SANLEL - 0844

e g RS 13 'Q 7 B e,

F e

Fres eV L

APR 0§ 1235
CoNEL-F6/067 - - | Ay

Proving Refinement Transformations for Deriving
High-Assurance Software

Victor L Winter * James M. Boyle T
Intelligent Systems and Robotics Center Mathematics and Computer Science Division
Sandia National Laboratories Argonne National Laboratory
Dept 9622, P.O. Box 5800 Argonne, IL 60439, U.S.A.
Albuquerque, NM 87185-0660, U.S.A. boyle@mcs.anl.gov

viwinte@sandia. gov

Abstract

The construction of a high-assurance system requires some evidence, ideally a. proof,
that the system as implemented will behave as required. Direct proofs of implementa-
tions do not scale up well as systems become more complex and therefore are of limited
value. In recent years, refinement-based approaches have been investigated as a means
to manage the complexity inherent in the verification process.

In a refinement-based approach, a high-level specification is converted into an im-
plementation through a number of refinement steps. The hope is that the proofs of
the individual refinement steps will be easier than a direct proof of the implementa-
tion. However, if stepwise refinement is performed manually, the number of steps is
severly limited, implying that the size of each step is large. If refinement steps are
large, then proofs of their correctness will not be much easier than a direct proof of the
implementation.

We describe an approach to refinement-based software development that is based
on automatic application of refinements, expressed as program transformations. This
automation has the desirable effect that the refinement steps can be extremely small
and, thus, easy to prove correct.

‘We give an overview of the TAMPR, transformation system that we use for auto-
mated refinement. We then focus on some aspects of the semantic framework that
we have been developing to enable proofs that TAMPR transformations are correct-
ness preserving. With this framework, proofs of correctness for transformations can be
obtained with the assistance of an automated reasoning system.

*This work was supported in part by the United States Department of Energy under Contract DE-AC04-
94AL85000, and in part by the BM/C3 directorate, Ballistic Missile Defense Organization, U.S. Department

of Defense.
tThis work was supported by the BM/C3 directorate, Ballistic Missile Defense Organization, U.S. De-

partment of Defense.

UMENT IS UNLMITED i

Py

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

1 Motivation—Need for High-Assurance Systems

Computer systems are increasingly used today in applications where their failure or sub-
version would threaten the lives or safety of people, or the economic well-being of people
or corporations. Such applications require high-assurance systems—computer software and
hardware systems for which there is strong evidence that failure and subversion cannot
occur.

Problems that can be solved by reactive systems often have a safety-critical nature.
Such systems must (1) sense changes in their physical environment, and (2) generate control
actions that enable the system to respond to these changes. Examples of reactive systems
include automotive engine, cruise, and anti-lock brake control, cellular telephone control,
medical instrument control, fly-by-wire control, robot manufacturing control, and weapon
control.

The design of a reactive system is often a difficult task. One reason is that the complexity
of such a system grows rapidly, so that even a moderate-sized reactive system can have a
finite-state machine representation consisting of billions of states [12]. Another difficulty is
that designing a reactive system requires knowledge spanning several domains. For example,
the physical capabilities and limitations of the hardware (such as motors and sensors) must
be understood, environmental factors must be taken into account, and the interfaces between
components in the overall system must be comprehended. All of this information will impact
the design and implementation of the software that controls the system.

Reactive control systems define a class of problems that can be easily modeled in terms of
finite-state machines. Other safety-critical problem domains exist that are not well suited
to a finite-state approach. In fact, many sophisticated control systems require complex
scientific computations to process raw sensor data. Obvious examples are fly-by-wire and
weapon control systems, where algorithms for solving differential equations may be needed
to convert sensor data into the inputs required by the finite-state part of the control system.
Again, the design of such software requires the application of expert knowledge from many
domains: from mathematics and physics, for example, as well as from computer science.

In the preceding paragraphs, we have discussed two safety-critical problem domains.
The first, that of reactive systems, is well suited to finite-state representations and manip-
ulations. The second domain, that of scientific computation, requires more general com-
putation than that of which finite-state automata are capable. Ideally, when constructing
high-assurance software to solve hybrid problems belonging to both domains, one would
like to use tools that handle software from both domains in a uniform manner.

2 Formal Methods

We argue in the preceding section that the construction of safety-critical systems is a com-
plex task requiring participation by experts from a number of domains. In addition to
knowledge, problem-domain experts generally have a good intuition about their domain,
which allows them to proceed reasonably in the face of incomplete or conflicting infor-
mation. But, such diverse knowledge and intuition cannot be applied willy-nilly to the
construction of a complex system. If a programmer simply sits down at a terminal and
begins typing a program, with problem domain experts kibitzing over his shoulder, chaos
will reign, and a low-assurance system is almost certain to result.

One way to reduce chaos is to use sophisticated software engineering tools, which co-
ordinate and structure the software development process and the resulting program. Such
tools can improve the software development process in general, but they do nothing to give
high assurance that a particular system design and implementation is correct and safe. Put
another way, software engineering tools that address only the structure aspect of software
development can provide some assistance in writing correct software, but no assurance that
it is correct.

