiomceter used correspond to thosc of traditional computer audiometers. :

Over 60 children aging from 2 months to 13 years were examined. The main ‘part of the patients (80%) had normal
hearing. the remaining part had hard-of-hcaring problems of diffcrent nature. Before AEP iesting the hearing
function was examined by the purc-tone threshold audiometry (for children older than 3 vears) and/or by acoustic
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impedance measurement method. A number of children were sent for examination from the neurology dept. for
brainstem testing,

BAER and LLR registration was conducted in strict accordance with traditional protocols. LLR records were taken
at tone burst frequency of 1000 Hz.

The system of data acquisition provided comprehensive way of data recording: for LLR records the result of 30
accumulation cycles together with 30 single records were stored. and for BAER records sum of 2000 accumulations
together with 10 records of 200 accumulations each. were stored. This data structure provided for development of a
new svstem that was aimed at less accumulations than traditional. it also provided for possibility of real-time-
recording simulation for testing of the system.

ANN-BASED FILTER

" Onc of the objectives of current rescarch was implementation of some kind of waveform preprocessing that could

makc detection and interpretation casier for an expert and make this procedurc possible at as low accumulation
number as possible. For this purposc it was suggested to use an ANN-based filter [1.2]. The filter enhances
clinically important EP peaks and suppresses random spikes that have no relation to brain response on periodic
stimulation. '

ANN filter processes a record that is the result ol some number of accumulations (starting with one accumulation
and up to the full number prescribed by the protocol). ANN output is interpreted as a filtered out input record.

We used a feed forward multilaver ncural network [3]. In all experiments with ‘ANNs input and output layers had
the same dimension. Number of ncurons in the hidden laver was varied in 4-32 limits. Afler a series of additional
experiments we have chosen an ANN with 230 neurons in the input and in the output lavers and 16 neurons in the
hidden laver. Hyperbolic tangent was taken as a transfer function of the hidden laver. and for the output laver a
tincar function was uscd.

ANN filter was traincd by crror back propagation mcthod [4]. In the training procedure the next strategy was used.

AL the first stage the curves with maximal number of accumulations (2000 for BAER and 30 for LLR) were

presented 1o the ANN. The same curves were used as the target outputs for the net. After reaching of a prescribed

crror level the task was complicated: ANN was suppiied with curves with less accumulation number (e.g. 1000 for

BAER and 15 for LLR). while target output was kept the same. In this wav the ANN was taught to make a

prognosis of the waveform corresponding to a large accumulation number knowing only a curve with small number -
of accumulations. In the training process the number of accumulations in the input curves was gradually reduced

until the net was still capable to kecp the error level on the desired level. Minimal accumulation number at which

the net was still able to make a satisfactory prognosis was 200 for BAER and 3-3 for LLR. We should note that the

limit of 200 accumulations was the result of existing data structure (we could not test lower values).

BAER FILTER

According to the protocol. BAER registration requires 2000 accumulations for reaching of sufficient signal (o noise
ratio. This valuc depends on the degree to which stimulation exceeds the subject’s hearing level. For normally
hearing person 1000 accumulations arc cnough at 80-90 dB level. while at 30-40 dB level. which is close to the
threshold. all 2000 accumulations are nceded.

ANN filter for BAER ‘extraction was trained at the sct of 171 waveforms corresponding to different patients and
different stimulation tevels. Testing sct consisted of 67 waveforms.

. Comparison of the waveforms with 200 accumulations processed by the net and raw waveforms with 2000

accumulations showed that the net successfully performs the [ollowing transformations: 1)improves tolal signal to
noisc ratio: 2) restores peaks I-V. il they have been masked off by the noise at low accumulation number. but they
arc present at fully accumulated record:

3) swaps ofT positive and negative spikes that have no relation to the BAER.

Onc of the most advantageous features of the ANN filter is its processing of the L. L and V peaks. Dependency of
Ltheir latencies on stimulus intensity is one of the most important diagnosis factors of BAER method. The filter
represents form and position of these peaks with good accuracy, despite the fact that position changes significantly
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with stimulation level. The other valuable feature of the ANN filter is that it has no tendency to show BAER peaks,
when they arc absent in the raw curve,

Prcliminary estimations show that for normally hearing patients ANN filter preprocessing will provide reduction of
the accumulation number from 1000 to 200 at 80-90 dB level and from 2000 to 600 at near threshold intensities
(20-40 dB). This means reduction of the examination time by a factor of 3.

LLR FILTER

According to the protocol. LLR registration requires up to 30 accumulations for reaching of sufficient signal to
noise ratio. For normally hearing person 13 accumulations may be enough at 80-90 dB level. while at 0 10 dB
level. which is close to the hearing threshold. 30-30 accumulations are needed.

ANN filter for LLR extraction was trained similarly to the case of BAER filter.

For the testing of the ANN filter performance human expert was asked to find out the absolute hearing thresholds
for 29 subjects. Expert used cither (1) standard EEG records. or (2) the same records processed by ANN ﬁlter prior
to.the visual prescntation to the expert.

The results of comparison of expert’s evaluation with and without using of ANN filter show that the use of ANN
filter can allow to estimatc the presence or absence of EP automatically at earlier stages (e.g. at 3-3 accumulations).

HEARING THRESHOLD DETERMINATION USING BAER

An ANN system for hearing threshold determination on the basis of BAER [2] was traired on the data marked by a
human expert.

The curves are recorded for different intensities of sound stimulus. The maximum number of curves in the set is 8.
In practice the actual number of recorded curves may be smaller. During pattern presentation recorded curves are
grouped together, while absent curves are substituted by zeroes. All 8 curves are presented simultaneously to the
nctwork input,

The output laver consists of 8 ncurons also. by one ncuron for each waveform in the input pattern. The ANN output
represents a confidence of V peak detection for each curve. The value of hearing threshold is determined as that
stimulus intensity when activity of output neurons begin to exceed the value of empirically chosen decision
function.

The values of hearing thresholds determined for 2000 accumulation cycles and for 200 ones are the same, i.c. the
significant decrease of the signal-to-noise ratio does not influence practically on the final evaluation of the hearing
threshold. .

HEARING THRESHOLD DETERMINATION USING LLR

Hearing threshold determination using LLR is bascd on the measurcment of LLR amplitude.

First experiments were done on the svnthesized records. Background EEG was modeled on the basis of its typical
Fouricr spectrum. LLR form was approximated by analyvtical dependency of the form: At'exp(-t) with corresponding
cocfTicients. In the case of synihesized waveforms signal amplitude is known with absolute accuracy. and its value

can be used for training of the net. For EP amplitude estimation we used an ANN with one hidden [ayer having
" hyperbolic tangent transler function and with one output neuron having linear transfer function.

- Next. this approach was tested on more realistic waveforms. Real background EEG were mixed with the LLR-
approximating function given above. This variant of training data gave close results to fully synthesized waveforms.

The ANN was (ested on real>LLR records taken at different stimulation intensities. The net was determining LLR
amplitude and the resulting dependency of determined amplitude on stimulus intensity was further approximated by
the function of the form: A/(1+exp(B (x-C)). where x stands for the stimulus intensity m dB, parameter B was fixed
at 10.dB level. C and A paramcetcrs were adjusted by Icast squares procedure.

