. " LAUR- 96-1554 ConF- qei00d--1

Los Alamos Natioral Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36

TITLE: APPROXIMATE OPTION PRICING
AUTHOR(S): Prasad Chalasani
Somesh Jha

Isaac Saias

SUBMITTED TO: 1996 IEEE Symposium on Foundations of Computer Science (FOCS '96)
October 14-16, 1996
Burlington, VT

MASTER

By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive royaity-free license to publish or reproduce
the published form of this contribution or to allow others to do so, for U.S. Government purposes.

The Los Alamos National Labaratery requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Los Alamos National Laboratory

L @ S A a m S Los Alamos New Mexico 87545

DISTRIBUTION OF JU8 DOCUMENT 15 UNLMITED




]




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.







Approximate Option Pricing

PRASAD CHALASANI SOMESH JHA
Los Alamos National Laboratory Carnegie Mellon University
chal@lanl.gov stha@cs.cmu.edu

ISAAC SAIAS
Los Alamos National Laboratory
' isaac@lanl.gov

April 8, 1996

Abstract

As increasingly large volumes of sophisticated options are traded in world financial markets, deter-
mining a “fair” price for these options has become an important and difficult computational problem.
Many valuation codes use the binomial pricing model, in which the stock price is driven by a random
walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of
the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to
value since the future cash flow depends on the entire stock price path rather than on just the final stock
price. Currently such options are approximately priced by Monte Carlo methods with error bounds that
hold only with high probability and which are reduced by increasing the number of simulation runs.

In this paper we show that pricing an arbitrary path-dependent option is #-P hard. We show that cer-
tain types of path-dependent options can be valued exactly in polynomial time. Asian options are path-
dependent options that are particularly hard to price. and for these we design deterministic polynomial-
time approximate algorithms. We show that the value of a perpetual American put option (which can be
computed in constant time) is in many cases a good approximation to the value of an otherwise identical
n-period American put option. In contrast to Monte Carlo methods, our algorithms have guaranteed error
bounds that are polynomially small (and in some cases exponentially small) in the maturity n. For the
error analysis we derive large-deviation resuits for random walks that may be of independent interest.
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1 Introduction

Over the last decade or so. sophisticated financial instruments called derivative securities [9, 16] have be-
come increasingly important in world financial markets. These are securities whose value depends on the
values of more basic underlying variables. For instance a stock option is a derivative security whose value is
contingent on the price of a stock. The trade in options, futures and other types of derivative securities otten
has a value exceeding that of the underlying asset {27]. Hedgers find it advantageous to trade in a derivative
security on an asset rather than in the asset itself. to reduce the risk associated with the price of the asset.
Also, speculators trade in options on Stocks to get extra leverage trom a favorable movement of the stock
price.

Of course, a price must be paid to own a derivative security, and a central problem is the one of deter-
mining a “fair” price. An option is priced, or “valued”, by assuming (a) some model of the price behavior
of the underlying asset (e.g., a stock), and (b) a pricing theory. In a landmark paper, Black and Scholes [2]
introduced a continuous-time model for option valuation that underlies most pricing methods in use today.
Their model is based on Arbitrage Pricing Theory [9, 16]. The model assumes that the asset price is driven
by a Brownian motion, and specifies a stochastic differential equation that the option value must satisfy.

For many complex options, such as Asian Options and (American) Lookback options, the Black-Scholes
differential equation has no known closed form solution, so numerical approximations are used. In Mounte
Carlo methods [4, 21, 22] one runs several continuous-time simulations of the Black-Scholes model to es-
timate the option price — which is the time-discounted expectation of the future cash flow. This approach
is justified by the law of large numbers. [n finite difference methods {7, 17, 27] the underlying stochastic
differential equation is discretized and solved iteratively. The error bound typically guaranteed by Monte
Carlo methods is O(c/v/N), where N is the number of simulation runs, and o is the standard deviation of
the future cash flows [21]. It should be noted that this bound only holds with “high” probability, is expressed
in terms of the extrinsic parameter N, and depends on the underlying dynamic only through o. On the other
hand, approximations based on finite-difference methods usually lack a precise quantification of the error
term (see [24]).

In contrast to the above methods, the widely-used binomial pricing model [8, 16] is based on a simpler
discrete-time process. The mathematical justification of this model is that the standard symmetric random
walk, appropriately scaled, converges to the Brownian motion. As in the continuous models, the price of an
n-period option is the time-discounted expected value of the future cash-flows over n periods. Even under
this model, path-dependent options [18] such as Asians and Lookbacks are particularly difficult to value: for
such options, the tuture cash flows depend on the entire stock price path rather than on just the final stock
price, and there are 2" possible paths.

