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AN EXPLORATION OF MEASURES FOR
COMPARING MEASUREMENTS WITH THE
RESULTS FROM METEOROLOGICAL MODELS
FOR MEXICO CITY

M. D. Williams* and M. J. Brown*

*Los Alamos National Laboratory, Mail Stop F604, Los Alamos, NM 87545,
Abstract--Los Alamos National Laboratory and Instituto Mexicano del
Petréleo have completed a joint study of options for improving air quality in
Mexico City. We used a three-dimensional, prognostic, higher-order
turbulence model for atmospheric circulation (HOTMAC) to treat domains
that include an urbanized area. We tested the model against routine
measurements and those of a major field program. During the field
program, measurements included: (1) lidar measurements of aerosol
transport and dispersion, (2) aircraft measurements of winds, turbulence,
and chemical species aloft, (3) aircraft measurements of skin temperatures,
and (4) Tethersonde measurements of winds and ozone. We made both
graphical and statistical comparisons and we have reported some of the
comparisons to provide insight into the meaning of statistical parameters
including the index of agreement.

Key word index: Prognostic models, complex terrain, urban air quality,
measurement-model comparison, Mexico City

1. INTRODUCTION

The task of developing a comprehensive air quality modeling system for any major
city is a difficult one. In order to develop a good understanding of urban air quality in
major cities, three major components are needed: (1) measurements, (2) emission
inventories, and (3) air quality models. Despite many years of development, none of the
components can be considered perfect. Measurements may be accurate, but they may not
be representative of what we should know for understanding the air quality situation and
for modeling air quality changes (e.g, Thomson, 1986). Emission inventories represent
areas of major uncertainties (e.g., Gertler and Pierson, 1991 and Oliver, ef al, 1993). In
cities where there has been considerable work over many years, it appears that the




emissions inventories are inconsistent with ambient measurements. Air quality models
have had both successes and failures (e.g., Wilson, 1993).

In this paper, we address measures for comparing meteorological and air dispersion
. modeling results to measurements in areas of complex terrain where the representativeness
of measurements is likely to be spatially limited. We have used the sophisticated
HOTMAC model (Higher-Order Turbulence Closure Model for Atmospheric Circulation)
to overcome the complexity of the terrain and the relative paucity of meteorological data. .
We have made direct comparisons between modeled and measured meteorological
variables and we have also calculated a variety of statistical parameters for evaluating the
comparisons. The comparisons are made in the context of Mexico City.

2. THE METEOROLOGICAL MODELING SYSTEM

The objective of the meteorological modeling was to provide atmospheric transport
variables for the dispersion and air chemistry models, and to help provide an understanding
of the air quality situation. For major urban areas there are two approaches to defining
transport variables. One involves interpolating between measurements to provide winds at
all points of interest. The other approach involves modeling winds with a meteorological
model that can compute a full, three-dimensional time-dependent wind field. The intent of
the latter approach, which we used, is to represent the important physics in detail rather
than relying on a dense system of measurements to provide the physics from the. -
measurements alone.

2.1. .Model Formulation

HOTMALC is a three-dimensional time-dependent model (Yamada and Bunker,
1988). It uses the hydrostatic approximation and a terrain-following coordinate system.
HOTMAC solves conservation equations for the horizontal wind components, potential
temperature, moisture, turbulent kinetic energy, and the turbulence length scale.
HOTMAC describes advection, Coriolis effects, and turbulent transfer of heat, momentum,
and moisture. It also describes solar and terrestrial radiation effects, turbulent history '
effects, and the drag and radiation effects of forest canopies. The lower boundary
conditions are defined by a surface energy balance and similarity theory. The local soil
heat flux is obtained by solving a soil heat conduction equation that ignores horizontal heat

transfer. In an urban context the surface energy balance requires an additional term that




represents the heat released by man's activities. The additional heat, along with
differences in thermal and albedo properties between urban and non-urban surfaces,
produces the urban heat island.

