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ABSTRACT

BSX (Baj4xZrgPg2xSiny024) and CSX (Cay_xS1xZraPg024) type NZP ceramics
were fabricated and characterized for: (i) thermal properties viz., thermal conductivity,
thermal expansion, thermal stability and thermal shock resistance; (ii) mechanical
- properties viz., flexure strength and elastic modulus; and (iii) microstructures. Results of
these tests and analysis indicated that the BS-25 (x=0.25 in BSX) and CS-50 (x=0.50 in
CSX) ceramics had the most desirable properties for casting metal with ceramic in place.
Finite element analysis (FEA) of metal casting (with ceramic in place) was conducted to
analyze thermomechanical stresses generated and determine material property
requirements. Actual metal casting trials were also conducted to verify the results of
finite element analysis. In initial trials, the ceramic cracked because of the large thermal
expansion mismatch (hoop) stresses (predicted by FEA also). A process for introduction
of a compliant layer between the metal and ceramic to alleviate such destructive stresses
was developed. The compliant layer was successful in preventing cracking of either the
ceramic or the metal. In addition to these achievements, pressure slip casting and gel-
casting processes for fabrication of NZP components; and acoustic emission and
ultrasonics-based NDE techniques for detection of microcracks and internal flaws,
respectively, were successfully developed.

INTRODUCTION

Low thermal expansion, good thermal shock resistance, high melting temperature
and thermal stability are attractive properties for numerous applications (such as in
diesel-engine port liners) involving ceramics. In general, NZP ceramics have low
thermal expansion coefficients but their thermal shock properties and melting
temperatures are highly composition dependent. Also, it has been recognized that low
thermal expansion, per se, is not so beneficial if it is accompanied by anisotropy'™.
However, because of their unique crystal structure specific NZP ceramic compositions
could be tailored to have all of the icquisite properties including very low anisotropy.
This potential gives NZP ceramics a significant edge over conventional low expansion
materials such as cordierite, mullite, aluminum titanate, LAS and fused silica.




Of the numerous NZP materials i™ f}stigated thus far, the BSX (Baj,xZr4Ps.
2xSingOn4) and CSX (Cay.xStxZr4PsO24) type of materials have both ultra-low thermal
expansions*® and high melting temperature. Even so, evaluation of their thermal
expansion anisotropyk, thermal shock resistance and mechanical properties as a function
of composition is important from an applications standpoint. For instance, in the diesel
engine port-liner application mechanical vibrations are an important issue in addition to
thermal loads associated with the high temperature environment. The need to integrate or
bond two widely different materials such as ceramic and metal in the port further
complicates material requirements.

The above discussed were the motivating factors for Phase I research; the broad
purpose of which was to identify NZP materials with optimum properties such as would
permit fabrication of "cast-in-place” diesel engine port liners. As an extension of this,
exploration of alternate NZP type maicriais and fabrication and characterization
processes will also be conducted. The overall objective of this Phase I research program
was to develop sodium-zirconium-phosphate (NZP) ceramic based "cast-in-place” diesel
engine port liners. Specific objectives were: (1) Materials requirement analysis, (2)
Successful demonstration of metal casting around the ceramic, (3) Cost-effective process
 development, and (4) Development of high temperature database (stability, thermal
cycling, thermal shock etc.).

TECHNICAL APPROACH AND RESULTS

Following the initial group meeting held at Chicago in October 1992 the work plan
for Phase I research, in the form of a series of tasks, was formalized. The technical

approach used to fulfill these tasks and results obtained have been discussed in the
following.

MATERIALS REQUIREMENT ANALYSIS

A preliminary finite element analysis (FEA) was carried out to evaluate the stresses
involved in the metal casting process. A set of properties based on prior information was
chosen for the NZP ceramic, metal and the sand used in metal casting process. Table 1




summarizes the properties that were chosen for this finite element stress analysis. Two
different casting configurations were considered for this finite element analysis; a straight
tube and an L-shaped tube as shown in Figure 1. Instead of using commercially available
FEA software packages such as ANSYS, a set of public domain software packages called
INGRID (for gﬁd generation), TOPAZ2D ( tor thermal analysis) and NIKE2D (for stress
analysis) were used. These software packages are less expensive and provide similar
results. In order to verify the functionality of these software packages, a standard "high
confidence"” problem was analyzed using these software packages and the solutions were
found to be satisfactory. The results of the preliminary FEA are shown in Figure 2 and
Table II. These results show that the NZP ceramic is subjected to large compressive
hoop stresses along the radial directions.

In this work, metal casting trials were used to verify the finite element (FEA)
results and further refine the FEA model. Initial trials were designed to measure actual
temperatures during casting for comparison with the theoretical temperature profiles
generated using the finite element modeling (FEA). Figures 3 and 4 depict the details of
the set-up used for metal casting trials. Molten metal was cast around the ceramic tubes
(BS-25) in a sand mold. Four tubes (2" dia, 6" long) were used for these trials. A series
of four thermocouples were buried at various locations to obtain temperature profiles
during the actual casting trial. The temperature was recorded using a standard A/D data-
acquisition board. This data was then compared with the thermal gradient patterns
generated by FEA (as shown in Figure 2).

The results of the temperature measurement trials show that the initial finite
element model approximates the actual casting trials. This is evident from Figures 5 and
6. Based on the results of the first metal casting trials, further modifications to the FEA
model were made to initiate iterative refinement of the FEA model. Eventually, this
model would be so refined as to perform a parametric study of the effects of various
materials’ properties on thermal stresses. Later in this Phase I program, NZP ceramic
tubes were fabricated for further metal casting trials to verify the results of the analytical
model. Prior to this, a detailed characterization of the material properties of the various
NZP ceramics had to be conducted to enable selection of a few ceramics with suitable
properties. The fabrication and characterization methods used to produce baseline NZP
ceramic materials and assess their properties, respectively, are described in the following

sections.




Table 1. Preliminary data used for developing the thermal analysis model.