One way to assure correct and safe operation is to provide a formal proof (verifica-
tion) that the software constructed correctly implements its specification. Constructing
such proofs requires application of a formal method, which has a rigorous framework in
which both to capture and organize the knowledge required for software development and
to carry out proofs of correctness. In this paper we discuss some aspects of proof in a for-
mal method based on automated stepwise-refinement of specifications into programs. This
formal method has the advantage of being applicable to both the reactive control systems
and the scientific computation software discussed in Section 1. Thus, it provies a uniform
approach to constructing complex, high-integrity systems.

2.1 Program Verification vs. Stepwise Refinement

The traditional approach to program verification requires preparation of a formal speci-
fication, writing of a program that allegedly implements that specification, and a formal
proof that the resulting program does in fact correctly implement the specification. Several
formal methods restricted to the domain of reactive control systems have been developed
[10][8][16]. Despite the help provided by such systems, proof is generally considered to be
the most labor-intensive aspect of rigorous software construction.

Proofs of program correctness are labor-intensive, and hence expensive, for three reasons:

e the difficulty and complexity of proving that a large program meets its specification,

e proofs are often attempted at the wrong level of abstraction, and

e the inability to reuse parts of that proof in other applications.

In general, there is a large gap between a good formal specification for a problem and an
efficient program implementing the specification. The final program contains little or no
information on how that gap was bridged, making the proof difficult. Moreover, an efficient
program is clouded by numerous implementation details specific to the particular problem,
which render pieces of the proof difficult to reuse. Thus, a major factor in the difficulty of
proof is the size of the gap between the specification and the program.

Stepwise refinement of a specification into a program is an attractive alternative to the
traditional approach, especially if the steps in the refinement can be carried out automat-
ically. In automated stepwise refinement, the program evolves from the specification in a
series of steps. Stepwise refinement thus trades one large gap and one difficult proof for
many smaller gaps and many simpler proofs.

In the extreme, one might make the steps in a refinement very small, so that their
proofs are very simple (perhaps almost self-evident). In this approach, the refinement steps
become rewrite rules, each of which replaces a fragment of a specification or program by
another fragment that is just as correct as the original, but more “implemented”. In this
case, one usually speaks of proving that a rewrite rule preserves the correctness of (refines)
the specification or program for every instance in which the rule applies.

If the constructs of the specification and programming language are monotonic, then
refinements can be proved without regard to the context in which they will be applied.
Monotonicity greatly simplifies the proof process and makes possibile the reuse of proofs in
other contexts (i.e., in other programs). Furthermore, if the refinement relation is transitive,
then the correctness of the application of a large number of refinements to a specification
to create an implementation follows from the correctness of the individual refinements.
As discussed earlier, a formal proof is necessary to provide the high assurance required of
implementations for life- and safety-critical systems.

Therefore, if programs could be constructed automatically using simple rewrite rules, a
number of advantages would accrue:

e the cost of writing the program by hand would be saved (once the cost of the devel-
opment of the rules had been paid),

¢ the one complex proof of correctness for a program would be factored into a number
of much simpler proofs demonstrating that each rule preserves correctness,

e the rules, and their proofs, could potentially be reused in the implementation of
numerous specifications, amortizing the cost of their development over a large number
of programs.

In the next section we discuss briefly a program transformation system that is capable
of applying correctness-preserving rewrite rules automatically to construct implementations

4

from specifications. The remainder of the paper discusses part of the verification framework
that enables one to prove rigorously that these rules preserve correctness. In this framework,
we prove that transformations preserve correctness by mapping them into an axiomatized
mathematical domain to which formal (and automated) reasoning can be applied. This
mapping is accomplished via an extension to denotational semantics.

3 Automatic Refinement in the TAMPR Program Transfor-
mation System

The Transformation Assisted Multiple Program Realization (TAMPR) system [1] [5] is dis-
tinguished by two important features:

1. the requirement that transformations be pure rewrite rules consisting of a syntactic
pattern and a syntactic replacement (in contrast to permitting procedural code in the
replacement), and

2. the provision of a limited number of powerful control constructs.

These two features support a philosophy of achieving large refinements through numerous
conceptually simple transformations, rather than from a small number of complex transfor-
mations. The use of a large number of simple transformations, in turn, facilitates both the
proof that transformations preserve correctness and the reuse of transformations and hence
their proofs.

The general approach to constructing a derivation in TAMPR is to group refinement
transformations into transformation sets—several related transformations that achieve a
well-defined goal and thus can be viewed as comprehending a single step in the stepwise
refinement process. A sequence of several transformation sets, each set applied to the result
of its predecessor, can then be composed to achieve the overall goal of a large refinement,
such as the construction of an implementation from a specification.

For applying a transformation set, the most frequently used control construct in TAMPR
is application to exhaustion. That is, the transformations in the set are applied automati-
cally to every fragment in the specification that they match, including fragments generated
by prior applications. Applying a transformation set to exhaustion (if it terminates) guar-
antees that the modified (output) specification has a particular canonical form. It is this
canonical form that embodies the goal of the transformation set and, hence, is a realization
of the corresponding refinement step. Perhaps surprisingly, passing a specification through
a sequence of suitably chosen canonical forms yields an implementation [1]. The use of
canonical forms in automated transformation is discussed further in [2].