We used a nested grid system to model the valley of Mexico and its surrounding
terrain. The outermost grid has a 18 km spacing and covers the major terrain influences as
shown in Fig. 1. The innermost grid which has a 21 by 27 array of cells is depicted as a
box within the two outer grids and it embraces the city and its immediately adjacent slopes.
The inner grid has a resolution of 2 km. The individual characters plotted on the figure are
monitoring sites operated by SEDESOL (Secretaria de Desarollo Social or Secretariat for
Social Development). The area in yellow represents the urban area as defined by estimated
CO emissions.

3. METEOROLOGICAL MODEL-MEASUREMENT
COMPARISONS

Measurements are very important to provide model inputs and to help understand
the limitations and performance of the models. For the meteorological model there were
six types of measurements that were available to provide insight into the model's
performance: (1) surface station winds, (2) rawinsonde profiles, (3) Tethersonde profiles,
(4) aircraft meteorological profiles, (5) aircraft elevated winds, and (6) lidar-derived mixing
heights. It is important to realize that the model and the measurements do not necessarily
represent the same parameter. For example, the surface winds are measured at a single site
at a height of 10 meters (which may be measured from the top of a building) and represent
one hour scalar averages of the wind direction and wind speed. On the other hand, the
model provides one hour ensemble mean vector averages of the wind over a 2 kilometer by
2 kilometer grid with a vertical depth appropriate to the grid cell. The model takes the
ground level as the street level and includes the buildings as the above-ground canopy. The
measurement sites are usually chosen to be in more open areas, but they may be influenced
by nearby buildings or trees.

In-this paper we focused on wind direction comparisons for February 21-22, 1991
.and mixing height comparisons for February 26, 1991. February is normally a month in
which very high levels of ozone are found in Mexico City. In February of 1991 an
experimental program was carried out to help understand the conditions that lead to high
ozone levels in Mexico City. In our model comparisons we discovered deficiencies in the
treatment of the thermal radiation from the atmosphere. We found the problem and




improved the model. Consequently, we have two sets of model results, referred to as old
model and new model comparisons to describe.

The simulations were begun with information from the late afternoon and early -
evening rawinsonde measurements at the airport. The balloons are designed to rise at a
rate of about 200 meters per minute. In the Mexico City work, the data were available at
increments of about 75 meters in height. About 7 rawinsonde flights were made each day.
The upper-level winds used as model input at 2000 and 3000 meters above the surface
were based on the rawinsonde measurements.

The low-level winds were obtained from a Tethersonde in the northcentral part of
the city by averaging the winds between the surface and 500 meters above the surface.

The Tethersonde spends a short time at each height and it takes most of an hour to cover the
atmosphere up to the maximum height. In contrast, the rawinsonde takes a much shorter
time to traverse the same height and produces data at much larger intervals in height. The
model requires an ensemble mean wind and thus the Tethersonde provides a better
approximation of the required input.

3.1. Comparison to surface station winds

Before we begin model-data comparisons, a word of warning must be given. The
model produces volume-averaged, ensemble-mean vector winds. These winds are taken
from the grid cells nearest to the monitoring locations. -The measurements, which were
provided by SEDESOL, represent local, scalar-averaged wind speeds and directions. We
use the term scalar-averaging to describe the averaging of the wind directions independent
of wind speeds and the averaging of speeds independent of directions. In the scalar
averaging of the directions the representation of the current wind direction depends upon
the value of the previous wind direction and the range of wind directions is taken as 0. to
540 degrees to prevent misleading averages. For example, if the wind were from 350
degrees one minute and 5 degrees the next, 365 degrees would be used instead of 5 degrees
for averaging purposes. In this example, if the range were limited to 360 degrees, a 5
degree wind would have been averaged with a 350 degree wind to provide an average of
172 degrees. In addition to the averaging techniques, stations may have local influences
which could not be resolved by the model. '

There are two kinds of displays which were developed to help understand the
model performance: (1) hourly surface plots in which the model wind vectors are shown
along with the measured winds and station locations, and (2) daily time-profile plots in
which either the wind direction or the wind speed is compared to the measurements.