Assuming that dependency of LLR amplitude on the stimulus level is described by the above relation, one can
interpret C parameter as the threshold valuc.
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CONCLUSION

The above diagnostic system was tested on the clinical database and turned out to be promising. Also
implementation of automatic procedure of paticnt examination was shown to be possible.

The developed approach allows

« todetect clinically significant peaks:

e 1o suppress random spikes that are nolt related to evoked potentials:

¢ to measure amplitude of the peaks:

+ 1o estimate the hearing threshold: _

+ 1o significantly reduce required number of data accumulation and consequently to reduce overall examination
time:

¢ 1o reduce requirements for qualification of medical personnel interpreting examination resuits.

The developed approach may be used for brain monitoring either during surgical operation or for active
detcrmination of the drug dosc reqmrcd for a particular patient. and it may be also applied to other types of EPs and
event-related responscs.

The suggested methods of automatic hearing threshold detection make it possible to implement an adaptive
proccdure of patient examination. Namely. it is possible to scan the stimulus intensitv range with a small number
of accumulations. determining hearing threshold value roughly. Afterwards. the region of the threshold location can
be examined more thoroughly with higher accumulation number.
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Abstract

The SPECT (single photon emitted computed tomography) procedure,

- while widely used for diagnosing coronary artery disease, is not a perfect
technology. We have investigated using a backpropagation neural
network to diagnose patients suffering from coronary artery disease that is

" independent from the SPECT procedure.
The raw thallium-201 scintigrams produced before the SPECT
tomographic reconstruction were used as input patterns for the
backpropagation neural network, and the diagnoses resulting mainly from
cardiac catheterization as the desired outputs for each pattern. Several
preprocessing techniques were applied to the scintigrams, in an attempt to
improve the information to noise ratio. After using the a procedure that
extracted a subimage containing the heart from each scintigram, we used
a data reduction technique, thereby encoding the scintigram in 12 values,
which were the inputs to the backpropagation neural network.
The network was then trained. This network performed superbly for
patients suffering from inferolateral disease (classifying 10 out of 10
correctly), but performance was less than optimal for cases mvolvmg
other coronary zones.
‘While the scope of this project was limited to diagnosing coronary anery
disease, this initial work can be extended to other medical imaging
procedures, such as diagnosing breast cancer from a mammogram and
evaluating lung perfusion studies.

1. Introduction

~

Coronary artery disease (CAD) is one of the leading causes of death for adults in the
United States today. As the medical community proceeds to adopt new methodologies and tech-
niques utilizing the power and versatility of computers, computer based diagnostic tools will
become more important. Neural networks make up a class of these tools, but because of their
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ability to solve complex problems for which algebraic solutionw do not exist or are too compli-
cated to be found, such as pattern recognition problems, they have a definite advantage over other
technologxes -

2. Current teéhnology

Today’s current technology to aid in the diagnosis of CAD is the Single Photon Emission
Computed Tomography procedure, or SPECT. While this is the most widely accepted tool in the
United States for diagnosing CAD, it is far from perfect, resulting in many misdiagnoses.

" When a patient is suspected of suffering from CAD after an interview with his or her doc-
tor, the patient is subjected to the SPECT procedure. First, the patient is exercised to increase his
or her heart rate to close to maximum. After this is reached, or it is no longer safe for the patient
to exercise, the patient is injected with thallium 201, a radioactive isotope with a relatively short
half life. This isotope is carried by the racing blood to the tissues of the heart. Soon after the
patient’s breathing rate returns to normal, a series of 32 planar images is taken of the patient’s
chest, from 45 degrees right anterior oblique to 45 degrees left posterior oblique, with a gamma
camera. The time for each image is approximately 30-40 seconds. The camera is equipped with a
low energy collimator and records the number of photons that are emitted from the patient’s chest
during each imaging time. After the images are completed, a computer algorithm backprojects
these images to create a three dimensional model of the heart, and then a physician or technologist
identifies one of the major axes of the heart in the model. The model is then sliced up along the
principal axes, and the slices are used to create a “Bull’s-eye plot.” A Bull’s-eye plot is a two
dimensional polar graph where different regions of the graph correspond to specific walls of the
heart, and the color of each section signifies the amount of thallium that is present in that wall of
the heart. The more thallium there is, the better the blood flow to that spot. The physician then
uses the Bull’s-eye to identify areas that have little thallium, and therefore are not receiving the
proper amount of blood; this indicates coronary artery disease in the artery that feeds that area of
the heart.

Fig. 1

Examples of scintigrams produced by a gamma camera. These images are,
from left to right, the anterior view, the 45° left anterior oblzque view, and
the 70° left anterior oblique view.
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Anterior Wall

Septal Wall Y Lateral Wall

Inferior Wall
Fig. 2
The Bull’s-eye Plot
A two dimensional representation of the areas of the heart

However, as stated above, the SPECT procedure is not perfect. First, given the long
amount of time needed for imaging the patient (close to 30 minutes, given the actual imaging time
and-the time needed for the camera to rotate to new positions), it is hard for many patients to
remain motionless. If the patient moves during the imaging sequence, the reconstruction algo-
rithm produces a faulty model of the heart, which leads to an erroneous bull’s-eye and misdiag-
noses. Another limitation of the SPECT is exposed if the physician or technologist inicorrectly
selects a line through the model that is not in actuality one of the principal axes. This again leads
to misdiagnoses.

Fig. 3
Examples of Bull’s-eye plots. The plot on the left is that of a healthy
patient, while the one on the right indicates CAD in the inferolateral wall.
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3. Using an Artificial Neural Network to aid in diagnosis of CAD

Our objective was to assess the feasibility and create a technology based on an artificial
neural network that would aid in the detection and the diagnosis of CAD. We wanted to avoid as
many of the pitfalls of the SPECT procedure as possible, so we decided to use the raw planar thal-
lium scintigrams as the inputs to our technology.

Our approach was straightforward. The raw scintigrams are inherently noisy, and there-
fore we desired some preprocessing techniques that would reduce the data and enhance the infor-
mation to noise ratio. We decided to use backpropagation neural networks as the core of our
technology, because of their simplicity and the fact that they have a supervised learning scheme.
Our initial goal was simple: we wanted to distinguish between two cases, either the patient suf-
fered from coronary artery disease or was healthy.

Our first step was to reduce the data. Each scintigram is a 64x64 pixel image, but the heart
was less than 10% of this image. Therefore, we created a simple expert system to examine each
image and extract a 19x19 pixel subimage that contained the heart. Not only did this reduce the
amount of data for each patient, it also removed such organs as the liver and most of the lungs,
which also attracts thallium and could possibly cause confusion for the neural network.

Fig. 4

Examples bf the subimages that were extracted from the original images.
Notice the amount of irrelevant data that is removed.

~ Alas, at the time of this work, the number of patients for which we had both data and
diagnoses was small (54 patients). Therefore, if we chose to use the entire 19x19 image as an
input to the network, the degrees of freedom would have been extremely large. We needed to
reduce the subimages further. We decided to “sectorize” each of the subimages into 12 sectors,
and then we averaged a value for each of the sectors. In this way, we reduced each scintigram to
12 values, which along with the image number were to be the inputs to our network.