TAMPR’s ability to apply transformations automatically means that derivations can be
constructed from many small transformations rather than a few large ones, as would be

required if manual application were attempted. Typically, a TAMPR derivation requires
thousands to hundreds of thousands of rule applications. For example, in bootstrapping
the implementation of its own specification, TAMPR applies over 170,000 transformations,
in the course of which it investigates some 40 million potential applications. Clearly, such
an application strategy could not be carried out manually.

TAMPR has been used to derive programs from specifications in a number of application
domains, include solving systems of linear equations [7], bootstrapping the derivation of its
own implementation [1], finding eigenvalues [3], and solving hyperbolic partial differential
equations [4]. In the latter two examples, the efficiency of the derived programs equals or
exceeds that of the corresponding handwritten implementations.

4 TAMPR Transformations

In the TAMPR transformation system and its accompanying wide spectrum language Poly
[1] [5], specifications (and programs) and transformations are represented in terms of their
syntax derivation trees (SDTs).

The SDTs used in transformations are special, in the following way: In order for a
transformation to be useful, it must contain variables, so that it can apply to the SDTs
of many different programs. The idea of variable is the same as that in algebraic and
trigonometric identities. For example, z is a variable in the trigonometric identity

sin(z) + cos(z) =1

In TAMPR, nonterminal symbols from the Poly grammar (the grammar of the programs and
specifications being transformed) are used, with indices, to represent variables. Thus, the
preceding identity (used left to right) would be expressed in TAMPR by the transformation

sin(<expr>1) + cos(<expr>1) =1

An SDT having nonterminal symbols as variables is called a schema; it differs from an
ordinary SDT in that not all of its leaves are terminal symbols.
As is evident from the preceding example, the general form of a transformation is

tpattern = treplaoement

where tpattern a0d treplgcement are schema SDTs, both of which have the same root nontermi-
nal symbol. A TAMPR transformation is a rewrite rule stating that if the pattern schema
of the transformation matches a subtree of the program SDT, then that subtree should be
replaced by another subtree constructed from the replacement schema of the transformation
using the values of the matched variables.

Stated formally, transformations are expressed as strings w, composed of terminals and
nonterminals of the wide spectrum language. The presence of nonterminals makes w a
schema. Nonterminals in w are called schema variables. The notation for describing a
TAMPR schema is as follows:

1. Let G be a grammar.

2. If d & w in G, then we may write d{w} in a TAMPR transformation. Here the
nonterminal d is referred to as the dominating symbol of w. Note that this notation
can be applied recursively. For example, if d; = ydB in G, then we may write

di{yd{w}s}.

This notation for schemas makes explicit both the leaves of a subtree (some of which may
be nonterminals) and its root (the dominating symbol). For more information on TAMPR
transformations see [1] [5].

5 Verification Framework

As discussed in section 3, a TAMPR, derivation consists of a transformation sequence con-
sisting of a sequence of transformation sets. Let 7, denote such a sequence. Given a
specification s, the application of 77, to s is denoted by the expression 77 ,(s). Let p
denote the result of this expression. Our objective is to construct 7; ,, so that p is a fully
implemented program that can be compiled and executed by a computer.

If we can formally prove that p is correct with respect to s, then we know with math-
ematical certainty that no behavior or execution of p can ever be found to contradict the
behavior of s [6]. In contrast, “verification” by testing only shows that none of the tested
behaviors of p contradicts a behavior of s. A formal verification thus provides a high de-
gree of assurance, indeed, that a program is correct, subject to the assumptions that the
specification is correct and that the proof is carried out correctly.

To demonstrate correctness mathematically, we need to prove that pis at least as defined
as 8, 8 C p, which is usually read “s is less defined than p”. Such a proof can be accomplished
by proving that 7 ,, is correctness preserving, which in turn can be accomplished by showing
that the individual transformations, 7; that make up 7 ,, are correctness preserving. Thus,
being able to prove that a transformation is correctness preserving is the key component of
our verification framework.

To prove that a transformation of the form

tpattern = treplacement

preserves correctness we need to prove that the relation tpattern C trepiacement holds. Such a
proof implies that any instance of tpaitern, can be replaced by the corresponding instance of

7

Lreplacement- Lhis proof can be accomplished by mapping the transformation into an axiom-
atized mathematical domain where formal (and automated) reasoning can be performed.
To perform this mapping, we use an extended denotational semantics. In this approach, the
conceptual notion of program state, which forms the basis for human reasoning, is repre-
sented by the cross product of two functions, an environment function and a store function.
This “distributed” representation of state introduces properties that go beyond those of
which one is conscious when thinking in terms of the conceptual state. The reasoning
framework needs to be aware of these additional properties to obtain a correctness proof.
These additional properties of the computational state will be discussed further in section
5.2.

In the following sections, we discuss the notion of refinement in denotational semantics
and how one can go about proving that a transformation is correctness preserving.

5.1 The Semantics of Schemas

In denotational semantics [15], programs are viewed in terms of their SDTs, and the seman-
tics consists of valuation functions that map SDTs into expressions in some mathematical
domain. These valuation functions assign a meaning to each terminal symbol in the gram-
mar directly, and they assign a meaning to each nonterminal symbol indirectly, based on a
composition of the meanings of its subnodes. Thus, in denotational semantics, the mean-
ing of every symbol is derived ultimately from a mathematical expression involving the
meanings of terminal symbols.

