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A. NOTES




1 INTRODUCTION

A wealth of protein and DNA primary sequences is being generated by genome and other
sequencing projects. Computational tools are increasingly needed to process this massive amount
of data, to organise and classify sequences, to detect weak similarities, to separate ¢oding from
non-coding regions, and to reconstruct the underlying evolutionary history (see, for instance,
Jurka and Milosavljevic (1991), Karlin and Brendel (1992), Lawrence et al. (1993), von Heijne
(1987), Waterman (1986) and Thorne et al. (1991) for references and background). Sequence
analysis sheds light on structure and function and greatly contributes to our understanding of
biological systems. Computational problems in molecular biology, such as multiple alignments,
classification, data base searches, and phylogenetic reconstruction will be briefly reviewed in the
tutorial (see slides).

Although very useful, conventional computer science algorithms have not been able to solve
all these problems, partly because of a lack of a general theory and because of our poor under-
standing of evolutionary tinkering. As pointed out in Rumelhart et al. (1995), machine learning
approaches (e.g. Neural Networks, Hidden Markov Models, Belief Networks) on the other hand,
are ideally suited for domains characterised by the presence of large amounts of data and a
lack of a-comprehensive underlying theory. The fundamental idea behind these approaches is
to learn the theory from the data, through a process of model fitting. These algorithms indeed
consist in first selecting a generic model for the data, with a large number of parameters, and
then adjusting the parameters iteratively so as to optimise a certain measure of how well the
model fits the data. Before we can proceed with molecular biology applications, however, we
must first examine what is the proper general framework for machine learning approaches.

The fundamental problem in machine learning is the same as in scientific reasoning in general,
as well as statistical modeling : to come up with a good model for the data. That is to
infer a good model, or hypothesis, from the available data. The difference is just in emphasis:
in machine learning the search for a good model should be somewhat automatic, within a -
large class of possible representations. There exists a logically consistent, almost universally
accepted, framework for deduction, pervasively used in all our digital computers, namely Boole’s
algebra. What. is perhaps less well known and more surprising is that there is an equally
logically consistent and compelling framework for inference, known as the Bayesian framework
(Cox (1964), Jaynes (1986)). Since the fundamental problem in inference, scientific reasoning,
or machine learning is to infer a model or a hypothesis from the data, it is essential that one be
able to compare different models and to rank them. That is, in science, one ought to be able to
decide whether to prefer model (or hypothesis) M or :Ma given a certain amount of background
information D. Furthermore, such preference should be transitive. Given D, if My is better
than Mj, and M, is better than Ms, then M, is a better model than Mj3. It is then easy to
see that preferences should be representable by a real number. Furthermore, it is then possible
to write a very small set of common sense axioms (the Cox-Jaynes axioms) so that preference
for model M, under background information D can be expressed uniquely by a single number,
denoted p(M|D), between 0 and 1. p represents our degree of belief or confidence in model or
hypothesis M. It turns out. that under the Cox-Jaynes axioms, p must satisfy all the rules of
probability theory. In particular, p satisfies:

Sum rule:
p(A|B) =1-p(A|B) (1.1)
Product Rule: )




p(4, B|C) = p(A|C)p(B|4,C) i (1.2)

Bayes Theorem:

_ p(B[A)p(A)

Thus p(M|D) is also called the probability of M given the data D.

Therefore the basic engine of inference consists in first selecting a class of models, or a
hypothesis space, and then in cranking the rules of probability theory to estimate numbers such
as p(M|D). Naturally, the Bayesian approach allows one also to compare models across different
classes. .

In machine learning approaches, models are often parametrised by a large vector of parame-
ters w, so that we can write M = M (w), or just w for a model. A suitable goal is often to find
the most probable model, that is

(1.3)

p(w)
. argmax p(w|D) = arg max p(D|w)—— 14
, gmax p(w|D) gwp(l)p(D) (1.4)
or, in equivalent form, by taking logarithms:
arg maxlogp(w|D) = arg maxlog p(D|w) + log p(w) —~ log p(D) (1.5)

