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1. EXECUTIVE SUMMARY

Major impediments to the commercialization of advanced ceramics are reliability
and cost. Toward the objective of improving reliability and reducing manufacturing cost,
the U.S. Department of Energy, Office of Transportation Technologies, under contract
with Martin Marietta Energy Systems (MMES), Inc. has sponsored research as part of
the Ceramic Technology Project (CTP). The goal of the CTP, managed at ORNL, is to
develop highly reliable and cost-effective structural ceramics for advanced heat engine
applications such as automotive gas turbine, piston and diesel engines. The Cost-
Effective Ceramic Machining (CECM) Program was established as part of the CTP in
recognition of the importance of machining to commercializing advanced ceramics. The
CECM recognized that ceramic machining, predominantly diamond grinding, is a major
cost factor in advanced ceramics manufacturing. The abrasive wheel performance
significantly influences the grinding costs. Additionally, the quality of the grinding
operation greatly affects ceramic surface integrity, tolerance and manufacturing yield.

The Innovative Grinding Wheel Program was performed in response to MMES
Request for Proposal No. SM037-87 and was managed under the CECM Program. The
objectives of the Phase 1 program were: to define requirements, design, develop and
evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of
advanced ceramics. Innovative wheel compositions optimized for cylindrical grinding
could be relatively easily optimized for other machining operations such as centerless,
surface and ID grinding. The Norton team achieved the Phase 1 objectives,
demonstrating an experimental metal bonded wheel with diamond superabrasive that
resulted in significantly improved grinding performance over standard wheels when
evaluated in cylindrical grinding of three types of advanced ceramics.

The scope of the program involved a cooperative effort involving three Norton
groups. The overall program was led by Norton Company Abrasives. Under this group
the Abrasives R&D group led the technical effort while wheel manufacturing and
eventual wheel commercialization is the responsibility of the Superabrasives Division.
Norton Company Abrasives R&D designed and developed a novel metal bond system,
and performed the wheel tests at the Norton World Grinding Technology Center. The
second group, Norton Diamond Film Division, conducted a parallel and complementary
research and development effort that incorporated a novel design chemical vapor
deposition (CVD) diamond film wheel system. The third group, the Northboro Research
and Development Center (NRDC) supplied ceramic specimens for the gnndmg tests and
evaluated surface integrity in the ground ceramics.

The program was divided into two technical tasks: 1) Analysis of Required
Grinding Wheel Characteristics and 2) Design and Prototype Development.




The major work in our Task 1, analysis of required grinding characteristics, was a
. thorough analysis of wheel bond characteristics. There are three major bond types that
hold the abrasives: resin, glass or vitrified, and metal bond. Each bond system has
advantages and disadvantages for grinding ceramics. Resin bonded wheels are the most
widely used as an all purpose grinding wheel for ceramics. Resin bond products are free
cutting and a good starting points for grinding a wide range of advanced ceramics, but
do not possess adequate life, and require frequent truing and dressing. Vitrified-bonded
wheels can provide better life but need to be handled with caution because of the brittle
nature and lower strength of the bond. Current or conventional metal bonds have been
found to be excessively durable and consume more power in grinding fine grain size
ceramics, but require frequent dressing to remove worn abrasives, and expose new sharp
ones. Metal bonds have the advantage of higher strength and higher wheel speed
capability. Our initial focus of bond design in this program was to work in metal bond
systems with the objective of developing a system that possesses the most favorable
attributes of all current bond systems. Specifically, experimental metal bonds were
designed to give intermediate grinding action between standard resin and metal bonds.

A critical parameter in controlling the cost and quality in a ceramic machining
operation is determining the precise point at which dressing or truing is required. Truing
refers to regenerating the original profile on the wheel and also making it run concentric
to the axis of rotation. Dressing is the process used to expose the abrasive grit above the
bond level for efficient grinding action. Truing and dressing operations are essentially
non-productive wheel wear and account for a significant portion of abrasive cost in
ceramic machining. Therefore, understanding the truing and dressing characteristics of a
grinding wheel is also essential to any wheel development program aimed at
manufacturing efficiency.

Task 1 was also designed to determine the structural and composition
requirements for next generation grinding wheels. This analysis included the mechanical,
thermal and coolant absorption characteristics of the system; type and characteristics of
the abrasive grit; analysis of the wheel stiffness characteristics; identification of economic
targets for wheel and process costs; and development of wheel behavior models.

Our approach expanded Task 1 to include bond-only wear and strength tests.
This series of tests allowed us to model the experimental bonds to give intermediate
grinding characteristics between standard resin and metal bonds. Task 1 culminated in a
large experimental matrix of 76-mm screening wheels, used to grind sialon disks in a
cylindrical plunge test. Some . experimental bonds demonstrated significant
improvements over standard resin bond wheels. Additionally, the experimental metal
bond demonstrated the ability to grind significantly more than standard metal bonds
without loading. By using this screening test approach, we were able to test
approximately 45 Superabrasive wheel variables before down selecting to the most
promising bonds for the Task 2, 203-mm diameter tests.

The novel CVD diamond wheel approach was incorporated in this program as a
part of Task 1. The work was designed to include a small-wheel screening test
complementing the main Superabrasive metal-type bond approach. The higher risk CVD
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diamond wheel approach was to be a feasibility study and was not planned for
continuation into Task 2, Design and Prototype Development. The CVD approach was
considered a higher risk but was considered to have a high-potential payoff in applying
this new technology to machining of ceramics. The CVD diamond wheel activity was
concluded in Task 1 as planned. The initial CVD wheel design was unsuccessful. A thin
CVD diamond wheel was redesigned and tested. This test was designed to evaluate the
basic grinding characteristics of this new CVD diamond design. Diamond thickness and
preform geometry had the greatest impact on performance. While significant grinding
improvements were noted from the initial screening test, the results were not promising
for this type of operation compared to conventional grinding wheels. The CVD wheel
approach does not appear at this stage to offer promise for cost-effective cylindrical
grinding of ceramics. Other possible abrasive applications for this approach will be
explored.

Task 2 was intended to design and construct prototype wheels and evaluate
grinding performance on at least two commercial grades of silicon nitride rods. Grinding
characteristics include surface roughness, spindle power, grinding forces, wheel dressing
characteristics, wheel loading characteristics, wheel wear, vibration characteristics, and
coolant compatibility. There were two major considerations in selecting the ceramic
materials used for assessing the grinding performance of new wheels in this program.
The first was the relevance of the material to transportation technology components.
The second criterion was that the materials must be commercial and have reduced
volume flaw characteristics so as not to mask severe grinding damage that could be
produced with new grinding products or incorrect dressing. Saint-Gobain/Norton
Industrial Ceramics Corporation's NC-520 sialon, NCX-5102-HIP'ed SizN; and AZ67H-
20% ZTA meet the above criteria and were chosen for Task 2.

In Task 2, a series of the most promising metal bonds from Task 1 were scaled

-up to 203-mm (8-in.) diameter test wheels. An improved Superabrasive metal-bond
specification for low-cost machining of ceramics in external cylindrical grinding mode
was demonstrated. The 203-mm diameter test wheel made in this bond contained 75
concentration diamond abrasives of size U.S. mesh 270/325. The wheels were tested on
a CNC instrumented cylindrical grinder in both plunge and transverse test conditions.
The experimental wheel successfully ground three types of advanced ceramics, sialon,
HIP'ed SisN, and ZTA, for extended time without the need for wheel dressing. The
spindle power consumed by this wheel during test grinding of NC-520 sialon is as much
as to 30% lower than with a standard resin-bonded wheel with 100 diamond
concentration, that is typically used in this application. The wheel wear with this
improved metal bond was an order of magnitude lower than the resin-bonded wheel,
which would significantly reduce ceramic grinding costs through fewer wheel changes
for retruing and replacements. The projected manufacturing cost of this experimental
wheel is not appreciably different from standard resin- and metal-bonded superabrasive
wheels, and therefore this experimental wheel would have a significant cost advantage in
grinding ceramics.




An essential element to our approach was to quantify surface integrity and assess
surface damage caused by the new products. Grinding wheel performance should be
evaluated by not only grinding system factors such as force, power, wheel wear, cut rate,
G-ratio, and dressing characteristics; but also on ceramic surface integrity considerations
such as retained strength, surface finish, surface damage and residual stress. It was
essential that a next-generation grinding wheel that could s1gmﬁcantly reduce machining
costs would not compromise surface i mtegnty on the machined ceramic parts.

In the Task 1 small-wheel screening test, we performed optical examination and
C-ring compression tests of selected sialon disks. For the C-ring compression tests,
corner breaks and the limited number of data points made comparative conclusions
suspect. However, the experimental results did not show evidence of unusual grinding
damage to the ceramic disks. More comprehensive flexure testing was planned and done
for the Task 2 rods. Stresses generated during flexural testing was normal to the
grinding direction, which resulted in a more meaningful cylindrical grinding damage
evaluation. Therefore, the C-ring. test-in Task 1 was determined to have limited
usefulness as a qualitative assessment of grinding damage.

- For the Task 2 large-wheel test, -optical examination and flexure test of three
types of ceramic rods ground by experimental metal-bond wheels and standard resin
wheels did not show any unusual grinding damage. The sialon rods had strengths similar
to the resin-bonded wheel flat-ground MOR specimens and there was no noticeable
difference between the resin- and metal-wheel ground specimens. This indicates that the
innovative experimental wheel did. not create unusual or excessive machining damage
compared to the standard resm-bond product while retaining its enhanced performance
and cost effectiveness. ‘ ;
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INNOVATIVE GRINDING WHEEL DESIGN FOR COST-EFFECTIVE
MACHINING OF ADVANCED CERAMICS

R H. Licht, S. Ramanath, M. Simpson, and E. Lilley
Norton Company, Worcester and Northboro, Massachusetts

4. ABSTRACT

Norton Company successfully completed the 16-month Phase 1 technical effort
to define requirements, design, develop, and evaluate a next-generation grinding wheel
for cost-effective cylindrical grinding of advanced ceramics.

This program was a cooperative effort involving three Norton groups
representing a superabrasive grinding wheel manufacturer, a diamond film manufacturing
division and a ceramic research center. The program was divided into two technical
tasks, Task 1, Analysis of Required Grinding Wheel Characteristics, and Task 2, Design
and Prototype Development. In Task 1 we performed a parallel path approach with
Superabrasive metal-bond development and the higher technical risk, CVD diamond
wheel development.

For the Superabrasive approach, Task 1 included bond wear and strength tests to
engineer bond-wear characteristics. This task culminated in a small-wheel screening test
plunge grinding sialon disks. Task 1 screening tests demonstrated experimental bonds
that performed significantly better than both standard resin- and standard metal-bond
wheels. The use of this screening test approach allowed for many wheel variables to be
evaluated before down selecting to the most promising bonds for Task 2.

In Task 2, an improved Superabrasive metal-bond specification for low-cost
machining of ceramics in external cylindrical grinding mode was identified. The
experimental wheel successfully ground three types of advanced ceramics without the
need for wheel dressing. The spindle power consumed by this wheel during test grinding
of NC-520 sialon is as much as to 30% lower compared to a standard resin bonded
wheel with 100 diamond concentration. The wheel wear with this improved metal bond
was an order of magnitude lower than the resin-bonded wheel, which would significantly
reduce ceramic grinding costs through fewer wheel changes for retruing and
replacements. The projected manufacturing cost of this experimental wheel is not
appreciably different from standard resin- and metal-bond superabrasive wheels, and
therefore this experimental wheel would have a significant cost advantage in grinding
ceramics. Evaluation of ceramic specimens from both Tasks 1 and 2 tests for all three
ceramic materials did not show evidence of unusual grinding damage.

The novel CVD-diamond-wheel approach was incorporated in this program as
part of Task 1. The important factors affecting the grinding performance of diamond
wheels made by CVD coating preforms were determined. Diamond thickness and
preform geometry had the greatest impact on performance. While significant grinding
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improvements were noted during the Task 1 investigation, the results were not promising
for this type of operation compared to conventional grindi'ng wheels. The CVD wheel
approach does not appear at thlS stage to offer promise for cost-effective cylindrical
grinding of ceramics.