As mentioned in Section 4, TAMPR transformation schemas generally contain one or
more nonterminal leaves. A nonterminal leaf has no terminal symbols from which to com-
pose a meaning, so standard denotational semantics is unable to assign it a meaning. Thus,
if one wishes to use the denotational semantics of a language as a basis for reasoning about
the correctness of transformation schemas, the denotational semantic valuation functions
must be extended to enable them to assign meanings to nonterminal leaves.

Fortunately, the denotational semantics for a language provides enough information to
allow an extended semantics for a nonterminal to be determined. One should think of this
extended semantics as being the “most general meaning” of the nonterminal; that is, the
meaning common to all possible instantiations of that nonterminal.

For example, consider a nonterminal <ezpr> denoting the set of expressions. In general,
the meaning of any syntax derivation tree having <expr> as its root will be an element
belonging to the set of denotable values (i.e., values, such as integer, list, etc., that the
programming language supports). Executing any instantiation of <expr> with respect to
a specific environment and store will result in a denotable value (or possibly an undefined
value) that is the value of the <exzpr>. Thus one thing that we know about the class of
SDT’s having <ezpr> as its root is that the semantics of every SDT in this class is of the

form:

A (g,9). Ay(g,s)

Where A, is a semantic function having the signature

Ay . environment X store — denotable value.

As another example, consider the nonterminal <assign> denoting the set of assignment
statements. In general, for a sequential side-effect free language, executing an instantiation
of <assign> will result in a (single) change to the store. If the denotational semantics of the
language under consideration defines assignments as “commands that take an environment
and a store as input and produce a store as output”, then the corresponding meaning for

<assign> will be:
A (g,8). As(e, s)

Where A, is a semantic function having the signature

Ag 1 environment X store — store.

Similarly, execution of an arbitrary declaration will result in a change to the environment
(i-e., Ag).

When considered in isolation, the extended semantics of a nonterminal like <assign>
can be described as a function that takes an environment and a store as input and returns
a new store. Because many nonterminals have an extended semantics that can be described
in terms of such a “change”, we have coined the term delta function to describe an abstract
valuation function that gives the extended semantics of a nonterminal. Thus, the role of
delta functions is to describe the “change in meaning” across a nonterminal.

5.1.1 The Importance of Delta Functions

Delta functions, in the semantics of schemas, play a role similar to that played by variables
in standard algebraic expressions. However, it would be incorrect simply to use generic
variables in place of delta functions. Consider the following transformation which replaces
“if <be> then <stmi>q else <stmi>1;<stmi_tail>,” with “<stmi>1;<stmi_tail>1”.

(<stmt_tail>{ if <be> then <stmi>; else <stmi>q;
<stmit_tail>1

}
TE! =
< stmit_tail>{<stmt>1;
< stmit_tail>q
{ }

Given the standard semantics for the if-then-else construct, one might conclude that this
transformation is correct. However, the correctness of this transformation not only depends
upon the semantics of the if-then-else construct, but also upon whether the evaluation of
boolean expressions, in the language under consideration, can cause side-effects. When
using delta function semantics for the nonterminal <be>, this constraint becomes explicit,
and a correctness proof will not “go through” for languages where such side-effects are
possible. In contrast, when using a generic variable in place of <be> this information will
not be present and must be accounted for by some other means.

5.1.2 Theoretical Considerations

There are many factors that determine just how specific a delta function can be. One such
factor is the language itself. For example, in a language that supports parallel assignments,
the most general delta function for a <parallel_assign> can only say that one or more
identifiers will be assigned new values. Contrast this with an assignment statement in a
sequential language where a side-effect free assignment will change the value of exactly one
identifier.

Also, complexity plays a role. The preceding examples are quite simple. Nontrivial
valuation functions and continuations can exist within a denotational semantics. For some
of these situations, it is not immediately obvious what the appropriate and relevant delta
functions are.

Finally, in addition to inherent properties of the language, properties established by
preceding transformations can also have an effect on delta functions. Applying a sequence
of transformations to a specification or program s will result in a program p having cer-
tain syntactic and semantic properties deriving from the canonical forms achieved by the
transformations in the sequence. For example, a program can be transformed into a canon-
ical form where evaluation of boolean expressions in conditional statements will not cause
side-effects regardless of the general policy regarding side-effects that is supported by the
language. To see this consider the following transformation:

[<stmi_tail>{<var>; := <be> ;
if <war>, then <stmt>; else <stmit>q;
<stmi_tail>4

}
=< =
<stmt_tail>{<var>y := <be> ;
<stmit>q;
<stmt_tail>1

y }

10

This transformation can be applied in general, because it provides the context for its
application—namely that the boolean expression of a conditional test consist of a single
variable. However, suppose a transformation sequence has been applied to a program so
that this property holds for all conditional statements within the program. For such a pro-
gram the transformation 7; given earlier is correct! The transformation is correct in this
context because transformation sequences can alter the semantics of delta functions.

In general, the properties established by preceding transformations can impact the se-
mantics of delta-functions of future transformations that are used to further refine p. In the
presence of such properties, one can think of a nonterminal as having a family of delta func-
tions: a most general delta function which results from the semantics of the language, and
other more specific ones that incorporate properties established by prior transformations.

