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INTRODUCTION

One of the central problems of ecological risk assessment is modeling the relationship
between test endpoints (numerical summaries of the results of toxicity tests) and
assessment endpoints (formal expressions of the properties of the environment that are
to be protected)(Suter 1993a; U.S. EPA 1992). For example, one may wish to estimate
the reduction in species richness of fishes in a stream reach exposed to an effluent and
have only a fathead minnow 96 hr LC50 as an effects metric. The problem is to
extrapolate from what is known (the fathead minnow LC50) to what matters to the
decision maker, the loss of fish species. Models used for this purpose may be termed
Effects Extrapolation Models (EEMs) or Activity-Activity Relationships (AARs), by

analogy to Structure-Activity Relationships (SARs).

These models have been previously reviewed in Ch. 7 and 9 of (Suter 1993a) and by

an OECD workshop (OECD 1992). This paper updates those reviews and attempts to
further clarify the issues involved in the developmént and use of EEMé. Although there
is some overlap, this paper does not repeat those reviews and the reader is referred to
the previous reviews for a more complete historical perspective, and for treatment of

additional extrapolation issues.

This class of models are defined as being limited to empirical models and does not
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include mechanistic mathematical simulation modeis which are treated in other
chapters of this volume as well as in (Bartell and others 1992 ; Suter 1993a). Although
these empirical models are simple and often imprecise, models of this sort have in
general proved to be more predictive of ecological responses than models with a more
theoretical basis (Peters 1991). However, there is a continuum from models that are
purely descriptive to those that are purely theoretical. Although all of the models
discussed below are derived from toxicological data by expert judgement or statistical
techniques, their basis in theory ranges from none (e.g., factors), to minimal (e.q.,
species sensitivity distributions), to weli-developed and mechanistic (e.g., allometric
scaling models). Although association with theory is reassuring, it does not assure that
a statistically fitted model more true or more useful. All models should stand or fali

based on their predictive power.

It would be a mistake to portray these empirically based and statistically derived
models as being in competition with theoretically based and mathematically derived
models. Ecological risk assessments are best conducted using multiple lines of
evidence, each with its own strengths and weakneéses. Therefore, one model need
not drive out another if both are credible and appropriate.  In addition, empirical models
may be used to derive parameter values for theoretical models (Barnthouse and others

1990).

This paper begins by describing different techniques for extrapolation modeling and
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illustrates them by showing how they have been used to extrapolate between species.
Interspecies extrapolations are considered much more often than other extrapolations
and a name has even been proposed for them, quantitative species sensitivity
relationships (QSSRs) (Notenboom and others 1995). The paper then presents brief
discussions of some other extrapolations and concludes with some predictions and

recommendations concerning future directions in the field.

TECHNIQUES FOR EXTRAPOLATION

Classification

The simplest way to extrapolate test endpoints is to assume that the observed
responses are representative of some class of responses. For example, if the LC50 for
fathead minnows in a particular test is x, then we may assume that half of all fish will
die at that concentration, or half of all cyprinids, or simply half of all fathead minnows,
depending on how broadly we define the classes. ;I'he model is E, = E; + e, where E,

and E; are the assessment and test endpoints, respectively.

Classification is the inevitable starting point of extrapolation modeling. That is, we must

begin by deciding what differences important enough to be modeled and which are not.

If only this method is used, then we must conclude either that the equality applies and
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the test endpoint approximately equals the assessment endpoint or that the species,
life stage, and other specifics of the test endpoint are sufficiently different from the
assessment endpoint that they belong to different classes and therefore there is no

useful relationship between them.

Species may be classified on various bases. For example, plants are often classified
by growth form and the EPA classifies freshwater fish as warm water and cold water
species (Stephan and others 1985). However, most commonly species are classified
taxonomically. Usually, vertebrates are effectively classified to the class level. That is,
birds are lumped but separated from mammals and bony fishes are lumped but
separated from amphibians. However, all invertebrates and all plants are typically
lumped in assessments of both aquatic and terrestrial contaminants. In calculation of
U.S. water quality criteria, LC50s for all members of a genus are lumped by taking their
geometric mean and carrying that genus mean value through the calculations (Stephan
and others 1985). Studies based on correlations of LC50s of species at different
taxonomic distances indicated that for both freshwater and marine fishes and
arthropods, species within genera and genera with.in families tended to be relatively
similar which suggests that they could be lumped (Suter 1993a; Suter and Rosen 1988;
Suter and others 1983). The same conclusion was reached by the same method for
terrestrial vascular plants (Fletcher and others 1990). Application of analysis of

variance to acute toxicity data sets for aquatic organisms classified to the class level

(Hoekstra and others 1994) and for birds classified to family (Baril and others 1994),
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found taxonomy to be a statistically significant variable.