This is also called MAP (maximum a posteriori) estimation. p(D|w) is the data likelihood.
p(w) is the prior on w and is equivalent, from an optimisation standpoint, to the inclusion of a
regulariser term in the objective function. The normalising constant p(D) does not depend on w,
and is irrelevant for this optimisation. ML (maximum likelihood estimation) is the maximization
of the likelihood term only. With uniform prior, MAP reduces to ML. It is important to notice
that, in Bayesian inference, the proper focus should be first on the distribution p, over the entire
space of models, rather than on a single model associated with the peak of this distribution. For
instance in in a regression problem with y = f,(z), the proper Bayesian prediction of y given
an input @ is obtained by integrating over all possible models

EG) = [ fulep(wlD)aw e

If the distribution p is peaked around its mode, a good approximation to (1.6) can be obtained
from the mode only. One important observation is that the background information D is not
closed: as more data is acquired and experiments are performed, D is enlarged and the distri-
bution p should in principle be recalculated. It is easy, using the rules of probability, to provide
update rules for p(M|D;, D;).

The Bayesian theoretical framework is simple enough to describe. In practice, however,
the calculation of p(w|D), of its mode, or, even worst, of expectations such as (1.6), can be
numerically very intensive or intractable. One must resort to approximation methods. Monte
Carlo methods to approximate expectations and optimise objective functions are important in
this regard. This is also where important connections between the fields of machine learning,
statistical inference, and statistical mechanics arise. In many practical situations, one is lead
to approximate the mode of p(w|D) using iterative methods such as gradient descent, the EM
(Expectation- Maximization) algorithm, simulated annealing, and their variants. It is this op-
timisation process that is often equated with “learning”. Learning algorithms and Monte Carlo
methods will be discussed in more detail in the tutorial (see slides).




Armed with a solid probabilistic foundation for statistical modeling and inference, we can now
turn to the problems of interest in computational molecular biology. Depending on the problem
'considered, different classes of models are possible. In the tutorial, and if time permits, we will
review four classes of models: Hidden Markov Models (HMMs), artificial Neural Networks (NNs),
Belief Networks (BNs), and Stochastic Grammars, such as Stochastic Context Free Grammars
(SCFGs) and the more general Stochastic Graph Grammars (SGGs) (see slides). When dealing
with DNA and protein primary sequences, HMMs are one of the most flexible and powerful
class of models, particularly well suited for several basic computational tasks, such as multiple
alignments and data base searches. In the rest of these notes, we will concentrate on HMMs,
leaving the other model classes for the tutorial presentation (see slides). The emphasis in the
notes is on the theory of HMMs, and how to apply them to problems in molecular biology.
Examples of specific applications will be given during the tutorial.

2 HIDDEN MARKOV MODELS

HMMs are a class of statistical models for time series with a wide range of applications. Whereas
traditionally HMMs have been applied mostly to speech recognition (Levinson et al. (1983),
Rabiner (1989)), in recent years their scope has been extended to many other domains, such
as handwriting recognition, financial market prediction, ion channel biophysics (Ball and Rice
(1992)), neuronal spike train analysis, and protein/DNA modeling (Baldi et al. (1994), Krogh
et al. (1994)). Here, we first briefly review HMMs and how HMMs can be applied to biological
sequences, starting with protein families and then moving to genes.

A first order discrete HMM is completely defined by a set of states S, an alpha.bet of m
symbols, a probability transition matrix T = (#;;), and a probability emission matrix E = (e;x).
The model is intended to describe a stochastic system that evolves from state to state, while
randomly emitting symbols from the alphabet. When the system is in a given state , it has a
probability #;; of moving to state j, and a probability e;x of emitting symbol X. The model °
is called hidden because what is observed is the output string of symbols from the system and
one of the goals is to gather information about the hidden set of transitions that may have led
to its production. HMMs can also be viewed as Stochastic Regular Grammars in the Chomsky
language hierarchy.