We have found that for many transformation proofs, the most general delta function,
which can usually be determined by inspection of the grammar, is sufficient to permit
a proof to be obtained. However, because of the potential subtleties in determining the
extended semantics of delta functions, and in order to accrue the correctness benefits of
automation, we are developing an automated procedure for determining the semantics of
delta functions given a set of denotational semantic definitions. We are also examining in
detail how application of prior transformations can affect delta functions.

5.2 The Refinement Relation in M

The objective of applying TAMPR transformations is to introduce and restructure com-
putation in a manner consistent with the notion of refinement. To prove the correctness
of a TAMPR transformation, we must prove that any program fragment that matches the
pattern schema of the transformation is refined by a program fragment that is the corre-
spondingly instantiated replacement schema. Consequently, to prove that a transformation
performs a refinement, one must demonstrate that, for all possible instantiations of the
schema variables in the pattern and replacement, the state of the program fragment pro-
duced from the instantiated replacement schema is a refinement of the state of the program
fragment produced from the instantiated pattern schema. To carry out such proofs, we
need to be able to reason about refinement relationships between states.

5.2.1 The State Space of a Denotationally Defined Computation

To give a full and correct description of the scope of identifiers, the computational state
space, M, for most denotationally defined languages is represented by the cross product of
an environment function, €, and a store function, s (and possibly some additional constructs
such as counters). In this representation, obtaining the value corresponding to an identifier
requires two steps: the environment function maps the identifier to a storage location, and
the store function maps that storage location to a denotable value (i.e., a member of the set

11

of values that an identifier can denote, such as a number or a logical value). For example,
suppose that in a program, the identifier z is assigned the value 5. After the assignment
has taken place, the following facts will be true of the state:

e(z) = a where « is a storage location;
“which” particular location x gets mapped to is not of interest
s(a) =5

From this example, one can see that, taken together, the environment and store functions
are the abstract representation in the denotational semantics of the state information of a
concrete program; we call the combination of these two functions the abstract state. The
abstract state is important because it provides a basis for verification.

In traditional verification of programs, a program fragment is proved to be correct
by showing that, if the execution of the program fragment is begun in an abstract state
satisfying a given precondition, then it will terminate in an abstract state satisfying a given
postcondition.

The transformational perspective is somewhat different, but nevertheless related. In the
application of a transformation, the fragment of program corresponding to the pattern is
replaced with the fragment of program corresponding to the replacement. If the seman-
tics of the programming language allows us to conclude that, for any such pair of program
fragments, the execution of the fragment corresponding to the replacement results in an
abstract state that is a refinement of the abstract state produced by executing the frag-
ment of program matching the pattern, then we can conclude that the substitution (i.e.,
the transformation) is correctness preserving. It is easy to show that correctness preserva-
tion is simply an adaptation of the traditional notion of program correctness to program
substitution.

5.2.2 Refinement Properties within the State Space

Technically, the domain M forms a refinement lattice with m def (e1,s1) being the bottom

element and m def (eT,sT) denoting the top element. The components of m and mt are
defined as follows:

e, Mz 1)
s, & Az 1)
erE 2T
st Az T)

(X z. L) is the constant function with value “bottom”, and (A z. T) that with value “top”.

12

Before we consider refinement in M we define a notation for function alteration. After
this, we give some standard definitions of refinement [13]. Then we consider some aspects
of how the definition of refinement in M differs from these standard definitions.

Definition 1 (Function Alteration.) Let € denote an arbitrary environment function.
The notation [z +— ale denotes an environment having the same mapping as € for all
identifiers except x. For [x +— ale the storage location (i.e., the value of the function)
associated with x is a.

For more discussion of this notation see [15].

Definition 2 General refinement on functions. Given any two functions f and g such that
f:D1~—>D2 andg:D1—+D2.

fEg¥Vze Dy, f(2) C g(a)
Definition 3 f=g< (fCgAgLC f)
Definition 4 General refinement on tuples.

(f1,91) C (f2,92) € (A T f2) A (on C g2).

The preceding definition is the standard definition of refinement for tuples [13], applica-
ble to all tuples. In contrast, environment and store functions enjoy additional properties
with respect to refinement that are not shared by general functions. These additional prop-
erties are important in constructing proofs of correctness-preservation for transformations
involving environment and store functions, because these properties enable proofs in cases
that could not be proved from the general definition of refinement alone. To emphasize the
difference between general refinement for functions and refinement for the domain M, we
introduce the symbol, CM 1o denote the refinement relation as it manifests itself for states
in M. The semantics of TM is given below.

For states, definition 4 can be weakened from an equality to an implication as stated in
Axiom 1.

Axiom 1 (g1 Ceg) A (s1 C s2) = (e1,51) CM (g2, 52)
Axiom 2 Refinement within M
(e1,81) CM (e2,80) & (vzeid, ((e2(x) =L) = (e1(z) =L))A
(s1(e1(x)) E sa(e2(2))).

13

Intuitively, we know that the particular memory address of an identifier is not important
with respect to the conceptual notion of state presented here. This axiom expresses that
property for the abstract state; it enables one state to be proved a refinement of another
independently of the particular value output by the environment function e. Note that
((e2(z) =1) = (e1(z) =1)) is critical for most imperative languages. This expression
distinguishes the case in which an identifier is undefined because it has not been declared
from the case in which the identifier is undefined because it has not been assigned a value.