We used a three layer feedforward network, with 13 input nodes, 5 hidden nodes, and one
output node. We trained on a set of 31 patients, 15 of which sufféred from coronary artery dis-
ease. The training was stopped when the error on the validation set, which consisted of 10
patients five of which were diseased, inflected.
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The network was then used to diagnose the patients in the data sets. Of the patients in the
training set, 14 of the 16 healthy patients and 14 of the 15 diseased patients were diagnosed cor-
rectly. The patients in the validation set were all correctly diagnosed. Since these sets of patients
are used to train the network, they are not true indicators of the performance of the network.
Therefore, another disjoint set of patients was diagnosed by the network. Of the 7 diseased
patients, 4 were diagnosed correctly, while 4 of the 6 healthy patients were diagnosed correctly.

We proceeded to analyze why the network did not perform as well for the independent
testing set as for the other sets. By looking at the distribution of the CAD for the patients in the
diseased sets, it was noticed that all of the diseased patients in both the testing and validation sets
suffered from CAD in the inferolateral wall of the heart. However, only 4 of the 7 diseased
patients in the independent testing set had inferolateral disease; the other three had CAD in other
coronary zones. Furthermore, the diseased patients that were misclassified by the network were
the 3 patients with suffering from CAD in coronary zones other than the inferolateral region.

4, Conclusions

Our network was able to distinguish between patients that suffered from coronary artery
disease in the inferolateral wall of the heart form those who didn’t. Therefore, we feel that we
have met our objective, and have demonstrated that it is feasible to use an artificial network tech-
nology to aid in the diagnosis of CAD. By utilizing a larger database of patients, with care taken
* so that all of the coronary zones are well represented, a neural network can be expected to perform
very well. Also, the data reduction process helped to reduce the degrees of freedom in the net--
work, but experimentation may discover a better process that not only reduces the amount of data
but also helps to enhance in the information within the scintigram.
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Abstract

We discuss a method by which the dynamics of a network of coupled neu-
rons can be captured in a one-dimensional map. The network used as an
example of this technique consists of a pair of neurons, one of which is an
endogenous burster and the other excitable, but not bursting in the absence
of phasic input. The reduction is accomplished by decomposing the flow into
fast and slow subsystems, each operating on a distinct time scale. A “map
of knees” is constructed using singular perturbation techniques. A concise
expression for this map is developed by introducing time coordinates to each
stable branch of the slow manifold. The compression associated with the fast

* subsystem is used to determine the qualitative properties of the map.

1 Introduction

In this paper we illustrate, by way of example, a method to capture the dynamics of
a network of voltage-gated conductance equations in a low-dimensional map. This
technique utilizes ideas from geometric singular perturbation theory to decompose
the flow into two subsystems, each operating on a different timescale. The so-called
“slow system” consists of flows on stable branches of the slow manifold and the
“fast-system” is a network of “jumps” between these branches. This leads to the
construction of a Poincaré-like map which we refer to as a “map of knees.” A simple
expression for the derivative of this map is obtained by introducing time coordinates B
onto each stable branch of the slow manifold. This allows for a straightforward
analysis of the dynamics of the map of knees and hence the dynamics of the original
model as well.

We begin with a brief introduction of the model used to illustrate these tech-
niques. In [3] we discuss the behavior of a network consisting of two model neurons
that are coupled via reciprocal inhibition. One of the model neurons is an endoge-
nous burster (denoted PD) and the other is excitable, but not bursting in the absence

*Department of Pure and Applied Mathematics, Washington State University, Pullman, WA
99163-3113, lofaro@delta.math.wsu.edu.

TDepa.rtment of Mathematics, Boston University, Boston, MA 02215. This research partially
supported in part by NIMH grant MH47150.




168

LoFaro and Kopell

of phasic input (denoted LP). The primary component in the model of each of these

neurons is the nondimensional Morris-Lecar equations [6]

v = I+ grw(ve = v) + g (ve — v) + geaMeo (v) (1 — v) (1)
W o= eA(v) (Weo (v) — ).

An additional differential equation describing a hyperpolarizing inward. current, I,
is included in the description of the LP neuron. For a more complete description of
these equations and the resulting model see {3]. In order to illustrate the methods
used to analyze these models, we will ignore the role of I, in this paper. The resulting
model then consists of 2 copies of (1) coupled together by terms modeling mutual
inhibition. '

We account for the different uncoupled behaviors of the LP and PD by choosing
different values of the parameter I in each pair of equations. Depending on the
choice of this parameter, equations (1) have either a unique asymptotically stable
critical point or an asymptotically stable limit cycle. The system describing the
LP (v, w; coordinates) will exhibit the former of these two possibilities, while the
system describing the PD (vy, w, coordinates) will have the latter. _

We assume that the coupling between the two neurons is Heaviside (i.e. either
on or off) and that the effect of inhibitory coupling is that if neuron i is firing then
the v;-nullcline of neuron j is lowered by some fixed amount depending only on v;.

2 Model analysis

A primary tool in the analysis of this model is geometric singular perturbation theory,
a technique which can be used if we assume the parameter € in (1) is small. In
the limiting case ¢ = 0 there are two distinct subsystems. The “fast system” is
obtained by setting ¢ = 0 directly. This gives a curve of critical points found by
setting the right hand side of the ¥ equation equal to 0. This curve, known as
the v-nullcline, is cubic shaped with the left and right branches of this curve being
asymptotically stable critical points for the fast system. In essence, the variable w
acts as a parameter for the fast system. The “slow system” is obtained by multiplying
the left hand sides of (1) by ¢ and cancelling where appropriate. Upon setting
€ = 0, trajectories of the slow system lie on v-nullcline and satisfy the w differential
equation. Because solutions of the slow system exist on this curve, it is often referred
to as a slow manifold.

We can construct a singular solution by “gluing” together pieces of the fast and
slow system in the natural way, with transitions between the two systems occuring at
the extrema (or knees) of the v-nullcline. Theorems of Mischenko and Rosov [5], and
Bonet [1] guarantee that in most instances for € < 1, periodic solutions constructed
in this manner correspond to solutions of the original differential equations. Given a
knee K we can define a first return map A in the usual manner. Since the dimension
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of a knee is 1 less than the dimension of the slow manifold and the slow manifold
is at least 1 dimension smaller than the phase space, h is a function acting on a
submanifold of at least 2 dimensions less than the original phase space.

Figure 1 illustrates the construction of the map of knees A from the the singular
system in our example. Because we are considering a network of two neurons, one
knee is the Cartesian product of the left branch of the inhibited LP v;- nullchne (L)
with the local maximum of the uninhibited PD wp-nullcline (M;), and is thus one-
dimensional. This knee can be parameterized by w,. Two possible phenomena can
occur depending on whether we consider a point on the LP inhibited nullcline above
or below the local minimum of the uninhibited LP nullcline (m,). First consider
a point p below m; as illustrated in the bottom of Figure 1. When released from
inhibition, the LP coordinate of p jumps to the right branch, causing LP to PD
inhibition and an instantaneous lowering of the PD nullcline. This inhibition persists
until the LP coordinate reaches the local maximum of the nullcline. If we assume that
the PD coordinate is below the local minimum of the uninhibited PD vp-nullcline,
then the PD jumps to the right branch at the conclusion of the LP burst; causing
an inhibition to the LP. Thus the LP coordinate jumps to its inhibited left branch.
- The system then flows until returning to the knee from which the singular orbit
originated. Starting with LP coordinate above the minimum of the uninhibited LP
-vp-nullcline, as in the top of Figure 1, prevents the LP from jumping to its right
branch and thus the PD is not inhibited. Thus the map of knees A is a piecewise

defined function given by

o) = { oy 2 | @)

hz(w1), if Un S mi

where hy corresponds ta no firing of the LP and h; corresponds to a firing of the LP.