In this paper, we study the option pricing problem from the rigorous perspective of computational com-
plexity and approximation ajgorithms. We assume the binomial model throughout. We show that the prob-
lem of pricing arbitrary path-dependent options is #-P hard. For certain path-dependent options we show
polynomial-time exact pricing algorithms. For the notoriously hard Asian option pricing problem, we design
deterministic polynomial-time (in n) approximation algorithms. In contrast to the Monte Carlo methods. our
error bounds are expressed in terms of intrinsic parameters such as the maturity n of the option: in fact they
are polynomially and in some cases exponentially small in ». In some cases our aigorithms run in time inde-
pendent of n. We also show that in some cases the price of an American option can be approximated well by
that of an otherwise equivalent perperual option, whose value is O(1}-time computable. For the error anal-
ysis we prove several large-deviation results on random walks. We thus hope to demonstrate that the field of
derivative securities is a rich source of opportunities for computer science research.

For more details on option pricing and the Arbitrage Pricing Theory, the interested reader is referred
to the Hull’s {16] excellent introductory text. However the present paper defines all the relevant concepts
needed, and will suffice to understand the computational problems involved. Section 1.1 describes the bino-




mial model for stock prices. Section 1.2 defines the options considered in this paper, and Section 1.3 describes
the pricing formulas and the specific results in the paper. The remaining sections contain our results.

1.1 The binomial model for stock prices

To keep the wording simple. we only consider options on stocks. The notation described in this section will
be used throughout the paper. For easy reference, at the end of the Appendix we include a summary of the no-
tation used in this paper. The binomial model for the price of the stock underlying an n-time-period (n > 1)
option is the following. The model is parametrized by the constants p. q. u. r. These parameters are deter-
mined independently, and we will assume they are known. n is the (possibly infinite) number of time periods
up to the expiration of the option. where time 0 is the initial time, i.e., the time at which one wants to price
the option. The trading dates are times 0. 1. . .. . n. The stock price at time & is denoted S;.. The initial stock
price So is assumed to be non-random. v is the up-factor, p is the up-tick probability, r is the risk-free in-
terest rate. Ateach time step, with probability p the stock price goes up by a factor u, and with probabitity
q = 1 — p the price goes down by a factor 1/u. The parameters «. p. g, r satisfy (see [16]):

u>1l tu<l4dr<u,
D<p<l, p+g=1. (hH
L+ r—1/u

p= orequivalently. pu+g¢g/u=1+r. 2)
u—1/u

We now formalize the model. It will be convenient to visualize a sequence of n independent coin-tosses
« = (wi.w2....w,), whereeachw; € {H.T};an H corresponds to an “up-tick” of the stock price, and a T’
corresponds to a “down-tick”. A particular sequence of coin-tosses w will be referred to as a path. The sam-
ple space (Q is the set of all possible coin-toss sequences w. We define the random variables X, X,......X,

where for any « € Q,
1 ifw; = H,
Xiwy=4{" i
-1 otherwise.

We define the probability measure P on 2 to be the unique measure for which the random variables .X;, { =
L.2.... . n, are independent, identically distributed (iid) with P[X; = 1] = pand P[X;, = -] =¢=1-p.
We will refer to the sequence of random variables { X;}7., with the above distribution as the random walk
with drift p. Then the stock price Sk, & > 0. is a random variable that satisfies

Spr1 = SpufErt,

We also define Yy = 0, andfork > 1, Y, = Zf’zl Xi,and T, = Zle S;. Thus we can write for k > 0,
Sp = Souts. ' -

Forany integer & > 0, for any random variable Z, the conditionatexpectation E{Z] X, Xq.... .. XkjotZ
given the first & coin tosses will be denoted E[Z|F]. In particular E{Z|F] 2 E[Z]. For any integer k > 1,
arandom variable Z is F;-measurable if it depends only on the first £ coin tosses, i.e., on X1, Xo. ..., X
An Fy-measurable random variable is non-random.

[t is common to refer to a sequence of random variables as a process. In particular, {Sk}7_, is the stock
price process. A process {Z}}_, such that each Y is F-measurable, is said to be adapted. Thus the
stock price process is adapted. For any process {7}, we write Z. to denote maxo<i<x Z;. Similarly,

A
Z;. = minp<i<k Z;.

t




1.2 Options

There are two basic types of options. A call eption on a stock is a contract that gives the holder the right
to buy the underlying stock by a certain date, for a certain price. A put option gives the holder the right o
sell the underlying stock by a certain date for a certain price. The price in the contract is known as the strike
price, and is denoted by /. The date in the contract is Known as the exercise date, or expiration date.
Recall that n denotes the number of time periods until the expiration of the option. The holder of the option
must pay a certain price, called the option price to the issuer of the option. The option pricing problem is
to determine the “tair” price to pay for an option. This will become clearer later. An American option can
be exercised at any time up to the expiration date. European options can only be exercised on the expiration
date itself. It is important to note that an option contract merely gives the holder the right to exercise: the
holder need not exercise it.