Axiom 3 For a given.a. (—3z € id,e(z) =) = (g,58) CM (¢, [a —1]s).

This axiom states that the value of any location in the store that does not have a
corresponding identifier is irrelevant. This axiom is included largely for convenience, because
it allows the denotational semantics to omit “storage cleanup” operations between scope
boundaries.

5.3 Refinement of schemas

We can extend the above definition of refinement of computational states to define refine-
ment for (transformation) schemas. Given a transformation schema ¢ (a syntactic object),
we use the symbol to denote the expression in the mathematical domain (the semantic
object) assigned to ¢ by our extended denotational semantics.

Definition 5 (general refinement—unconditional correctness)
t1 C tg def Vstate; € states, 1 (state;) M fg(statei)

This is the most general form of refinement on schemas. Note that #; (state;) T ts (state;) =
t1 (state;) TM 1a(state;), but the implication generally does not hold in the other direction.
Also note that this definition extends the definition of refinement from the semantic domain
into the syntactic domain. From this point on, it makes sense to talk about “refinement of
schemas”.

5.4 Semantic Properties

In section 5.2.2 we discussed (semantic) properties of the state space. Additional state
properties and functions are often useful for showing that one schema is a refinement of
another. The most common such property is uniqueness (for identifiers) and the most
common function is new (for addresses). Their definitions are

Definition 6 unique(z, (e, s)) & (e(z) =1)

14

Definition 7 new & (A €. @) such that =(3z € id, e(z) = a) holds.

The reason new is a function and not a predicate is that refinements may substitute one
state for another. In such cases it is important for new to have the desired properties with
respect to the substituted state (i.e., new is a function on environments). Also note that the
definition of new places a requirement on the storage allocation and management strategy
that it be able to generate an a with respect to a specific ¢ in accordance with the definition
of new.

5.5 Syntactic Properties of Fragments Matched by Schemas

In contrast to state properties, which are defined in the semantic domain, there exist prop-
erties that are defined directly on the syntactic structure of a fragment that is matched
by a schema (i.e., an instantiation of a schema). Schema instantiations possessing certain
properties can be correctly transformed in nongeneral ways. Such properties are expressed
as predicates defined on the syntactic representation of an instantiation.

Despite their syntactic nature, syntactic properties do have semantic implications that
can be utilized in the course of a refinement proof (i.e., a correctness proof). The following
is an informal definition for one syntactic property:

Definition 8 occurs(z, f(t))—this predicate is true if and only if the variable = occurs in
f(t),where f(t) denotes the program fragment matching the schema ¢.

A theorem that describes some of the semantic implications of this definition is

Theorem 1 A semantic consequence of the occurs property.

-occurs(z,t) = Ve, s;) € states, (e}, 8)) = ([x — alel, [a — s;(e:(x))]s])

~— where (g}, s}) o t((ei, s4)),
~ (e,s%) € i(([z —L]ei, 53)), and

~ new(e!)=a

This theorem states that when executing a program fragment in which the identifier does
not occur, one may create a new environment that does not contain z, execute the program
fragment with respect to this new environment and then reinsert x and the value to which
it was originally bound (i.e., s;(¢;(x))) in the resulting (final) state. Care must be taken
that, when z is reinserted, it is mapped to a “new” location in the store (i.e., & must be
a “new” location. with respect to &/, not €). In order to deal with cases such as this, new
needs to be a function on environments (recall the discussion in Section 5.4).

15

5.6 Correctness Proofs

In this section we consider two TAMPR transformations that are used to transform Poly
specifications into programs. For a partial grammar of Poly and its denotational semantics,
see [18]. For more information on TAMPR and the syntax of transformations, see [1].

5.6.1 Two example transformations.

Two TAMPR transformations whose proofs of correctness preservation depend on prop-
erties of the environment and store are Declaration Order Interchange and Assignment
Distribution for Lambda Expressions:

e Declaration Order Interchange. If two variables are declared in the same statement
in a Poly program, interchanging the order in which the two variables are declared is
a refinement.

<spec stmt> {<standard type>1<ident>,<ident>s}
LES =
<spec stmt> {<standard type>1<ident>s,<ident>1 }

e Assignment Distribution for Lambda Expressions. If a program variable (in procedural
code) is assigned the value of a lambda expression (in functional code), then it is a
refinement to replace this assignment by a declaration of the lambda variable enclosing
the sequence: assign the lambda variable the value of the lambda argument expression
followed by assign the procedural variable the value of the lambda body expression.

if (<ident>9 does not occur in <ezpr>3) then

(<stmt tail> {

<ident>1 = lambda <ident>o Q<expr>iend (<expr>s);
<stmit tail>q;

}

=

<stmt tail> {
block;
declare cell <ident>2; enddeclare;
<ident>9 = <expr>y;
<ident>, = <expr>1;
end;
<stmt tail>1;

S
15

In Assignment Distribution for Lambda Expressions (73), the pattern consists of two
portions. The first portion is an assignment statement in which the identifier <ident>y
is assigned the value resulting from the application of a lambda function to the argument
(<expr>3). The lambda function has <ident>y as its formal parameter and <ezpr>; as its
body. The second portion of the pattern consists of <stmt tail>>; which denotes the portion
of the program that follows the assignment statement.