With this description of the map A we can begin to explore its geometric and
dynamic properties. The first step in this process is to introduce time coordinates
to each each branch of the slow manifold that plays a role in the definition of A.:
First consider L;. We choose as a reference point the point j(M;) having the same
wj-coordinate as the maximum of the uninhibit_‘.ed‘ LP slow manifold, M;. We definie
the time coordinate 7 of a point p with w;-coordinate w to be the time to flow from
7(M;y) to p. Thus 7 is given by the integral

. _‘/W dw
i) wee (E; (w)) —w

(3)

where v = I, (w) is the parameterization of the branch L;. On the uninhibited right
branch, R;, we let M; be the reference point and define the time coordinate 7 of a
point p with w;-coordinate w to be the time to flow from p to M;. This is given by

My dw
r=[ oo (B (@) — w ()
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Figure 1: Top: A graphical representation of h;. The initial condition is the point

= (a1,a2) and A;(p) = (el, (12) Because ay is above m; the first jump j; is from L1
to L, and the second jump j, is from L to L;. Bottom: A graphical representation
of hz. The initial condition is the point p = (a1,a2) and ho(p) = (e1, a;). Because
ap 1s below my, the first jump 7; is from L1 to R; on the LP 51de and from branch
Ry to L; on the PD side. The second jump ]2 i1s from R; to L1 on the LP side and
from L2 to R2 on the PD side.

where v = R;(w) is the parameterization of the uninhibited right branch of the LP.
Each stable branch of the LP and PD slow manifolds is parameterized similarly.
Either the maximum of the appropriate uninhibited nullcline or a point having the

. same w-coordinate is a reference point.

Under most circumstances time coordinates do not generalize to higher dimen-
sional manifolds since two arbitrary points do not, in general, lie on the same tra-
jectory. If, however, the differential equations describing the dynamics on an n-
dimensional manifold decouple, as in this example, then given a reference point g,
one can define the time coordinates of a point p by applying the ideas described
above to each coordinate independently.

The use of time coordinates to parameterize each branch of the slow manifold al-
lows us the define the compression ratio of two points p and ¢ across a given jump.
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Let L and R be a pair of stable branches of a one-dimensional slow manifold and
let J : L — R be the function defined by the fast system mapping L to R expressed
in time coordinates. The following definition of compression is a modification of a
definition due to Somers and Kopell [7].

' Definition 2.1 The compression ratio C(p,q) of the function J for points p and
g on L having time coordinates 7 and T + h respectively is

Glp,q) = J(T+h;)l_ J(T).

The instantaneous compression ratio C(p) at p is given by

o) = g =T = iy, )

The compression ratiois simply the ratio of the time distance between the image
of p and the image of ¢ under the fast subsystem to the time distance between p
and ¢. This is less than one in absolute value if the time distance between the
images is less than the time distance between p and ¢. Note that because we define
time coordiri_a,tes to agree with direction of flow on each branch of a slow manifold,
compression ratios are always positive.

With these tools we can now deduce the qualitative properties of the map of knees.
In particular we will show that the derivative of the map of knees is the product of
compression ratios and hence is always positive. Denote by H the function defined
in (2) expressed in time coordinates. We begin our computation of H by assuming
that the initial point p has LP coordinates above this threshold; thus the LP does not
fire in this regime. Denote this component of H by H; and write H; = Fy0J;0Fj0J;
where J; and J; are jumps between branches and F; and F), are the flows along each
branch. Each of these functions are expressed in time coordinates.

We begin by introducing time coordinates on the uninhibited LP left branch
Ly. Because there is a critical point Ey on L, we cannot introduce global time
coordinates on this branch. Instead we will introduce local coordinates by choosing
a pair of reference points. Let both j(M7) and m; be reference points and define the

‘time coordinate of p to be the time to flow from j(M;) if p is above Ej, or the time
to flow from m, if p is below E;. We say that the time coordinate of E, is infinite.

the first flow F) is simply translation by time P, where Pr is the time to flow
along the uninhibited left branch of the PD. Thus Fi(v) = 7 4+ P;. Similarly,
Fy(7) = 7 4+ Pgr where Pg is the time to flow along the uninhibited right branch of
the PD. It follows immediately that

Hi(r) = (1)) ' (6)

where 7* = J(7) + Pr. Thus the derivative of H; is the product of the instantaneous
compression ratios associated with each jump. : '
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We note that even though two different reference points are needed on I, , Hi(1)
is continuous and real-valued for all 7 in its domain. However, (8) is not valid if p has
the same w;-coordinate as Fy. Let 6 be the time coordinate of the point on E having
the same w;-coordinate as E; so that J;(6) = co. We can make H] continuous at 8
by defining ‘

H{(8) = e (7)

where k is the derivative of the singular vector field on L1 evaluated at E;. A proof
of (7) is given in [4].

We next turn our attention to the component of the map of knees corresponding
to LP firing. This function, denoted H,, has as its domain the set of points on L x M,
with LP coordinate below the minimum of the uninhibited LP v,-nullcline. As in
the previous case, H; can be described using the jump-flow-jump-flow paradlgm and

" thus we will again write H; = Fy0 Jy 0 Fy 0o Ji.

We claim that in time coordinates the functions F; and Fz are each the identity
function. To see this consider the point.b; on R; and b; on Lz as illustrated in the

- bottom of Figure 1. From this figure we see that Fy (b1, ;) = (ci, ¢;) when we express

F in a coordinate-free manner. Let 7, denote the time coordinate of ;. The time
coordinate of ¢; is the time to flow from b, to ¢; which is the time to flow from &
to ¢; which is exactly 7 since by = J(M;) and ¢; = M) are both reference points.
Thus in time coordinates we have F} (T) = 7. By similar rea,somng it follows that
F(r)=r.

Let a; and ¢; have time coordinates 7 and 7 respectively so that we again have
Hy(r) = J(r)J4(r"). (8)

Thus Hj is the product of the compression ratios associated with the jumps com-
prising H,. Because compression ratios are positive, it follows that H and is an
increasing function on each of its pieces. : }

We have shown that H is a real-valued function with a unique jump discontinuity
and H'(r) > 0 for all 7 # 6. A catalog of possible dynamical behaviors for maps
having these properties is given in [4]. One possible configuration of H is illustrated
in Figure 2.

3 Biological Implications
In this section we will assume that each periodic orbit of the map H corresponds

to a periodic orbit of the model system. Although this is not true for all possible
maps H constructed in the manner (see [1, 5]), it is true for a large enough subset

.of such maps to make this assumption reasonable. We will further assume that,

after a rescaling, H is qualitatively similar to the function illustrated in Figure 2,
le. Hi(7) > 7, Ha(7) < 7, and H;(0) > Hy(1).