5. INTRODUCTION

Ceramic machining, predominantly diamond grinding, is a major cost factor in ’

advanced ceramics manufacturing. The abrasive wheel performance significantly
influences the grinding costs. Additionally, the quality of the grinding operation greatly
affects ceramic surface integrity, tolerance and manufacturing yield.

5.1 CERAMIC MACHINING MARKET

Beginning with ceramic pottery that required no machining, today we have
ceramics that are ground to surface finishes typically a few hundred nanometers down to
several angstroms. Finishes in the range of 0.1-0.3pum (4-12pin) are required for most
wear and engine components while finer finishes are required for parts such as silicon
wafers, ceramic mirrors and ceramic bearing components. Advanced ceramic materials
are inorganic, usually covalent-bonded polycrystalline structures, that are strong,
refractory, and have high hardness. Therefore they are inherently difficult to machine or
polish. Typically, the finishing of ceramics into useful components requires an abrasive
(~70% of the time) or a non-abrasive machining process. The worldwide ceramic
grinding market for resin-bonded wheels is approximately $271 million and for metal-
bonded wheels is approximately $280 million{1]. These markets may be classified into
four major segments: industrial ceramics, electronic ceramics, technical ceramics, and
advanced ceramics. The advanced ceramics market (ceramic bearings, engine
components, etc.) are characterized by the key requirements of close tolerances, good
retained strength after grinding and good surface finish. Even though the advanced
ceramics market is small, the growth rate is the‘highest. The most common method for
finishing of ceramic components has been using diamond abrasive wheels. The primary
reason for the widespread use of diamond is its high hardness required by the hardness of
the workpiece.
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5.2. INDUSTRY REQUIREMENTS - COST AND QUALITY CONSIDERATIONS

5.2.1. DOE Cost-Effective Ceramic Machining Initiative

Advanced ceramics posses unique properties of high temperature durability,
corrosion resistance, strength, hardness, stiffness and wear resistance. These properties
make advanced ceramics attractive to many applications in the transportation, energy,
military, and industrial markets. Major impediments to the commercialization of
advanced ceramics are reliability and cost. Toward the objective of improving reliability
and reducing manufacturing cost, the U.S. Department of Energy, Office of
Transportation Technologies, under contract with Martin Marietta Energy Systems
(MMES), Inc. has sponsored research as part of the Ceramic Technology Project (CTP).
The goal of the CTP, managed at ORNL, is to develop highly reliable and cost-effective
structural ceramics for advanced heat engine applications such as automotive gas turbine,
piston and diesel engines. The Cost-Effective Ceramic Machining (CECM) Program
was established as part of the CTP in recognition of the importance of machining to.
commercializing advanced ceramics. The CECM led a series of workshops to identify
industry and government needs. Two ORNL workshops identified abrasives and
grinding wheels as a major issue and opportunity[2,3]. While ceramic machining can
involve several abrasive and non-abrasive techniques, the majority of advanced ceramic
machining operations involve diamond grinding operations. This program was
performed in response to MMES Request for Proposal No. SM037-87 and was managed
under the CECM Program. The RFP emphasized cylindrical grinding of silicon nitride
and other advanced ceramics. Norton believes this emphasis on silicon nitride and
cylindrical grinding is consistent with the majority of transportation component needs.
We, are also confident that innovative wheel compositions optimized for cylindrical
grinding of advanced ceramics can be relatively easily optimized for other machining
operations such as centerless, surface and ID grinding.

5.2.2. Ceramic Machining Cost Consideratioﬁs

It is widely recognized in the advanced ceramics community that the machining
operation is the largest single manufacturing cost category. A survey of all Norton
industrial ceramic businesses showed that typical machining costs range from 20% - 70%
of the total cost of manufacturing depending on product requirements[2,4]. Advanced
ceramic manufacturers.such as Norton Advanced Ceramics (NAC) identified machining
cost as a major impediment to widespread use of ceramic engine components. The
reasons for the high machining costs are: 1) it is capital and labor intensive, 2) expensive
diamond abrasive is consumed, and 3) production rates are relatively low. The
requirement for wheel dressing has also been 1dent1ﬁed as a significant factor in abrasive
cost.
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5.2.3. Reliability - Ceramic Surface Integrity

In addition to cost considerations, the second major challenge to introducing a
new grinding wheel system is maintaining ceramic quality and surface integrity. For
example, relatively economical cut rates ‘can be accomplished by grinding in the brittle
mode of material removal. However, for some applications it may be necessary to
change to finer grit size wheels and much lower removal rates in order to work in the
ductile mode and minimize sub-surface damage.  Unfortunately the sub-surface median
cracks are extremely difficult to see so that parts damaged by machining can not be
picked out by inspection.

It is critical to have close cooperation and support between the grinding wheel
manufacturer and the ceramic material supplier. Norton Company, with both abrasive
and industrial ceramics branches, could take advantage of a customer-supplier
relationship within the same parent organization, which maximized the synergy of this
program.

An essential element to our approach was to quantify surface integrity and assess
surface damage caused by the new products. Grinding wheel performance should be
evaluated by not only grinding system factors such as force, power, wheel wear, cut rate,
G-ratio, and dressing characteristics; but also on ceramic surface integrity considerations
such as retained strength, surface finish, surface damage and residual stress. It was
essential that a next-generation grinding wheel that could significantly reduce machining
costs would not compromise surface integrity on the machined ceramic parts.

Surface integrity assessment was an essential part of confirming that an
acceptable new grinding wheel was developed. Budget considerations in this Phase 1
program limited the scope of the surface integrity characterization to selected samples
ground by standard and the best performing experimental wheels. The characterization
included surface finish, microscopic surface examination, C-ring compression tests on
disks and ceramic rod flexure strength. In a Phase 2, independent wheel validation
program, it is recommended that more extensive retained strength be done to quantify
grinding damage, and that residual stress in the ground surface be characterized and
compared to standard grinding conditions. Residual stresses left behind from machining
at and below the surface can influence the final mechanical properties of the
workpiece[5-7]. Meaningful residual stress distribution measurements on "curved
surfaces is a procedure that requires some development.

5.2.4. Grinding Wheel Dressing Considerations

The requirements of any typical advanced ceramic component manufacturer are
to produce quality components of acceptable tolerances, part geometry, surface finish,
and part strength at cost viable material removal rates. This implies that there are several
requirements that have to be satisfied simultaneously. It is possible, for example, to hold
the tolerance by usingstrong diamond types. However the resulting part strength may
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decrease because of the damage caused by grinding with "flattened" and worn abrasive
particles.

One of the most critical parameters in controlling the cost and quality in a
ceramic machining operation is determining the precise point at which dressing or truing
is required. Truing refers to regenerating the original profile on the whee! and also
making it run concentric to the axis of rotation. Dressing is the process used to expose
the abrasive grit above the bond level for efficient grinding action.

Acceptable upper and lower control values for tolerance, finish, part strength,
spindle power, etc., should be set in any grinding operation. Typically, a freshly trued
and dressed wheel should meet all requlrements simultaneously. As more components
are ground, there would be a point in time when one of the requirements is not met, and
the wheel must be trued and dressed. A schematic of the dressing operation control
limits is shown in Figure 1. At time, t = t,, the acceptable tolerance, finish, strength,
power values are set based on component performance requirements. During grinding,
time, t = t,, represents the point when one of the grinding limits (in this example spindle
power) is exceeded. This indicates that it is time to either dress or true the wheel
(depending on set grinding factors).

AN\ Tolerance

I
L’\/\/\/\/\/\l_/\/- Strength

/\//l Spindle
power

Time to dress wheel
t=t,

Measurable attributes

t=t, Grinding time

Figure 1. Schematic figure of measurable attributes of a grinding process versus
time showing the need for dressing.
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Truing and dressing is essentially non-productive wheel wear and this accounts
for a significant portion of the abrasive costs in ceramic machining. Understanding the
truing and dressing characteristics, of a grinding wheel is essential to any wheel
development program. -

5.2.5 Wheel Bond Selection g a : . N -

There are primarily three major bond types that hold the abrasives: resin, glass or
vitrified, and mefal bond[8,9]. Each existing bond system has advantages and
disadvantages for grinding ceramics. Table 1 summarizes the characteristics of these
bond systems.” , ;o o ,

Resin-bond products are good starting points for grinding a wide. range of

advanced ceramics, producing quality surfaces with good part strength. However, the
resin-bonded wheels do not possess adequate life, and require. frequent truing and
dressing. Resin-bonded wheels are :the most widely used, all purpose wheel for grinding
ceramics. Vitrified-bonded. wheels can provide better life but need to be, handled with
caution because of the brittle nature and lower strength of the bond. Vitrified-bond
products also pose considerable limitations for use in higher-speed grinding.
Conventional metal bonds have been found to be exceptionally durable and consume
more power in grinding fine grain size ‘ceramics, requiring frequent dressing to remove
the worn abrasives, and expose sharp. ones. However, metal bonds have the advantage
of higher strength and higher wheel speed capability. High-speed grinding has- shown
significant potential for ceramic grinding[10]. Metal bonds also have the ability to be
dressed by new, electrodischarge techniques, such as Electrolytic In-Process Dressing
(ELID){11]. . ... . e : PR

Our initial focus of bond design in this program was to work in metal-bond
systems with the objective' of developing a system that possesses the most favorable
attributes of resin and metal bonds. Further discussion of bond material characteristics is
described in the results section, 7.1, Analysis of Grinding Wheel Requirements.

In order to understand the grinding process, we need to look at tf}e interactions
at the grinding zone as shown in Figure 2. They include abrasive/work, bond/work,
chip/work and chip/bond interactions. While abrasive-work interaction leads to material
removal, the other three result in rubbing and energy loss, which lead to adverse surface
quality. The bond/work energy loss may be reduced by lowering the contact area
between bond and work through experimental modification of the bond. This was one of
our approaches in this program. The chip/bond interaction leads to wear of the bond.
The size of the chip is very important and could be controlled by changing the grinding
parameters like wheel speed, depth of cut and wheel parameters like abrasive size and
combination. For efficient grinding, we need sharp cutting points, good chip clearance,
strong abrasive retention and self-sharpening abrasive in a bond matrix that is resistant to
attritious wear yet possesses good lubricating properties. We believe all these
requirements can be designed into a metal bond. .
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Figure 2. Schematlc 1llustratmg mteractwns in, the! grinding zone of a grinding
wheel/workpiece interface. 1. Abrasnve/work interface;’ 2. Chlp/bond interface; 3.
Chip/work interface: 4. Bond/work interface. ' ,

5.2.6 Ceramic Material Selection -

There were:two major considerations_ in selectmg the ceramic materials for
assessing the grinding performance of new wheels in this program. The first was the
materials' relevance to transportation technology components. The second criterion was
that the materials must be commercial-and have reduced volume flaw characteristics so
as not to mask severe grmdmg damage ‘that could be- produced w1th new grinding
products or incorrect dressing.

The intent of the RFP was to develop a wheel for cyhndncal grinding of
components such as engine valve stems. Currently Norton' Advanced Ceramics (NAC)
produces sialon valves, and sialon is the base material for NAC's program in Advanced
Ceramic Manufacturmg under the DOE/ORNL CTP. Therefore we selected NRDC's
NC-520 sialon as the primary material for both Tasks 1 and 2 grinding tests. The second
material selected was NRDC's NCX-5102, which is'a HIP'ed: SisNy4 - 4% Y,0; developed
for high temperature (1371°C) gas turbine applications. NCX-5 102 was developed by
NRDC to demonstrate high ceramic reliability under a CTP contract[12] It was
desirable to evaluate the new gnndmg wheel products on an oxide ceramic. The third
material selected was AZ67H zirconia toughened alumina (ZTA). This material is an
80% ALO; transformation toughened with a second phase tetragonal zirconia polycrystal
(TZP). AZ6TH has shown promise in ceramic roller follower tests[13,14] and is
currently produced by Norton Advanced Cerarmcs for several wear component
applications such as metal-forming dies.
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All three materials are considered fully dense and contain reduced flaw
populations so that any severe grinding damage produced by new wheels would not be
hidden. As an example, for NCX-5102, ‘the DOE sponsored Program in Advanced
Processing[12] has shown that as volume flaws in silicon nitride are reduced, failure will
occur from grinding-related surface breaks, even in tensile testing of large-volume,
longitudinally-ground specimens[15,16].