Multivariate ordination techniques would seem to be a logical technique for identifying
clusters of species with similar sensitivities to a set of chemicals. However, a research
program at the Dutch National Institute for Public Health and Environmental Protection
(RIVM) that applied principal components analysis (PCA) to acute toxicity data for birds
and mammals and to acute and chronic data sets for aquatic species did not find clear
clusters except for daphnids in the aquatic acute data set (Vaal and others 1994; Van
der Wal and others 1995a; Van der Wal and others 1995b). A PCA of avian LD50s for
pesticides showed distinct clusters of Icteridae and Phasianidae, but not other taxa

| (Baril and others 1994). However, only eight species were included.

Factors

If the test endpoint is judged to not belong to the same class as the assessment
endpoint, the simplest and most common way to ektrapolate between them is to
multiply by a factor. The model is E, = fE, Factors may be applied to account for
uncertainties concerning the nature of the relationship between assessment and test
endpoints or for biases in test endpoints as estimators of assessment endpoints. For

example, if the assessment endpoint is defined in terms of some sublethal response to

chronic exposures and the test endpoint is an acute LC50, then a factor may be applied
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to account for the bias associated with the fact that the chronic sublethal responses
usually occur lower concentrations. Factors may be derived by analysis of data, but
more often they are based on professional judgement. Most often they are factors of
ten which makes their imprecision apparent and aids computation. Probably the most
commonly used set of factors are those developed by the EPA for use in regulation of

industrial chemicals and adapted by an OECD workshop (Table 1).

Distributions

One may assume that the assessment endpoint is a random variate represented by the
distribution of test endpoints. The most common form of this extrapolation technique is
the species sensitivity distribution. One simply assumes that for a particular chemical
the distribution with respect to concentration (or dose) of test endpoints for different
species is an estimate of the distribution of concentrations (or doses) at which species
exposed in the field will display the endpoint response. For example, if the distribution
of 96 hr LC50 values for fish exposed to a chemicél is normally distributed (m, s,) then
half of fish species in the field would be expected to experience mass mortality after
exposure to concentration m, for 96 hours. This approach was developed by the
U.S.EPA for the calculation of water quality criteria (Stephan and others 1985).

Distributions used have included the log triangular (Stephan and others 1985), log

“normal (Wagner and Lokke 1991), and log logistic (Kooijman 1987) (Fig. 1).
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The lower fifth percentile of such distributions has been used as the basis for
environmental quality standards (Fig. 2). Because of this use, species sensitivity
distributions have received much attention and criticism (OECD 1992; Smith and Cairns
1993). Among those who use these models, there is no controversy about the use of
log transformation of exposures or thg choice of the fifth percentile (no other number
fills scientists with as much confidence and comfort as 5%), differences of opinion
occur on the following points.

Distribution function - In the absence of evidence that one function is better than
another, functions have been chosen largely on the basis of convenience and personali
preference. However, the use by the U.S. EPA of the triangular distribution with its
lower limit to sensitivity has been criticized by the Dutch and others who prefer
distributions with potentially unlimited sensitivity (OECD 1992).

Minimum data set - The EPA requires eight acute values others require as few as
three or as many as 20 for establishing distributions (Hoekstra and others 1994, OECD
1992). Also, certain species or representatives of certain taxa or groups (e.g.,
daphnids or cold water fish) may be required.

Inclusiveness - The EPA includes multicellular aduatic animals (Stephan and others
1985) but others include algae and other plants as well (Aldenberg and Slob 1993;
Wagner and Lokke 1991). Although inclusiveness seems desirable, it strains the
assumption that the species are drawn from a single unimodal distribution.

Confidence in the fifth percentile - The EPA uses the most likely (median) estimate of

the fifth percentile but others have required 95% confidence of not exceeding the fifth
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percentile (i.e., the lower 95% tolerance limit) (Aldenberg and Slob 1993).

Distributions may be fit and percentiles calculated by any statistical software. However,
convenient software is available for this purpose, including calculation of both HC4 and
its lower, one-tailed 95% confidence limit for log normal, log logistic, and log triangular

distributions (Aldenberg 1993).