As in the application of HMMs to speech recognition, a family of related primary sequences
can be seen as a set of different utterances of the same word, generated by a common underlying
HMM with a left-right architecture, i.e. once the system leaves a given state it can never return
to it. Examples of standard architectures used in our experiments can be seen in Fig. 1 and in
the slides. For the corresponding alphabets, m = 4 in the case of DNA or RNA sequences, one
symbol per nucleotide, and m = 20 in the case of proteins sequences, one symbol per amino acid.
Common.knowledge about evolutionary mechanisms suggests to introduce three classes of states
(in addition to the start and end states): the main states, the delete states and the insert states
with S = {start,my, ...,mn, %1, ..., iN41,d1, ., N, end}. N is the length of the model. Usually,
it is set equal to the average length of the sequences in the family being modeled. Alternatively,
N can be iteratively adjusted during learning, as in (Krogh et. al (1994)). Prior to any learning,
the transition and emission parameters of a model can be initialized uniformly, at random or
according to any other desirable distribution. The main and insert states always emit a letter
of the alphabet, whereas the delete states are mute. The linear sequence of state transitions
start — my — ma.... — my — end we call the backbone of the model. Corresponding to each
main state, insert and delete states are needed to model insertions and deletions, with respect
to the backbone. Self loops on the insert states allow for multiple insertions. Architectural
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Figure 1: Basic HMM architecture for DNA or protein modeling. S start state. E end state. m;
main state along the backbone. 7; insert state with loops for multiple insertions. d; delete state
which is mute. '

variations are possible and may be taylored to particular problems when additional information
is available. '

3 LEARNING ALGORITHMS

The most important aspect of HMMs is that they are adaptive: given a set of training sequences,
the parameters of a model can be iteratively modified to optimize the fit of the model to the
data according to some measure, usually the product of the likelihoods of the sequences. Dif-
ferent algorithms are available for HMM training, such as the classical Baum-Welch algorithm
(Baum (1972), Rabiner (1989)), which is a special case of the more general EM algorithm in
statistical estimation (Dempster et al. (1977)),'and different forms of gradient descent and their
approximations (for instance Baldi and Chauvin (1994)). Learning algorithms can be distin--
guished depending on the function being optimized, and how the optimization is being carrried
(EM/gradient descent, on-line/off-line, uniform/non-uniform initialization, with or without the
Viterbi approximation). Here we give a brief overview of the main algorithms used in the
experiments to be presented, using the general Bayesian framework.

Given a set of training sequences O = {01, ...0x} and a HMM M (y), where y is a vector of
parameters containing all the emission and transition probabilities, a reasonable goal is to find
the most likely value of y given O, i.e. to maximize the quantity p(3M(y))|0). Using Bayes rule,

, _ p(OIM(y))p(M(y))
p(M(y))|0) = 20)

where p(O|M(y)) is the data likelihood and p(M(y)) is the prior on the model. This is the
standard framework of maximum a posteriori estimation (MAP). By taking negative logarithms

(2.1)
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of both sides and noticing that p(O) does not depend on y, our goal becomes the minimization

of
—logp(0|M(y)) — log p(M(y)) (22)

At this point, it is standard to assume that the sequences are independent and therefore

p(O|M) = p(01|M)...p(Ok|M). So that finally we want to find _
min— 3 log p(O+M(y)) - log (M (y)) (2.3)
k

The effect of the prior is thus equivalent to the introduction of a regularizer in the objective
function. If the prior term is neglected, which is course also equivalent to assuming a uniform
prior on the models, then the goal reduces to standard maximum likelihood (ML) estimation.

For the time being, let us concentrate on the likelihood term or, equivalently, on ML. In
general, there is no way of directly finding a value of y which minimizes the negative log-
likelihood of the data. So one has to resort to some iterative procedure. The best known is the
Baum-Welch or EM algorithm. The EM update equations are usually computed in batch mode
(across all sequences) and given by

ti; = -7;—13' and ex = -T-I-%t}i (24)

where n; = 25 Mijs M = 3_x mix and n;; and m;x are the expected counts derived from a
double dynamic programming procedure, known as the forward-backward algorithm (see Rabiner
(1989) for additional details). Thus the EM algorithms resets the parameters to their most likely
value, given the data and the current value of the parameters. A classical theorem shows that
each EM steps increases the likelihood of the sequences, until a (possibly local) maximum is
reached.