6. OBJECTIVE/SCOPE

The objectives of the Phase 1 program were: to define requirements; design,
develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical
grinding of advanced ceramics. The objectives are divided into two technical tasks:

1. Analysis of Required Grinding Wheel Characteristics - This task objective was
to determining the structural and composition requirements for grinding wheels for
cylindrical grinding of silicon nitride and other ceramic parts. The analysis was to
include the mechanical, thermal, and coolant absorption characteristics of the system;
type and characteristics of the abrasive grit; analysis of the wheel stiffness characteristics;
identification of economic targets for wheel and process costs; and development of
wheel behavior models.

2. Design and Prototype Development - This task objective was to design and
construct prototype wheels and evaluate grinding performance on at least two
commercial grades of silicon nitride rods. Grinding characteristics include, surface
roughness, grinding forces, wheel dressing characteristics, wheel-loading characteristics,
wheel wear, vibration characteristics and coolant compatibility. This task was to
culminate in the delivery of six duplicate wheels of the optimized grinding wheel to
MMES.

The scope program involved a cooperative effort involving three Norton groups.
This effort had the following approach and division of responsibilities. The overall
program was led by the Norton Company Abrasives R&D Division. Wheel
manufacturing and eventual wheel commercialization will be the responsibility of the
Norton Company Superabrasives Division. Norton Company Abrasives R&D designed
and developed a novel metal-bond system, and performed the wheel tests at the Norton
World Grinding Technology Center. The second group, Norton Diamond Film Division
conducted a parallel and complementary research and development effort that
incorporated a chemical vapor deposition (CVD) diamond film wheel system. The third
group, the Northboro Research and Development Center (NRDC), supplied ceramic
specimens for the grinding tests and evaluated surface integrity in the ground ceramics.
Norton Diamond Film and NRDC are divisions of Saint-Gobain/Norton Industrial
Ceramics Corporation (SGNICC), which is a subsidiary of Norton Company. Figure 3
illustrates the overall Innovative Grinding Wheel Program Plan and shows the interaction
of the three research groups.
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The parallel-path approach was carried out in Task 1, Analysis of Required
Grinding Wheel Characteristics. This task involved the design of the bond with respect
to mechanical and thermal characteristics, and the selection of the diamond grit. To
better achieve the analysis requirements of Task 1, we proposed and completed
significant experimental testing of new bond compositions and completed a large
grinding test matrix. Task 1 culminated in this small-wheel (76mm diameter) screening
test involving controlled feed plunge grindirig of sialon test disks.

Task 2, Design and Prototype Development, we down-selected to a few wheel
types for further design and optimization. The manufacturing process was scaled up
from the 76-mm (3-in.) wheels to 203 mm wheels. These 203-mm (8-in.) diameter
prototype wheels were tested in a cylindrical mode, grinding ceramic rod specimens
similar in geometry to valve stems. Grinding wheel performance was assessed on thrée
types of ceramic specimens: NC-520 sialon, NCX-5102 HIP'ed silicon nitride and
AZ67TH zirconia toughened alumina. Wheels were evaluated for: grinding parameters
such as material removal rate, wheel wear, G ratio, normal force, tangental force, and
grinding power. Additionally, the grinding wheel influence on ceramic-surface integrity
characteristics such as surface finish, damage, and retained strength were selectively
evaluated. )

The best performing wheel specification was selected after testing in Task 2. Six
duplicate wheels of this metal bond, 203-mm wheels were fabricated and delivered to
Oak Ridge National Laboratory at the end of the Phase 1 contract for validation testing.

Norton Company has proposed a Phase 2 option that would include
manufacturing scale-up to a 356-mm (14-in.) diameter wheel commonly used in
cylindrical grinding of ceramics. This manufacturing scale-up would probably include
further optimization of the wheel specification. The Phase 2 program would culminate
with independent product testing at leading U.S. ceramic manufacturers ceramic machine
shops.
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7. RESULTS

7.1. ANALYSIS OF GRINDING WHEEL REQUIREMENTS -- TASK 1

7.1.1. Task Overview

This task involved the design of the bond with respect to mechanical and thermal
characteristics and the selection of the diamond grit. Task 1 was expanded to include
initial bond-only (no diamond) wear and strength tests. Task 1 culminated in a small-
wheel screening test involving controlled feed plunge grinding of sialon disks. This test
allowed us to evaluate numerous wheel variables before down-selection to the most
promising bonds in Task 2. Task 1 also contained the parallel path CVD diamond wheel
activity.

7.1.2. Requirements Definition and Experimental Design -- Task 1.1

7.1.2.1. General Wheel Design and Description of Bonds. Advanced ceramic
components such as silicon nitride valves for automotive engines are machined to final
shape and size predominantly by precision grinding, using wheels containing diamond
and/or occasionally cubic boron nitride abrasives (superabrasives). The requirements of
cost-effective grinding wheels include the ability to grind work material at high-removal
rates, consume low levels of power, maintain low power levels for extended periods,
produce quality work pieces with surface integrity, and have sufficient wheel durability
to maintain its form (if any) for extended periods, thereby requiring infrequent "truing"
and "dressing" operations. Truing refers to an operation that makes the wheel surface
run concentric to its axis of rotation. If the wheel has a profile or form, truing also
includes regenerating the profile on the wheel as per drawing. Dressing refers to a
procedure that exposes the abrasive grits above the bond surface for cutting action.

There are primarily three major bond types that hold the abrasives: resin, glass or
vitrified, and metal bonds. Resin-bond products are good starting points for grinding a
wide range of advanced ceramics producing quality surfaces of good strength, but they
do not possess adequate life, requiring frequent truing and dressing. Vitrified-or-glass
bonded products can provide better life but need to be handled with caution due to the
extremely brittle nature and low strength of the bond matrix. They also pose
considerable limitations for use in high-speed grinding, a technology that is currently
evolving. It is extremely difficult to process them into wheels thinner than .125 in. (3
mm) with current methods of manufacture. Conversely, conventional metal bonds have
been found to be exceptionally durable, consume more power in grinding fine grain size
ceramics, and require frequent dressing to remove the worn abrasives; and expose sharp
ones. The dressing process of conventional metal bonds is time consuming and not

W
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desired by the operator. Hence, the focus of bond design is to identify metal systems that
possess the desirable characteristics of current resin and metal bonds. Wheels with a
single abrasive layer bonded on to steel cores are also included under metal products.
Table 1 summarizes the different bonds and their characteristics.

7.1.2.2. Superabrasive Bond Development; Bond-Only Wear and Strength Tests.

For optimum performance of the wheel, the wear rates of the abrasive grits during its use
must equal that of the bond holding it. This allows a continuos exposure of sharp, new
abrasive grits to the work piece for efficient grinding action. Typically, abrasives wear
by fracture, attrition and/or pull-out from the bond. For a given grinding condition, the
wear rate of the abrasive grits is controlled by factors such as their type, size,.amount
and the abrasive - bond strength. On the other hand, the bond wear rate is governed by
factors such as its strength, hardness, type and amount of fillers, and its microstructure.

A wear test was set up that would simulate the wear of the bond during grinding.
Differences in bond wear between the fast-wearing resin bond and durable metal bond
were determined. This information was used as a basis in designing other metal bonds.
The test consisted of forcing a bond sample, 6.25 x 6.25 x 25 mm, containing no
abrasives, against the side of a rotating disk at constant load. The rotating disk
contained silicon carbide abrasives of size U. S. mesh 170/200. A resin-bonded sample
(Norton DB70), which is used in wheels for grinding silicon nitride and similar advanced
ceramics, was tested first. The wear (by weight) of the resin bond sample (DB70) for a
given amount of time (15 seconds) was determined. The experiment was repeated
several times and the cumulative wear was determined. The wear test was then repeated
with the standard metal-bonded samples, DM17 and DM112. Due to their low-wear
rate, the weight loss was measured every 45 seconds. The disk was refurbished with
new silicon carbide abrasives frequently to counter the effect of its wear on the test
results. Figure 4, shows the normalized cumulative wear of the resin and metal bonds as
a function of time. The resin bond wore at a significantly higher (up to 5 or 6 times)
than either one of the metal bonds. Since these metal bonds are too durable and resin
bond wears too fast, the metal bonds for improved grinding wheels must possess wear
rates that lie between the two. .

A series of metal bond compositions possessing abrasive wear and strength
between the resin bond DB70 and metal bonds DM17 or DM112 were designed and
manufactured. Some of these bond compositions contained different levels of pore
inducers in a DM17 bond. Pores in bonds not only weaken them to desired levels but
serve several purposes in a grinding wheel. Porosity lowers the wheel-work contact
area thereby reducing friction and spindle power drawn, provides a space for the ground
ceramic chips ("chip clearance") and improves application of grinding fluid, essential for
lubrication and heat transfer. Figure 5 shows the cumulative wear data versus time for
metal bond DM17 with 20-, 40- and 60-volume percent of pore inducer PI2 in the wear
test against an abrasive disk at constant load. The cumulative wear rate increased with
the percentage of pore inducer PI2. The wear rate is shown to almost equal that of resin
bond DB70 at 60-volume percent levels.
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Figure 4. Normalized cumulative wear of resin and metal bonds, containing no
abrasives, plotted as a function of time. The resin bond (Norton DB70) is typically used
to grind advanced ceramics today and metal bonds Norton DM17 and Norton DM112
represent conventional metal bonds that are considered too durable for this application. |
The resin bond wore up to five times faster than either of the two metal bonds. The
wear test was designed to simulate bond wear during grinding process.
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Figure 5. Normalized cumulative wear versus time of three experimental wheel
bonds, without abrasives. The bonds were fabricated by introducing 20, 40, and 60% by
volume of pore inducers, PI2, in Norton DM17 metal bond. It is possible to increase the
wear rate DM17 bond this way to match that of the abrasive grits, which is essential for

optimum grinding performance in a wheel. Standard metal bonds DM17 and DM112
and resin bond DB70 are also shown for reference.
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Figures 6a and 6b show similar wear plots for the three pore inducers PI1, PI2
and PI3, at 40- and 60-volume percent levels, respectively. Other approaches to
introduce porosity were abandoned after poor results. -

The 3-point bend strength values of the resin bond- (DB70) and metal bonds
(DM17 and DM112) with no abrasives present in them were determined subsequently.
Since abrasive wear of any material is a strong function of its strength, the design
strength of the proposed metal bond must lie somewhere between the values obtained for
the resin (DB70) and metal bond (DM112). Bond samples measuring 3 mm (0.12 in.) x
6.3 mm (0.25 in.) x 38 mm (1.5 in.) were manufactured and broken in 3-point bend
strength at a cross-head speed of 5 mm (0.2 in.) per minute. The results, shown in
Figure 7, indicate that the normalized bending strength values of the conventnonal nietal
bond is nearly twice that of the resin bond. .

Test bars of another patented metal bond family.under the trade name, Norton
Alzan, have also been made and tested. Figure 8 shows the three-point bend strength of
this bond with different levels of porosity. The resin bond, DB70 has been included as a
reference. The strength of the Alzan bond samples was lower than that of resin bond
DB70 and decreased further with-i -increasing porosity. The wear tests of the Alzan
bonds, simulating the grinding process, indicated excessive wear, even more than DB70
resin bond. Hence, Norton Alzan, or its variations including porosity were not be
expected to provide adequate wheel life for grmdmg of ceramics and not pursued
further.

In summary, “the bond wear and strength tests suggest that it is possible to alter
the characteristics of metal bonds close to that of resin bonds. The extent of change
could be better predicted based on grinding tests.

7.1.2.3. CVD.Diamond Wheel. The general concept behind the CVD wheels is
illustrated in Figure 9. Preforms are coated with diamond by CVD, are assembled
together into a wheel and then are impregnated with epoxy resin. The wheel is then
trued and operated as a conventional wheel.