Regression

If the assessment endpoint can be approximated by some test endpoint and if values of
that test endpoint and the test endpoint from which we wish to extrapolate are available
for several chemicals, then we may create an extrapolation model by regressing the
one endpoint against the other. The linear version of the model is E, =a + bE, +e. For
example, if the assessment endpoint is acute lethality in rainbow trout and a fathead
minnow LC50 is available, then a regression of rainbow trout LC50s against fathead
minnow LC50s for chemicals that were tested on bbth species under similar conditions

could be used to perform the extrapolation (Kenaga 1978).

In that simple form, regression models can be used only to extrapolate among

commonly tested species. However, clustering species in the taxonomic hierarchy

permits one to predict the responses of untested as well as tested species (Suter
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1993a; Suter and Rosen 1988; Suter and others 1983). If the test and endpoint
species are in the same genus then a species to species model is used; if the species
belong to different genera within a family, then a regression of those two genera is
used, etc. (Fig. 3). For example, if one wishes to prédict the response of largemouth
bass from rainbow trout, the lowest taxonomic level that they have in common is the
class Osteichthyes so the extrapolation is between the orders Perciformes and
Salmoniformes (Fig. 4). In performing an interfamily extrapolation, one assumes that
the relative sensitivity of the two species are represented by the relative sensitivities of
the families to which they belong and that the uncertainty in that assumption is
represented by the variance in the model. For North American aquatic species, most of
" the needed equations are available although many possible combinations of taxa are
missing (Suter 1993a). This is because most of the missing equations are for low level
extrapolations (species within genera) while most extrapolations required for
assessments are relatively high level (orders within classes). For those that are
missing, it is not possible to estimate relative sensitivity or extrapolation-specific
variance. However, one may assume that the weighted mean prediction intervals on
extrapolations at the same taxonomic level are estihates of the variance for the specific
extrapolations (Calabrese and Baldwin 1994; Suter and others 1987). The prediction
interval is the appropriate expression of variance for these uncertainty factors because
we are interested in intervals that contain a pair of species at that taxonomic level with

95% confidence (or some other level) (Calabrese and Baldwin 1994; Suter and others

1987).
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A third regression-based approach to taxonomic extrapolation is regression of all
members of a taxon against a standard test species (Barnthouse and Suter 1986;
Holcombe and others 1988; Suter and Rosen 1988; Suter and others 1987). This
approach is less precise than the taxonomic hierarchy approach and does not work
when the E,is for nonstandard test species, but it does estimate the sensitivity of
standard species relative to larger sets of species and the uncertainty concerning

predicted effects on a randomly chosen species (Suter 1993a).

Scaling

Extrapolations can be made by assuming that the differences in sensitivity among
organisms and species are differences of physical scale. The simplest and most
common example of this is the expression of doses to wildlife as dose per unit mass
(mg/kg) which amounts to an assumption that toxicity is a function of the dilution of the
toxicant in the mass of the organism. The model in extrapolation by scaling is, E, = E;
+ e when both the endpoint species and test speciés are appropriately scaled. The
formal analysis of the consequences of organism size in physiology, ecology,

pharmacology, and other branches of biology is termed allometry.

The most commonly used allometric model is a power function of weight, E, = a We.

This form has been adopted by toxicologists because various physiological processes
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including metabolism and excretion of drugs and other chemicals are approximated by
that form (Davidson and others 1986; Peters 1983). Exponents for various processes
range from 0.6 to 0.8. Some ecotoxicologists followed the EPA’'s (EPA 1986) practice
of using 2/3 in human health risk assessments for wildlife (Opresko and others 1993).
This practice is conservative for humans and mammalian wildlife in that it makes large
species such as deer more sensitive than the small rodents that are typicélly used in
mammalian toxicity testing while making small wild species approximately equal in
sensitivity. More recently, the EPA has used the less conservative 3/4 power for
piscivorous wildlife (EPA 1993b}), and others have followed their lead (Sample and
others 1996). Acute mammalian toxicity data sets yield exponents that are closer to 3/4
than 2/3 on average, but are consistent with either value (Goddard and Krewski 1992;

Travis and Morris 1992; Watanabe and others 1992).