[Material Properties and Model Inputs
\ (Presented in the MKS, cgs units system)

i I el
Iron

| General Properties
[Lengih (cm) 15 15 15
] Thickness (cm) 0.3 1 30
| Density (kg/m"3) 3200-3650 7000 1450
Mechanical Properties
Flexural Strength (MOR) (MPa) *kk Hodk *dk
1 25 C 70 kK EL 13
1 S(X) C 65 ¥k %k ¥ dek
Young's Modulus 25 C to 1000 C (GPa) 70 *xk Fkk
Fracture Toughness (MPa) 1.5-2.0 HE, il
Ultimate Strength (MPa) * Ak ol i
Tension 30-90 370 *okk
Couipression 90-300 830 *k*
Shear EL 1 330 deokk
Yield Strength (MPa) *Ex *EE *kk
Tension 30-90 250 *kox
Sheal' sk okok 165 ook ke
Allowable Stresses (kPa) FEH ek o
| Tension or Compression *kk 165475 *Hk
Shear *okok 99975 *okok
Elastic Modulii (GPa) ok Fok Hkk
Tension or Compression 35-100 172 ok
Shear L 33 83 Aok
Poisson Ratio 0.24 0.28
Thermal Properties
[ Thermal Conductivity (W/m K) 1 41.9 1.26
Thermal Conductivity as a f(Temp) (W/m K)
(Sand) 0.6606-2.084E-4 T+7.741E-7 TA*2
Specific Heat (J/kg K) Fokok Fkok Hkok
Ambient 460 628 838
473 K *Ek Fokk 975.7
673K ook Fodok 1092.9
873K * ¥k ok 1151.5
1073 K *EE ok k 1159.9
i . 1273 K i *Hk 1176.7
H Thermal Diffusivity (m”**2/sec) 6.00E-07 9.50E-06 9.10E-07
Coeff. of Thermal Expansion (1/C) (NZP 5 - 6 ppm) 1.00E-06 1.21E-05 ok
Heat Transfer Coefficient at Interface (W/m"2 K) odox Fkk Fok
mold/outside air = 83.8
Ambient Temperature K 293 293 293
Liquidus Temperatore K 2173 1573 *okk
Solidus Temperature K 2073 1275 *kk
ﬁk\iﬁal Temgramre K 293 L 1273 293




ALL DIMENSIONS ARE IN MILLIMETERS

Figure 1. Dimensions of ceramic tubes for molten metal casting trials.
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Figure 2. Temperature distribution as a function of time during molten metal casting
process. (These results were obtained using TOPAZ2D software package.)

Table 2. Mechanical stresses as a function of time and radial distance during metal
casting with NZP ceramic in place.

Material Radial Dist. Tangential Stresses (MPa) Type of
(m) 30 min. 2 hr. 4 hr. Stress
NZP 0.025 -718.9 -578.3 -344.1 Compressive
NZp 0.028 -646.0 -519.6 -309.2 Compressive
Cast Iron 0.028 246.1 198.0 117.8 Tensile
Cast Iron 0.038 173.2 139.3 829 Tensile




Packed sand

Cast Iron

Sand mold

Retainer sand core )
NZP ceramic tube

Figure 3. Schematic of set-up for molten metal casting trials.
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Figuré 4. Detailed sectional view of the set-up for Metal Casting trials
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Figure 5. Metal cooling curves generated by finite element analysis (FEA).
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Figure 6. FEM calculated (curves) vs. actual temperatures as a function of time for
various thermocouple locations.




MATERIALS PROCESSING AND PROCESS OPTIMIZATION

Based on past experience, BSX (Baj4xZrgPg.2xSizx024) and CSX (Ca;j.
xSrxZr4Ps024) series low thermal expansion NZP compositions with 'x' varying as 0,
0.17, 0.25, 0.375 and 0.50, and 0, 0.25 and 0.50, respectively, were designated for
processing and detailed evaluation of properties. Routine steps involved in the
processing of these materials are shown in the schematic of Figure 7 here. '

Raw Materials
(Powders)

v

Mixing and Milling of
Starting Powders

!

Drying and Screening

v

Calcination

v

Post-Calcination Milling

v

Pre-mixed Slurry

R T

| Drying and Screening ‘
(Optional) |

l__—_I——__J

GREEN FORMING

Figure 7. Flow chart detailing steps involved in the fabrication of NZP green bodies.




Large (20 kg) batches of the powders were synthesized using the routine oxide
batch mixing process. The size of the batches was chosen so as to insure availability of
enough material to perform all the required testing and evaluation on each individual
batch. Batching consisted of mixing and milling the raw materials together, drying and
screening the milled powder, calcining each composition at its required calcination
tempefature to produce the single phase NZP structure, and post calcination screening.
Routine characterization such as powder X-ray diffraction, particle size measurement and
surface area analysis was carried out to ensure that the powders had appropriate set of
properties. '

In order to obtain strong and dense components of the BSX and CSX series NZP
materials, considerable effort was devoted to optimizing the existing process of
fabricating slip cast components. This optimization procedure identified specific
challenges that needed to be addressed such as milling process, use of appropriate binder
and dispersant system and pH of the slurry. A systematic parametric study of these
variables was then undertaken. Table 3 shows a typical experimental test matrix used to
evaluate the effects of important variables involved in the fabrication process. Two
important sub-processes, namely, calcination process and milling process were first
evaluated.

The raw materials for a typical NZP ceramic viz., Baj 725Zr4P5 5Sip 5024 (BS-25),
were blended in stoichiometric proportions and calcined at 1150 and 1200°C for 4 and 12
hours. These calcined samples were examined for their particle size, surface area and
phase purity. Table 3 shows the results of particle size and surface area analysis as a
function of calcination temperature and time. As is evident from this table, there is little
correlation between calcination time and particle size or surface area. However, as the
calcination temperature increases, the surface area is reduced significantly. The X-ray
diffraction patterns of Figure 8 of powders calcined at 1150°C vs. 1250°C show that the
higher calcination temperature reduces the appearance of the second phase zirconium
phosphate. Based on these results, it was determined that 1150°C is too low a
temperature to calcine BS-25. Another independent calcination experiment showed that
BS-25 could be calcined at 1200°C without the formation of the second phase (Figure 9).
The effect of time on the composition is negligible, hence, calcination at 1200°C for 4
hours was chosen as a standard calcination temperature.

10
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Figure 9. XRD pattern of BS-25 powder calcined at 1200°C showing only NZP phase.

Table 3. Results of Test Matrix for Evaluating and Improving Calcination Process.

Temperature =
Time |

1150°C

1250°C

4 Hours

Mean Particle Size: 5.5 pm
Surface Area: 1.27 m?/g

Mean Particle Size: 5.5 um
Surface Area: 1.13 m?%/g

12 Hours

Mean Particle Size: 6.8 {m
Surface Area: 1.65 m2/g

Mean Particle Size: 5.5 um
Surface Area: 1.18 m2/g
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In order to determine the optimum milling conditions, a series of calcined samples
(calcined at 1200°C for 4 hours) were milled by vibratory milling and ball milling. In the
case of ball milling, two variables, the weight ratio of milling media to ceramic powder,
and milling time were varied. In the case of vibratory milling, time was used as the only
variable and media to powder weight ratio was held constant (at 6:1) due to the
difficulties associated with changing this ratio in the vibratory mill. Particle size and
surface area of these samples were measured after milling. Figure 10 illustrates the effect
of milling media content and milling time on milling efficiency. This study indicates that
vibratory milling is more efficient than ball milling with media to powder weight ratio of
5:1. When the media to powder ratio for ball milling is increased to 8:1, the efficiency of
ball milling matches that of vibratory milling. However, such a high media to powder
ratio during ball milling leads to contamination of the powders due to wear of the milling
media. Thus, vibratory milling was considered a preferred milling technique. A typical
batch size for the vibratory mill is approximateiy 25 Ib. When smaller batches are needed
ball milling with intermediate media-to-powder (6:1) ratio should be preferred, since the
jar size is adjustable.