The preform thickness was chosen to be about 25um, which gave a tooth size
approximately equal to 320 grit, which was the base grit size chosen for all wheels in the
program.

After consulting with Prof. Howes, at UConn, we agreed that the continuous
nature of the diamond on the preform would provide much higher heat transfer than a
conventional wheel and therefore coolant absorption would not be as important an issue
as for conventional resin-bonded wheels. No effort was therefore made to induce
porosity in any of the wheels tested. ‘

The major unknown factor in this concept was the durability of the CVD
diamond on its preform. We needed to know whether the teeth on the diamond-coated
preform would act as single grits, or whether they would wear faster. Emphasis was
therefore placed on direct testing.
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Figure 6a. Bond wear plots comparing three types of pore inducers PI1, PI2 and
PI3 at 40% volume levels. All three types of pore inducers increased the wear rates of
DM17 bond. Standard resin and metal bonds are shown for comparison.
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Figure 6b. Bond wear plots comparing three types of pore inducers PI1, PI2 and
PI3 at 60% volume level. All three types of pore inducers increased the wear rates of
DM17 bond. Standard resin and metal bonds are shown for comparison. The rate of
wear of bond containing 60% pore inducer was greater than the one containing 40%
pore inducer with all three types.
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and resin bond DB70. The average value of strength for resin bond is 48.2% of the
metal bond. The hardness values of the resin bond are similarly lower providing an
explanation for the higher bond wear in the simulated test.
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7.1.24. Selection of Abrasive Type, Size, and Concentration. The next
important consideration in wheel design, after the bond type, is the selection of
appropriate abrasives. This includes determination of abrasive material, type, size and
amount. Because of the high hardness values of advanced ceramic materials typically
ranging from 750 to 3000 kg/mm? diamond with a hardness of 7000 to 9000 kg/mm’
was chosen as the abrasive material. One of the requirements in grinding of advanced
ceramics into finished components is to generate low levels of surface damage. This
could be accomplished through the use of sharp abrasives, which narrowed down the
choices of abrasive types that are commercially available. The abrasives are also
required to be sharp during their entire life in order to maintain low damage levels from
component to component. This could be achieved if the grinding forces on a grit, which
increases as it dulls, causes the grit to fracture. This frfacture generates new sharp
cutting points. Wear flats on abrasives are akin to dull edge on a knife and grinding with
them produce more damage to the ceramic work piece. Hence, friable and weak types
that would fracture periodically were selected in this program. Diamond abrasive grits
of size U.S. Mesh 270/325 (Norton 320 grit) were selected for initial screening wheel
tests. This range of abrasive sizes is recommended by our application engineers for
reducing damage while maintaining acceptable levels of material removal rates in general
purpose rough-to-intermediate grinding of ceramics. Abrasive specifications for finish
grinding would depend on individual application needs of surface finish, part geometry,
tolerances, etc. The other important factor in abrasive specification is the amount of
abrasives in the wheel, defined through the term "concentration”. A 100-concentration
diamond abrasive wheel contains 72 carats per cubic inch of abrasive bond volume. . This
closely .translates to 25 percent by volume of diamond in the abrasive-bond volume.
Most of the test wheels contained 100 concentration diamond. The concentration values
ranged from 75 to 125 in our study.

7.1.3. Screening Test Wheel Manufacturing -- Task 1.2

7.1.3.1. Superabrasive Wheels. The bond wear studies were followed with
design and development of a grinding test to screen wheels made in different
compositions. The goal of this task was to identify a few bond-abrasive combinations
that, when made into grinding wheels, would draw low power, generate-low forces and
provide acceptable wheel life with no wheel "loading" tendencies in external cylindrical
grinding of advanced ceramics such as sialon and Si;N;. Wheel "loading" refers to a
phenomenon in grinding when material removal action of the wheel virtually ceases. It
takes place in the following four instances: (1) the abrasive grit wear rate is comparably
higher than the bond wear rate resulting in lack of grits projecting above the bond, (2)
abrasive grits are released from the bond prematurely, leaving a wheel surface with no
cutting points, (3) the area in and around the grit is covered due to plastic deformation of
the bond, and (4) the area adjacent to the grit is filled up with work piece swarf or chips
preventing the grit's participation in the grinding process. Material removal action is
restored through wheel dressing in which a glass bonded stick containing abrasives is
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applied to the wheel surface under pressure. This leads to wear of the bond in instances
(1), (2) and (3) and clears the wheel of any chips in case (4). The dressing process with
conventional metal-bonded wheels is time consuming and laborious and hence not
desirable. During the design of test wheel specifications, a "Systems Approach” that
looks at machine too! parameters, work material properties, wheel selection and
operational factors simultaneously, was pursued with the goal of providing an optimum
solution for that combination and grinding conditions. The test wheels measured 76 mm
diameter x 13 mm thick x 22 mm bore diameter (3 in. x 0.5 in. x 0.875 in.) and were
made in a range of compositions. Factors such as type of pore inducers, their levels,
bond composition, diamond type, diamond concentration, wheel processing methods and
processing conditions were evaluated. A total of nearly 70 wheels were molded and
about 45 of them were evaluated. Based on results grinding tests of these 45 wheels and
certain issues associated in manufacturing them, the remaining 25 or so wheels were not
tested. The manufacturing issues included adhesion of wheel core and its rim as well as
extrusion of bond.

7.1.3.2. CVD Diamond Wheels. A general view of the wheel used in the first
grinding test is shown in Figure 10. It consists of abrasive elements arranged azimuthally
and axially around the periphery of a 7.5-cm diameter grinding wheel. Axial spacing of
each element was approximately 50 um and the total assembly produced a wheel
approximately 8-mm thick. Figure 11 shows a view of the teeth on one of the elements.
The element was photochemically machined from 30-um molybdenum sheet and were
held in place by an epoxy impregnation after the wheel was assembled. The teeth were
each 25-um wide at the OD with a slight taper, and coated on all surfaces with
approximately 10-pum thick CVD diamond using a dc plasma torch. Thus, abrasive
elements of approximately 45-50 pm cross sections were created, simulating a 320-grit
wheel. '

For the second round of tests, the wheel substrate was modified from an array of
segments back to a full wheel rim preform as shown in Figure 10. _

Several preforms were made using different diamond thicknesses. We hoped to
test the preforms as a thin wheel, thereby reducing the complication of the test.
Unfortunately this did not prove to be possible, as the unsupported preforms were too
weak and too warped by the coating process. Accordingly, a wheel segment was
fabricated by laminating two parts of a wheel on top of each with Duralco 4525 epoxy.

7.1.3.3. Ceramic Disk Fabrication. One hundred four sialon (NCX-520) disks
were fabricated at the Northboro Research and Development Center (NRDC) of Saint-
Gobain/Norton Industrial Ceramics Corporation by cold isostatic pressing, core drilling
and sintering. The sialon ceramic workpieces were ground finished to 112-mm diameter
rings x 70-mm ID x 6-mm thick. Figure 12 shows the ceramic disk on the top right with
the test holding fixture on the bottom and left.

Densities of the disks were all within standard Norton specification. These disks
were visually inspected for cracks and abnormalities before the screening test:
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Figure 10. The first CVD wheel design.
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Figure 11. Detail of the teeth of the first CVD whee] design

Figure 12. Sialon test disk (top right) with holding fixture assembly.
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7.1.4. Screening Wheel Grinding Test and Data Analysis -- Task 1.3

7.1.4.1. Grinding Test Description. The grinding test consisted of plunging 76-
mm diameter x 13-mm thick x 22-mm hole grinding wheels into samples of sialon ‘disks
measuring 112-mm diameter x 6-mm thickness x 70-mm hole at preset removal rates in
external cyhndncal grinding mode. ‘Figure 13a is a schematic of the test configuration.
Figure 13b is a photograph of the set-up consisting of grinding wheel and Sialon
workpiece on an instrumented Okuma CNC cylindrical grinder. The sialon ceramic
workpiece (Figure 12) was mounted on a specially designed and manufactured arbor that
in turn was located precisely and held on the machine. It was thus possible to remove
the workpiece together with the arbor for periodic examination of the ground surface
and mount it back on the machine, precisely. To i nnprove the efficiency of testing, short
grinds at two material removal rates of 4.3 and 8.6 mm’/mm/sec. (0.4 to 0.8 in*/in./min.)’
were conducted on all wheels, followed by longer runs on selected wheels. The wheels
were trued to run concentric with the axis of rotation using a silicon carbide abrasive
wheel of specification 37C220IVK mounted on a precision dresser device. Using
37C320KYV abrasive sticks, the wheels were then dressed to expose the abrasives. The
grinding fluid used in all our tests was Trimcool, a water-based coolant with rust
inhibitor.

Measurements included spindle power drawn, wheel wear for known amount of
work material removed, normal and tangential forces generated during grinding, and
surface finish of the workpiece. Noise levels were monitored qualitatively to determine
wheel loading and subsequent effectiveness of remedial wheel-dressing operation.

Wheel wear was determined through precise micrometer measurements of wheel
diameter before and after a grinding cycle. The thin sialon disk workpiece produced a
wear zone in the middle of the wheel face, so a depth micrometer was used the méasure
the diametrical change. The volume of the wheel wear was calculated from the
diametrical wear and the width of the wear zone, which corresponded exactly to the
width of the sialon disk workpiece.

Using the-measurements, the grmdmg ratio values, spindle power and grinding
forces per unit wheel width were calculated. Grinding ratio by definition is the volume
of material ground over the volume of wheel consumed. The measured spindle power
and forces in grinding were converted to values per unit wheel width in order to nullify
the effect of wheel thickness. Such a calculation, generally done in grinding studies,
enables the comparison of performances of wheels of different thicknesses. Data was
normalized as needed and plotted.

"In order to determine the stiffness of the system consisting of machine tool
wheel and work piece, a harmonic response test, "hammer test" of the Okuma cylindrical
grinder was conducted with the help of the University of Connecticut. The-objective
was to determine the susceptibility of the machine to produce- chatter on ground
workpiece and make any modifications if needed. Chatter is caused by a grinding
‘machine that is too compliant for a given operating condition. The harmonic response
test determines the stability limit defined by the equation,
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-(1/2 kyy+ 1/2 ks + 1 k) =Rem

where kw is the cutting coefficient, kg is the wear coefficient and k is the contact
stiffness and Rep is the maximum negative real point on the machine compliance curve.

The cutting coefficient, k., is the force required to remove a unit depth of work
piece material. This value may be estimated by measuring the cutting force and dividing
it by the actual depth of workpiece removed.

The wear coefficient, k,, is the force required to cause a unit depth of grinding
wheel wear. For large grinding ratios, this coefficient is several orders of magnitude
larger than k. Therefore the wear coefficient makes a negligible contribution to the
equation and could be safely neglected.

The contact stiffness, k, is the stiffness between the grinding wheel and
workpiece. This stiffness is highly nonlinear, however it could be linearized about the
cutting force. The grinding wheel is much more compliant than the workpiece dué to the
structure of grains, bond, and porosity. The value of k can be estimated by pressing a
representative workpiece against a stationary wheel. The normal force generated over
the distance traversed gives the value for k.

The negative real point, R..,, on the machine compliance curve is determined
using the "hammer test". Knowing both sides of the equation, one could then determine
if the system is stable or not. A stable system requires that the right hand side of the
equation is greater than the left hand side. This type of stiffness test was performed to
determine the acceptability of our specific machine tool-wheel system. Similar tests can
be done to assess the wheel stiffness compatibility for other machines. For the example
of an insufficiently stiff machine tool -- where it is determined that the right hiand side of
the equation is less than the left -- the experimental bond would need to be modified to
reduce the wheel stiffness. This bond modification could be accomplished with a minor
grade or composition modification to our experimental metal bond system.

For our specific grinding test system, "hammer test" results indicated that the
grinding system consisting of machine tool, wheel, and work piece had adequate stiffness
in all directions for testing with 76-mm (3 in.) diameter wheels. No visible chatter on the
work piece was detected in all our tests. The University of Connecticut submitted their
report on the "hammer test". The test indicated that the spindle stiffness is very high in
two directions, and is adequate in one direction. However, in this direction the stiffness
is of acceptable value, as evidenced by the lack of chatter on the workpiece-in all our

tests at up to 8 mm®/sec/mm (0.8 in*/in./min.).