Compression and Model Reduction: A Case Study 173

.H(T)

0 | 1
Figure 2: The graph of a typical map of knees H after re‘scaling.

. The dynamics of maps having these geometric properties have been extensively
studied by Keener [2]. He has shown that associated with such maps is a well-defined
rotation number p that measures the average amount of rotation of each iterate when
we view H as a map of the circle (identify 7 = 0 with 7 = 1). If p = m/n for m and
n positive integers having no common divisors, then H has a periodic orbit of period
" n. The rotation number p depends continuously on parameters with the graph of p
as a function of a single parameter typically forming a “devil’s staircase.”

In our example a periodic orbit with p = m/n corresponds to a situation where
the LP fires n — m times for every n PD bursts. Thus a wide variety of dynamical
behavior can -occur in such networks. Moreover, the behavior can change dramati-
cally with changes in the model parameters. For example, if two different rotation
numbers are observed at two different levels of injected current 7, then all rotation
numbers between these two values of p are observed as I is varied within this range.
In other words, an infinite variety of periodic behaviors occurs in this parameter
range. : :

 The results in [4] suggest that this wide variety of possible behaviors is due to
the slow recovery of the excitable cell (the LP). If one assumes the recovery rate of
this cell to be fast relative to the burst duration of the oscillating cell (the PD), then
only two types of behavior can occur: either the LP never fires or the LP fires after
every PD burst. Thus the source of dynamical behavior is the assumption of a slow
recovery rate.

By contrast, the source of dynamics in slightly more compleéx models can result
from other factors. We have shown that if we assume that the excitable neuron
possesses an additional ionic current, known as an I, current, then the resulting
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dynamical behavior can be quite different [3, 4]. Although the inclusion of this
current adds an additional dimension to the problem, techniques similar to those
presented here can be used to study the resulting model. In certain parameter
ranges, the resulting map of knees exhibits only periodic orbits corresponding to 1
burst of the excitable neuron to every n bursts of the oscillator. This behavior is
dependent not on the recovery rate of the excitable neuron, but upon the activation
rate of the I, current as well.
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Abstract

The National Council on Compensation Insurance (NCCI)
maintains a national data base of outcomes of workers'
compensation claims. We consider whether a radial basis
function network (RBF) can predict the total dollar value
of a claim based upon medical and demographic indicators
(MDT's). This work used data from 12,130 workers' com-
pensation claims collected over a period of four years
from the state of New Mexico.

Two problems were addresed:

1. How well can the total incurred medical expense for all
claims be predicted from available MDI's? For indi-
vidual claims?

2. How well can the duration of disability be predicted
from available MDI's? )
The available features intuitively correlated with total
medical cost were selected, including type of injury, part
of body injured, person’s age at time of injury, gender,
marital status; etc.. These features were statistically stan-
dardized and sorted by correlation with outcome valua-
tion. Principal component analysis was applied
{(Karhunen-Loeve). '

A radial basis function neural network was applied to the
feature sels in both supervised and unsupervised training -
modes. :

For sets used in training, individual case valuations could
consistently be predicted to within $1000 over 98% of the
tme. For these sets, it was possible to predict total medical
expense for the training sets themselves to within 10%.
‘When applied as blind tests against sets which were NOT
part of the training data, the prediction was within 15% on
the whole sets. Results on individual cases were very poor:
in only 30% of the cases were the predictions for the training

‘sets within $1000 of their actual valuations.

Single-factor analysis suggested that the presence of an
attorney strongly decorrelated the data. A simple stratifica-
tion was performed to remove cases involving attorneys and
contested claims, and the procedures above repeated. (Note:
the trained machine could correctly predict the involvement

- of an attorney over 80% of the time.)

Preliminary results based upon the very limited effort
applied indicate that NCCI data support population esti-
mates, but not single-point estimates. However, more can be
done with the supplied data set, particularly wrt additional

‘stratification and feature enhancement.

Applications of Neural Networks in Environmental and Energy Science d Engi ing. S. Hash P.
Keller, R.T. Kouzes, and L.J. Kangas {Eds.) i ? and Sngmeering schem, BB
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Technical Backgrotmd / Nomenclature

Classification Problems

Classification is a special case of the general regression
problem, for which the range of the regression function is
a discrete set. Desired classification decisions are speci-
fied at examplars, and extended throughout the problem
domain by tuning the parameters of a decision function.
Inputs to the classifier are usually M-dimensional vectors
of “features”, and the finitely many discrete outputs are the
“classes”. Given this understanding, many conventional
statistical notions (e.g., RMS error, type 1/type 2 errors)
apply.

Feature Space, Goal Space, and Parameter Space

The M-dimensional Euclidian space spanned by the vec-
tors of features for a particular classification problem is
called the problem’s “feature space”. Feature space is the
domain of the decision function.

The decision function assigns to each feature vector a
“class”. The set of all classes is “goal space”. Goal space
is the range of the decision function; it is just a set, and has
no topological or algebraic properties.

A decision function is an instantiation of a parametrized
decision function model; let this model have L>0 tunable
parameters. Each decision function, then, is represented
by a point in L-dimensional Euclidian space. This space is
called “parameter space”.” (For a trainable classifier,
parameter space will be the domain of an “objective func-

tion”, which measures the performance of the classifier.)

Trainable Classifiers

If training is understood to be “incremental improvement
of performance through experience and self-adjustment”,
then trainable classifiers can be built.

‘We describe a typical variant of so-called “supervised “
training [1] (examples of known classification available).
The process is a closed-loop optimization (see Figure 1),
during which a fixed collection of feature vectors (the
“training set”) is repeatedly presented to the classifier.
After each cycle of presentations (“‘epoch™), the overall
performance of the classifier is measured via.an objective
function. The parameters of the decision function are then
adjusted in an attempt to increase the objective function’s
value on the next epoch.

FIGURE 1. Learning by “Feedback and Adaptation”
Ingest Ground Truth . Training
- Algorithm -
N y Modify Decision
Ty (Fn b oeesfne) Parameters
1 n 12 ™ (PuPz.-,--,P;)
Tyl g fn.e b))
: : : Use Dedision
Tour @ fngroeerfrm) Parameters
¢ ~" —
Inferencing
Ingest Feature Vectors Methodology ™ Gytput
Results

Training can be regarded, then, as a search of parameter
space for global maxima of the objective function with
respect to the given training set. Standard optimization
techniques may apply (e.g., gradient search, least squares,
“filtering” techniques), and emerging techniques are the
subject of current research {e.g., back propagation, simu-
lated annealing, genetic algorithms, cascade correlation)

[2].

RBF Networks: Brief Conceptual Tutorial

RBF’s attack the regression problem in much the same
way “‘partitions of unity” 3] attack the spectral problem.
They operate in the feature space itself, exploiting its
geometry to directly model clusters and their boundaries,
using many local interpolators of compact support.

RBF’s can be regarded as neural networks in the sense that
they operate by aggregation of the outputs of many dis-
crete units which are trained rather then programmed. In
distinction to most other neural paradigms, however, the
elements in an RBF do not communicate with each other.

" Stage 1 of the RBF: The basis functions

Stage 1 of an RBF's is constructed by positioning at each
exemplar in feature space a compactly-supported pseudo-
mewic. These “basis functions” can be viewed as Iodally
conditioning feature space with a “belief” field, much as
an electric charge conditions nearby space with an electric
field.