14
12 : : : f = N
10 | = —
" T
__,_,.ﬁ-

f T

- B Ball Mill (5:1 Media to Powder)

Surface Area (m2/g)

- X ® Ball Mill (8:1 Media to Powder Ratio)

i A Vibratory Mill

L 1 L L L1 LA L1 IllllllllIlllllllll‘llllI'IIIIIILLI

0 5 10 15 20 25 30 35 40 45 50
Time (H)

Figure 10. Effect of milling time and conditions on surface area of BS-25 powders
calcined at 1200°C for 4 hours.
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The binder/dispersant system is a crucial factor in determining the success of the
slip-casting process. Accordingly, several combinations of binders and dispersants were
investigated for preparing slips of the various compositions. Some of the binders assessed
were PEGs (Polyethylene Glycol)I and Goodrite K-type$, and one of the evaluated
dispersants was Darvan C™. Preliminary results showed that certain proprietary binders
and dispersants performed better than others in providing satisfactory flow properties for
the BS-25 system, although, even these binders and dispersants had a tendency to migrate
to the surface during the drying stage of the slip casting process. New binders and
dispersants are being evaluated to better optimize the rheological properties of the slip.
Another important parameter that governs the flow characteristics of the slip and,
thereby, the properties of the formed body is the pH of the slip. Studies to optimize the
pH for slips of each composition are underway. A suitable binder-dispersant system and
pH of the slip would lead to slip-cast bodies (such as port liners) with good properties and
consistent quality.

Using the thusfar optimized process variables i.e., vibratory milling (media to
powder ratio 5:1) and calcination of the milled and dried powders at 1200°C for 4 hours,
ceramic slurry was prepared for slip casting by using the standard method of wet-milling
the calcined powders with an appropriate dispersant, binder, and weight percent distilled
water using grinding media. A series of tiles of size 2" x 2" x 0.25" were slip cast in
molds with only small amounts of moisture (typically 5% by volume). Cast tiles were
sintered at 1550°C for 4 hours - conditions determined to be optimum based on previous
work on NZP ceramics. These tiles were then machined (sliced and ground) to
appropriate shapes and sizes for further characterization.

MATERIALS CHARACTERIZATION

As-sintered BSX and CSX series specimens of appropriate sizes and shapes were
used for preliminary characterization of mechanical properties (flexural strength, Weibull
modulus, and elastic modulus), thermal properties (thermal conductivity, thermal
expansion, thermal stability, and heat capacity), and microstructures. Because it was

g Union Carbide, Cleveland, OH.
s BF Goodrich, Cleveland OH.

™ RT Vanderbilt Co., Norwalk CT.
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intended to study the effect of high temperature thermal cycling on important material
properties, some of the specimens were subjected to 1, 25, and 250 heat-cool cycles
between room temperature and 1250°C prior to a second stage of characterization.
Compositions of the BSX (Baj4xZr4Pg2xSing094) series corresponding to x=0.0, 0.17,
0.25, 0.375 and 0.5, and CSX (Cay.xS1xZr4Pc024) series corresponding to x=0.25, 0.375
and 0.5 were evaluated. Characterization efforts at LOTEC and Penn State University
were supplemented by work performed bv Mr. T. Barrett Jackson at the High
Temperature Materials Laboratory (HTML) of ORNL as LoTEC's Industrial Fellow.

Flexural Strength

Both as-sintered and thermally cycled bar specimens of nominal dimensions 5.5
mm x 6.5 mm x 50 mm were first prepared. The tension face of the each bar was then
polished to a fine finish and its edges chamfered. Fracture loads (Py in Newtons) of the
bar samples subjected to four-point bending were first determined using loading fixtures
and procedures recommended in Ref. 6. The cross head speed was 0.5 mm/min. and the
load at failure was recorded. From the load at failure and the cross-sectional dimensions
of the test specimens the flexural strength was calculated. The fracture strengths (c¢in

MPa) were then calculated using the elastic bending formula given below:

1.5 P; (S- 1)
Of = bt2 .................................... (1)

where, b and t represent the width and thickness, respectively, of the bar samples.

Table 4 provides the room temperature flexure strength data of both as-sintered and
thermally cycled (1250°C) specimens along with the standard deviation (m) of each set of
data. Three important observations can be made from Table 4: (i) flexure strengths of
BS-25 and CS-50 are the highest among the BSX and CSX compositions, respectively,
irrespective of the extent of thermal cycling (0 to 250 cycles), (ii) there is no noticeable
degradation in strengths of the BS-25 and CS-50 materials even after 250 cycles at
1250°C (see Figs. 11(a) & (b)), and (iii) standard deviations and, hence, Weibull modulii
of strengths of the BS-25 and CS-50 materials are reasonably high. This is indicative of
the superior low and high temperature mechanical properties of the BS-25 and CS-50
compositions in the BSX ;ind CSX system, respectively. However, between the two, the
BS-25 material possesses better mechanical properties.
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Table 4. Summary of the room temperature flexural strengths of as-sintered and

thermally-cycled (1250°C) BSX and CSX materials.

Thermal Cycling between R.T and 1250°C
Composition Flexure strength (MPa)

(BSX and CSX)| As Sintered 1 Cycle 25 Cycles 250 Cycles

BS-0 40.13+10.85 | 46.52%6.34 46.90+2.24 44.25+3.29
BS-17 49.76 + 5.61 46.53 £ 4.90 - 46.49 £ 4.95
BS-25 84.20+7.61 81.43+12.51 | 88.19%3.03 75.92+595
BS-37.5 46.13+4.13 46.82 +6.59 48.99+6.17 45.14 £ 6.16
BS-50 45.55+3.48 42.50 £ 3.61 49.19%6.70 41.21£4.76
CS-25 36.87 £ 7.55 37.47+£5.36 42.02+4.73 37.95+7.26
CS-37.5 58.41 £ 6.82 53.88+5.57 57.60+£4.73 5490 +5.17
CS-50 75.52+4.83 | 69.81+491 67.88 1.62 70.16 £ 3.86

Thermal Diffusivity

Thermal diffusivity measurements were made using a xenon flash system. Eight
different compositions viz., BS-0, BS-17, BS-25, BS-37.5, BS-50, CS-25, CS-37.5, and
CS-50 were characterized at room temperature; and the thermal diffusivity of only the
BS-25 composition was evaluated as a function of temperature. Five test specimens of
each composition were prepared and thermal diffusivity measured. Test specimens
consisted of disks 12.5 mm in diameter and approximately 1.5 mm thick. The test
specimens were first coated with a layer of Au/Pd followed by a layer of colloidal
graphite. The metal layer prevents light penetration into the sample and the graphite
layer enhances the absorption of the xenon light pulse at the face of the sample. The heat
rise as a function of time was measured at the rear face of the sample.