7.14.2. Superabrasive Wheel Screening Test Grinding Results. Figure 14a
graphs the spindle power consumed, normalized to unity, versus cumulative material

removed per unit wheel width during grinding with 76-mm (3 in.) diameter wheels at a
removal rate of 8.6 mm®*/sec/mm (0.8 in’/min.fin.). All wheels were made with U.S,
mesh 270/325 diamond abrasive grits in 100 concentration. Wheels containing pore
inducer, identified as PI1, at three different levels (20, 30 and 40%) were evaluated.
Norton's DM112 metal bond, considered as durable for grinding of ceramics was
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modified with different levels of PI1 for this test. Pores were expected to increase the
bond wear rate thereby matching it to that of abrasive wear rate. The power consumed
by resin bonded (DB70) wheel with the same type, size and concentration of diamond is
also shown for comparison in Figure 14a. The results showed an increase in power
drawn with pore inducer levels. Based on noise levels heard during grinding, all wheels
showed tendencies for loading. Such wheels are generally not accepted by the end user
for production grinding. Figure 14b plots the normalized grinding ratio as a function of
cumulative material removed per unit wheel width for the same set of wheels. The
dimensionless parameter, grinding ratio, represents the volume of material removed per
unit volume of wheel consumed. Due to excessive wear, wheels with high pore inducer
levels produced lower the grinding ratio values, similar to the results obtained in simu-
lated wear test results conducted earlier. The normal grinding force values produced in
using these wheels on NC-520 sialon versus cumulative material removed per unit wheel
. width are shown in Figure 14c . All three metal-bonded wheels in this group generated
lower grinding forces than the resin-bonded wheel. However, the tendency for rising
normal grinding force levels together with high noise levels heard suggested potential for
wheel loading in these wheels. Figure 14d shows the tangential force values generated
during grinding with these wheels. Since tangential force times wheel speed equals
spindle power consumed, and all tests were performed at the same wheel speed, their
trends were similar to spindle power. Similar but less pronounced results were obtained
at a lower 4.3 mm*/sec/mm. (0.4 in*/min./in.) of material removal rate. Among the three
pore inducer levels tested, the metal-bonded wheel containing 20% by volume of pore
inducer PI1 could be considered as the best performer. However, its wheel loading
tendencies required periodic wheel dressing with abrasive sticks.

In an attempt to reduce the wheel loadirig tendencies, other sets of bond compo-
sitions were tested by modifying the constituents and pore inducer levels in Norton's
DM17 bond. This lowered the ductility and altered strength and hardness values.
Within a given set, wheel performances were evaluated, based on spindle power drawn,
grinding ratio, grinding force levels and wheel loading tendencies, for different levels of
pore inducer PI2. Some of these compositions could not be manufactured above 30%
PI2 levels. Figure 15 shows the test data on 3 sets of bond compositions in pore
inducer levels shown. Due to extremely high wear rates, wheels in other compositions
could not be tested extensively. Figure 15 also shows the grinding results using metal
bond (Norton DM17) and resin bond (Norton DB70). Norton DM17 was considered
too durable and Norton DB70 too wear-prone for cost-effective ceramic machining.
Due to wheel loading and consequent high frictional forces between bond and work
piece, the power and forces generated by the standard metal bond Norton DM17 went
up abruptly, after grinding approximately 48 cm’/cm (7.5in.%/in.) of NC-520 sialon.
Such abrupt increases could lead to damage levels in ceramic components after grinding
to levels that would make the component unreliable in service. Closer examination of
the wheel revealed most of the abrasive grits were worn down to the bond level and not
projected above the bond level required for grinding. Possibly, the bond wear rite was
lower than the abrasive wear rate for this event to occur at this juncture.
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From Figure 15 it is also evident that there are wheels in several different metal-
bonded compositions that grind using low power, generating low forces and resulting in
high grinding ratios. These are potential candidates for an improved metal bond. Based
on other considerations such as noise levels in grinding and ease of wheel dressing, the
selection was narrowed down further. Test wheel made of metal bond identified as "C"
was considered as an optimal performing wheel among all specifications tested.. This
bond showed no signs of loading and broke down at a controlled and uniform low rate.
The spindle power was about 50% lower than the resin-bonded wheel, while the wear
rates were significantly lower than the resin bonded wheel. This bond also did not
contain any pore inducers. : ~ i

Wheels made in the promising metal bond C specification with other fiiable
diamond types in 100 diamond concentration were tested subsequently, to determine
optimum diamond abrasive type for grinding ceramics. The performances of wheels
containing different diamond types were compared based on -power, forces and wear
during grinding. As shown in Figure 16a, wheel made with diamond type D3 consumed
the most power and generated the highest forces in grinding. A test wheel containing
diamond type D1 resulted in substantial (up to 50%) decrease in normal grinding forces
based on Figure 16b. Wheels containing diamonds types D2 and D3 showed evidence of
wear flats on grits after grinding and could explain the higher normal forces due to
absence of sharp cutting points. Among the three wheels tested, the one containing
diamond type D3 also wore the least for unit volume of material removed and hence
resulted in the highest grinding ratios values as shown in Figure 16c.

‘ Values for grinding ratio obtained with the wheel with D1 type diamond-abra-

sives were the lowest, which may or may not be acceptable for cost-effective grinding of

ceramics. Based on this test data, the final choice of diamond type was deferred until the
grinding tests with larger 203-mm (8-in.) diameter wheels were conducted.

The effect of abrasive concentration on wheel performance was studied through
the manufacture and subsequent testing of three wheels with 75-, 100-, and 125-
concentration levels of D1-type diamond. Due to fewer number of cutting points in
action at any given time and wheel-work contact area, lower diamond concentration
wheels generally consume lower and desirable spindle power. However, lower abrasive
content and consequent higher force per grit increases their wear rate, sometimes to
unacceptable levels. Based on tests conducted using wheels that contain DI type
diamond the effect of abrasive concentration on grinding ratio was determined and
plotted in Figure 17. Grinding ratio, considered a measure of wheel performance,
increased exponentially with an increase in diamond concentration.

Several other compositions were proposed with different levels of hexagonal
boron nitride and graphite as solid lubricants. There were manufacturing issues and/or
poor, unacceptable grinding performance results and further tests on such compositions
were discontinued. Test wheels were made in various diamond types in other metal
bond systems for evaluation. Once it was determined that ‘when using diamond type D1,
such bonds have a tendency for loading, the comparison tests with wheels containing
other diamond types in such bonds were not conducted.
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Test wheels possessing different hardness values were plotted against grinding
ratio values obtained in the screening test, seeking the extent of correlation between the
two factors. The hardness variation was obtained through change in pore inducer levels
in a given bond system. * There appears to be a good correlation between the grinding
ratio and hardness on a semi-log scale as shown in Figure 18. Such a graph could be
used, in principle, to design wheels of given grinding ratios using that bond system, in
future,

Figure 19 summarizes all the results of the screening tests. The shaded areas
represent the range of power, force and grinding ratio values obtained in grinding with
these test wheels at material removal rates of 4.3 to 8.6 mm/sec/mm.. (0.4 to 0.8

in*/min/in.). Figure 19 also shows the values obtained using made of resin bond, DB70,
and metal bond, DM 17, both using diamond abrasives of type D1 at 100 concentration.
As seen earlier in simulated bond wear and 3-point bend strength tests, these results also
confirm that it is possible to develop metal bonded wheel specifications that would
posses performance characteristics anywhere between the resin (DB70) and metal
(DM17) bonds. In subsequent Task 2 of this project, a limited number of 203-mm (8 in.)
diameter wheels were tested leading to selection of one optimum wheel specification.

7.1.4.3. CVD Diamond Wheel Screening Test Grinding Results. The first wheel
(made in the manner shown in Figure 10) was tested under the conditions listed below on
the Okuma CNC cylindrical grinding machine in a plunge grinding mode. The workpiece
material was the standard sialon used for the Superabrasive wheel screening tests, except
that the disk was 3.8-mm thick. The thinner ceramic disk was to compensate for the
slightly thinner CVD wheel, thereby avoiding possible edge effects in'the plunge test.
The screening test conditions were as follows:

Surface speed . 32 m/s (6252 sfpm)
Infeed rate 12 um/s

The CVD grinding test was disappointing and the configuration was unable to
grind effectively. As the wheel encountered the workpiece, the normal force on the
workpiece rose rapidly. After 20 s it exceeded 500 N and the test was terminated to
avoid damage to the grinding machine.

Optical inspection of the workpiece and the wheel showed little stock removal
from the workpiece and significant burning of the wheel face. Also, we observed radial
cracks in the wheel face, which were also probably caused by overheating.

Figure 20 shows an electron micrograph of one tooth in the CVD wheel after
use. In the center of the picture the molybdenum core of the tooth is visible; the outer
end of the tooth core is below the picture. Residual diamond coating is visible over the
upper end of the tooth. The rest of the material is the epoxy matrix: the white highlights
are instrument artifacts caused by charging of the non-conducting regions.
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CVD Di:z'lmond Coating , L Mo tooth

"Figme 20. SEM view of a tooth in the first CVD wheel design.

‘The micrograph suggested that diamond tended to crack away from the tooth cores
well below the tip of the tooth. We postulated two reasons for this. First, the strength of
the diamond and its bond to the molybdenum mdy have been insufficient. Second, the
long aspect ratio of the tooth and the large difference in flexural ‘modulus between
molybdenum, diamond and epoxy (perhaps a factor of 500) may permit the tooth to flexin
a manner that led to premature cracking of the diamond. Although we did not appreciate
their significance at the time, (after truing, but before testing, the wheel) there was
evidence of azimuthal cracks in the diamond down to the visible limit (approximately
100-pm below the surface of the wheel). Figure 20 shows azimuthal cracks in the Mo
tooth. We'believe that the reason why the wheel did not grind effectively in the test was
that diamond prematurely spalled away from the teeth.

Following these tests, the second design was chosen. We initially tried to test the
wheels in the configuration shown in Figure 21. This proved not to be useful because the
wheels would tear, leading to high wear in the neighborhood of the tear and little wear
elsewhere. We could not obtain trustworthy measurements of wear rate under these
circumstances.

After some experimentation, a modified geometry shown in Figure 22 was
chosen. The Si;N, workpiece had four segments cropped from it to cause interruptions
in the cutting process. Experience with other grinding wheel tests indicates that an
uninterrupted cut would produce uncharacteristically low wheel wear rates compared to
a conventional moving wheel - stationary workpiece situation.
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Workpiece

Grinding Wheel

Figure 21. First test arrangement for the second CVD wheel design

Figure 22. Second test configuration for CVD wheels.
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Grinding was done under the conditions listed below:

Surface speed” - 36 m/s (7092 sfpm)
Infeed rate ‘ 1 pm/s.- . ‘

These conditions are somewhat less aggressive than thé first test as we were concerned to
avoid wheel damage. Two plunges at different’ axial locations on the workpiece were
made to generate sufficient wear. Each plunge was about 100 pm, although there was
uncertainty in defining the precise point at which the workpiece touched the wheel.

Figure 23 shows & view of the top surface of a worn wheel. The molybdenum
preform was smeared out over a much larger dimension thanits original thickness of
approximately 30 pum. On the right side of the nucrograph is a small piece of
delaminated diamond. Such-delaminations were fairly common wfchln about 50 pm of
the top surface of the wheel:

_Delamjnated Diamond _\

Smeared Mo preform '

Figure 23. Top surface of worn CVD wheel.