An individual basis function establishes a field of belief
that a point in its region of feature space is in the same
class as the basis function’s exemplar. This belief
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decreases as we move away from the exemplar, becoming
zero at a finite distance. The basis functions are therefore
referred to as “radius-limited elements”.

To use the basis functions to classify a point in feamre
space, the outputs of the basis functions in whose support
it lies are combined by superposition according to an
aggregation rule. This gives a vector of beliefs, compo-
nent j being the belief that the point is in class j. The larg-
est vector component designates the stage 1

classification. The relative sizes of the beliefs can be used
to form a stage 1 classification confidence.

Stage 2 of the RBF: The Perceptron

The stage 1 classification can be used as the RBF output.
It is customary, however, to apply a multi-layer perceptron
[4] using the original feature vector and its stage 1 belief
vector as inputs. The output of the perceptron then
becomes the RBF output. (The rationale for using stage 1
as a pre-processor for a perceptron is that the stage 1 pro-
cedures can eliminate non-separability, which is problem-
atic for perceptrons.)

The Bayesian Classifier is “almost” a stage 1 RBF

The Bayesian classifier is seen to be very similar to a stage
1 radial basis function classifier, with each class repre-
sented by a single element located at the class mean, and
having local pseudo-metrics given by weighted quadratic
exponentials. The only difference is that the exponentials
do not have compact support (though in all real implemen-
tations, they will have). :

The general stage 1 RBF will have many elements repre-
senting each class, and possibly different pseudo-metrics.
The level-sets of the pseudo-metric give the fundamental
shape that is being used to cover clusters in feature space.

Other Interpretations of RBF Classifiers

The stage 1 RBF may also be regarded as a spectral
decomposition of the density function for the given classi-
fication problem. Properly speaking, of course, this is a
spatial rather than spectral decomposition, and the basis
functions constitute a frame rather than a basis. This is the
sense in which the “partition of unity” analogy with RBF’s
is instructive.

It is possible at this point to enter a discussion of RBF
implementations of fuzzy logic [5]; the connection is obvi-
ous, and we forego this.

The Characteristic Strengths of RBF Classifiers

* Unlike most neural paradigms, RBF’s radius-limited
elements do not extend their interpolation arbitrarily
far away from their control points (the examplars).
This gives them good false-positive rejection charac-
teristics by avoiding uncontrolled regression.

* Because the elements do not communicate with each
other, it is often possible to add/remove/combine goal
classes without retraining existing elements.

* Because the elements have finite support, it is only
necessary to fire those in the relevant region of feature
space.

¢ RBF’s are insensitive to the number of output classes.
(We have successfully built and trained RBF s with
over 300 output classes.)

» The decision parameters in RBF’s have geometric sig-
nificance. '

* The components of the belief vector can be used to
produce “confidence factors™.

¢ The geometric/analytic nature of RBF’s is exploitable -
using many conventional, mature mathematical tools.

* RBF’s have been shown to have the theoretical power
to handle arbitrary well-posed classification problems;
non-linearly separable problems pose no special diffi-

_culty.

_ . Super-fast hardware implementations of RBF’s are

commercially available (c. 2 microseconds/classifica-
tion, pipelined). The INTEL Ni1000 chip is the best
example.

* RBF's can be designed to produce classifications of
hierarchical “granularity”. See the discussion of taxo-
nomic decomposition below.

The Characteristic Weaknesses of RBF Classifiers

 Because RBF's model the data from many local
approximations rather than from a few population
parameters, they typical use more decision parameters
than most other techniques (10,000 parameters is not’
unusual).

* RBF’s are easy to “overtrain”, that is, they can merely
memorize idiosyncrasies of the training set rather than
classification knowledge that will generalize.

» Because superposition is a “voting” strategy, RBF’s
can be sensitive to the presentation cardinalities in the
* training set.
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¢ Management and use of the large number of RBF
parameters can cause software implementations of
RBF’s to be siow. ' ,

o If every vector in an unambiguous training set is used
as an exemplar for some basis function, the RBF will
generally give a nearly perfect score on that training
set; this makes RBF's hard to evaluate without using
separate training and evaluation sets.

RBF Training

To train an RBF, we define an objective function, and per-
form non-linear optimization in parameter space. In gen-
eral, this includes adjustment of both basis functions
locations, and parameters. Geometrically, the RBF level-
sets “float around and change shape™ in an attempt to best
cover clusters and portions of clusters present in the train-
ing set.

RBF Networks: Formal Definition

Mathematical construction of the Stage 1 RBF:
Let Feature space be RM,

Let goal space G = {1, 2, s

K}, so that points in RM fall
into one of X classes. '

Recall that “exemplars” are feature vectors which repre-
sent a particular class. Denote the ith of I exemplars for .
class k by:

Fy = (fm""-fkm) _
Define the basis function associated with 7y by:
R, (})= 1_M§ﬁ(1, i P frin=%n)0)
where 2 = (x...., x,) € .R'l';‘=l '

and Py = (P s Pryy)

is a vector of (tunable) non-negative parameters (Hence,
for this implementation, paramter space is R My,

Ry; establishes a hyper-elliptical (scalar) field of “belief”
in k-membership around the exemplar Fy; .

Ry; has the following properties:

* the semi-major axes of the field are determined by the
parameter vector Py

+ it is a monotene decreasing function of “elliptical dis-
tance” from F,;

* - it attains its maximum of 1 precisely at F;

¢ it is non-negative and has compact support

it has continuous partials with respect to the parameters
P, for all points having Ry; > 0.

Ry, (%) is the contribution of exemplar F,; to our belief
that 2 isinclass % .

Typically, there will be multiple exemplars for each class,
so the “total belief” that a point 2 is in class & is an aggre-
gation of the beliefs of the class & exemplars:

I
-1 a-rgn

i=1

b (3) =

This naturally gives rise to a vector field of beliefs
B:RM —RK defined by:
B(2) = (5, (3, ... 5,())

B(2) can be interpreted as a joint-membership function,
akin to a k -ary probability density.

B is the radial basis function constructed from the exem-
plars. It is trained by optimizing P,;.

Touse B to classify points in feature space, select the
index of the largest component of B (2) . The b¢’s can be
used to build confidence factors.

For points far away from all exemplars (“uncontrolled”

regions of feature space), B (%) = 0.The RBF refuses to
make “wild guesses”.

The Data

The National Council on Compensation Insurance (NCCI)
provided 12,130 workman’s compensation claim records
("DCT records”™) for the pre-study effort. These records are
in an 85 field format. These data are sampled from claims
filed in the state of New Mexico between 1988 and 1992,
Supporting documentation was also provided which
included a data concordance, coding tables, and a descrip-
tion of the sampling methodology.
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The Probiem

Several problems were addresed:

1. Is it possible to predict from DCI phenomenology the
total incurred medical expense? That is, can we cor-
rectly predict the value of DCI field 60 from the other
fields?

2. Is it possible to predict from DCI phenomenology the
duration of disability? That is, can we predict the dif-
ference of DCI fields 38 and 37 from the other fields?

3. Is it possible to predict from DCI phenomenology
which claims will result in litigation/adjudication?
That is, can we correctly predict the values of DCI
fields 70 and 71 from the other fields?