Little attention has been paid to allometric models for avian toxicology. However, use
of the same models for birds as mammals with the same exponents was supported by
allometric models of avian physiology (Peters 1983) and pharmacology (Pokras and
others 1993). In fact, Pokras et al. (1993) present‘models for the extrapolatioﬁ of
effective doses of drugs from mammals to birds based on a common exponent of 3/4
but with a higher a value for birds. However, Mineau et al. (in press) performed

allometric regression analyses on 37 pesticides with between six and 33 species of

birds (Mineau and others in press). They found that for 78% of chemicals the exponent

was greater than 1 with a range of 0.63 to 1.55 and a mean of 1.1 (Fig. 5). Ifa
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chemical has an exponent greater than one for birds, that implies that most avian
species would be more sensitive than standard test species such as mallard ducks and
bobwhite quail. It is not clear why these toxicological results would differ ffom the
pharmacological experience. Use of an exponent of one is consistent with the mean
exponent from the only available allometric study of avian toxicology (Mineau and
others in press), and, because it reduces to scaling to weight, it is parsimonious,
making neither small nor large birds more sensitive to a given dose (Sample and others

1996).

Fractional exponents of weight would be expected when effects are a function of some
time integral of internal dose. This is because the mechanism controlling integral
internal exposure is drug or toxicant clearance which is more rapid in small species due
to their more rapid metabolism. However, if effects are a function of peak internal dose,
as may be the case for lethal effects of cholinesterase inhibitors, dilution in the mass of
the organism (exponent of one) would be the expected exposure model. These sorts of
toxicokinetic and toxicodynamic considerations could provide the basis for scaling

models that are specific to chemical classes.

The scaling approach has not been used for aquatic ecological risk assessments
although Patin (1982) argued that sensitivity of aquatic species is a function of size

(Patin 1982). The reasonableness of this proposition is supported by observations that

chemical uptake, elimination, and body burden are power functions of weight (Newman
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and Mitz 1988; Newman and Heagler 1991) and that intraspecies variation in sensitivity
(time to death) of mosquitofish to NaCl was a function of weight as well as
concentration (Newman and others 1994). However, interspecific extrapolation based

on allometry has apparently not been investigated for aquatic species beyond Patin’s

(1982) initial effort.

An alternative proposed for fish is scaling toxicity of lipophilic chemicals to lipid content
(Geyer and others 1994). This approach is based on the theory of “survival of the
fattest” which proposes that tissues that are the site of toxic action are protected by
partitioning chemicals to lipids (Lassiter and Hallam 1990). Greyer et al. (1994) found
that acute toxicity of lindane in 16 fish species was a linear function of lipid content (%)
above 5% lipid and curvilinear below that level (Fig. 6). This relationship is likely to be
more complex for chronic exposures in which lipid stores fluctuate with season and
reproductive cycle and toxic effects of the chemicals may include effects on lipid

accumulation or metabolism.

ACUTE-CHRONIC EXTRAPOLATIONS

After extrapolation between species, the extrapolation that is most often addressed is

that between acute and chronic toxicity. Conventionally, acute toxicity test endpoints

are median lethal concentrations or doses (LC50 or LD50) from tests of a few days
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duration and chronic test endpoints are concentrations or doses that constitute
threshoelds for statistically significant differences from controls in any of a variety of
lethal and sublethal responses (NOELs or LOELSs) in tests extending over more than
10% of an organism’s life span. Therefore, extrapolation between acute and chronic
toxicity involves extrapolation between short and long durations, between lethality and
various responses, and between a biological effect level and a statistically significant
difference. The acute-chronic extrapolation is typically performed using a generic
factor (e.g., 10) or a chemical-specific factor. In the latter case, acute and chronic tests
are performed for a particular species-chemical combination and the ratio of the
resuiting test endpoints is then applied to acute test endpoints for other species to

estimate the chronic test endpoint (Mount and Stephan 1967).

Because the acute-chronic distinction is such a hodge-podge, it has been
recommended that it be abandoned, that exposure duration be treated as a continuous
variable, and that the individual response parameters be distinguished (Suter and
others 1987). Extrapolation between response parameters (e.g., between mortality and
fecundity) has been addressed using factors (Mayér and others 1986) and regression

models (Suter and others 1987).

Similarly, extrapolation between different exposure durations may be performed using

ratios of response levels at different durations (chronicity factors) or regression-based

techniques. One may simply assume a concentration-duration function and fit it to test
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endpoints for different durations (e.g., 24, 48, 72, and 96 hour LC50s). One may then
use the model to extrapolate to other durations including indefinitely long exposures

(Green 1965; Mayer and others 1994).