Material removal was measured by tracing a profilometer across two locations of
the workpiece wear groove on each of the four curved workpiece sections. For reasons
possibly associated with the dynamics of the workpiece, the groove area did vary
around the diameter of the workpiece. Wheel wear was measured by measuring the
length, d, of the wear scar and computing the area, Ay, worn from the scar length
according to the formula:

RS U e~ o m e = w - e meme w3 e ms s m em mamms v vy —wm e —wzow~ 3e — a —r e we—e e == = = e ————
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Ay = Ry (@ wRy /2 -dcos (8 /2)/2) +Rg (Bs Rg /2 - d cos (85 /2)/2)

where Ry, and Rg are the wheel radii and Si3N4 workpiece radii respectively, 6y and
Bg are the angles subtended by the wear scar at the wheel and workpiece centers
respectively.

Table 2 summarizes the wear-test results of the modified cut-off test. G-ratio is
the ratio of the volume of stock removed to the volume of wheel wear. Diamond
thickness does appear to affect G-ratio. The higher performing run, TC908, had several
times the diamond thickness of the other wheels and also performed several times better.

Table 2. CVD Diamond Wheel Test Results

Test run Diamond Stock removal G-ratio
thickness (1m) (mm’)

TC908 14 0.51 9.7
TC910 #1 2.8 : 047 2.0
TC910 #2 2.8 0.54 . 1.0

TCI911 28 0.30 32
TC912 #1 4.6 0.36 .24
TC912 #2 4.6 '0.27 3.1

For comparison, typical G-ratio values for a Superabrasive cylindrical grinding
wheel are several hundred times higher. We believe that local stresses are too high at the
grinding face for the polycrystalline CVD diamond to withstand, and fractures at the
grain boundaries and at the Mo-diamond interface are causing wheel erosion.

These data indicate that the CVD wheel approach does not appear at this stage to
offer promise for cost-effective cylindrical grinding of ceramics.

7.1.4.4. Analysis of Ceramic Grinding Damage. After the screening grinding
tests, the sialon disks were examined for unusual visible grinding damage. Optical
microscopy did not reveal grinding cracks, or unusual grinding imperfections, in the
outer diameters of the screening test disks.

Selected disks were prepared for C-ring compression mechanical tests[17]after
they were ground in the screening test with experimental metal bonds. Currently, ASTM
is working on a draft standard for diametrically compressed C-ring specimens. The C-
ring tests that we performed were meant to identify any unusual grinding damage
generated by the experimental and standard wheels in the screening test. These tests
evaluated the strength of the ground OD. For the C-ring test, tensile stresses are parallel
to the grinding direction. Figure 24 is a finite element analysis of the sialon C ring
specimen showing the loading direction and maximum tensile stress. Table 3 lists the
grinding conditions for the four disks tested in the C-ring compression test.
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Figure 24. FEA of stresses on a C-ring specimen machined from sialon screening
test disks.
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Table 3. Grinding conditions for C-ring test.

5 7

8 10
9 10
10 12

* Wheel specification = SD320-100MXL 19XX -%s; whee! size = 76.2-mm diameter.
® All rings were ground to a final diameter of 77.5 mm at this material removal rate.

The following is a description and the results of the C-ring test that we used.
Four sialon disks previously circumferentially ground were cut in half and tested under
monotonic (continuous nonstop test rate) compressive loading in a C-ring configuration.
A schematic of the C-ring is shown in Figure 25. A total of eight tests were performed.

The loading rate was 0.508 mm/min and the testing was performed at room
temperature in air. The rings were compressed between articulating steel platens using
an Instron 4206 test machine.

The strength results are summarized in Table 4. Parts #8 showed the highest
" strengths while parts #5 showed the lowest strength although there was no apparent
significant difference. Optical fractography revealed that all breaks originated near
corners.

The strength data is lower than subsequent measurements on regular flat MOR
bars and the rods produced in this study. Corner fractures are hard to avoid in
specimens used for this test, and this will lead to a lower strength. Secondly, in this type
of test, the volume of the bar under stress is considerably higher than in MOR tests.
From a statistical point of view this too will lead to lower strength measured. The
corner breaks and the limited number of data points make comparative conclusions
suspect. Clearly, the experimental results do not show evidence of unusual grinding
damage to the ceramic disks. The test also did not show a significantly lower strength of
Wheel No. 10 at the lower material removal rate (specimen 9 vs. 8).

More comprehensive flexure testing was planned and done for the Task 2 rods.
Stresses generated during flexural testing was normal to the grinding direction, which
resulted in a more meaningful cylindrical grinding damage evaluation. Therefore, the C-
ring test in Task 1 was determined to have limited usefulness as a qualitative assessment
of grinding damage.

7.1.4.5. Preliminary Wheel Cost Performance Analysis. The superabrasive bond
modifications of standard metal bonds in Task 1 would not be expected to increase
wheel cost compared to standard metal bond products. This assumes that current
acceptable wheel rejection levels during manufacturing can be maintained.
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Figure 25. C-ring test geometry with defining geometry and reference angle.

Table 4. Summary of strength data from C-Ring test on sialon test disks.

) Measurements Calculations

PART{ width | O.D. | thickness | peak load | peak load || outer rad. | inner rad. | term | term |max. stres jmax. sires | avg.

No. | "b" t "p "p* ro i ra |'R Stmax Stmax__|stress
In. | In. In. kg Ib In. In. in. psi MPa | MPa

5,1 [0.235] 3.05 | 0.144 14.36 31.658 1525 1.382 |1.453|1.452] 54,211 374

52 [0.235] 3.05 | 0.143 13.15 28.890 1.526 1.382 [1.453|1.452] 49,862 344 359

8,1 10.236/3.051| 0.146 14.36 31.658 15255 | 1.379 [1.452{1.451| 51,916 358

82 |0.236| 3.05| 0.146 2.15 48.832 1.525 1.379 [1.452|1.451] 80,166 553 455

91 10.236]3.051] 0.145 15.97 35.207 15255 | 1.381 |1.453[1.452] 58,831 406

9,2 10.236[/3.051| 0.145 15.57 34.326 15255 | 1.381 [1.453]1.452| 57,358 395 401

10,4 10.235)3.049] 0.141 1557 34.326 15245 | 1.383 [1.454]1.453{ 60,864 420

10,2 |0.235]| 3.048| 0.141 14.76 32,540 1.5245 1.383 11.454)|1.453{ 57,687 398 409
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7.2. DESIGN AND PROTOTYPE DEVELOPMENT -- TASK 2
7.2.1. Task Overview

Task 2, Design and Prototype Development, we down-selected to a few
experimental metal-bond wheel types for further design and optimization.  The
manufacturing process was scaled up from the 76-mm wheels to 203-mm wheels. These
203-mm (8 in.) diameter prototype wheels were tested in a cylindrical mode, grinding
ceramic rod specimens similar in geometry to valve stems. Grinding wheel performance
was assessed on three types of ceramic specimens: NC-520 sialon, NCX-5102 HIP'ed
silicon nitride and AZ67H zirconia-toughened alumina. Wheels were: evaluated for
grinding parameters such as material removal rate, wheel wear, G ratio, normal force,
tangental force and grinding power. Additionally, the grinding wheel influence on
ceramic surface integrity characteristics such as surface finish, damage, and retained
strength were selectively evaluated. Task 2 culminated with the delivery, to ORNL, of
six duplicate wheels of the best specification.

7.2.2. Final Superabrasive Wheel Experimental Design -- Task 2.1

Based on the results of Task 1, the Task 2 experimental design was completed.
The test wheel specifications were selected from a short list, determined from the
screening tests of 76-mm (3 in.) diameter wheels in Task 1. Approximately 6 wheel
variables were selected for further study. The variables included metal composition,
induced porosity level, diamond concentration and type. The standard wheel for this test
was the standard resin bond product.

The main objective of this task was to extend the results of the 76-mm (3 in.)
diameter wheels into larger 203-mm (8 in.) diameter wheels and arrive at an optimum
specification for grinding advanced ceramics in external cylindrical grinding mode. A
wheel made of the optimum bond composition was expected to consume low power,
provide high grinding ratios, is either easy. to dress or does not require dressing, and
produces acceptable levels of damage to the work piece. The damagé level to the
ceramic using resin-bonded (DB70) wheel under the same grinding conditions was used
as the minimum acceptable value. The best wheel specification was then used to grind
three different advanced ceramic materials, seeking range of applicability for the
improved metal-bond composition.

7.2.3. Fabrication of 203-mm (8 in.) Wheels and Ceramic Specimens -- Task 2.2

7.2.3.1. Superabrasive Wheel Fabrication. The promising metal-bonded wheel
specifications of Task 1 were used to manufacture as series of 203-mm diameter (8 in.)
test wheels in a newly designed and developed mold package. The experimental
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variables were described in Section 7.2.2. Wheels were manufactured using powder
metallurgy techniques, similar to some of our existing products. This permitted the
manufacturing costs to be kept low that is essential for cost-effective ceramic machining.
All test wheels were made with U.S. mesh 270/325 sized diamond abrasive -grits in
wheels measuring 203-mm (8 in.) diameter by 12.7-mm (0.5 in.) thick by 22.2-mm
(0.875 in.) hole diameter. Manufacturing problems in the scale up from 76-mm to 203-
mm diameter were encountered and addressed. Some of these wheels did not meet our
quality requirements and had to be manufactured again.

The composition for the core (or hub) of this wheel, designated as CM 17, was
selected from among existing, proprietary metal alloys. A similar core was used for the
76-mm diameter screening test wheels. This powder metal core could be sintered under
the same processing conditions as the abrasive rim and also provide adequate diffusion
bonding between the rim and core. The ingredients in CM 17 are also relatively
inexpensive, which helped to maintain the cost-effectiveness of the new wheel system.
Bond properties, such as the elastic modulus and the thermal expansion coefficient of
CM 17 are similar to the abrasive bond. The use of the CM 17 hub resulted in more than
adequate wheel strength for this program and for typical ceramic grinding. The wheels
were successfully speed tested to approximately 91 m/s (18,000 surface ft./min.) and
rated for at least 61 m/s (12,000 surface ft./min.) grinding speed. The ultimate wheel
speed capability of this abrasive rim-core combination was not determined. However, if
significantly higher speeds are required for future wheel testing, modifications could be
made to the core material to maximize wheel speed capability.

7.2.3.2. Sialon, Silicon Nitride and ZTA Specimen Fabrication. Cylinders of
these three materials, approximately 25.4-mm diameter and 79 mm long were produced

by CIP’ing and firing. The sialon cylinders were sintered whereas the silicon nitride
(NCX-5102) material was glass encapsulation HIP’ed. The ZTA (AZ67) was sintered to
closed porosity and then HIP'ed. This material contains 20-vol% Y-TZP with 80-Vol%
Al0;. Highly dense material was obtained in all cases and these cylinders were then used
directly for machining studies. The AZ67HS zirconia-toughened alumina (ZTA) rods
were fabricated by Norton Advanced Ceramics, (Export, PA) and mechanical properties
were characterized at NRDC. NRDC fabricated and characterized the NCX-520 sialon
and NCX-5102 HIP'ed silicon nitride rods.

The ceramic specimens were qualified by evaluation of MOR flexure tests made
from flat tiles at the same time as the rods. Flexure bars were 3 x 4 x 50 mm machined
and tested accordance with ASTM Standard C 1161 standard test method for flexural
strength of advanced ceramics at ambient temperature[18]. The specimens were
longitudinally ground with 320 grit resin bonded wheels.

The same type B specimens were used for indentation fracture toughness,
Kic[19]. Indentation loads of 10 kg were used for sialon and silicon nitride and 20 kg for
the ZTA. The results of the density, MOR and Kic characterization are listed in Table 5.
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Table 5. Average density, Kic and MOR of ceramic materials used in Task 2.