In the examples to be presented in the tutorial, we have also extensively used a form of
gradient descent analysed in Baldi and Chauvin (1994). More specifically, we first reparametrize
the model using normalized exponentials and a new set of variables w;; and vix

ewij eUiX
—=——— and exy=—o/———
Xy ek Yy en¥

This reparametrization has two advantages: (1) modification of the w’s and v’s automatically
preserves the normalisation constraints on the original emission and transition probability dis-
tributions; (2) transition and emission probabilities can never reach the absorbing value 0. The
on-line gradient descent on the negative log-likelihood are:

i =

(2.5)

Awij = q(nij — nitij) and  Avix = n(mix — mieix) (2:6) -

where 7) is the learning rate, n; = Y;n;; (resp. m; = Yy miy), ni; (resp. my;) are again
expected counts derived by the forward-backward procedure, this time for each single sequence
if the algorithm is to be used on-line. On-line algorithms do not require memorizing the contri-
bution of each sequence and have the added advantage of being smoother. They also perform

a sort of stochastic gradient descent and, as such, may be able to avoid being trapped in some
local minima. '

3.1 VITERBI ALGORITHM

The Viterbi algorithm is a recursive dynamic programming procedure (similar to the forward
propagation) that computes the most likely path associated with a given sequence in 2 given
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model. This can be done efficiently in O(N?) steps. In certain applications, especially if the
Viterbi paths tend to dominate all the other ones, the likelihood of the Viterbi path is used as an
approximation to the full likelihood p{(O|M). Alternatively, one may define the likelihood of a
sequence as being the likelihood associated with its Viterbi path and proceed accordingly in the
previous learning algorithm. This has been particularly effective in the case of protein family
modeling, probably because of the particular significance attached with the optimal paths.

The optimal paths of each sequence can be used during training by computing approximate
counts of transitions and emission, in batch mode, and then use the EM update equations
2.4. Alternatively one can use another algorithm discussed in (Baldi and Chauvin (1994)). At
each iteration, transition and emission probabilities are increased along the Viterbi path of the
corresponding sequence. Specifically, at each step along a Viterbi path, and for any state i on
the path, the parameters of the model are updated according to

Awi; =n(Ti; — t;) and  Awvix = n(Eix — eix) (2.7)

where 7 is the learning rate. Tj; = 1 (resp. E;x = 1) if the i — j transition (resp. emission
of X from ?) is used, and 0 otherwise. In the case of a loop, as for the insert states, (2.7)
must be repeated every time the loop is traversed. The new parameters are therefore updated
incrementally, using the discrepancy between the frequencies induced by the training data and
the probability parameters of the model. These update rules must be repeated for each training
sequence until equilibrium It can be shown that this algorithm approximates a gradient descent
procedure on the negative log-likelihood of the sequences given the model. As such, it can be
expected to converge also to a (possibly local) maximum likelihood estimator. Finally, even
if Viterbi algorithm is not used for training, it is essential for aligning any sequence to the
model, or for aligning two sequences to each other. Both tasks are chieved by calculating the
corresponding most likely paths. :

3.2 REGULARIZATION

Once an architecture has been chosen, there are still many ways by which prior information
can be incorporated into the structure of the weights, their initialisation, and/or the learning
algorithm. Here, we consider only one of the most simple class of priors one can-use for both
the emission e;x and transition ¢;; probabilities of a model, namely Dirichlet priors. Dirichlet
priors are also considered in Krogh et al. (1994a). By definition, a Dirichlet distribution on the
probability vector = (py,...,pr’), with parameters & and §, has the form
N _ . .
D) = mp s L0 = [T #0720

' (2.8)
i i=1 -
with a,p;i,¢; 2 0 and Y p; = 3 ¢; = 1. For such a Dirichlet distribution, E(pi) = ¢, Var(p;) =
¢(1 - @:)/(a + 1) and Cov(p;p;) = ~g;qj/(c.+ 1). The parameters & determines how peaked
is the distribution around its mean §. To allow for maximum flexibility, each state should have
its own prior on both emissions and transitions. In the most general case, this prior is not
necessarily a Dirichlet distribution but could be more complicated, for instance a mixture of

Dirichlets. Assuming as usual that all the individual state priors are independent, the total
prior on the model has the form