ORGANISM TO COMMUNITY/ECOSYSTEM

If one assumes that responses of communities or ecosystems are simply the aggregate
responses of the organism-level responses of individual species, the interspecies
extrapolations described above can be reinterpreted as extrapolations from organismal
test endpoints to community or ecosystem endpoints. That is, if fathead minnows are
assumed to represent all other individual fish species they may also represent the
aquatic community as a whole. This interpretation is commonly applied to species
sensitivity distributions. That is, rather than assuming that one is protecting species
with 95% confidence, it is assumed that one is protecting the community by protecting
95% of species. The same assumptions can be applied to regressions of all species

against standard test species.

Alternatively one may extrapolate from organism level tests to microcosms or
mesocosms which are assumed to represent ecosystems. Microcosm and mesocosm

NOECSs have been regressed against the lowest reported laboratory LC50 and NOEC

values (Sloof and others 1986). These models have similar precision to regressions
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between orders of fish.

A direct approach to extrapolation from laboratory species to the field is to regress field
measurements of the assessment endpoint against the test endpoint. Hartwell et al.
regressed fish diversity (Margalef's index) and IBI in a number of streams against a
combined score for tests of stream water and sediment with mulitiple test species
(Hartwell and others 1995a; Hartwell and others 1995b) (Fig. 7). They found that
toxicity of water and sediment was correlated with diversity but not IBl. These models

provide the most complete and realistic extrapolation.

BETWEEN MEDIA/COMMUNITIES

Far more ecotoxicological data exist for freshwater aquatic species than for
communities inhabiting other media, and it would be desirable to extrapolate from
freshwater toxicity to toxicity in other media. In sohe cases the media are not
qualitatively different and one may simply use factors or regression models to
extrapolate between media. For example, regressions of standard chronic test
endpoints for the most commonly tested salt water fish and crustacean against the most

commonly tested freshwater species resulted in equations with slopes approximately

equal to one and intercepts of approximately zero (Fig. 8)(Suter and Rosen 1988).
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The lack of data is particularly prqblematical for organisms in soil and sediment. One
solution is to extrapolate from the aquatic organisms to soil and sediment organisms.
This is done by assuming that the organisms are exposed to the aqueous phase of soil
or sediment, that the agueous concentration can be estimated, and that the sensitivity
of organisms to aqueous phase exposures is the same in all media. The U.S.EPA
calculates sediment quality criteria for neutral organic chemicals, by assuming that the
chemicals are at equilibrium and partition between the aqueous phase and the organic
fraction of the solid phase (EPA 1993a). They then use aquatic toxicity data to
estimate the effects of that exposure on sediment organisms. Lokke has tentatively
proposed that an extrapolation from aquatic to soil organisms can be made by

| assuming that soil exposures are to only the soil pore water, that concentration in pore
water can be estimated from soil concentrations using the distribution coefficient for
bulk soil K;, and the sensitivity of soil and sediment organisms to the aqueous phase

chemical is the same as the sensitivity of aquatic organisms (Lokke 1994).

EXTRAPOLATION OF MODE OF ACTION

Although the extrapolation of mode of action between species is a critical issue in

human health risk assessment (e.g., is a rat carcinogen also a human carcinogen?),

the issue is seldom considered in ecological risk assessments. However, because

ecological risk assessments are concerned with estimating reproductive effects which
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are relatively costly and difficult to measure. Therefore, there is considerable need for
models to predict whether a chemical has a specific mode of action on the reproductive
system or for some other reason causes reproductive effects at low exposures relative
to adult lethality. This issue has gained some urgency with the recent emphasis on
chemicals that affect the reproductive system by acting as agonists or antagonists to
endocrine hormones. Further, since multigenerational tests of pesticides are nearly
always performed on rats, it would be useful to extrapolate from rats to birds. However,
only 44% of chemicals that were found to be avian reproductive toxicants were also

reproductive toxicants in rats (Mineau and others 1994).

MULTIPLE EXTRAPOLATIONS

Although extrapolation models are usually used singly in ecotoxicological assessments,
it is often apparent that one extrapolation does not incorporate all of the differences
between the measurement and assessment endpoints. The simplest approach is
factor chains: E, = (f,f, f; ... f, JE, + e, where each factor accounts for a particular
difference between the measurement and assessment endpoint. This approach is very
conservative in practice because it amounts to an assumption that all of the differences
between the endpoints are simultaneously extreme (Suter 1993a) and (National

Research Council 1994). For example, the assessment endpoint species is extremely

sensitive, and the endpoint life stage is extremely sensitive, and the effects of
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differences in duration are large, simultaneously.