Results of thermal diffusivity measurements are given in Table 5. The thermal

diffusivity value for each test specimen is the average of 10 acceptable measurements.




Table 5. Thermal Diffusivity of various BSX and CSX Compositions.

Composition Then(‘éi‘rll gif;l,l)simy
BS-0 0.0071
BS-17 0.0064
BS-25 | 0.0061
BS-37.5 - 0.0052
BS-50 | 0.0051
CS-25 T 00058
CS-37.5 0.0063
CS-50 ' 0.0070

There was less than 1% difference between the acceptable measurements. In addition,
there was excellent agreement between the 5 test specimens of each composition. The
dénsity of the test specimens ranged from 85% to 90% of theoretical. Therefore, a
correction for differences in porosity would have to be made when thermal conductivity
is calculated.

Heat Capacity

Measurement of specific heat capacity of all compositions was important to
calculate the thermal conductivity from thermal diffusivity and the density data.
However, only the BS-25 material has bcen cvaluated in this Phase I program. (The
characterization of the CS-50 and other materials has been scheduled for the ongoing
Phase II work.) Specimens for heat capacity measurement were made by core drilling
1.5mm plates to produce a 4 mm disk. Three specimens of the BS-25 composition were
made. After drilling, the specimens were clean fired to 1000°C and held at temperature
for 2 hours. The heat capacity measurements were conducted in a differential scanning
calorimeter (DSC). These values have been tabulated in Table 6 below.
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Thermal Con ivi

Using the measured thermal diffusivity and specific heat data, and the density of the

test specimen, the thermal conductivity of BS-25 was calculated from Equation 2, which
relates thermal conductivity, , to thermal diffusivity, o, specific heat capacity, cp, and

density, p;

Table 6 and Figure 12 provide the values of thermal conductivity of BS-25 as a function
of temperature up to 1100°C. Similar data are being compiled for the other compositions
as part of the ongoing Phase II research.

Thermal Expansion

Thermal expansion measurements were made on as-sintered and thermally cycled
(1 to 250 cycles from R.T. to 1250°C) BSX and CSX compositions. Two as-sintered
specimens of each composition were tested to confirm’ the consistency of data from
sample to sample. The results of these runs have been presented for three compositions
of the BSX series and two of the CSX series in Figures 13-17. From these figures, it is
clear that sample to sample difference of thermal expansion data is very small.

Table 6. Thermal Conductivity (x) of BS-25 material as a function of temperature.

Temperature Cp o p K
°K (°C) (cal/gm) (cm2/sec) (gm/cc) (W/m°K)

298.15 (25) 0.4898 0.0061 3.09 0.9232
373.15 (100) 0.5548 0.0056 3.09 0.9600
573.15 (300) 0.6449 0.0051 3.09 1.0163
773.15 (500) 0.6884 0.0049 3.09 1.0424
973.15 (700) 0.7141 0.0046 3.09 1.0150
1173.15 (900) 0.7310 0.0048 3.09 1.0841
1373.15 (1100) 0.7429 0.0050 3.09 1.1478
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Figures 18-22 show the bulk thermal expansion curves for the various as-sintered
and thermally cycled BSX compositions. Several interesting observations could be made
with respect to these thermal expansion curves. Samples of different compositions from
the BSX series exhibit varying degrees of anisotropy as a function of concentration of
silicon upon thermal cycling. BSX materials that exhibit high degree of thermal
expansion anisotropy - BS-0, BS-37.5 and BS-50 - tend to have large thermal hysteresis
which decreases with increasing amount of cycling and those with small anisotropy - BS-
17 and BS-25 - have relatively negligible hysteresis. In the range of x=0.00 to x=0.50,
one particular composition -x = 0.22- showed no (zero) anisotropy. The anisotropic
compositions from the BSX series show a permanent shrinkage associated with cooling
of the specimen during thermal expansion measurements. These trends have been
depicted in Figure 23 which is a plot of the effect of composition on thermal expansion
anisotropy for the BSX series of materials.

Similarly, in the CSX compositional series, Cag 55rg5Zr4P024 (CS-50) shows
minimal thermal expansion anisotropy and hence it has the least amount of thermal
expansion hysteresis associated with it. Figures 24 through 26 show the thermal
expansion curves for the as-sintered and thermally cycled CSX materials. From these
curves it can be noted that the highly anisotropic CS-25 and CS-37.5 materials show
extensive shrinkage up to 150°C and anomalous expansion as they cool below 150°C. As
with the BS compositions, the hysteresis associated with the CS materials decreases with
the extent of cycling.

To understand better the difference in thermal hysteresis behaviors between the
isotropic and anisotropic compositions, one specimen each of the isotropic type - BS-25 -
and anisotropic type - CS-25 - was cycled 3 times to 1250°C in a He atmosphere. The
results of these runs revealed that the BS-25 material has an average expansion of 0.5
ppm/°C over this temperature range, with very little difference from run to run. The
hysteresis was small and the specimen returned to its original length after each run. On
the other hand, the CS-25 test bars subjected to thermal cycling between 20°C and
1250°C in He atmosphere showed the expected anomalous expansion behavior below
150°C. This behavior was believed to be possibly due to room temperature micro-
cracking. The phenomenon that furthered this belief was the continued expansion of the
test specimen after it had cooled to room temperature (see Figure 27). This room
temperature expansion was enhanced in the presence of room air (70% to 80% relative
humidity) suggesting a possible reaction with either oxygen or water vapor. The
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specimen also exhibited considerable hysteresis and some permanent change in length.
After 3 cycles between 20°C and 1250°C, measurement of the length of the test specimen
after removal from the dilatometer revealed a decrease in length of 0.03 mm
(corresponding to 0.12 percent).

With these results, it was conceived that the isotropic compositions (BS-25 and CS-
50) have little or no microcracking associated with cooling from either the sintering
temperature or the heat treatment temperature. Without the presence of microcracking
there is very little thermal hysteresis and thus very reproducible thermal expansion
curves. Whereas, the anisotropic compositions (BS-0, BS-37.5, BS-50, CS-25, and CS-
37.5) microcrack upon cooling from the sintering temperature and thus have thermal
expansion curves with varying amounts of hysteresis.

In the BSX compositions, it was speculated that many of the microcracks close
above 1200°C and the intergranular stresses due to thermal expansion anisotropy are not
strong enough to open the microcracks at room temperature. As a result there is net
shrinkage associated with thermal cycling. During subsequent cycles, the number of
microcracks closing would be less and hence there is less shrinkage associated with the
second cycle and so on during the cooling process.