The payoff G, trom an option (for the holder) at time & is 0 if it cannot be exercised at time k. Otherwise
G, is the maximum of 0 and the profit that can be realized by exercising the option at time A. This profit
ignores the price paid by the buyer for the option. For instance consider an American Call option. It 5, > A’
the holder can exercise the option at time & by buying the stock at & and realize a profitof S, — A by selling
the stock in the market at S;.. If S, < K, no positive profit can be made by exercising. Thus, for an American
call, the payoff is the random variable

Ge=(Se—K)t, k=0.1.2.... .n. (Payoff for American call)
where for any ¢ € R, 2+ = max{z.0}. Similarly for an American put,

Gr=(K-S)% k=0,1,2.....,n.  (Payoff for American put)

The payoff functions for the European options are the same as for their American counterparts, except that
exercise is only allowed at time k& = n,s0 G = 0 forall & < n.

In the case of simple calls and puts, the payoft at any time depends only on the prevailing stock price, i.e..
G = g{S:) for some function g. Such options are said to be Markovian, or path-independent. However
there are many options that are path-dependent {13, 16, 18]. One class of such options we consider in this
paper are Asian options. An (European-style) Asian call option is one that can be exercised only at time »,
and whose payotf G, is given by

Grn = (un — KT, (Payoff for Asian call)

where p,, is the average stock price from time I to time n: y, = T,/n. We do not include Sp in the com-
putation of the average only for notational convenience; since Sy is a fixed constant, this does not affect our
results.

Similarly. a (European-style) Asian put has payoff
Gp = (K - pu,)T.  (Payoff for Asian put)

Asian options are of obvious appeal to a company which must buy a commodity at a fixed time each year.
yet has to sell it regularly throughout the year {27]. These options allow investors to eliminate losses from
movements in an underlying asset without the need for continuous rehedging. Such options are commonly
used for currencies {271, interest-rates and commodities such as crude oil {14].

We consider two other path-dependent option payoffs in the paper: (Let 1 4 denote the indicator function
for any subset A C Q) -

e (Sp = K)Y*, k>0 (Lookback option)
Tk =
15,,5(S — K)*". k 2 0 (Knock-in barrier option).




We also consider the American perpetual put (APP) option, which has an associated strike price A just
like an ordinary American put. except that there is no expiration date. The payott G, for an APP is theretore
given by

Go=(K=5S)% k>0 (Payott for American perpetual put)

1.3 Pricing formulas, and results in the paper

Since a European option can be viewed as an American option with payotf G, = 0 for all ¥ < n. pricing
formulas for American options apply equaily well to European options. However, the formulas for European
options are somewhat simpler and we describe them first.

For European-style options with payoff G, the value of the option at time k is defined by

Vi= (L+m E[(L+7r)""GulFe),  k=0.1.....n. (3

which is the expected payoff at expiration, discounted by the risk-free interest rate over n — & periods. In
particular we have V;, = (,,. We refer to the time-0 value V5 as simply “the value” of the option, and denote
itby V: ’

A

VEL = (L+r)"EG,. (E)

The pricing problem, which this paper deals with. consists of evaluating the formula (E) for the value V'
of an option. We show in Section 2 that this problem is #-P hard for an arbitrary (polynomially-specified)
path-dependent European option. It is easy to see that ordinary European calls and puts can easily be valued
in O(n) time. However, the valuation of Asian calls and puts is a well-known hard problem in finance and
much research has been directed at this problem [3, 11, 25, 27, 28]. All known valuation methods for these
options either use some form of Monte Carlo estimation or use analytic approximations with no error analysis.
For instance, Turnbull and Wakeman [25] have proposed an analytic approximation for Asian options. but
provide no error analysis: they only experimentally test the accuracy of their approximation against Monte
Carlo estimates. In Section 4 we develop deterministic polynomial-time approximation algorithms for the
value V' of Asian options, along with error bounds. For the error analysis we show several large-deviation
results for random walks that may be of independent interest.

To define the value of an American option, we need to use the notion of a stopping time (see the Ap-
pendix). For an American option with payoff functions {G }7_, (where n can be infinite), the value at time
k is given by

Vi = (14 7)" maxE[(1 + )77 G| F, @
TE

where 7 is the class of stopping times 7 satisfying & < 7 < n almost surely. In particular, the value of the
option at time 0 (which we simply refer to as “the value™ V') is
V=1V = maxE[(l +r)""G,]. (A)
TET
The value | of an American perpetual put (APP) does not involve n, and it can be computed in O(1) time in
closed form. It is natural therefore to use this value to estimate the value of an otherwise identical n-period
American put. In Section 5 we investigate the error of this estimate.

For a Markovian option with payoff G = ¢(Sk), the definition (4) implies that V. = v¢(Sk) for some
function vy, where vy satisfies:

(Sn) = 9(Sn) (only for options with finite n)

: Sk
1e(S) = max {g(Sk)._ (pka(uSk) + QUryt (—ui)) } : k=0,1.... (&)

14+r

4

e




The backward-recursion equation (5) allows 1" to be computed by dynamic programming in O(n-) time.
since there are only & + 1 possible different values for ;.. In Section 3 we extend this approach to certain
path-dependent options (such as the Lookback and Knock-in barrier options) whose payotf can be expressed
as a function of a Markov process different from the stock price process {5y }.