Regression models lend themselves to multiple extrapolations. The output of one
regression model (e.g., cyprinid LC50 to salmonid LC50) may be used as input to
another (e.g., LC50 to EC25 for weight of juveniles per egg) to generate an
extrapolation from a fathead minnow LC50 to brook trout early life-stage effects (Suter
1993a; Suter and others 1983). The principle difficulty in this approach is correct

propagation of uncertainty through the chain of models.

Multiple extrapolations made be performed using multiple techniques. For example, in
| calculation chronic water quality criteria, the EPA uses species sensitivity distributions
to estimate a fifth percentile acute value and then applies an acute/chronic factor to

estimate a fifth percentile chronic value (Stephan and others 1985).

All of these muitiple extrapolations depend on the assumption that the individual
extrapolations are concordant. For example, it is assumed in calculation chronic water
quality criteria and in the example of multiple regréssion models that relative
sensitivities of species are the same in acute and chronic exposures. That assumption
is unlikely to be perfectly true. For example, there are more modes of action involved
in the various chronic effects than in acute lethality which is likely to result in increased

variance among species. On the other hand, if the mode of action is the same for

acute and chronic toxicity, then interspecies variance may be lower in the chronic tests
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because differences in response rate would be less important.

UNCERTAINTIES

These empirical models deal adequately with uncertainty estimable from the data used,

but not the uncertainty inherent in the selection of data.

Representative species - Extrapolation models such as species sensitivity
distributions that use sets of test species to represent endpoint species depend on the
assumption that test species are representative. Although test species ha\)e not been
randomly or systematically selected, there is no reason in general to believe that there
has been a bias in their selection. However, some taxa such as fishes are clearly over

represented in data sets relative to their abundance in nature.

Representative life stages - Most of the data used to develop extrapolation models
are for a single life stage. The absence of life staées that may be more sensitive than
tested stages is particularly problematical when extrapolation models are limited to
interspecies extrapolations and acute or subchronic data are used. Some sensitive life

stages such as reproducing adults are seldom represented (Suter and others 1987).

Representative chemicals - Extrapolation models such as factors and regression
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models that use muitiple chemicals depend on the assumption that tested chemicals
represent all chemicals of concern. However, chemicals are not randomly chosen for
testing. For example, because ecotoxicological data sets are dominated by pesticides,
they can have an inordinate influence. Partitioning data sets into chemical clasges

reduces but does not eliminate this uncertainty.

Small data sets - Many extrapolation models are derived from small data sets which

has obvious implications for their reliability.

Data quality and consistency - Poor quality data obviously can cause bad predictions
and inconsistent data obscures relationships and increases variance. However, these
issues must be carefully considered and balance when choosing data sets. For
example, the very large data set generated at the former Columbia National Fisheries
Research Laboratory would be considered low quality because of the use of static
rather than flow-through exposures (Mayer and Ellersieck 1986). However, it is unlikely
that the bias associated with static testing would be significantly different in different
species of fish. Therefore, the large size and conéistency of this data set makes it

useful for extrapolation modeling.

Model extrapolation - Often one type of data is used to develop a model which is then

used for extrapolation of another type. For example, interspecies extrapolation models

developed with acute lethality data are used to perform interspecies extrapolations of
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chronic data. This extrapolation of the model to other uses is usually unacknowledged

but may be important.

Incomplete extrapolation - In most assessments, one or a few extrapolations are
modeled and the others are assumed to negligibly contribute to uncertainty. For
example, it is common to explicitly extrapolate between taxa but not from the laboratory

to the field (OECD 1992; Smith and Cairns 1993).

The importance of these considerations depends on their relative contribution to total
uncertainty, but the analysis of relative uncertainty must be made in the proper context.
For example, many studies have pointed out that variance among species is smaill
relative to variance among chemicals. Such comparisons tend to reassure the reader
that uncertainties in the extrapolation models are relatively insignificant. However,
these comparisons are based on analyses of sets of heterogeneous chemicals. Real
assessments are likely to be concerned with estimating the risks of a set of alternative
cholinesterase inhibiting pesticides rather than corﬁparing a pesticide to ethane. In that
context, differences in species and life stage are relatively large contributors to

uncertainty in the results of the assessment.