In both cases the terrain is also shown as well as the locations of the measurement sites.
Figures 2 through 5 show hourly simulations with the new model of the vector fields on
the inner grid for the morning, late-morning, afternoon, and near midnight, respectively,
for February 21. The dark green in the lower left hand corner of the figures represents the
mountains to the southwest of the city. The symbol Y represents the Hangares station of
the SEDESOL network, which is located at the airport. The blue arrows show the
modeled wind speed and direction (not shown if the winds exceed 5. m/s), while the red
arrows show the measured wind speed and direction (no arrow is shown if the data are
missing or the speed is zero). The modeled values are at a height of 16 meters in the
terrain following coordinate system which corresponds to about 25 meters above the
ground. This height was chosen because it is the last height below the highest point of the
canopy for which calculations were made.

- The 6 am slope winds are well represented as evidenced by stations U and T which
are closest to the mountains (Fig. 2). Station B is not well represented, but it generally
seems to show anomalous behavior (see Figs. 2-5). The measured winds at city stations
such as X and Y show a somewhat different behavior than the modeled winds which might
be produced by local effects of buildings. The measurements also suggest that there is
more wind convergence over the city than the model shows, as seen by predominately
westerly winds on the west side of the city and the predominately easterly winds on the east
side of the city. The transition to upslope flows occurred at about 10 am when the model
showed a less developed transition than the measurements (Fig. 3). At 1 pm, Fig. 4
shows the afternoon flows with fully developed slope winds. At 11 pm, the drainage

-winds have reestablished themselves and there is good agreement between the model and
the measurements (Fig. 5). These four figures demonstrate the variety of wind conditions
which can occur in the valley during a single day. They also show that the model does a
reasonably good job of representing the major features.

Time profiles of wind directions at all sites on February 21 and February 22 are
shown in Figs. 6 and 7, respectively. In Fig. 6, the two inner grids are shown and the
two white points on the lower right hand side are the two 5300 meter plus volcanoes, the
central green splotch is Pico de Tres Padres, while the red Y is the airport. The model
shows good behavior although there are some large fluctuations in the measurements which
may be the result of afternoon clouds. )

On February 22 the directions shown in Fig. 7 represent a good agreement near the
mountain slopes but the agreement is not as good in the more urban areas. Figures 8 and 9
report similar comparisons between the old model results and the measurements on

February 21 and 22, respectively.




3.2. Rawinsonde Profiles

A major concern about the measurement of upper-level winds by means of a
rawinsonde is the relatively short time over which the rawinsonde measurements are made.
The meteorological and air quality modeling comunities are using the rawinsonde winds to
provide input to models. The difficulty of a brief measurement period is that it may not be
very representative of the average conditions needed by the models. This concern is
particularly important during the daytime, when the wind fluctuations are large. One way
to investigate this problem is to use the models to estimate what variations could be
expected among short-term measurements. Since the effective averaging time of the
rawinsonde measurements is very much smaller than the timescale of the convective eddies,
one can approximate the variance in the measured mean by using the model-computed
velocity fluctuations oy and 6y. Figure 10 is an example of such a comparison for 11 am
on February 26, 1991. The solid line shows the measured wind directions by the
rawinsonde, the dotted line shows the model predictions, while the asterisks show twenty
randomly selected model realizations with the same mean winds. In the lower 50 meters
above ground level (agl) only one model height was shown to improve readability. Very
close to the surface, the asterisks indicate that most of the winds are consistent with the
model, because the turbulent fluctuations are so large. Near the surface there is a high
speed tail in the measurements which is likely to be a very local effect or perhaps the
balloon has been launched from a point other than the assumed point. The odd feature of
a high speed tail is a frequent feature in the rawinsonde measurements. The collapse of the
range of the asterisks depicts the lower turbulence levels above the mixing height. Figure
11 reports a similar comparison for 2 pm on February 26, 1991. The wind speeds are
slightly higher which reduces the spread in wind directions at the lower heights, however
the mixing height has increased to about 2500 meters so that there is more spread aloft.