“Sialon NCX-520 | 3253 | 3 | 611 8 | 655
Silicon Nitride | NCX-5102 | 3.221 | 3 6.83 6 | 921
ZTA AZ67 4400 | 3 2.80 7 | 782

7.2.4. Grinding Evaluation of 203-mm (8 in.) Wheels -- Task 2.3

7.2.4.1. Grinding Test Description. The grinding test was performed on the
same Okuma cylindrical grinder at Norton's World Grinding Technology Center that was
used for the Task 1 screening test. The objective of this test was to 1dent1fy the
specification of the one best performing wheel for grinding advanced ceramics such as
sialon and Si;N,. Ceramics rods of sialon measuring 26 mm in diameter and 84-mm long
(32 in.) were ground in external cylmdncal plunge grinding mode using 6.25 mm (0.25
in.) of wheel width. Holding it in a three-jaw chuck with 12.7 mm (0.5 in.) of it
exposed, the ceramic rod was plunge ground at its end leadmg to a step diameter of 6.35
mm (0.270 in.). The removal rate was set at 4.5 mm*/sec/mm (0.42 in.3/min./in.) and
maintained by periodically increasing the work speed and radial infeed. After plunge
grinding once, the jaws of the chuck were released and the rod indexed axially outwards
by 6.35 mm (0.25 in.). This type of part-holding arrangement assured two things; a
constant part stiffness for wheel-work combination and removal of any damage caused
by the chucking the rod. A total of nine plunges were made with each rod, and several
rods were ground using a given wheel.

Some of these rods were subsequently ground transversely by feeding the wheel
0.013-mm radially on one side in several passes to a final diameter of 6.35 mm (0.25 in.).
Trimcool, a water based coolant with rust inhibitor was used as the grinding fluid in all
tests. Some rods were then tested in flexure at NRDC as described below in Section
7.2.4.3.

The power, forces, wheel wear, and surface finish of the ground rods were
measured. Wheel wear was determined through precise micrometer measurements of
wheel diameter before and after a grinding cycle. The volume of the wheel wear was
calculated from the diametrical wear and the actual wheel face wear zone width: In the
plunge mode test the wear zone was approximately half of the wheel face. In the
transverse grinding mode the full wheel face was worn and wear volume was calculated
from the wheel thickness.
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7.2.4.2. Superabrasive Wheel Grinding Results. The composition of the wheel
that produced the best performance included metal bond C, with D2 type abrasives of
size U.S. mesh 270/325 at 75. concentration. . Figure 26 compares the spmdle power
values drawn as a function of volume of material ground per unit' wheel w1dth, using this
wheel. The power remained at steady levels during grinding of all three ceramics; sialon,
HIP'ed SlsN4, and ZTA. The wheel required no dressing- in- grinding thesé materials
under given test conditions.- The power consumed in grinding NCX-5102 HIP'ed Sl3N4
was about 50% higher than either NC- 520 sialon.or AZ6TH ZTA.

Spindle power drawn when grinding NC-520 sialon, using this 1mproved metal-
bonded wheel at 75 diamond concentration versus the resin-bonded (DB70) wheel at
100 concentration, which is typically used in external cylindrical grinding of ceramics, are
plotted in Figure 27. Grinding conditions were identical for both the experimental metal
and standard resin wheel. While the resin-bonded wheel needed periodic stick dressing
every 19 mm3/mm (3 in.%/in.), the metal-bonded wheel-did not need any Sthk dressmg
over 400 crn’/cm’ of material removed. The metal-bonded wheel aiso consumed up to
30% lower power than the resin bonded wheel.

Figure 28 ‘compares the average spindle | power consumed versus diamond
concentration with test wheel in metal bond C grinding the three different ceramics. The
power *values increased’ with abrasnve concentration levels in all cases. NCX-5102

HIP'ed SisN; continued to ‘conisume the most power similar to results from the 75-
concentration wheel, while ‘the results ‘on NC-520 sialon and "AZ67TH ZTA weré
reversed. The average spindle power consumed by both the resin and metal bonds with
100 concertration were nearly equal The metal-bonded wheel at 100 concentratlon
required dressing every 45 cm®/cm (7 in.%/in.) of material removed.

The cumulative wear data agamst total volume of material removed per unit
wheel width- is shown in Figure 29. This"plot compares ‘the expenmental wheel with
metal bond C at 75-diamond concentration, and the resm-bonded wheel at 100
concentration in grinding of NC-520 sialon. There is an order of magmtude decrease in
wear with the improved metal bond C relative to the resin-bonded wheel. A standard
resin-bonded wheel in 75 concentration was not tested because its wheel wear was
con51dered ‘unacceptable for cost-effective ceramics machlmng The cumulative wear
values as a function of total volume of material removed for a wheel with metal bond C
in 75 concentration, grinding the three different ceramics, is plotted in Figure 30. The
cumulative wear of the wheel in grinding AZ67H is aibOut three times that in grinding
NC-520 sialon and twice in NCX-5102 Si;Ns. The nearly constant slopes of the three
cumulative wear graphs is another indication of controlled and uniform wheel wear with
thls experimental metal bond at 75 diamond concentration level.

Figure 31 compares the normalized wear of the two 203-mm (8 in.) diameter
wheels of metal bond C with 75 and 100 diamond concentration levels grinding the three
different ceramics. AZ67H ceramics again are shown to wear the wheel with 100
concentration more than the other two materials, similar to results at 75 concentration.
However, the relative wheel wear dropped by about 50% for 100 concentration wheels
compared to 75 in all three ceramic workpieces tested.
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Figure 26. Spindle power drawn during the grinding of three different advanced
ceramics using the improved metal bond. The ceramics includé NC - 520 Sialon, AZ67H
- 20%Zr0,-AL0; and NCX-5102 HIP'ed SisN;. The power levels are nearly uniform
indicating a controlled wheel wear. The amount of sialon represents nearly 3 hours of
continuous grinding.
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Normalized Spmdle Power vs
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Figure 27. The spindle power drawn during the grinding of NC-520 sialon using
the standard 100 diamond concentration resin bond DB70 and the improved metal bond
with 75 concentration. ‘The new metal bonded wheel drew lower power than the resin
bonded wheel, typically used in grinding of different ceramic materials. The‘power levels
with the metal bond were nearly uniform indicating a controlled wheel wear. The power
drawn by the metal bond was nearly constant over 400 cm3/cm or-64in3/in.of wheel
width. There was no need for stick dressing with the metal bond. The resin-bonded
wheel required periodic stick dressing, every 20 cm3/cm or 3 in3./in., to lower power at
acceptable levels.
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Normalized Spindle power vs
Diamond concentration
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Figure 28. The normalized spindle power drawn in grinding of NC-520 sialon
using 203-mm (8 in.) wheels as a function of diamond abrasive concentration. The
power drawn increases with concentration with the metal bond with all three ceramics.
Power drawn by typical resin-bonded wheel grinding NC-520 sialon is also shown for
reference.
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Cumulative wheel wear vs Material
removed in Grinding of SiAION
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Figure 29. The cumulative wheel wear of the improved metal bond in grinding of
sialon is compared with the standard resin bond. Although the diamond concentration in
resin bond is 100 and 75 in metal bond, wear rate of the metal bond is an order of
magnitude lower than the resin bond.
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Cumulative wheel wear vs Material
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Figure 30. The cumulative wheel wear of the new metal bond in grinding of
three ceramics. The constant slopes of the three graphs is another indication of uniform
wheel wear. The wear rate of the wheel in grinding AZ67H ZTA is almost three times
that of NC-520 sialon.
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Normalized wheel wear vs Diamond
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Figure 31. The wheel wear (normalized) in grinding of three ceramics using a
203-mm diameter improved metal-bonded wheel containing 75 and 100 concentration of
diamond. The wear decreases with 100-diamond concentration while the wear trends
among the different ceramics are similar. The wheel wear volume of in grinding AZ67H
ZTA is about three times that of NC-520 sialon and twice that of NCX-5102 HIP'ed
SizNy.
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"Grindability" values of NC-520 sialon using the improved metal bond at 75
concentration and the standard resin bond at 100 are shown in Figure 32. For a given
wheel-work system, grindability is defined here as the grinding ratio of the wheel/specific
energy to rémove a unit volume of material. A high value of grindability indicates a low
wheel wear or energy required for unit volume of material removal and, hence, is

desirable.

Grindability of SiAION using the Resin and
Metal Bonds

NC-520 SiAION WITH
7.00 METAL BOND

6.00
5.00 f

4.00

3.00

2.00 f

Grindability cm3/min./KW

1.00 } NC-520 SiAION WITH
RESIN BOND

0.00

Figure 32. "Grindability" of 203-mm (8 in.) diameter resin- and metal-bonded
wheels grinding NC-520 sialon ceramics. Grindability is by definition, Grinding
ratio/Specific grinding energy. This is an estimate of wheel consumed removing a unit
volume of material over energy required. Higher values imply lower energy needs and/or
lower wheel wear. .The new metal bond-ceramic combination produced significantly
superior results.
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Figure 33 compares the grindability of the three ceramic ‘materials with the
improved metal bond at 75-diamond concentration. The grmdablhty of sialon is nearly
three times that of either ZTA or HIP'ed Si;N..’

Some of the other experimental 203-mm wheels resulted in poorer results than
the best experimental wheel and in some cases were even poorer than the resin bond.
These tests were discontinued. These other experimental wheels would not be
considered for cost-effective ceramic machining.

Grindability of three ceramics with metal bond

8.00
NC-520
7.00 k SiAION /

6.00
5.00 |
4.00 |
3.00
2.00 |
1.00 f
0.00

NCX 5102

67H-20% HIPped Si3N4
Zr02-A1203

Grindability cm3/min./KW

Figure 33. "Grindability" of the 203-mm diameter improved metal-bonded
wheel grinding sialon, ZTA and HIP'ed SizN;. The metal bond-NC-520 sialon ceramic
combination produced grindability values up to three times that of ZTA or Si;Nj.



57

- 7.2.4.3. Ceramic Rod Specimen Damage Assessment. The cylindrical rods in
the Task 2 grinding test were initially plunge ground and subsequently transverse

ground to the final 6.35-mm diameter. Figure 34 shows typical rods after grinding tests
displaying the original and final diameters (the large diameter end was held in the
chuck). These test rods were sent to NRDC for flexure strength and grinding damage
evaluation.

R N ;
. : R
N o F|FEICTORT AT S G EN Y I T 4 A

70 50

Figure 34. Sialon specimens after cylindrical grinding test and prior to flexural
strength testing. Specimens = ~79 mm long. Original diameter = 25.4 mm. Final
diameter = 6.35 mm.

Rods from selected grinding tests were next subjected to flexure testing. The
flexure stress for three point bending was calculated from the following equation:

o =8 PL/nd’

Where o is the fracture stress in pascals, P is the fracture load in newtons and L is the
span length in meters and D is the rod diameter in meters. The rods used were 6.35-mm
diameter and the span was 40 mm.
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We compared reciprocal grinding bar strength of our best experimental metal-
bonded wheel against a standard resin-bonded wheel for sialon bars. The results are
shown in Table 6. Gratifyingly, the experimental metal-bonded wheels gave no
significant reduction in strength from that of the standard resin-bonded wheel and the
strength is similar to that for flat longitudinal grinding in Table 5. It is somewhat
surprising that there is no reduction in strength here with transverse grinding. It is
possible that volume flaws are dominating machining flaws, but these are quite high
MOR values. In the case of the ZTA material we know from flat transverse grinding
studies with 320 resin wheels that the strength can be reduced to 400 MPa, so the
numbers here are consistent. The slight tendency for lower strength with the metal bond
should be studied in more detail in future work. Unfortunately, the constraints of the
contract schedule did not allow a similar study of silicon nitride.

The fracture origins of these fractured sialon. bars and the topography of the
machined surfaces are of interest. Consequently, we have measured the surface rough-
ness, R,, for (i) the sialon rods ground with resin- and metal-bonded wheels reciprocally,
(i) plunge ground, and reciprocally ground ZTA. (There was little difference between
the two.) A series of profilometry scans are shown in Figures 35-37 for reciprocally
ground sialon with the metal-bonded wheel and resin wheel and for ZTA with only the
metal wheel. Figures 35 and 36 compare sialon surfaces ground with the standard resin
and an experimental metal bond, and 'shows very little difference. The ZTA material
ground with only the metal bond shows significantly rougher surfice (Figure 37).

SEM photographs of fracture origins for a sialon rod ground with the resin- -
bonded wheel and one with a developmental metal-bonded wheel are shown in Figures
38 and 39. In both cases fracture has initiated at the surface with no obvious flaw. The
cylindrical shape and three-point bending strongly favor breaking at the surface.