Preliminary Analysis of the Data

Preliminary analysis was performed to determine general

population parameters. The distribution of outcomes (in
terms of medical dollars) is heavily skewed to the low end:
over 99% of the claims have valuations under $100k.

Single-factor bayesian analysis, scientific visualization
techniques, and covariance measures show low ¢ross-cor-
relation of most factors.

Many vacant fields were found in the set supplied. In
order to insure that any results obtained could be applied
in practice, we restricted our attention to only those field
present in virtually all records.

It was determined that too few DCI records had field 38
present {1452 records out of 12,130) to address problem 2
above.

Preliminary cluster analysis indicated that the supplied
estimates of future medical costs were very poor; that is,
for DCI records representing open cases, DCI field 60
should be regarded as corrupt for the purposes of our
study. Further, our system should aim to improve on cur-
rent estimation techniques rather than replicate their short-
comings. In the sequel, we restricted our attention to
closed cases only (DCI field 34 = 4)."

Feature Extraction

The features satisfying the above conditions which are
intuitively correlated with total medical cost were
selected. Some of these were synthesized from multiple
DI fields:

- 1. Type of Injury

2. Part of Body

3. Person's age at time of injury
4. Gender

5. Marital Status

6. Age of policy at time of injury

7. Employment status at time of injury

8. Re:ained attomey?

9. Claim ever contested by carrier?

10. Type of employment

11. Traumatic, occupational, or cumulative injury?
12.pre-injury weekly wage

These features were statistically standardized and sorted

by correlation with outcome valuation. Principal compo-
nent analysis was applied.

The data set was divided into four smaller sets: A, B, C,
and D. Each of these smaller sets held approximately 1100
normalized case records.

Training Methods

Our taxonomic radial basis function neural network was
applied to the feature sets A and C. This was done in both
a supervised and unsupervised training mode.

For sets A and C (those used in training), individual case

‘valuations could consistently be predicted to within S1000

over 98% of the time.

For both sets A and C, it was possible to predict total med-
ical expense for the training sets themselves to within
10%. When applied as blind tests against sets B and D
(which were NOT part of the training data), the prediction
of total population claim value was within 15% on the
whole sets. Results on individual cases were very poor: in
only 30% of the cases were the predictions for the training
sets within $1000 of their actual valuations. .

Single-factor analysis had suggested that the presence of
an attorney strongly decorrelated the data. A simple strati-
fication was performed to remove cases involving attor-
neys and contested claims, and the procedures above
repeated. (Note: the trained machine could correctly pre-
dict the involvement of an attorney over 80% of the time.)
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~ After stratification, the blind test set results improved to
estimation of total aggregate reserving dollars to within
0.5% on set B, and 7% on set D. However, individual case
estimates were still poor.

Preliminary Conclusions

Preliminary results based upon the very limited effort
applied are not promising. More can be done with the sup-
plied data set, particularly in additional stratification and
feature enhancement, but indications are that the data pro-
vided do not support single-point outcome prediction.

The Need for Additional Data

All appearances are that further progress will be con-
strained by the limitations of the supplied data set. Holes
in the supplied data set forced consideration of only a few
of the 85 collected features. Aggregate results were consis-
tently much better than individual results. The data set
had tobe subdivided to provide for blind tests. These facts,
coupled with the high resolution (§1000 bins) desired on
the output side indicate that the supplied data set does not
adequately cover the universe of discourse.
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Abstract

In this paper, a novel approach to modeling and diagnosing the cardiovascular system is introduced. A model
exhibits a subset of the dynamics of the cardiovascular behavior of an individual by using a recurrent artificial neural
network. Potentially, a model will be incorporated into a cardiovascular diagnostic system.

This approach is unique in that each cardiovascular model is developed from physiological measurements of an
individual. Any differences between the modeled variables and the variables of an individual at a given time are used
for diagnosis. This approach also exploits sensor fusion to optimize the utilization of biomedical sensors. The
advantage of sensor fusion has been demonstrated in applications including control and diagnostics of mechanical and
chemical processes. ‘

1. Introduction

A model of an individual's cardiovascular system must mimic the relationship among physiological variables
(i.e., heart rate, systolic and diastolic blood pressures, and breathing rate) at different physical activity levels. If a
model is adapted to an individual, then it becomes a model of the physical condition of that individual. A model for
a healthy individual can be compared to the actual measurements of that individual at a later time. Any differences
can be exploited to evaluate and diagnose medical conditions that affect the cardiovascular system of that individual.
When used in clinical exercise testing (e.g., graded exercise tests), these cardiovascular models will increase the
sensitivity of correctly diagnosing several medical conditions such as those listed in Table 1. These models will also
increase the sensitivity of detecting or excluding several other conditions that cannot be uniquely diagnosed in an
exercise test alone such as those listed in Table 2 [Jones 1988, Lamb 1984, Pollock 1990].

Table 1: Conditions detectable Table 2: Conditions not directly detectable
with exercise testing. with exercise testing alone.

myocardial ischemia . - chronic bronchitis
peripheral vascular disease : pulmonary emphysema
exercise-induced asthma ‘ pulmonary infiltration, alveolitis, and fibrosis
vasoregulatory asthenia ‘ ‘pulmonary thromboelism and hypertension
unfitness . , congenital cardiac abnormalities
vasoregulatory asthenia " cardiac valvular obstruction or incompetence
psychogenic dyspnea ’ ST primary myocardial disease
muscle phosphorylase deficiency generalized neuromuscular disorders

A cardiovascular model can be incorporated into an automatic, continuous diagnostic system carried on a person.
Physiological variables received from noninvasive biomedical sensors can be compared with the modeled variables in
real-time. This real-time diagnosis of an individual's general health increases the possibility of early detection of
undesired medical conditions and reduces the response time of medical help for people working in hazardous and
dangerous environments, (e.g., soldiers and law enforcement officers). A real-time diagnostic system also enables
.continuous monitoring of people with medical conditions in nursing homes and in home-care situations. Reduction
of the response time for medical help is critical in minimizing medical complications and the loss of life.

Initially, we expect that employees working in hazardous environments would be monitored for early diagnoses
of a degradation in health. The working environment and other causes may contribute to this degradation and make
an employee unsuitable for certain work. For example, the described system could aid fire districts in determining
the health effects from smoke inhalation on individual firemen. The system would determine whether firemen have
recovered sufficiently from the last inhalations of smoke to be allowed to enter smoke-filled environments again.

The cardiovascular model is being developed with artificial neural network (ANN) technology. ANNs have been
applied to modeling complex process dynamics for the manufacturing and chemical industries. We hypothesize that

- *This work was supported by the Laboratory Directed Rescarch and Development Program at Pacific Northwest Laboratory (PNL). PNL is a multiprogram
national laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830.
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c;a_rdiovascular systems exhibit similar dynamics and can be modeled with ANNs. Additionally, ANN technology
could be used to build the diagnostic system since they have already been successfuily applied to a variety of medical

diagnostic systems [Baxt 1991, Dorffner 1994, Jones 1990, Kennedy 1991, Mango 1994, Rosenberg 1994, Suzuki
1993].