II Daya i) TI Dogys (eix) (2.9)
i€S icE . ’

where S (resp E) is the set of all states (tesp. of all emitting states, i.e. main and insert states).
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To avoid having too many parameters, it is natural to link the different priors so as to have
the same Dirichlet transition distribution out of all main states, and similarly for insert and
delete states, as well as for emission Dirichlet for the main and insert states. We then need to
choose the 5 corresponding parameters o’s (3) and f’s (2), and the 5 corresponding parameter
vector ¢’s (3) and s (2). For the emissions, it is natural to initialize the vectors 7 uniformly,
or from the average composition of the family being modeled. Limited experiments seem to
indicate that in many cases this choice does not make much of a difference. So that in general
we initialize emission parameters uniformly. Notice also that when negative logarithms of the
priors are taken, the quantities fr; — 1 appear classically as regularization constants. Thus,
when a Dirichlet prior is centered on a uniform distribution, the strength of the corresponding
regularizer can be made arbitrarily small, by choosing the corresponding g as close to 1/r; = 1/
as desired. In all the other cases, however, and especially so for a Dirichlet which is centered
on a vector 7 far away from uniform, it is impossible to arbitrarily reduce the influence of the
corresponding regularizer, on the objective function, by varying 8. The same holds true for
transition priors. ‘ ,

For the transitions, and again after limited experimentation and for simplicity, we have also
often used a uniform Dirichlet prior on the transitions out of the delete and insert states. This
in conjunction with a choice of the corresponding & which eliminates altogether the effect of the
corresponding prior or regularization term. Alternatively, one can use a Dirichlet prior which
favors the transition from a delete, or an insert state, back to the corresponding main state on
the backbone. For the main state transitions, however, we have found it essential to introduce
a prior which tends to favor the backbone. This is particularly true with the architecture of
Fig. 1. In this architecture, the main states and the insert states have the same fixed fan-out
of 3. Therefore, everything else being equal, there is no preference for emitting symbols from
the backbone, rather than from the insert states. This must be corrected at initialization time,
and/or by including an appropriate prior. In the following experiments, we have often initialized
all the transitions uniformly but used a Dirichlet prior on the main to main transitions, typically -
with @ = 3.01 and ¢ = (1.01/3.01,1/3.01,1/3.01). Thus the function to be optimized contains
a regularizer term associated with the probability of the backbone in the form:

K N )
min — > log p(OklM (¥)) = 7D _logtmemey, . (210
k=1 1=0

where tm;m;,, is the transition probability between two consecutive main sﬁates (mo = start
and my41 = end). 1 is the the regularization constant that controls the relative influence of the
prior term and the data likelihood term (y = 0.01). Naturally, other priors could be investigated,
based on statistical information, such as substitution matrices (Baldi (1995)), or any structural
or functional information (hydrophobicity, motifs,...).

4 PROTEIN APPLICATIONS

Regardless of the training algorithm used, once’a HMM has been successfully trained on a family
of primary sequences, it constitutes a model of the entire family, and can be used in a number
of different tasks. First, for any given sequence, we can compute its likelihood according to the
model, and also its most likely path using the Viterbi algorithm. A multiple alignment results
immediately from aligning all the optimal paths of the sequences in the family. The model can
also be used for classification, i.e. to decide whether a given sequence belongs to the family or
not. This can be done by comparing the likelihood of the sequence, according to the model, to
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the likelihoods of the sequences in the family. Entire data base of sequences can be searched in
this fashion (Krogh et al.(1994), Baldi and Chauvin (1994)). The method can also be adapted
to fragments and data base mining problems. The model can also be used to detect motifs,
by examining the profile.of the emission entropy (Blahut (1987)) across the model, and sub-
families, by examining how different protein paths cluster throughout the model. As in speech
applications, HMMs can also be combined in a hierarchical and modular fashion to cover, for
instance, motifs, domains, sub-families, families and superfamilies. So far, HMMs have been
applied to several protein families including globins, immunoglobulins, kinases, growth factors,
G-protein-coupled receptors (GPCRs), EF hand, aspartic acid proteases and HIV membrane
proteins. In all cases, the HMMs models have been able to perform well on all previous tasks
yielding, for instance, multiple alignments that are comparable to those derived by human
experts and published in the literature. Complete details and results cannot be reported here
and can be found in the references given at the end. Detailed examples from the GPCR famlly
(Baldi and Chauvin 1994) will be given in-the tutorial.