The replacement of 73 also consists of two portions. The first portion is a block (delim-
ited by end) in which the identifier <ident>; is declared. After its declaration, <ident>s
is assigned the value of the expression <expr>y, then <ident>; is assigned the value
<expr>1. The second portion of the replacement consists of <stmt tail>; which denotes
the portion of the program that follows the block.

The correctness of the transformation 75 depends on a global assumption that the name
of every lambda variable is unique (this name occurs as the name of the lambda variable
in no other lambda expression in the program being transformed). This assumption is
easily guaranteed by applying an earlier transformation set that renames lambda variables
to guarantee uniqueness.

Given the assumption of unique lambda variable names, <ident>, does not occur in
<expr>,. Hence, <expr>, may be evaluated in an environment in which <ident>2 has
been newly declared. Essentially, 75 describes how function parameters and parameter
passing can be implemented by imperative (nonfunctional) commands.

Theorem 2 (declarations are commutative).
< spec stmt > {<standard type>1<ident>1,<ident>s}
C
< spec stmt > {<standard type>1 <ident>y,<ident>1}
Proof: see [17]

Theorem 3 —occurs(z, <expr>g) =

17

<stmt tail> {
<ident>; = lambda <ident>; Q<expr>iend (<expr>s);
<stmt tail>q;

}
C
<stmt tail> {
block;
declare cell <ident>q; enddeclare;
<ident>g = <expr>s;
<sdent>; = <expr>1;
end;
<stmt tail>1;

}
Proof: see Appendix A.

6 Conclusions and Future Work

Correctness proofs are necessary to have high assurance that design and implementation
will produce software that satisfies the original specification.

We have argued that using an automated program transformation system to derive pro-
grams from specifications is an attractive approach to carrying out such proofs. Automating
the derivation enables the use of large numbers of transformations that perform very simple
refinements. It is thus relatively easy to prove that these small transformations preserve
correctness, that is, that they are indeed refinements. Hence, the key component of our
approach is to enable individual transformations to be proved to preserve correctness with
the expenditure of a reasonable amount of effort.

In our approach, the semantics of the specification and implementation language is
defined using denotational semantics. Traditional denotational semantics does not define
the semantics of schema variables. Schema variables occur frequently in TAMPR trans-
formations and the need to assign meanings to them motivated us to extend denotational
semantics with delta functions. Delta functions can have a straightforward extended se-
mantics; however, languages and contexts within a transformation sequence can also make
the extended semantics of delta functions complex. For these reasons, we are developing
an automated procedure for determining the extended semantics of delta functions with
respect to a given grammar and its denotational semantics.

In general, the computational state space M, within the denotational semantics of
a language consists of an environment and a store function. The (execution) semantics
of programs (syntactic objects) are then defined in terms of M. The environment and
store functions when considered together capture the notion of the conceptual state of a

computation. But, spreading information about the conceptual state over two functions
in the computational state introduces dependencies between the two functions. To allow
reasoning about the computational state to proceed “smoothly”, these dependencies must
be factored out. The axioms, definitions, and lemmas in section 5.2.2 permit “smooth”
reasoning with respect to the state space M that we have chosen.

In conclusion, we believe that an automated refinement-based approach to software
design, implementation, and verification within a properly adapted denotational semantic
framework can provide high assurance of correctness for software.

A Proof of Theorem 3

In the interests of clarity, the fact that <ident>; and <ident>9, are actually schema vari-
ables (and therefore are semantically denoted by delta functions) is omitted in this proof.
Because the delta functions for <ident>; and <ident>s do not play a significant role in
the proof, we simply treat them as identifiers. Also omitted from the proof is how type
information participates in the proof process (namely the relationship between the type of
a lambda bound identifier and a declared identifier).

The proof begins by noting that <ezpr>i, <expr>s, and <stmt_fail>; are schema
variables whose extended semantics will be denoted respectively by the following delta
functions:

1.delta < ezpr>, def (A(e,8). Dceapr>, (€,5)) where Acegpr>, @ € X 8 = denotable value

2.delta < eapr>s &of (A(e,s). Dcegpr>, (€,5)) where Acegpr>, ¢ € X s — denotable value

3.delta<simetait>s = (A(E,8). (De(e), Ls(5)))
where Ay : e = € and Ag: s— &

The extended denotational semantics maps
<stmt tail> {<ident>1 = lambda <ident>, @ <expr>iend (<ezpr>3);
<stmt tail>

}

to

4. Ae,s). (Ac(e),
A ([e(<ident>1) — (D ceapr>, ([<ident>2 — agle,
[z = Aceaprs, (€, 8)]s))]s)

where new(g) = ap. Similarly, the schema

< stmt tail>{
block;
declare cell <ident>q; enddeclare;
<ident>9 = <expr>sy;
<ident>) = <expr>y;
end;
<stmt tail>;;

is mapped to

5.A(,8). (As(e),
A ([e(<ident>1) — (Dceapr>, ([<ident>2 — ag)e,
(a2 = Acegprs, ([<ident>2 — agle, 5)]9))]s)

The semantic implications of the assumption —occurs(<ident>q, f(<expr>2)) together
with Axiom 3 allow us to conclude that