2. ANN Based Cardiovascular Modeling

One approach to cardiovascular modeling is to build a model representative of a group of individuals with
similar characteristics (i.e., sex, age, physical condition, medical condition, etc.). However, cardiovascular behavior
is unique to each individual [Vander 1990], thus a generic cardiovascular model used in a medical diagnostic system
would not be as sensitive as a System based on a model that is adapted to the patient being diagnosed. To develop
these models without a cardiovascular expert, the modeling must be based on an adaptive technology that can be
automated. The ANN technology fits this category. )

The ANN technology was selected for the cardiovascular modeling because of its many capabilities including
sensor fusion, which is the combining of values from several different sensors. Sensor fusion enables the ANNs to
learn complex relationships among the individual sensor values, which would otherwise be lost if the values were
individually analyzed. In medical modeling and diagnosis, this implies that even though each sensor in a set may be
sensitive only to a specific physiological variable, ANNs are capable of detecting complex medical conditions by
fusing the data from the individual biomedical sensors.

Recurrent ANNs were selected for the cardiovascular modeling application to capture the temporal information in
physiological variables. These variables are time-series data from which both the absolute values and the rates of
change need to be modeled. Recurrent ANNs recycle a small portion of information from time t-1 at time t.
Indirectly, decreasing portions of information from time t-2, t-3, t-4, etc. are also captured, thus enabling recurrent
ANNSs to model the temporal dynamics in data. Figure 1 illustrates a prototype tool that generates an ANN model of
the cardiovascular system from physiological variables received from biomedical sensors attached to an individual.
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Heart Rate (HR) —

Diastolic Blood . _p.!
Pressure (DBP)
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Breathing Rate
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Physical Activity . ‘
Levet-“Work) ‘ \ J '"HR BR SBP DBP

Figure 1. On the left, this figure illustrates a modeling tool that takes a sequence of physiological variables from
biomedical sensors and learns the temporal dynamics of these variables to produce an ANN-based cardiovascular model. On
the right,this figure illustrates the configuration of the ANN produced by the modeling tool. The ANN has two inputs, four
outputs, and five hidden processing elements. The ANN takes the ambient temperature and the physical activity as input.
The four outputs, heart rate, breathing rate, systolic blood pressure, and diastolic blood pressure, are clamped to the "actual”
values during the training phase. For the initial cardiovascular model prototypes, the "actual” values are generated by a
nonadaptive cardiovascular model. During the modeling phase, the temperature and the work are input to the ANN, and the
values at the outputs are taken as the modeled variables. The feedback links going through the five processing elements on
the right side of the ANN enable it to capture temporal information in the data. -

Modeling '
tool

During the adaptation phase, the training algorithm receives physiological data from an individual via
biomedical sensors and automatically develops the ANN-based cardiovascular model. After development, the model
can generate the appropriate physiological responses for simulations with varying levels of physical activity. Figure
2 shows how the variables modeled with the ANN compare ‘with the physiological variables generated with a
nonadaptive cardiovascular model. This second model has been used for creating data with sufficient complexity for
the development of the modeling tool. ' '
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Figure 2. This graph depicts the "actual” and modeled heart rate, and the "actual” and modeled systolic blood pressure for
varying physical activity levels. The "actual" variables in this graph are generated with a nonadaptive cardiovascular
model. The vertical axis corresponds to the normalized magnitude of these variables (normalized to one). The variables for
systolic blood pressure and breathing rate are excluded from this figure for clarity. The effects of varying ambient
temperature has not yet been explored in this research. .

3. Model Based Cardiovascular Diagnostics

It is envisioned that cardiovascular models will be incorporated in both clinical diagnostic systems for graded
exercise tests and cardiovascular stress tests, and in an automatic, continuous diagnostic system carried on a person.

The methodology for using models as a basis for diagnosis is often referred to as "model-based reasoning."
Diagnostic systems that use model-based reasoning compare actual data to modeled data and exploit the differences for
diagnosis. Two prerequisites for this methodology to be successful are that the models are authentic to the systems
being diagnosed and that the differences between the modeled data and the actual data are known for diagnostic |
conditions. . :

Conventional modeling techniques tend to build generic models with possibly a few free variables that fit the
model to an instance of a system. For example, a respiratory system model-based on differential equations may have
a few free variables adjusted to an individual's sex, age, and weight [Tehrani 1993]. An ANN-based model is
potentially a superior model because almost all of its free variables are adjustable to behave as a specific instance of a
system.

Conventional diagnostic techniques most-often require that the differences between the modeled and actual data
are known to the person developing the diagnostic system. These techniques are handicapped by both the ability of
the person to understand the diagnostic differences in the data and by the applicability of those differences to the
modeling technique. An ANN-based diagnostic system is potentially superior because it does not require a priori
knowledge of the diagnostic differences in the data, although it should be recognized that some knowledge aids the
development. : :

Heart Rate
. . Modeling Tool
Diastolic Blood Pressure
Systolic Blood Pressure
‘ Modeled
Ambient Temperature Diagnosis

. .. Diagnostic System
Physical Activity Level

Figure 3. This figure illustrates the information flow within a cardiovascular diagnostic system that uses model-based
reasoning to produce a diagnosis of health by comparing a model of an individual to the individual's current condition.

A diagnostic system based on a model uses an individual's normal-condition cardiovascular behavior as a
reference. Any variation from that behavior indicates a change from the normal condition. An ANN-based
diagnostic system is trained to recognize the effects of certain medical and physical changes on the monitored
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variables. For example, a blood loss results in a decrease in blood pressure and an increase in heart rate relative to
the normal values for that individual. Figure 3 illustrates a diagnostic system and the information flow in model-
based reasoning. The modeling tool receives the physiological variables from an individual via biomedical sensors.
The diagnostic system receives the same variables from both the biosensors and the model. These two sets of
variables are "compared"” for diagnosis.

4. Discussion

This paper introduced a prototype diagnostic tool that models a subset of an individual's cardiovascular system
and uses model-based reasoning to determine the individual's health. The modeling tool learns the dynamics of the

relationship between physiological measurements for an individual observed at different physical activity levels.

Because a model adapts to an individual, it duplicates the physical condition of that individual. As such, it can be
employed in "what-if" medical scenarios to evaluate and diagnose medical and physical changes.

A tool of this type is envisioned to serve in two broad areas. First, it would serve in personal health diagnostic
systems for continuous diagnosis of health and for periodic clinical tests: graded exercise tests and cardiovascular
stress tests. For example, a real-time diagnostic system using these cardiovascular models may be used to monitor
the health of workers in hazardous environments or to monitor and control administration of medication for hospital
patients. Second, it can function as a simulator for biological systems used in education and research related to the
human physiology and as a controller for medical mannequins.

In future work, this research will include the modeling of additional physiological variables, specifically
variables describing pulmonary gas exchange: oxygen uptake (V0,), and the concentrations of carbon dioxide (CO7)

and nitrogen (N2). A complete physiological exercise test should also include multichannel electrocardiography
(ECG). After completion of the cardiovascular modeling tool, a model-based reasoning diagnostic system will be
developed with ANNSs. .
Information on ANN developments at Pacific Northwest Laboratory is available in the World Wide Web
(WWW) pages of the Environmental Molecular Sciences Laboratory. This information is accessible through WWW
clients such as NCSA Mosaic. The uniform resource locator for this site is
http://www.emsl.pnl.gov:2080/docs/cie/neural/.
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