2 Pricing an arbitrary European option is #P-hard

Consider a European option with an arbitrary path-dependent payoff function GG ,,. We will restrict our atten-

tion to payoff functions G, that can be specified in space polynomial in n. We then wishto evaluate V" = 1.
We show that evaluating V' is #P-hard.

Theorem 1 The problem of pricing a European option with polynomially-specified payoff function (i, is
#P-hard.

Proof: Itis well-known that the following counting problem is #P-complete: Given a graph ./ with edge-set
E = {e1.e2,....¢,}. count the number M (.J) of perfect matchings in .J. We reduce this problem to the
pricing problem. We define a (path-dependent) European option with expiration time n whose payoff &, is
given by:
_ Gty = {1 if {¢; :w; = H} is a perfect matching of J

0 otherwise.

Next we choose r and usothat 1+ r = (u+4 1/u)/2,s0thatp = g = % Thus every path > has probability
P(w) = (3)". Clearly, from Eq. (E) the value of this option is

V=(1+7)"" 3 PLG.w) = 1+ (H" > Gulw) = (+n)™ ()" M N,
: wE{.1}n we{o.1in
Thus if we can compute V' exactly in polynomial time, then we can also compute M (/) in polynomial time.
]

3 Exact pricing of some path-dependent options

We saw in Section 1.3 that the value V' of a Markovian option can be computed in O(n?) time by dynamic
programming, using the backward recursion formula (5). We generalize this dynamic programming approach
to certain path-dependent options, such as the Lookback option, and the Knock-in barrier option. The main
observation is that the backward-recursion formula (5) depends only on the fact that the stock price process
{St} is a Markov process, i.e., for £ > 0, if h is any (Borel-measurable) function, then

E[h(Sk.\\.], Sk+2, ey Sn)lfk} = E[h(Sk.{.l . S/.;+2, S Sn)]Sk]
Therefore, we have the following theorem: B

Theorem 2 Consider an American option with payoff process {G }}_, where G, = g(Cy) where C is an
adapted Markov process such that for each k, the number of different possible values of C}. is a polynomial
inn, and the set of possible values of C', is known. Then the value V' for this option can be computed in time
polynomial in n using dynamic programming.

For instance, it is not hard to show that the process (', = (Si.Si). k=0.1,....nisaMarkov process.
Moreover, for each k. there are at most (k+ 1)? possible combinations of values (S¢. Si). Both the Lookback
option and the Knock-in barrier option (see Section 1.2) have payoff functions G, expressible as functions
of (Sk. Sk). so they can be priced in O(n?) time by dynamic programming.




4 Approximate Pricing of Asian Options

We wish to approximate the value V for Asian calls and puts given by the formulae in Section 1.3, Computing
E(yr = K17 (or E(K — p,)*) exactly is known to be a hard problem in finance (the exact computational
complexity of this problem is not known). However, we can compute E;u,, in closed form:

So r . C e - .
Eu, = 20 gE(.rL"\‘ )+ E{uM Ty 4 s Bt J'\)]
v .4
=i+ at+ Lat = Spava® - | = Sotl+r [(1+r" = 1] (6)
n-o ' : n o o-—1 nr ) ’

where o 2 E(uX1) = pu 4+ g(1/u) = L + r. Itis not hard to see that the quantities (1 + r) “"Eu, - K7
and (1 + r)”"[K — Eu, )" respectively approximate the value V' of an Asian call and an Asian put to within
(14+r)""K.

We now describe polynomial-time approximation algorithms that are significantly better. The error anal-
ysis of these algorithms is based on certain large-deviation results on random-walks that we derive in Section
4.1. We use the notation 3 = |2p— 1] since this value appears frequently in the error bounds. In the following
description, we use the symbols P;(c. n). P.(n). P,(n) (corresponding to the cases p less than. equal to and
greater than % respectively) to stand for different probabilities that will be determined in the next section. In
most cases we can express the asymptotic difference between the exact value and our approximation in the
form K (1 + r)~"O(f(n)), where we treat the parameters Sp, u. 3. r as constants.