The surfaces of sialon with the two types of grinding wheels are shown in Figures
40 and 41. The two machined surfaces are quite smooth and similar to one another. The
harder metal-bonded wheel gave only a slightly rougher surface than the resin-bonded
wheel according to the R, measurements. '

In conclusion, the reduction in strength for transverse ground rods of ZTA is
about 50% but this has also been found for flat machining. The sialon rods had similar
strengths to the resin-bonded wheel flat ground MOR specimens, and there was no
noticeable difference between the resin and metal wheel ground specimens. This led us
to believe that the innovative metal wheel is performing satisfactorily and not creating
unusual or excessive machining damage compared to the standard resin bond product.

7.2.4.4. Wheel Cost Performance Analysis. By applying Norton's existing
technology used in the manufacture of other types of production wheels, the wheel costs

are kept low and would be acceptable. The price of the metal-bonded wheel is
comparable to that of the resin bond even with the order of magnitude improvement in
wheel life. Compositional changes to the experimental bond would not increase
manufacturing costs compared to standard metal-bonded wheels.




Table 6. Surface Finish and Flexure Strength of Ceramic Rods
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Set-Up Std. Resin | Reciprocal
Piece

18 Sialon Resin Reciprocal 0.36 0.41 751
19 Sialon Resin Reciprocal 0.38 0.41 581
20 Sialon Resin Reciprocal 0.39 .045 780
22 Sialon Resin Reciprocal N/A N/A 664
23 Sialon Resin Reciprocal 0.34 0.37 604
Sialon XL Metal | Reciprocal 0.35 .037 628
26 Sialon XL Metal | Reciprocal 0.40 0.47 575
27 Sialon XL Metal | Reciprocal 0.41 0.47 609
29 Sialon XL Metat | Reciprocal 0.49 0.57 717
30B Sialon XL Metal | Reciprocal 0.35 0.41 689
23 ZTA XL Metal Plunge 0.69 0.89 N/A
34 ZTA XL Metal Plunge 0.52 0.62 N/A
25 ZTA XL Metal Plunge 0.49 0.60 . N/A
27 ZTA XL Metal Plunge 0.56 0.67 N/A
? ZTA XL Metal Plunge 0.50 0.62 N/A
23 ZTA Resin Reciprocal - - 508
34 ZTA Resin Reciprocal - - 452
25 ZTA Resin Reciprocal - - 481
27 ZTA Resin Reciprocal - - 485
? ZTA Resin Reciprocal - - 516
1 ZTA XL Metal Reciprocal 041 - 374
2 ZTA XL Metal Reciprocal 0.49 - 381
3 ZTA XL Metal Reciprocal - - 362
4 ZTA XL Metal | Reciprocal - - 461
5 ZTA XL Metal | Reciprocal - - 412
6 ZTA XL Metal Reciprocal - - 382
7 ZTA XL Metal | Reciprocal - - 400
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Figure 36. Profilometry scan of reciprocally ground rods. Sialon workpiece
ground by standard resin-bonded wheel.
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Figure 39. SEM of sialon rod fracture surface ground with metal-bonded wheel.
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Figure 40. SEM of machined sialon surface ground with resin-bonded wheel.

Figure 41. SEM of machined sialon surface ground with metal-bonded wheel.
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The order of magnitude improvement in wheel life results in several -benefits,
some of which are difficult to quantify. The benefits include: increase in components
produced per wheel, more components per machine per shift, fewer wheel changes (and
lower associated costs), less time/cost spent on dressing the wheel, and finally, better
part-to-part consistency. The percentage decrease in the cost of machining using this
improved metal-bonded wheel would also depend on such factors as the removal rates
used, amount of stock being removed, and the tolerances desired.

7.2.5. Fabrication of Six, 203-mm (8 in.) Wheels for MMES -- Task 2.4.

Six duplicate 203 mm diameter wheels of the best experimental specification discussed in
Section 7.2.4.2 were fabricated and sent to ORNL as a contract deliverable.

7.3. PROGRAM MANAGEMENT -- TASK 3

7.3.1. Reporting

Norton Company submitted the required bimonthly and semiannual reports to the
MMES Project Manager.

7.3.2. Communications/Visits/Travel

R.H. Licht, S. Ramanath and M. Simpson visited the University of Connecticut
to consult with Professor Trevor Howes, March 16, 1994.

Trevor Howes and George Bailey, University of Connecticut CGRD visited
Norton Company World Grinding Technology Center to perform Harmonic Response
(Hammer) Test.

Peter Blau and Ernie Long, ORNL, visited Norton Company to review contract
status and next steps, December 1, 1994.

7.3.3. Contract Related Publications/Presentations

R.H. Licht (presenter), S. Ramanath, M. Simpson, E. Lilley, "Development of the
Next-Generation Grinding Wheel for Ceramics," Cost-Effective Ceramic Machining
Project Review and Coordination Meeting, Oak Ridge, TN, September 8, 1993.

G. M. Caton and J. M. Wyrick, Editors, R. H. Licht, contributor, "Norton to
Develop Next Generation Grinding Wheel for Ceramics," Ceramic Technology
Newsletter, No. 43, April - June 1994, ORNL/DOE.
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R.H. Licht (presenter), S. Ramanath, M. Simpson, E. Lilley, "Development of the
Next Generation Grinding Wheel," Cost-Effective Machining of Ceramics Workshop,
Oak Ridge, TN, August 24, 1994, '

R. H. Licht, "Next-Generation Grinding Sets the Stage for Ceramic
Breakthroughs", Ceramic Industry, 65-67, February 1995.

7.3.4. Schedule and Status of Milestones

Number  Milestone Due Date  Status

1.1 Requirements Definition and Experimental Design  1/31/94  Completed
1.2 Screening Test Wheel Manufacturing 4/30/94  Completed
1.3-4 Screening Wheel Test and Data Analysis 6/30/94*  Completed
2.1 Final Superabrasive Wheel Experimental Design 7/31/94  Completed
22 Fabrication of 8" Wheels and Ceramic Specimens ~ 9/15/94  Completed
2.3 Grinding Evaluation, Ceramic Damage Assessment 11/30/94  Completed
24 Fabrication of Six, 203 mm Wheels for MMES 12/31/94  Completed
3.1 Delivery of Draft Final Report 1/20/95°  Completed
3.2 Delivery of Final Final Report 3/30/95°  Completed

* CVD Wheel Activity completed 11/94.
® Original milestones 12/31/94 and 2/28/95

7.4. PHASE 2 RECOMMENDATIONS

Results of 76-mm (3 in.) and 203-mm (8 in.) diameter test wheels indicate that a
superior, next-generation grinding wheel for cylindrical grinding of ceramics has been
developed. Most production grinding of cylindrical ceramic parts is done on machines
that require 305-mm (12 in.) to 356-mm (14 in.) diameter wheels. We recommend a
Phase 2 program to scale up the new Superabrasive wheel specification to the larger
diameters and do further in-house wheel specification enhancement. Experimental large
test wheels would then be manufactured for independent validation at ceramic
manufacturers and ceramic machine shops. The following organizations have expressed
interest in performing validation tests: Norton Advanced Ceramics, AlliedSignal
Ceramic Components, Chand Kare Technical Ceramics, Caterpillar Inc., and Eaton
Manufacturing Technologies Center. Phase 2 validation testing should also include more
extensive evaluation of ceramic surface integrity.
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8. CONCLUSIONS

Norton Company completed the 16-month Phase 1 technical effort and met the
program objectives to define requirements, design, develop and evaluate a next-
generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics.

This program was a cooperative effort involving three Norton groups. The
Norton Company Abrasives R&D, Norton Diamond Film Division and the Northboro
Research and Development Center (NRDC). The program was divided into two
technical tasks, Task 1, Analysis of Required Grinding Wheel Characteristics, and Task
2, Design and Prototype Development. In Task 1 we performed a parallel path approach
with Superabrasive metal-bond development and the higher technical risk CVD diamond
wheel development.

For the Superabrasive approach, Task 1 included bond-only wear and strength
tests, which modeled the experimental bonds to give intermediate grinding characteristics
between standard resin and metal bonds. Task 1 culminated in a large experimental
matrix of 76-mm screening wheels, used to grind sialon disks in a cylindrical plunge test.
Some experimental bonds demonstrated significant improvements over standard resin
and metal bonds. During screening tests with the conventional metal-bond product, the
spmdle power and grinding forces increased abruptly after grinding approximately 50

m®/cm of material. The wheels requlred dressing with an abrasive stick. Such abrupt
increase in force could cause excessive damage to the ceramic component and would not
be acceptable in high-volume production grinding operations. Many experimental metal
bonds did not exhibit this tendency. Using this screening test approach, approximately
45 wheel variables were evaluated before down selecting to the most promising bonds
for the Task 2, 203-mm diameter tests.

In Task 2, an improved Superabrasive metal bond specification for low-cost
machining of ceramics in external cylindrical grinding mode was identified. Under given
test conditions, a 203-mm (8 in.) diameter test wheel made in this bond containing 75-
concentration diamond abrasives of size U.S. mesh 270/325. The experimental wheel
successfully ground three types of advanced ceramics, NC-520 sialon, NCX-5102-
HIP'ed SizNs, and AZ67H-20% ZTA, without the need for wheel dressing. The spindle
power consumed by this wheel during test grinding of NC-520 sialon is up to 30% lower
than with a standard resin-bonded wheel with 100 diamond concentration, that is
typically used in this application. The wheel wear with this improved metal bond was an
order of magnitude lower than the resin-bonded wheel, which would significantly reduce
ceramic grinding costs through fewer wheel changes for retruing and replacements. By
applying- Norton's existing technology used in the manufacture of other types of
production wheels, the wheel costs for this improved metal bond are kept low and is
expected to lower the overall machining operation costs. The price of the metal-bonded
wheel is comparable to that of the resin bond even with the order of magnitude
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improvement in wheel life. The range of application of the improved metal bond was
demonstrated in cylindrical grinding of the three advanced ceramics through our in-house
tests.

In the Task 1 small-wheel screening test, we performed optical examination and
C-ring compression tests of selected sialon disks. For the C-ring compression tests,
corner breaks and the limited number of data points made comparative conclusions
suspect. However, the experimental results did not show evidence of unusual grinding
damage to the ceramic disks. More comprehensive flexure testing was planned and done
for the Task 2 rods. Stresses generated during flexural testing was normal to the
grinding direction, which resulted in a more meaningful cylindrical grinding damage
evaluation. Therefore, the C-ring test in Task 1 was determined to have limited
usefulness as a qualitative assessment of grinding damage.

For the Task 2 large-wheel test, optical examination and flexure test of three
types of ceramic rods ground by experimental metal-bonded wheels and standard resin
wheels did not show any unusual grinding damage. The sialon rods had similar strengths
to the resin bonded wheel flat ground MOR specimens, and there was no noticeable
difference between the resin and metal wheel ground specimens. The reduction in
strength for transverse ground rods of ZTA is about 50% vs. longitudinal grinding, but
this has also been found for flat machining. This led us to believe that the innovative
metal wheel did not create unusual or excessive machining damage compared to the
standard resin-bond product.

The novel CVD diamond wheel approach was incorporated in this program as
part of Task 1. Task 1 was designed to include a small-wheel screening test utilizing a
parallel path approach to the main Superabrasive metal-type bond approach. The higher
risk CVD diamond wheel approach was to be a feasibility study and was not planned for
continuation into Task 2, Design and Prototype Development. The CVD approach was
considered a higher risk but was considered to have a high potential payoff by applying
this new technology to machining of ceramics. The CVD diamond wheel activity was
concluded in Task 1 as planned. The initial CVD wheel design was unsuccessful. A thin
CVD diamond wheel was redesigned and tested. This test was designed to evaluated the
basic grinding characteristics of this new CVD diamond design. Diamond thickness and
preform geometry had the greatest impact on performance. While significant grinding
improvements were noted from the initial screening test, the results were not promising
for this type of operation compared to conventional grinding wheels. The CVD wheel
approach does not appear at this stage to offer promise for cost-effective cylindrical
grinding of ceramics. Other possible abrasive applications for this approach will be
explored.
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