CONCLUSIONS AND RECOMMENDATIONS
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Although extrapolation models have been an important tool for ecotoxicological
assessments for decades, they have been neglected as a research topic. Far more
effort has been devoted to developing new toxicity tests than to developing models to
relate the test results to relevant endpoints. In part, this is because of inertia. For
example, the EPA Office of Pollution Prevention and Toxic (OPPT) developed a set of
factors for their assessments of new industrial chemicals based on a short,
unpublished, and unreviewed literature review (Branch 1984)(Table 1). OPPT
continues to use and defend these simple factors because more complex models have
not been demonstrated to be more appropriate (Zeeman 1995). However, the choice of
extrapolation method can clearly make a large difference in the results of assessments.
A comparison of HCg values derived by the van Straalen and Denneman model and
concern levels derived using the OPPT factors applied to sets of three LC50s for eight
chemicals found that the results differed by factors of 2.6 to 1020 (Okkerman and
others 1991). Similarly, a comparison of the results of applying seven published
extrapolation models to a chemical with a fathead minnow LC50 or 100 mg/L found a

factor of 19,200 difference in an estimated effects threshold (Suter 1993b).

The claim that no other extrapolation method is better than simple factors of 10, 100,
and 1000 can be made because there is no good basis for the comparison. That is,
there is no agreement about what the assessment endpoints should be (i.e., what the

models should predict) and no set of data from the field that is agreed to represent the

responses of those assessment endpoints. Therefore, no validation of extrapolation
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models has been possible. One possible standard endpoint is mass mortalities (Suter
1993b). Nearly everyone agrees that streams littered with dead fish or a park littered
with dead geese is undesirable, and the ability to estimate concentrations causing
mass mortalities is a minimal goal for assessment models. An appropriate and more
challenging standard assessment endpoint for validation purposes would be a 5%
reduction in species richness. Its advantages include the following:

1. The fifth percentile of species sensitivity distributions is used for regulation of
chemicals and effluents in the U.S., the Netherlands, and elsewhere.

2. Species richness is sensitive to toxic effects relative to other ecosystem or
community level endpoints (Dickson and others 1992; Hartwell and others 1995b).

3. The concern with preservation of biodiversity implies that species richness is a
societally valued endpoint.

4. Species richness data are likely to be available for most field studies of toxic effects.
5. A 5% reduction in species richness is likely to be detectable in many field studies of
toxic effects.

A validation study for extrapolation models is long overdue, and one based on these

endpoints is quite feasible.
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Figure Captions

Fig. 1 Comparison alternative functions used to estimate species sensitivity

distributions. Redrawn from (Aldenberg 1993).

Fig. 2 The estimated species sensitivity distribution (solid line) and the proportion of
species not protected by a given HCp (shaded area for p = 5%). The probability
distribution of HCp (dashed line) and the likelihood of protecting less than 9%%
of species at HCp (line-hatched area) when the number of species tested is five.

Redrawn from (Aldenberg and Slob 1993).

Fig. 3 A diagrammatic representation of the use of phylogenetic relatedness to
extrapolate between species. If species (Sx) are within the same genus (Gx),
the model extrapolates directly between the two species. If the species are in
different genera in the same family (Fx), data for all members of the two genera
are aggregated and the model developed to extrapolate between genera. If they
are in different families in the same order (Ox), then toxicity data are aggregated

within families, etc.

Fig. 4 Regression of log LC50 values for members of the Order Perciformes against

LC50 values for the same chemicals for members of the Order Salmoniformes.

From (Suter and others 1983).
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Fig. 5 Regression of log LD50 against weight of the test species for the carbamate

pesticide methiocarbe (n = 32). Redrawn from (Mineau and others in press).

Fig. 6 Regression of 48-h LC50 values against percent lipid for various fish species

exposed to lindane. Dashed lines delimit 95% confidence intervals. Redrawn

from (Geyer and others 1994).

Fig. 7 Regression of Margalef's diversity for bottom-dwelling fish and all resident fish
species against the combined risk score, a value that integrates the resuits of
muitiple tests of the toxicity of ambient waters. Redrawn from (Hartwell and

others 1995a).

Fig. 8 Regression of Maximum Acceptable Toxicant Concentrations (MATCs) for a
standard salt water test fish and crustacean species against MATCs for standard

freshwater test species. Dark points are metals, all others are organic

chemicals. From (Suter and Rosen 1988).
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