In the case of CSX compositions, the inicrgranular stresses during cooling may be
strong enough that some of the microcracks tend to open up and lead to expansion during
cooling. The difference in these shrinkages is very pronounced when CS-25 and CS-37.5
are compared. CS-25 has the larger anisotropy compared to CS-37.5, hence, the
hysteresis as well as intergranular stresses are very large for CS-25. Accordingly, the
"knee" at 150°C is also very pronounced for CS-25 as compared to CS-37.5 (see Figs. 24
and 25). Further investigation of the variation in the measured bulk linear thermal
expansion when comparing measurements made on as sintered specimens (o
measurements made on thermally cycled specimens will be discussed in the next two
sections.

In addition to the above discussed, a systematic literature search was carried out and
all the thermal expansion data (bulk as well as axial thermal expansion for various
compositions) have been compiled. This data is being maintained at LoTEC as a
Microsoft Word file formatted for Macintosh and is available upon request. ’

Microstructural Congiderations. Preliminary SEM examinations were carried out

on fracture surfaces of flexure tested specimens of three CSX compositions viz. CS-25,
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CS-37.5, and CS-50 and one BSX composition - BS-25. The fracture mode in each of
these compositions was generally transgranular. The fracture surface of the BS-25
specimen revealed very little micro-cracking which is consistent with the low thermal
expansion anisotropy of this material. On the other hand, from the CSX samples the
following was observed; more internal cracking (micro-cracks) in the CS-25 material
with lesser amounts in CS-37.5 and very little in the CS-50. These observations confirm
that the anisotropic compositions CS-25 and CS-37.5 are associated with microcracking
behavior. Such microcracks likely formed during cooling of the sintered specimens to
room temperature. Microcracking in the anisotropic materials (CS-25, CS-37.5 etc.) also
explains their much lower fracture strengths as compared to the isotropic ones (CS-50,
BS-25 etc.). |

To examine further the microcracking behavior during thermal cycling, fracture
surfaces of selected isotropic - BS-25 and CS-50 - and anisotropic - BS-0, BS-50 and CS-
25 - flexure specimens that were either as-sintered or thermally-cycled (up to 250 cycles
at 1250°C) were observed using scanning electron microscopy (SEM). SEM was vsed to
evaluate structural changes in the various compositions due to thermal cycling to 1250°C
in a room air environment. The thermal cycling process consisted of placing the
fractured bars in crucibles made from that [NZP] composition and placing the crucibles
in a furnace, and heating and cooling according to the following schedule:

S hr. 0.5 hr.
1250°C , o>

25 / N\ 2,
A %
/
75°C

R.T.
Figures 28 to 32 compare the microstructure (morphology) of the as-sintered

specimens with the specimens cycled 250 times for the studied compositions. In the BSX
series, there are two anisotropic compositions - BS-0 and BS-50 (Figs. 28, 30) - with
either positive or negative bulk thermal expansion, respectively, and one isotropic
composition - BS-25 (Fig. 29) - with a very low positive bulk thermal expansion.
Evidence of microcracking is seen in the anisotropic compositions, both in the as-sintered
and thermally cycled condition. This microcracking accounts for the low mechanical




Figure 28. SEM fracture surface microstructures of (a) as-sintered and (b) thermally
cycled (250 cycles to 1250°C) BS-0 specimens.




Figure 29. SEM fracture surface microstructures of (a) as-sintered and (b) thermally
cycled (250 cycles to 1250°C) BS-25 specimens.




Figure 30. SEM fracture surface microstructures of (a) as-sintered and (b) thermally
cycled (250 cycles to 1250°C) BS-50 specimens.




Figure 31. SEM fracture surface microstructures of (a) as-sintered and (b) thermally
cycled (250 cycles to 1256~C) CS-25 specimens.




Figure 32. SEM fracture surface microstructures of (a) as-sintered and (b) thermally
cycled (250 cycles to 1250°C) CS-50 specimens.
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strengths of the anisotropic compositions, discussed earlier in this report. There is little

evidence of microcracking in the BS-25 specimen even after 250 cycles to 1250°C. The
observed porosity is consistent with the 85-90% theoretically dense specimens. An

unexpected but significant feature of the microstruétures is the fine porosity (cavitation)-
developed in the anisotropic compositions, BS-0 and BS-50, when subjected to thermal

cycling. It is believed that this porosity, which has a similar appearance to that found in

tensile creep specimens, is due to the anisotropic axial thermal expansion and the internal
stresses developed between individual grains during thermal cycling. However,
cavitation is not evident in the BS-25 specimen.

The microstructures of the CSX series specimens yielded results similar to those of
the BSX compositions (see Figs. 31 and 32). Again, microcracking and cavity formation
were found in the anisotropic CS-25 material while there was no evidence of
microcracking or cavity formation in the isotropic CS-50 composition.

Environmental Effects (Moisture, Temperature) = As stated before there was

substantial variation in bulk thermal expansion of anisotropic, microcracked
compositions. Upon cooling from the sintering temperature, the ceramic microcracks due
to the stresses associated with the anisotropic axial thermal expansion of the individual
ceramic grains. The microcracks are further opéned by the absorption of moisture from
egither the air or when the ceramic is ground into test specimens in a manner similar to
stress corrosion cracking observed in other ceramic materials. When the test specimen is
reheated during the thermal expansion measurement the absorbed moisture is driven off
and the microcracks close. Further heating promotes microcrack healing. Taken together
this explains the apparent lower bulk thermal expansion obtained for the as sintered and
ground specimens. If the subsequent thermal expansion measurements are made shortly
after the heat treatment, before any substantial amount of moisture is reabsorbed,
consistent results should be obtained. This view finds corroboration in the almost
identical expansion curves of Figufe 24 for an anisotropic material, such as CS-25,
subjected to 1 and 250 thermal cycles between room temperature and 1250°C.

To test the hypothesis that it is moisture that promotes crack opening, the following
experiments were performed. An anisotropic (CS-25) specimen was heated and cooled in
a dilatometer surrounded by an inert (helium) atmosphere. When the specimen reached
an equilibrium length during cooling (close to room temperature), the helium atmosphere




was displaced by dry air. Next, air with controlled relative humidity was allowed to
surround the specimen. With each increase in relative humidity there was a
corresponding increase in specimen length. Finally, the dilatometer was carefully opened
and water was dripped on to the specimen; this resulted in a sharp increase in the
specimen length. The results of this experiment are shown in Fig. 33.