6. Dcemprs>s (€,8) T Acemprs, ([<ident>y —1e, [e(<ident>q) +—_L]s)
Combining 6, 4 and the definition of refinement on states gives

7. Mg, 8). (Le(e),
A ([e(<ident>1) > (Aceprs, ([<ident>o — age,
[a2 = Aceaprs, (€, 9)]5))s)
[:_M
Ae,). (Dee),
A ([e(<ident>1) > (Dceaprs>, ([<ident>2 — agle,
[a2 = Acegprs, ([<ident>2 —Lle, s)]s))s)

A finsl application of the definition of refinement on states gives

8. A, s). (Lele),
A ([e(<ident>1) = (A cegpr>, ([<ident>2 — agle,
(a2 > DAceaprs, ([<ident>z —L]e, 5)]s))]s)

EM
A,). (Lele),
A ([e(<ident>1) — (Acegprs, ([<ident>2 — agle,
[ag = Acemprs, ([<ident>g — agle, 5)]s))]s)

E

Q.E.D.

References

[1]

[3]

[4]

[9]

[10]

[11]

James M. Boyle. Abstract programming and program transformation—an approach to
reusing programs. In T. J. Biggerstaff and A. Perlis, editors, Software Reusability, Vol.
1, pages 361-413. Addison-Wesley, 1989.

James M. Boyle. Automatic, Self-adaptive Control of Unfold Transformations. PRO-
COMET 94, IFIP Working Conference on Programming Concepts, Methods and Cal-
culi, San Miniato, Italy, June 6-10, 1994. North-Holland /Elsevier, 1994, pages 83-103.

J. M. Boyle, S. M. Fitzpatrick, and T. J. Harmer. The Construction of Numerical
Mathematical Software for the AMP DAP by Program Transformation. Parallel Pro-
cessing: CONPAR 92 - VAPP V, Second Joint International Conference on Vector and
Parallel Processing, Lyon, France, September 1992, Lecture Notes in Computer Science
Vol. 634, pages 761-767, Springer-Verlag, Berlin, 1992.

J. M. Boyle and T. J. Harmer. A Practical Functional Program for the CRAY X-MP.
Journal of Functional Programming, Vol. 2, No. 1, January 1992, pp. 81-126.

James M. Boyle and Manohar N. Muralidharan. Program Reusability through program
transformation. IEEE Transactions on Software Engineering, Vol. SE-10 (5):574-588,
September 1984

Robert P. Kurshan. Computer-Aided Verification of Coordinating Processes. Princeton
University Press, Princeton, New Jersey 1994.

J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart. Linpack User’s Guide.
SIAM Philidelphia, 1979.

Frederic Boussinot and Robert de Simone. The Fsterel Language. Proceedings of the
IEEE, Vol. 79, No. 9, Sep. 1991, 1293-1304.

David Gries. The Science of Programming. Springer-Verlag, New York, New York,
1985.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The Synchronous Data Flow
Programming Language Lustre. IEEE Special Issue on Real Time Programming, Pro-
ceedings of the IEEE 79(9), Sep. 1991, 1305-1320.

Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechanical The-
orem Proving. Academic Press, Inc. San Diego, California, 1973.

21

[12] Claus Lewerentz and Thomas Lindner (Eds.). Formal Development of Reactive Sys-
tems: Case Study Production Cell. Lecture Notes in Computer Science, Vol. 891,
Springer-Verlag, Berlin, 1995.

[13] Zohar Manna. Mathematical Theory of Computation. McGraw-Hill Inc., New York,
New York, 1974.

[14] Carroll Morgan. Programming from Specifications. Prentice Hall, 1990.

[15] David A. Schmidt. Denotational Semantics. Wm. C. Brown Publishers, Dubuque, Iowa,
1986.

[16] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire. Programming Real-Time
Applications with signal. Proceedings of the IEEE, Vol. 79, No. 9, Sep. 1991.

[17] Victor L. Winter and James M. Boyle. Proving Refinement Transformations Using Ez-
tended Denotational Semantics. Proceedings of the ’96 Durham Transformation Work-
shop.

[18] Victor L. Winter. Proving the Correctness of Program Transformations. Ph.D. disser-
tation, University of New Mexico, 1994.

B Biography

Victor L. Winter received his Ph.D. from the University of New Mexico in 1994. His
dissertation research focused on proving the correctness of program transformations. Dr.
Winter is a member of the High Integrity Software (HIS) group at Sandia National Labo-
ratories. His research interests include trusted software, formal semantic models, theory of
computation, automated reasoning and robotics. Dr. Winter can be reached by phone in
the United States at (505) 284-2696 or by email at vlwinte@sandia.gov.

James M. Boyle received his Ph.D. from Northwestern University in 1970. He has been
active in the field of program transformation since writing his dissertation on the initial
design of the TAMPR transformation system. He is a member of the Mathematics and
Computer Science Division at Argonne National Laboratory. Dr. Boyle’s other research
interests include trusted software, parallel processing, and automated reasoning. He is
coauthor of the books Automated Reasoning—Introduction and Applications and Portable
Programs for Parallel Processors. He can be reached at +1 708-252-7227 or by email at
boyle@mcs.anl.gov

22