Forp > % we show (Theorem 3, Corollary 4) that with probability at least 1 — P, (n), all stock prices after
S, /2 are at least 2K, so that u, > K. For an Asian call, this means that with probability at least 1 — P, (n).
(n — K)* = (n — K), s0 we approximate

T

- . L
(L+7r)""E(pn — K)Y =~ (1+1r)""(Eu, — K)*. (Asian call approx., p > 5)
When (i, — K)7 exceeds (1, — K') (which occurs with probability at most P,(n)), the difference between
these quantities is at most K, so that the error in this constant-time approximation is at most

, I
R(1+r)""P,(n) = K(1+r)""0(1/¢7™*).  (Asian call error, p > 5)

since, as we will show, P;(n) = O(1/ e?*n/ ). On the other hand, for an Asian put, the above results imply
that with probability at least 1 — Py(n), (K — p,)™ = 0, so that we can upper bound
-
and use half of this bound as a constant-time approximation:

Forp = % we show in Theorem 5 and Corollary 6 that with probability at least 1 — P.(n), some
stock price before time n is at least n K, so that the average stock price p., is at least K. Theretore by
the same reasoning as above for an Asian call, the approximation (1 + r)~"(Eu, — K)* has error at most

K(1+ r)y""P.(n) where P.(n) = O (%5—}) As in the case p > % we can show that the value " of an

Asian put does not exceed K (1 + r)""P.(n).

Forp < % Theorem 3 and Corollary 4 establish that for any ¢ > 0, with probability at least | — Py(c. n},
all stock prices after m = O{clogn) steps are at most So/n. This means that the error in approximating
pn = Tn/nby T, /nis at most So/n. Thus, for an Asian call we can approximate

VAN —n -y 4 —n . Y+ H . l
V=(1+r)""E(i, - KT =~ (1+r)"E(Tn/n - K) (Asian call approx., p < 7).

1
(1 4+ )" "E(K — )t < K(1+7)""Py(n) = K(1+r)""0(1/¢”*/*) (Asian put bound, p > 5



which can be computed intime O(2™) = 91 since we need only consider coin-toss sequences of lenath .
When (7. - T..) > Sq (wmch occurs with probability at most P, (¢ n)). (p¢, — K) 7 exceeds (T, /v — W~

by at most (""" — KF, where (7% = ——‘——‘—'—-'—— is the maximum possibie value of j1,.. So [he error in

ot
the above uppmximamm is ar most

5 . , L
Ly Pen) Vo™ = K )T {Asian call error. p < 3)
It

L+

Similarly, for an Asian put we use the n°")-time computable approximation

L
E(h ~T,/n)". (Asian put approx, p < E)

In this case, the difference between (K — j,,)* and (K — T, /n)* cannot exceed A, so that the error in the
approximation is at most

(L4+ry™" %)- + KPy(e. n}] .

As we will show in the next section, P;(c.n) = 2/(3%n°), and it can be worked out that with ¢ = 2, l— >
KP;(c. n). Thus with an 2”(!) running time we can achieve an error bound of

1
(14 r)"25y/n. (Asian put error, p < -2-)

In the next subsection we derive the large-deviation results that we assumed above. In Appendix A.3 we
describe an algorithm that performs better in practice than the ones we described above. We leave the error
analysis of that algorithm as an open problem.

4.1 Large-deviation results

We first show the following fact about a drifred random walk. We use the notation for random walks from
Section 1.1. In particular recall that Y, = S5 1 X; is the &’th partial sum of the random walk, and that
I, = ,__.{c 1 Si.

Theorem 3 (Drifted Random Walk) Consider the random walk withdriftp wherep # L. Leta € (0. 3n/2).
andm € (2a/3,n). Then with probability at least 1 — % exp {3a — 3*m/2}. for every integer k € [m. n):

1
YkZaifp>_-2—. and Y, < —-aif p<

r\a(k—‘

Proof: The proof. given in Appendix A.2, uses Hoeffding bounds. |

Corollary 4 (Average Stock Price in a Drifted Binomial Model) Consider the binomial stock price pro-
cess { Sk tioy With p # % Suppose K is the strike price of an Asian option (call or put). Let

3
52 (2K\FT g,
Pg(n,):-gz-(so> Fn/a

i
n <

. a2 . . a [ 2¢ 2
Py{c.n) = 7 (¢ is any positive constant), m=|+ Inn.

Slnu

Then:




L Ifp> 5 Landifn > = log, (2K Sy) then with probability at least | — P, (n), every stock price S, for
t>nf2isat leastZI\ and in particulur 1, > K.

2. Ifp < f then with probability at least | — P,(c. n), every stock price S; for i > m is at most Sy n
and in particular ji, — t» < 32

Proof: See the Appendix. n

For the case p = % we would like to show, as in Corollary 4, that with high probability the stock prices
S; are all “large” (e.g., at least 2K) after say n/2 steps. That argument rests on the fact (Theorem 3) that
with high probability all partial sums in a random walk after a certain point are “large”. However the proof
of Theorem 3 does not work with p = % Instead, we show that with high probability at some time the stock
price is at least n K, so that the average is at least K. For this we use the Berry-Essen Theorem and the
Reflection Principle, which we quote in the Appendix.

We first show a large-deviation result for the maximum partial sum of an undrifted random walk.