5 DNA APPLICATIONS

HMMs can of course also be applied to DNA problems in a similar way, by using instead an
alphabe with m = 4 letters. HMMs have been used to detect coding regions in bacterial DNA
(Krogh et al. (1994)). In our own work, we have applied HMMs to model exons, introns, and
splice sites in human DNA (Baldi et al. (1994, 1995). At this stage, the main purpose was not
to build an efficient program for gene finding and gene parsing, but rather to see whether new
statistical patterns would emerge from the application of a new method. The most interesting
result so far has been the detection of a particular periodic pattern, besides the reading frame,
present in exons and in the flanking intron regions. The pattern, which has the consensus:
non-T, (A or T), G and a minimal periodicity of roughly 10 nucleotides, is not a consequence of
nucleotide statistics in the three codon positions, nor of the well known nucleosome positioning -
signal. In Baldi et al. (1995), we discuss the possible implications of this pattern and its relation
to DNA bending and curvature. The analysis of periodic patterns requires the introduction of

new HMM architectures containing loops. These recent results will be covered in the tutorial
(see slides).

6 LIMITATIONS AND OPTIMALITY OF HMMs

In spite of their success, HMMs for biological sequences, and other applications, have two weak-
nesses. First, they have a large number of unstructured parameters. In the case of protein
models, a typlca,l architecture (Fig. 1) has a total of approximately 49N parameters (40N emis-
sion parameters and 9N transition parameters). For a typical protein family, N is of the order
of a few hundreds, resulting immediately in models with over 10,000 free parameters. This can
be a problem, especially when only few sequences are available for training, not an uncommon
situation in early stages of genome projects. It should be noted, however, that a single sequence
should not be counted as a single training example. Each letter, and each succession of letters,
in the sequence should be considered as a “training example” for the HMM parameters. Thus
a typical sequence provides of the order of 2N constraints, and 25 sequences or so provide a
number of examples in the same range as the number of HMM parameters.

In our experience, we have derived good multiple alignments with sometimes as little as 35
sequences in a family. We also conjecture that a HMM , trained with only two sequences and the




proper regularisation, should be able to yield optimal pairwise alignments. More generally, it has
been noticed several times in the connectionist literature that certain models are *well adapted”
to certain tasks, in the sense that little overfitting is observed, even with an unfavorable ratio of
number of parameters to number of training examples. We believe that HMMs are well adapted
for protein modeling, and in some sense, to be discussed below, optimal. But the fact remains
that some improvement should be possible in situations where little training data is available.
Furthermore, the HMM parameters have no structure, and no explicit relations among them.
The hybrid HMM/NN architectures described in the next section provide a solution to these
problems.

A second limitations of first order HMM:s, is their inability to deal with long range dependen-
cies. By definition, thé emission distributions in a first order HMM depend only on the current
state. This can obviously be a problem, whenever local statistics are highly context dependent.
Most interesting problems will exhibit variable correlations, often over several scales. For in-
stance, when X is emitted from state ¢ in a sequence O, it is generally followed by Y at state
J, and when X' is emitted from ¢, in a different sequence O’, it tends to be followed by Y at j.
A single HMM has a fixed emission vector at ¢, and a fixed emission vector at j. Therefore it
cannot capture such correlations. Detecting variable correlations is of course linked to problems
of self-organization and classification. For instance, in the simple example given above, the data
contains at least two different subclasses of sequences, associated wtih the X — Y and X' - Y’
pairings.

Proteins fold into complex 3D shapes, essential to their function. -Subtle long range de-
pendencies in their polypeptide chains exist that are not immediately apparent in the primary
sequences alone. It may seem surprising that good models can be derived using simple first order
Markov processes. One partial explanation for this is that HMMs can capture those effects of
physical long range interactions that manifést themselves in a more or less constant fashion,
across a family of sequences. For instance, suppose that, as a result of a particular folding struc-
ture, two distant regions of a protein have a predominantly hydrophobic composition. Then this
pattern is present in all the members of the family, and will be learnable by a HMM. On the
other hand, a variable long range interaction such as: “a residue X at position ¢ implies a residue
f(X) at position j” cannot be captured by a first order HMM, as soon as f is sufficiently complex.
[Note that a HMM may still be capable of capturing certain variable long range interactions.