The large spread in wind directions as shown by the asterisks indicates that the
rawinsondes cannot be expected to give us precise wind directions during light wind
conditions within the mixed layer.. Rawinsondes provide the upper-level winds used to
drive the air quality and meteorological models throughout the world.

3.5. Lidar Mixing Heights

The lidar mixing heights were determined as the height at which 50% of the
horizontal area has a signal characteristic of the clean air aloft. Typically, the lidar cannot




identify structures below about 100 meters because of line of sight restrictions caused by
nearby objects.

Figure 12 displays the comparison of mixing heights between the new model and
the measurements for February 26, while Figure 13 reports a similar comparison for the
old model. The principal disagreements are in the night when the LIDAR minimum
heights may be important and in the late afternoon when left-over aerosols cast doubt on the
validity of the LIDAR measurements of current mixing. The new model does a much better
Job of describing the morning increase in the mixing heights that is very important in air
chemistry modeling. The older model does a better job of describing the evening collapse
of the mixing heights and the afternoon stabilized height. The afternoon heights are
somewhat uncertain because the model resolution is rather poor, about 500 meters at
heights of 2.5 kilometers. Furthermore, the LIDAR defines the height by the presence of
aerosol layers so it may not provide an accurate representation of the evening collapse of
the mixing heights because it will sense aerosols left over from an earlier time rather than
aerosols freshly mixed aloft from surface sources.

4. METEOROLOGICAL MODEL PERFORMANCE SUMMARY

Tesche et al. (1990) among others, have suggested a suite of statistical and
graphical measures for evaluating the performance of photochemical models. Included
among the statistical measures are: model means, observational means, standard deviation
of model estimates, standard deviation of observations, least-squares regression statistics,
root-mean-square error, systematic root-mean-square error, unsystematic root-mean-square
error, index of agreement, skill error, and skill variance. The index of agreement is
formed by subtracting from 1 the product of number of samples and the squared error
divided by the sum over all samples of the squared absolute value of the sample deviation
from the sample mean plus the predicted deviation from the sample mean. When the index
of agreement is one, the predictions are perfect, while an index of zero means the
predictions are noise. The skill error is the ratio of the unsystematic root mean square
error to the standard deviation of the observations. The skill variance is the ratio of the
standard deviation of the predictions to the standard deviation of the observations. '

The computation of these statistical parameters is straight forward for the mixing-
layer heights, but wind directions pose a more difficult problem. Because of the difficulty
with circular data, techniques developed by Mardia (1972) were used to calculate a
regression relationship which is analogous to the standard regression on a line.




Table Isummarizes the statistics for wind directions at the monitoring stations for
two days with both the old model and the revised model. The sample is composed of 414
hourly averaged values.
Table I. Statistical comparison of model and measurement surface winds and mixing
heights.

Parameter Old Wind | New Wind
Direction | Direction
Model mean 8. 278.
Observation mean 130 130.
Standard deviation of predictions 103 69.
Standard deviation of observations 98. 98.
Regression intercept 10. 207.
Regression coefficient ' 1.06 2.48
Correlation coefficient XX XX
Root-mean-square error 95. 86.
Systematic root-mean-square error 13. 85.
Unsystematic root-mean-square error 93. 112.
Index of agreement 0.74 0.84
Skill error 1.11 1.14
Skill variance 1.06 0.70

The correlation coefficient for wind directions is not shown, since it is not calculated for
circular data. Another way to make the comparison is to make comparisons for the wind
Another way to look at the comparison is by wind components. Unfortunately,
wind components introduce an another element, wind speed, that tends to make the apples
an oranges character of the comparisons (grid-averaged versus point) even worse. The
model treats the domain as an urban canopy whereas the actual measurements are
sometimes taken from towers placed on the top of buildings and sometimes made between
buildings. There is normally a large increase in wind speed as one moves from a point
within the canopy to one somewhat above the canopy. Wind directions have less
systematic changes although direction fluctuations associated with building orientations are
important. One way to achieve some of the benefits of component comparisons that
permit the use of simple scatter plots and regression statistics is to compare the cosine and
sine of the measured and modeled, wind directions. Figure 14 shows a comparison
between the cosine of the new-model wind directions and the measured wind directions.