Theorem 5 (Undrifted random walk) Consider the random walk withp = % Recall thatY ,, 2 maxg<i<n Yi.
Then for any a > 0,

\/ /T

‘!,\-,

=

PV, < |a

l/\

+

=E

\v4

Proof: For any integer m > 0 by the Reflection Principle we have
P(Y, > m) > 2P(Y, > m),

since with every path w such that Y,, (w) > m, we can associate two paths for which Y, > m: one path is .
itself, and the other path «”’ is identical to w except between times ¢ and », where ! is the first time S; =
between times ¢ and n, w’ is the reflection of w through the line y = m. Thus,

— , Y,
[T, > [a]] > 2P[Y, > [a] > >P{‘ >_‘L] - 2[14{ ,ﬂgéH
v n v n v 1 \v4 n
>2 [l - N (%) - _V_%] (Berry-Essen Theorem)
>1- e (since V(z) < = +zforz > 0)
- \/— \/— —_ 2 .

The following is a straightforward application of this theorem.

Corollary 6 (Averages in an undrifted random walk.) Considerthe binomial stockprice process with p =
%, starting with price Sy at time 0, and let K be the strike price in the Asian option. Let

o [2log, (nK/Sp) 1
PE ( Tl) - T \/;l— +
Then for n. > S/ K., with probability at least 1 — P.(n). the maximum stock price on a path is at least n K.
and in particular (1, > K. '

.
VAL

Proof: See the Appendix. u




5 Approximating an n-period American put with a perpetual put

Recall that a Markovian American option (MAO) is one whose payottis given by (1. = g(S;) for some tunc-
tion g. The dynamic programming algorithm (based on the backward recursion (5)) for pricing a MAO re-
quires O (-1 time. On the other hand, the value I of some perpetual Markovian American options (PMAO).
such as perpetual American puts. can be computed in closed form in only O(1) time. It is theretore of in-
terest to investigate how well the value of a PMAO approximates the value ot an otherwise identical MAO.
In this section we first show a general formula bounding the difference between a PMAO and an otherwise
identical MAO, and then apply it to the case of American puts. It is not hard to show (see Hull [16]) that
under the pricing model of this paper, it is never optimal to exercise an American cal! before expiration. An
American call is therefore equivalent to a European call and can be priced in O( n) time. Thus much research
has focused on devising fast pricing methods for American puts {19, 12, 6]. It is known [9] that the value
of an American perpetual put can be computed in O(1) time. In this section we investigate the difference
between an American put and an otherwise equivalent American perpetual put.

Recall that 7; is the set of stopping times 7 such that 7 > 0 almost surely. The value of a n-period MAO
with initial (non-random) stock price Sy is denoted by V. The value of a PMAO with initial stock price S,
is denoted by V. From Section 1.3 we have the following formulas:

V™ = maxE[(1 +r)""""g(Sran)]

€Ty
7 = maxE[(1 +r)""g(5:)], (7

TE Ty

where r Ay = min{z. y}. In Appendix A.2 we prove the following lemma bounding the difference between
a MAO and an otherwise identical PMAO with payoft G, = ¢(Sg).

Lemma 7 Let 7™ be a stopping time such that

Vo= E[{l4+r) 7 g(S].

Define A" as follows:
AN = E[Lrenmy ((147)779(S0) = (L+7)70(S0))] -

Then
V—V® <A™,

Now consider an American perpetual put. The payoft function in this case is given by g(Si) = (A —
Si)*, where A is the strike price. The following Lemma is known [9].

Lemma 8 Forany integer j € Z. let 7; denote the stopping time
7 = min{k: S; < Sou'} = min{k : Yz < j}.

Given an American put with strike price K, there exists an integer s > 0 such that 7 ; achieves the max in
Eq.(7):

Vo= E[(L+r)77g(S- )] = (K - Sou™)E[(1+ 7). ®)

The last expression in (8) can be computed in closed form [9]. In the following we assume that s denotes the
. . . .k A

non-negative integer of Lemma 8. Let £7 denote the event {5, = Sou®, 7_, > n}, and let P} = P[E]].

We now upper bound the difterence between an n-period American put and the corresponding perpetual put.




Theorem 9 If V'™ is the value of an n-period American put and V' is the value of un otherwise identical
American perpetual put (APP), then

V=17 < (1+47r) Z Pl ( (K = Sou™%)a** — (K - .S'ozt""}J") .

k=—s+1
where o 2 E{il+r)=7] and
n "_-k' n n
oo ((3) ()
2 2
Proof: The proof, given in Appendix A.2, uses Lemma 7 and the Reflection Principle. n

We now obtain an asymptotic error bound from this Theorem. Recall that Y, = miny<;<. Y., where Y’
is as before the ¢’th partial sum in the random walk underlying the model. Noting that (K — Spu™°) < A
and (K — Sou*)* > 0, we have forp = 1:

V-V"<K(l+r™ > P
k=—s41
=K(1+r)""PlY, > -s] = K(1+r)""P[Y, < 3]

<K(l+r)" (\/7\/‘ \/_>— 1+r)-no<vln>, (Thm. 5)

Since the value P[Y,, > —s] is a non-decreasing function of p, the above error bound also applies for p <
We leave the asymptotic error analysis for p > % as an open problem.

v f—

6 Further research

Some problems left open in this paper are: (a) obtaining a more accurate error bound for the Asian call ap-
proximation for p < % (Section 4), and for the American put for p > % (Section 3); (b) establishing the
hardness of the pricing of a (European style) Asian option.