The above said experiment was performed using an isotropic behavior (CS-50)
specimen. Since the isotropic material returns to its original length by the time it cools
down to room temperature and there are not any microcracks present to open up,
moisture had virtually no effect on the CS-50 spécimen. To determine if the other
anisotropic compositions like BS-0 and BS-50 exhibited similar behavior as that of the
CS-25 specimen, they were heated and cooled in the dilatometer, which was then
followed by controlled application of drops of water. The results obtained for all the
anisotropic materials - BS-0, BS-50 and CS-25 - are shown in Fig. 34 and contrasted with
that for isotropic BS-25. Figures 35(a) and (b) (results derived from verisimilar
experiments) provide a closer look into the moisture-assisted microcracking behavior of
the BS-0 material.
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Figure 33. Moisture-assisted microcracking of anisotropic composition CS-25.
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Figure 35(b). Environmental Effect on Room Temperature Expansion of BS-0.

To determine if there was any chemical change (hydration) associated with the
absorption of water, powder X-Ray diffraction analysis was performed. A sintered test
specimen was crushed to form a fine powder. A portion of this powder was heated to
1000°C to drive of any moisture present and then x-rayed. A similar amount of powder
was mixed with water, allowed to dry and then x-rayed. The powder diffraction patterns
for the two samples are shown in Fig. 36. It was not possible to detect any secondary
phases by this analytiéal method. '

Thermal ilit

Long-term thermal stability of the BSX and CSX compositions were assessed by
cycling samples between room temperature and 1250°C for up to 250 times and
measuring weight changes, especially weight loss due to reduction. All compositions
tested showed very little weight loss indicating good thermal stability. However, the
anisotropic materials revealed slightly greater losses than the isotropic ones (BS-25 and
CS-50) after the first thermal cycle. Further cycling (up to 250 cycles) resulted in less
than 0.05 percent weight loss in all compositions. The greater weight loss of the
anisotropic samples after the first cycle could be attributed to the loss of moisture,
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Figure 36. Powder X-ray diffraction patterns of "As-Sintered" and "Moisture-treated"
CS-25 material.

organic solvents (absorbed during specimen grinding process) present in the microcracks,
and any low volatile phosphates etc. Figure 37 depicts normalized weight loss as a
function of the number of cycles. The weight loss has been normalized to the weight of
the specimens after 1 cycle to 1250°C. In future work, X-ray analysis will be conducted
to ensure presence of the original NZP phases after thermal cycling.

Thermal Shock Resistance

Thermal shock tests were conducted on the BSX compositions in two ways: first,
by quenching the samples from progressively higher temperatures into a bath of liquid
nitrogen until the samples (macro) cracked; and second, by cyclically quenching BS-25
bar samples previously heated to 1250°C into water at 2°C for up to 50 cycles and
measuring the residual strengths of the bars in four-point flexure.

The results of the first test are summarized in the bar plot of Figures 38 (AT in Fig.
38 represents the maximum temperature drop that could be survived). As expected,

40




1 .004 k] LS -‘;o L 13 L § 3 L L k] ] ¥ ¥ g | L L 4 1 1) ] L L] L4 T
- 2 =
L £ —poss i
po R —. = -~
® 1003 [0 —m BS375 .
g 5 <« --@--BS50 i
- R 7
- -~ = =
£ ™ H . ]
.g’ 1.002 R 4 aating Rate: "20°Crmin. i
= K Hold at 1250%C for 30 minutes |
> 5 Furnace cookto below 10G°C |
.g 1.001
© X .
£ i i
o 1 :
= o i
0-999 -l L L '] L i ] L i 1 1 ) | L ;3 1 1 L 3 1 1 1 1 1 l-
1 75 150 225
Cycles to 1250°C
1 '004 .I ) | ' L ¥ 1 ¥ ! 2 1 4 L ! ¥ T 4 L] [ T ] L i L l L) L) L] ¥ l L4 I-‘
S 1003 [ .o —0- OS2 J
< @ --...CS375 ]
N ! o B
g,, = g .__.B. . -CSSO ~d
L D i
3 1.002 { G O SO SOPOU OO SO — .
= - : 20°C/min. -
o ? °C for 30 minutes -
21001 [ d e £ IT18CE €00 0 elow 100°C
T
o
N
® 1.000
E
o
<
0.9990

Cycles to 1250°C

Figure 37 (a) & (b). Normalized weight loss as a function of cycles to 1250°C for the (a)
BSX and (b) CSX compositions.

41




L] 7 L | T LI L) T R} L) L L4 LN

T l T
2 400 600 800 1000 1200 1400 1600
Thermal Shock temperature (°C)
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isotropic compdsitions of the BSX series showed excellent thermal shock resistance as
compared to the anisotropic ones, especially BS-37.5. Microcracking (which causes
thermal expansion anisotropy) in the anisotropic compositions results in deterioration of
these materials during thermal shock testing. However, of the anisotropic materials, the
rather poor properties of BS-0 as compared to either BS-37.5 or BS-50 is likely related to
its positive coefficient of thermal expansion as compared to the negative coefficients of
the other two. ' :
Figure 39 is a plot of the residual (four-point flexure) strengths of the cyclically
thermal shocked samples for between 0 and 50 cycles. An interesting feature of the
results is that the residual strengths of the samples quenched 10 cycles is about 2.5 times
greater than the strengths of the as-sintered samples. This is thought to be due to the
formation of a surface compressive layer of optimum thickness, which is in turn the result

of freezing a lower thermal expansion high temperature NZP phase during quenching
from 1250°C. Advantage could be taken of this phenomenon to strengthen NZP ceramics
for various applications. Investigation of thermal shock resistance as a function of
composition and any strengthening phenomenon in the CSX series materials is being
currently carried out.
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Figure 39. Residual flexure strengths of cyclically thermal shocked BSX specimens.

High Temperature Elastic Modul

For this work, the BS-25 material alone was subjected to high temperature elastic
modulus measurements during Phase I work. These measurements were performed using
an ultrasonic measurement technique at Penn State University. In this procedure, a bar
sample of the BS-25 ceramic was suspended in a furnace by two sapphire threads acting
as ultrasonic waveguides, connected to two transducers, one acting as a source and the
other as receiver. The temperature was raised slowly to 1325°C and the resonance
frequency was noted at 100°C intervals. The Young's modulus was calculated from:

0.94645 Cmf2
E= TR rreereeereeeeseese e (3)

In Equation (3), C is a constant that depends upon the Poisson's ratio, v, specimen
thickness, t, and length, 1; and m is the mass; f is the flexural resonance frequency; and W
is the width. Here the Poisson's ratio, v, was assumed to be 0.23.