Figure 15 shows the comparison between the sine of the measured and modeled wind
directions. Figure 16 shows a comparison between the old-model cosine of wind direction
and the measured, cosine of wind direction, while Figure 17 shows a comparison between
measured and modeled sines of the wind directions. Table III reports the statistical
parameters for the new and old model cosine of the wind direction.

Table II Statistical comparison of modeled and measured cosine of wind directions.

Parameter Old Cosine New
of Wind | Cosine of
Direction Wind
Direction
Model mean .01 .07
Observation mean -.06 -.06
Standard deviation of predictions .68. .68
Standard deviation of observations .68 .68.
Regression intercept .03 .09.
Regression coefficient 31 .39
Correlation coefficient 31 .39
Root-mean-square error .80 .76
Systematic root-mean-square error 47 44
Unsystematic root-mean-square error .65 .62
Index of agreement .62 .66
Skill error .95 .91
Skill variance 1.00 .99

Table III reports the statistical parameters for the new and old model sine of the wind
direction comparions.Table IT Statistical comparison of modeled and measured cosine of
wind directions.

Parameter Old Sine | New Sine

of Wind of Wind
Direction | Direction

Model mean .00 -.46

Observation mean .07 .07

Standard deviation of predictions .73 .57

Standard deviation of observations .73 .73

Regression intercept .00 -.48 -

Regression coefficient .03 .27




Correlation coefficient .03 .35
Root-mean-square error 1.02 .92
Systematic root-mean-square error 71 75
Unsystematic root-mean-square error .73 .53
Index of agreement 48 .60
Skill error 1.00 73
Skill variance 1.01 .78

While the scatter plots do little to inspire confidence in the model, the winds respond well
to major changes in forcing winds and the slope winds develop appropriately and couple
well with the large-scale conditions. The statistical parameters, notably the index of
agreement suggest that the new model slightly outperforms the old model. Furthermore,
the wind direction statistics look beter than the statistics for the individual components.
There are some areas, however, which could be improved.

A second illustration of the use of the statistical indices is based on the comparison
of modeled mixing layer heights with measurements for both the new and the old model.
In this case the sample size is only 14 and the measurements represent averages over
several minutes. Figure 18 shows a comparison between the new model mixing heights
and the measured mixing heights. Figure 19 is a scatter plot of the old-model mixing
heights and the measurements.

Table IV Statistical comparison of model and measurement mixing heights.

Parameter Old Mixing New
Height Mixing
Height
Model mean 1796. 1179.
Observation mean 1681. 1681.
Standard deviation of predictions 1161. 1053.
Standard deviation of observations 1201. 1201.
Regression intercept 412 37.
Regression coefficient .82 .69
Correlation coefficient .85 77
Root-mean-square error 631. 895.
Systematic root-mean-square error 235. 624.
Unsystematic root-mean-square error 585. 642. -
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Index of agreement 0.92 0.84

Skill error 49 54

Skill variance .97 0.88

In this instance the statistics parameters would suggest that the old model performs better
than the new. However, the graphical representation produces a much different
conclusion. The new model underpredicts the height of the mixing height in the afternoon
which would tend to produce overestimates of the concentrations by about 20% at a time
when the chemistry is relatively stable. The old model however dramatically overpredicts
the mixing height in the morning when the concentrations are high and the chemical
changes are most rapid. The old model will produce much lower concentrations at a
critical time of the day. The principal errors with the new model occur in the model
domain where the model results lack precision because of the coarse grid resolution.
Furthermore, the differences between the new model and the measurements occur at times
when the measurements are may be erroneous, because they don't distinquish between
recently transported aerosols and those that were left-over from mixing earlier in the day.

5. SUMMARY AND CONCLUSIONS

We have illustrated the application of the suite of graphical and statistical measures
which have been recommended for model evaluation. The application included a case
where the performance of an improved model was compared to an earlier version of the
mode] which had an deficient description of some of the physics of the atmosphere. The
illustration shows the importance of supplementing statistical measures with graphical
displays. The illustration also emphasizes how the interpretation of the statistical measures
must be made in the context of an understanding of the deficiencies in the measurements.