There are plenty of research directions to pursue in option pricing. We mention a few here. One im-
portant problem is the approximate pricing of American style Asian options, i.e., those that can be exercised
at any time up to expiration. We saw in Sections 1.3 and 3 that certain American options can be priced in
polynomial-time (in the maturity ») using dynamic programming. Devising fast (say linear-time) approxi-
mate algorithms for such options would be a significant contribution to quantitative finance. Another problem
is option pricing with time-varying interestrate r and time-varying up-factor «. Finally, we mention that Ar-
bitrage Pricing Theory depends on the ability to pertectly hedge the option being priced. Soner, Shreve and
Cvitanic [23] have shown for the continuous-time setting that when proportional transaction costs (such as
broker commissions) are present, perfect hedging becomes impossible, and the pricing formulas of Section
1.3 no longer hold. An intriguing problem is therefore to develop a satisfactory pricing theory in the presence
of transaction costs. Some initial work in this direction for simple calls and puts has been done [1, 5].
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A APPENDIX

A.1 Standard results assumed in the paper

A.1.1 Random walks

Theorem 10 (Hoeffding[15]) Let X;. Xy, ... .. X, be independent, identically-distributed (i.i.d.) random

variables whose values lie in the interval [—-1. 1], andlet Y, = X1+ X2 + ...+ X,. Then fora > 0 the
following holds:

P[Y, ~EY, < —a] < e %

2

P[Y, — EY, > +a] < e~ %=

(H)

In particular, for the random walk with drift p, we have the iid raﬁdom variables X, Xo,... . X, where
P[X;=+1]=pand P[X; = —-1] = 1 — p,and so EY; = (2p - 1)

Theorem 11 (Berry-Essen [10, 20]) Let Xy, X3, ..., X, beiid. withEX; = 0, EX? = 0%, and E|.X}]® =
€. If F,(z) is the distribution of &—Xg—\"/’n;’&‘—) and N (z) is the standard normal distribution, then

§
- N < — .
IPa(e) = V()] S 5=
Theorem 12 ((Reflection Principle)[10]) Imagine drawing the paths of the random walk on the z — y plane
as follows: foreach¢ = 0. 1....,draw an edge from (i. Y;) to (¢ + L. Yiy1), where Y; is the ¢"th partial sum.

If T, T' are positive integers, the number of paths from (0, T') to (n, T”) that touch or cross the z-axis is equal
to the number of paths from (0, —T) to (n, T”).

Stopping time[26] Let  be the sample space of all possible coin-toss paths w defined in Section 1.1. A
stopping time is a random variable 7 : Q—{0.1.2...., n} U {oo} with the property that for each £ =
0.1,..., n.oo,theset {T = k} belongs to the s-algebra F ;. This means that membership in the set {7 = &}
depends only on the first £ coin tosses of w. Informally, a stopping time can be thought of as a “decision rule”
of when to “stop” the coin-toss sequence (or the random walk).




A.2  Proofs of some results
Proof of Theorem 3
Proof: Suppose p > i and let £y denote the event { Y, < «}. Then we have
PIE.] = P[Yy < 4]
= P[EY, - Yi > EY, — 4].

and since EY. = (2p — 1)k = 3k > Jdm > 2a > a, by Hoeffding bounds (Appendix, eq. (H)):

< exp {"jlz (3")132 — 2kda + a2) }

52 ,la.)/L.
:exp{.m—-:} k/'Z}.f. 2T

<1

< exp {Aia - 5321:./‘2} .
Therefore,
n J( r _32 5
ZP[E‘Q]ge.l/ e™952 g
[z=m m
2 2,79
= Zexp {<3a -3 m/_}
The proof for p < ‘; is exactly analogous. |
Proof of Corollary 4
Proof: Let Xi. X, ... .. X denote the random walk underlying the binomial process, and let ¥; be the ’th

partial sum as in Theorem 3. Thus the stock price after ¢ coin tosses is Spu*".

Casel: p > -}; Applying Theorem 3 with m = {n/2{ and e = log,(2K/Sy), we see that with prob-
ability at least 1 — P,(n), we have that Y; > log,(2K/Sy) for every © > n/2, or in other words, the stock
price S; for { > n/2 is at least 2K, in which case average over all stock prices S; is at least K.