Figure 40 represents a plot of the elastic modulus of BS-25 as a function of
temperature. It can be noted that the modulus is nearly the same at 1200°C as at room
temperature. As seen in the figure, the Young's modulus increases with temperature due
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Figure 40. Elastic modulus of BS-25 as a function of temperature.

to the healing of microcracks, reaches a maximum between 500 and 700°C and then
decreases as the temperature increases further. Measurements of high temperature elastic
modulus of CS-50 and other materials have been planned for the Phase II part of this
research. ' '

MATERIALS AND PROCESSES' DEVELOPMENT

The materials and processes intended to be developed in this Phase I work included:
(i) metal-NZP ceramic composites with the metal cast around the ceramic, (ii) alternative
shape forming process such as pressufe slip casiing and gel casting, (iii) ultrasonics-based
ND flaw detection technique, (iv) new low thermal expansion NZP compositions, and
(iv) acoustic emission based microcrack detection process. The former three tasks were
carried out on site and the latter two at Penn State University. ‘
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Molten Metal Casting Trials

One of the primary goals of this project is the demonstration of the ability to cast
molten metal around a (NZP) type ceramic shape without causing damage to the ceramic
or the solidified metal casting. Based on the results of characterization of the various
NZP ceramic compositions, the mechanically and thermally superior BS-25
(Baj 257Zr4P5.5Sig 5024) and CS-50 (Cag 5S8rg 5Zr4Pg024) materials were selected for the
metal casting trials. These compositions have ultra-low and low coefficients of thermal
expansion (the average CTE of BS-25 from room temperature to 1000°C is 0.7 x 10-6/°C
and for CS-50 over this range is 1.9 x 10-9/°C.), respectively, and very low thermal
expansion anisotropy. The ceramic test shapes were straight or 90°- elbow tubes with an
outside diameter of approximately 50 mm, with a 5 mm wall thickness.

Initial metal casting trials with both the BS-25 and CS-50 ceramic tubes resulted in
failure of the ceramic due to the large compressive stresses. These stresses were, in turn,
created by the thermal expansion mismatch between the metal and the ceramic. As
pointed out in an earlier section (Materials Requirement Analysis), finite element analysis
of the metal casting process revealed large compressive stresses in the NZP ceramic-
metal system. All these clearly demonstrated the need for reduced elastic modulus
(increased strain to failure of the ceramic port liner) or providing a compliant layer to
avoid large compressive stresses that would lead to the failure of the ceramic. To ensure
that the ceramic survives the shrinkage stresses associated with the metal casting process,
a test matrix approach was developed. Table 7 provides the details of this teSt matrix to
improve the survivability of the ceramic during the metal casting.

Preliminary work on the lines of the summary in Table 7 involved the introduction
of a compliant layer between the metal (cast iron or aluminum) and the ceramic (BS-25).
The compliant layer was designed to absorb the thermal stresses (generated during
cooling from a high temperature) associated with the thermal expansion mismatch
between the ceramic and the metal. All of the casting trials involving the compliant layer
were successful, demonstrating the ability to cast the ceramic in place. A crude test was
performed to determine the impact resistance of the ceramic within the metal casting.
The metal/ceramic composite tube was dropped repeatedly from approximately 2 meters
height on to a concrete block. The ceramic tube was checked for cracks, chipping, and
any loosening from the surrounding metal. There was no apparent damage to the
ceramic, which is indicative of the beneficial effects of the compliant layer.




Table 7. Planned tests for improving NZP-ceramic survivability during the metal casting
process.

Variables

1. Elastic Modulus

Methods/Techniques

a. Introduce porosity
Acicular
Plate shaped

b. Reduce Sintering Temp.

¢. Microcracking
BaZr4Ps024
Cag.75810.25Zr4P6 024
Baj 5Zr4PsSiO24

Comments

m

Will reduce modulus however,
will also reduce the strength

II. Compliant Layer

a. Porous coatings
b. Thermal spray coatings
¢. Hollow spheres

d. Misc. compliant coatings

Could increase cost, possible
rattling during high operating
temperature

I Higher CTE

BaZryPs024
SrZryPs024
Cag.58r0.5Zr4P6024

May not survive thermal shock
associated with metal casting




Next, X-ray computer tomography was performed to examine the metal-compliant
layer and ceramic-compliant layer interfaces. The interfaces were found to be intact in
most cases as is evident from Figure 41 which is a X-ray computer tomography based
picture of the interface. However, in a few cases where there was direct contact between
the metal and the ceramic tube (a void in the compliant layer) a small crack had
developed in the ceramic (see arrow in Figure 42). The cracks were approximately 0.05
to 0.1 mm wide and extended up to Smm in 1ength from the metal-ceramic contact point.
This observation suggests that uniformity of the compliant layer is critical to maintain
interface integrity and strength. It is also expected that the thickness of the compliant
layer will influence the overall performance of the part in actual service. Work is
continuing in the area of metal casting around the ceramic tube and subsequent
evaluation of the composite tube in field testing. Refinements are being made and tested
to improve the casting process and better understand the requirements of the compliant

layer.

Figure 41. X-Ray computer tomography picture of the metal-ceramic composite tube
with compliant layer in between.
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Figure 42. X-Ray computer tomography picture of the metal-ceramic composite tube
showing crack (arrow) in the ceramic.

P re Slip Castin

An alternative shape forming process, presspre slip casting, was investigated. A
large batch (20 kg) of BS-25 (Baj 25Zr4P5 50Si0 50024) powders was synthesized and
ball milled for eight hours with the appropriate binder and dispersant system, and the slip
was prepared for pressure slip casting. The schematic diagram of the pressure slip
casting set-up is shown in Figure 43. A series of plaster molds were fabricated for the
purpose of pressure casting. Slip was poured into the molds and pressure exerted using
compressed air. Wall thicknesses (dependent variable) of the cast bodies were measured
as function of time and pressure (independent variables). Figures 44 and 45 show the
effect of time and pressure on the wall thickness of the cast ceramic. ,

The results of pressure slip casting studies indicate that increased pressure leads to
rapid build-up of the wall. For example, with an air pressure of 80 psi, the wall thickness
builds up to 0.24" within two minutes as compared to a 0.25" wall thickness upon
holding the slip for one hour without applying any pressure. This drastic improvement in
the casting rates would provide the necessary rapid manufacturing capabilities and allow
cost effective manutacturing of NZP ceramics. Further optimization of the pressure slip
casting process parameters (as with the regular process) such as binders, dispersants and
pH is likely to yield finished products with the best possible properties.
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Figure 45. Effect of slip casting time on wall thickness of the cast body.

Gel Casting

This high potential near-net shape forming technique is being adapted to the
fabrication of NZP ceramic based diesel engine port-liners and other components.
Processing steps involved in the gel casting of NZP ceramics have been summarized in
the flow chart of Fig. 46. Despite its advantages with respect to speed of forming and
high green strength of the cast and dried part, several areas of this technique still need
further examination; for instance, viscosity of the gel at the time of casting (which
depends on the amount of solids loading), idle time between casting and gelation, flowing
due to self weight of the semi-dry part after removal from the molds, and burn-out of the
polymer. All of these areas will be adequately addressed during Phase IT work.
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Figure 46. Schematic layout of the sequence involved in gel-casting procedure.