We have also presented an example of how the model's description of short-term
fluctuations can be used to assess the representativeness of short duration measurements.
Rawinsondes are the most widely used technique for measuring upper-level winds for
meteorological and air quality modeling. However, our analysis shows that during light-
wind, daytime conditions, mean-winds can be expected to be significantly different than
those measured by the rawinsonde.
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Figure 1. Model domains for the Mexico City air basin. The blue
areas represent the Gulf of Mexico, while the white points are the
volcanoes which reach about 4600 m msl.

Figure 2. Comparison of measured winds (red) to computed winds
(blue) for 6 a.m., February. 21, 1991, with station locations and
topography.

Figure 3. Comparison of measured winds (red) to computed winds
(blue) for 11 a.m., February. 21, 1991, with station locations and
topography.

Figure 4. Comparison of measured winds (red) to computed winds
(blue) for 1 p.m., February. 21, 1991, with station locations and
topography.

Figure 5. Comparison of measured winds (red) to computed winds
(blue) for 11 p.m., February. 21, 1991, with station locations and
topography.

Figure 6. Comparison of measured hourly wind directions (yellow)
to computed (new model) hourly wind directions (blue) on February
21,1991, with station locations and topography.

Figure 7.  Comparison of measured hourly wind directions (yellow)
to computed (new model) hourly wind directions (blue) on February.
22, 1991, with station locations and topography.

Figure 8.  Comparison of measured hourly wind directions (yellow)
to computed (old model) hourly wind directions (blue) on February.
21,1991, with station locations and topography.

Figure 9.  Comparison of measured hourly wind directions (yellow)
to computed (old model) hourly wind directions (blue) on February.
22, 1991, with station locations and topography.

Figure 10. Comparison of measured wind directions ( green solid) to
modeled mean directions (yellow dotted), and to twenty model
realizations (asterisks) for 11 am on the 26th of February 1991.

Figure 11. Comparison of measured wind directions ( éreen solid) to
modeled mean directions (yellow dotted), and to twenty model
realizations (asterisks) for 2 pm on the 26th of February 1991.




Figure 12. Comparison of the LIDAR measured mixing heights
(asterisks) to the modeled (new) mixing heights (line) for February
26, 1991.

Figure 13.  Comparison of the LIDAR measured mixing heights
(asterisks) to the modeled (old) mixing heights (line) for February
26, 1991.

Figure 14. Scatter plot of new model, cosine of wind direction and
measurements of the cosine of wind directions at surface stations.

Figure 15. Scatter plot of new model, sine of wind direction and
measurements of the sine of wind directions at surface stations.

Figure 16  Scatter plot of old model, cosine of wind direction and
measurements of the cosine of wind directions at surface stations.

Figure 17. Scatter plot of old model, sine of wind direction and
measurements of the sine of wind directions at surface stations.

Figure 18. Scatter plot of new model, mixing-layer heights and
LIDAR measurements mixing-layer height.

Figure 19. Scatter plot of new model, mixing-layer heights and
LIDAR measurements mixing-layer height.
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Figure 12. domparison of the LIDAR measured mixing heights )
(asterisks) to the modeled (new) mixing heights (line) for February
26, 1991.

Figure 13. Comparison of the LIDAR measured mixing heights
(asterisks) to the modeled (old) mixing heights (line) for February
26, 1991.

Figure 14. Scatter plot of new model, cosine of wind direction and
measurements of the cosine of wind directions at surface stations.

Figure 15. Scatter plot of new model, sine of wind direction and
measurements of the sine of wind directions 4t surface stations.
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measurements of the cosine of wind directions at surface stations.
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Figure 18. Scatter plot of new model, mixing-layer heights and
LIDAR measurements mixing-layer height.

Figure 19. Scatter plot of new model, mixing-layer heights and
LIDAR measurements mixing-layer height.
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