Case2: p < l, Applying Theorem 3 with m as in the statement of the present theorem and a = log,, n
we see that with probability at least 1 — P;(¢c, n), we have that Y; < ~log, n for every i > m, or in other
words, every stock price S; for i > m is at most Sy/n. In such an event, the contribution of each stock price
after S;.7 > © "0, is no more than Sp/n?, so that the “error” in estimating p,, by T, /n is at most Sp,/ n.

|

Proof of Corollary 6

Proof: LetY;.Y5. ... .V, bethe random walk underlying the binomial model, and let Y; be the :’th partial

sum as betore. Applying Theorem 5 with a = log, (K /55) we see that with probability at least L — P.(n)
~ the highest Y is at least a, so that the highest stock price is at least Sou® = nA". In this case the average
stock price over the path is at least K. n
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Proof of Lemma 7

Proof: We have

]

e[
=E[loes, (1+7)7"9(5,0] +E El,%,,v(_l + 1‘_)_7.(/(5,.:)} :
r - - 7 . - -
Elrse(l+1r)7 f/(b,—t)} FE | Loecn(l+7r)7 g(S-)) .

[

and the lemma follows. n

Proof of Theorem 9

Proof: We use Lemma 7, with 7™ = r_,:

Eg}

(140 3 PrglSe JE[(L+ )]

B [trmsn(1 ) (5] = 30 B[4 17 g(50

b=—s4+1

k.——s+1
=(l+r)” Z PR(K — Squ™%)a*.
k=—s5+1

E[l,e5n(1+7r)"g(S)] = (1 +7)" Z PMK — Squ)*t.
k=-s+1

We are using the fact that
E[(L+ )% = (E[(1+r)" )" (for k > 1).

The expression for P! can be derived using the Reflection Principle (see the Appendix). |

A.3 A path-clustering approximation for Asian options

We present here an O (n>)-time approximation algorithm for an Asian Call for the case p > 1 thatin practice
performs significantly better than the algorithm presented above. We leave the error analysis of this algorithm

as an open problem.
Note that - -

=(1+r™ Y Pw)(palw) - K)*

»«)e{HT}”'
(14 r)- Z Z P(w)(pn(w) — K)F
k=0 H{w)=
(1+r)~ Zpk PTEONT (pa(w) - KO, (9)
H{w)=k

where H (w) denotes the number of H's in the path .




For each £ we approximate the sum in (9) as tollows:

. : - »-]f / - n - T
S ot = K=Y i - | = - LY

Hiw =i ) LHiwi=k J

where
IIV!: ; Z /Jw: (w‘!

Hiwi=k

Thus our approximation tor 17 is

Ly =1 - L n—k; - n - v
(1 +r) g_;)pq (m—(k)A) .

Note that 1 /(7) is the expected value of y,, over the “cluster” of paths that have exactly & H’s. Thus our
approximation is similar in spirit to computing (Ex,, — A')7. The difference is that instead of computing
the expected value of p, (w) over all paths - and then thresholding with A” (i.e. computing (. — A')*), we
compute the expected value of u,, (w) for each cluster and apply the threshold (. — &)™ to each cluster.

We now show that 1. can be computed in polynomial time. For p < n.h < p, we say that a path
w € {H.T}™ “goes through the point (p. h)" if there are exactly h H’s in the first p tosses of w. If we write
down the expression tor 1V}, we see that the stock price at point {p. 2) (which is Sy u?h=r) gets multiplied by

a factor U
(I G2h)
{n+1)°
so that W7, may be written

, S LS P\ =Py op
W, = 2h—p
’ (n-{-L)ZZ(h)(k—-h *

7 p=0h=0

It is easy to see that this new approximation algorithm takes O (n®) time.




B Summary of Notation

For each symbol, we mention the page where it is defined. and give a brief definition.

Symbol | Page | Brief definition

g 6 |1{2p-1]

Fi 2 c-field generated by the first £ coin-tosses.

G 3 The payoff from an option exericised at time &.

PR 3 Strike price of an option.

' in 3 Average stock price from time 1 to time n, I,/ n.

n 2 Maturity of the option. (Infinite for perpetual options)
w 2 A coin-10ss sequence wy ., wa. . .. . wy Of length n.

Q 2 The sample space of all coin-toss sequences of length n.
P 2 Up-tick probability, i.e., probability of occurrence of H.

[ Pe(c.n) 7 Probability bound defined in Corollary 4, for the case p < %
P,(n) 7 Probability bound defined in Corollary 4, for the case p > %
P.(n) 8 | Probability bound defined in Corollary 6, for the case p = 3.
Si. 2 | Stock price at time k, = Spu*+t
gk 2 maXo<:<k Sz‘.

T 2 Ty = Zle S;.
T 4 Generic stopping time.
T 9 | The specific stopping time min{k : Y. = j}.
Tk 4 Class of stopping times 7 such that £ < 7 < n.
u 2 The up-factor.
Y 4 Value of the option under consideration.
9 In Section 5 this is the value of an American perpetual put.
Vv 9 Value of an n-period American put.
Xk 2 | Random variable: X;(w) = 1ifwy = H and Xy (w) = —1 otherwise.
Yy 2 ( Ye=3F X Yo=0.
?n 2 maxosiSn Y;
_}in 2 minosisn Yz
LT Ay 9 min{z, y}
o 3 | max{z,0}
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