Ultrasonic NDE Technigue

A "dry coupling”, direct contact, transmission mode ultrasonic technique was tested
and adapted for quality checks on finished NZP ceramic parts. As can be seen from Fig.
47, the technique employs dry coupling transmitting and receiving transducers$ between
which the test material (NZP ceramic) is inserted. The transducers used were W-series
transducers capable of operating in the frequency range <50 kHz to >25 MHz and
designed for velocity measurements and high resolution testing. A PR35 ultrasonic
pulser/receiver acted as the source and transmitter of electric pulses which were recorded
and analyzed using a Cathode Ray Oscilloscope (CRO).

§ Ultran Laboratories, Inc., Boalsburg, PA 16827-0719.
1 JSR Ultrasonic Measurement Systems, Pittsford, NY 14534
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Figure 47. Schematic diagram of the ultrasonic NDE set-up used for flaw detection.

Parameters monitored were the time of flight, longitudinal wave velocity, and
amplitude and number of pulses. This information was then processed for comparison
with that of a standard. Deviations of the observed/measured parameters of the test
sample from the standard were interpreted to be due to defects. In order to ascertain the
technique's reliability, some of the seemingly defective samples were dissected to
examine for defects. It was found that this technique gave a fairly accurate indication of
the presence of flaws.

New NZP materials

As stated in the proposal, three more NZP systems where chosen for this study.
Cay4xZr4Pg-2xSiox 024 (CSX) (x=0.1, 0.25, 0.37)
Sr14xZ14Pe.2xSi2x024 (8'SX) (x=0.1,0.25,0.37)
Ca(14x)/251(14x)2Zr4Pe.2xSizx 024 (CS'SX) (x=0.1, 0.25, 0.37)

Three compositions were synthesized by oxide mixing technique described earlier.
Stoichiometric amounts of the precursors (after taking into account the LOI) for a
specific composition were mixed, ball milled in alcohol for 20 hrs., dried in air and
calcined for 6 hrs. at 1200°C. Calcined powders were then subjected to XRD analysis.
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The XRD data indicated that the calcined material contained only the NZP phase in most
compositions and, in a few, minor amounts of ZrP,07 which typically disappeared after
sintering. The corresponding XRD patterns are shown in Figures 48(a) to (c). Detailed
characterization will be conducted during the Phase II effort.

Microcracking Investigation by Acoustic Emission

Using carefully selected wave guides, acoustic signal activity ("counts") emitted by
test specimens were recorded. Initial tests consisted of recording acoustic emissions
during heat-up of a specimen to and cool-down from 1000°C. A Locan 320 system
which was capable of detecting signals in the range of 3 kHz to 1.2 MHz with amplitudes
up to 80 dBel was used for detection of acoustic activities. The number of counts
recorded was attempted to be correlated to the extent of microcracking in the specimen.
It was observed that while no significant acoustic emission could be registered during
heating, the opposite was true during cooling (specially below 350°C); which is in
agreement with previous experimental observations. These experiments also indicated
that the number of acoustic emission counts is a function of the maximum temperature to
which the samples are heated. More work on acoustic emission based detection of
microcracking has been planned for the Phase II program of this project.
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Figure 48 (a). XRD phase content data of C'SX material for x=0.25.
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Figure 48(b). XRD phase content data of S’SX material for x=0.25.

oS4

2.28

oEY°¥

[L33-28 2
14D 4

se0° PR

|- LD 4

L8L°F

50

108°%
€4L8°3
2€0°2
122 -
wog’s
sz 2

?tﬂﬂ

4.44

30

20

8.84

40

Figure 48(c). XRD phase content data of C'S'X material for x=0.25.
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CONCLUSIONS

Work on this Phase I program has led to substantial progress towards the
development of NZP ceramic based “cast-in-place” diesel engine port liners. Specific
accomplishments and deductions have been summarized in the following:

1. Preliminary work on material property requirements using both finite element
analysis (FEA) and metal casting trials converged on the following results: (i)
large thermal gradients (and any associated stresses) in the NZP ceramic just at
the start of metal casting and (ii) large compressive hoop (shrinkage) stresses
that led to cracking of the NZP ceramic after the metal casting process.

2. Optimization of some of the process parameters involved in powder processing
and slip casting of NZP ceramics was attempted. Specifically, studies of the
effect of milling and calcination conditions; and moisture content of the mold
on the final properties of the slip-cast and sintered body were completed.

3. Samples of BSX (Baj4xZrgPe2xSizx024) and CSX (CajxSrxZrgPcO24)
compositions for x =0, 0.17, 0.25, 0.375, 0.5 and x = 0, 0.25, 0.5, respectively,
were fabricated and subjected to detailed characterization. Characterization
included evaluation of mechanical properties (flexure strength and elastic
modulus), thermal properties (thermal diffusivity, thermal conductivity,
thermal expansion, thermal stability-and thermal shock) and microstructures.

4. Of the various BSX and CSX compositions, the BS-25 (x=0.25) and CS-50
(x=0.50) materials had the highest strengths. In addition, the BS-25 and CS-50
materials exhibited the least thermal expansion hysteresis during thermal
expansion testing for up to 250 cycles to 1250°C. This result suggested that
BS-25 and CS-50 were the most isotropic of all compositions tested.

5. The marked thermal expansion anisotropy of most of the other BSX and CSX
materials was shown to be due to moisture-assisted microcracking during
cooling (close to room temperature) through a carefully designed experiment.
Direct evidence of the microcracking phenomenon was obtained through
microstructural examinations. |
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10.

Microcracking was not only responsible for the observed differences in thermal
expansion during thermal cycling (hysteresis) of a given sample but also for the
low strengths of the anisotropic compositions.

Metal casting trials with a compliant layer introduced in between the metal and
ceramic tubes was successful in preventing cracking of either the ceramic or
metal due to shrinkage stresses. The resulting composite tube was structuraily
sound as was evident from X-ray computer tomography studies. Requisite
optimum properties of the compliant layer and the ceramic are being obtained
through iterative refinement of the finite €lement model based on the results of
metal casting trials.

Alternative forming processes such as pressure slip casting and gel casting are
under assessment. This Phase I experience has shown that both processes hold
significant promise for speedy manufacturing of near-net shape NZP ceramic
parts without compromise of quality.

In the search for new NZP type materials three more systems were selected for
investigation. Preliminary testing of thermal expansion behavior and flexure
strengths to isolate ultra-low thermal expansion, isotropic and high strength
compositions is being conducted. (Detailed characterization of these materials
will be undertaken and a complete database will be created.)

NDE techniques based on acoustic emission, for the detection and analysis of
microcracking behavior in NZP materials, and ultrasonic transmission, for the
detection of flaws in finished parts have been developed. The latter technique
is already in use for quality control purposes.
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