. For instance, in the X — Y/X’ — Y’ example above, the 2 sub-classes of sequences in the family
could be associated with 2 types of paths in the HMM where, for instance, X — Y are emitted
from main states and X’ — Y’ are emitted from insert states]. Although these dependencies
are important, their effects do not seem to have hampered the HMM approach Indeed, in the
example above, consider the standard case of a data base search with a HMM trained on a
protein family. To fool the model, sequences would have to exist having all the same first order
properties associated with all the emission vectors (i.e. the right statistical composition at each
position) similar to the sequences in the fa.mlly, but with a X’ —Y or X —Y” association, rather
than a X — Y. This is highly unlikely, and current experimental evidence shows that HMM
performance in sequence data base mining is excellent.

A slightly different point of view is to consider, for a given protein family, a hierarchy of
models. All the models have the same structure, and are entirely defined by a fixed emission
distribution vector at each position. These model can also be seen as factorial distributions over
the space of sequences. One model, within this class, is when the emission vector is constant
at all positions, and equal to the average amino acid composition of the family, or of the data
base that is being searched. This is the standard model that is used for comparison in many
statistical discrimination tests. Any good model must fair well against this one. Within the
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factorial class, the best model is the one that assigns a different, but fixed, emission distribution
to each column, identical to the one derived from a good multiple alignment. Likewise, it is
also essentially equivalent to a well trained HMM, since a good alignment can be derived from
a HMM, and vice versa, the parameters of a HMM can be estimated from a good alignment.
Therefore in a sense HMMs are optimal within this limited hierarchy of models that assign a
fixed distribution vector at each position. It is impossible to capture dependencies of the form
X —Y and X’ — Y’ within this hierarchy, since this would require, in its more general form,
variable emission vectors at the corresponding positions, together with a mechanism to link them
in the proper way. We now consider one possible direction for-overcoming the HMM limitations

by using hybrid HMM/NN architectures. This section requires some previous background on
NNs.

7 HMM/NN HYBRID ARCHITECTURES
‘7.1 BASIC IDEA

In a general HMM, an emission or transition vector parameter 8 is a function of the state i
only. That is § = f(i). The first basic idea to derive HMM/NN hybrid architectures, is to have
a NN sitting on top of the HMM, for the computation of the HMM parameters, i.e. for the
computation of the function f. NNs are universal approximators and therefore can represent
any f. More importantly perhaps, NN representations of the parameters enable the flexible
introduction of many possible constraints, and the control of model complexity.

For simplicity, in the rest of these notes we discuss emission parameters only, but the approach
extends immediately to transition parameters as well. In the reparametrisation of (2.5), we can
consider that each one of the HMM emission parameters is calculated by a small NN, with one
on/off input, no hidden layers and, in the case of protein models, 20 softmax (or normalized
exponential) output units. The connections between the input and the outputs are the %Y. .
This can be generalized immediately by having arbitrarily complex NNs, for the computation
of the HMM parameters. The NNs associated with different states can also be linked with
one or several common hidden layers. In general, we can consider that there is one global NN
connecting all the HMM states to their parameters. The architecture of the network should
be dictated by the problem at hand. In the case of a discrete alphabet however, such as for
proteins, the emission of each state is a multinomial distribution, and therefore the output of
the corresponding network should consist of M softmax units.

As a concrete example, consider the following hybrid HMM/NN architecture.

1. Input layer: one unit for each state i. At each time, 2ll units are set to 0, except one which

is set to 1. If unit ¢ is set to 1, the network computes e;x, the emission distribution of
state 1.

2. Hidden layer: H hidden units indexed by h, each with transfer function f; (logistic by
default) with bias by (H < M).

3. Output layer: M softmax units or weighted exponentials, indexed by X, with bias b X

4. Connections: « = (ap;) connects input position ¢ to hidden unit A. B = (Bx4) connects
hidden unit % to output unit X.

For input 7, the activity in the A-th unit in the hidden layer is given by:

Sr(eni +br) (7.1)
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The corresponding activity in the output layer is
. e~[_n Bxnfn(onit+bn)+bx]
Sy e~ 2ok Bynfulani+bn)+by]

ex = (7.2)

A number of points are worth noticing:

o The HMM states can be i)a,rtitioned into different groups, with different networks for
different groups. In the limit of one network per state, with no hidden layers (or with
H = M hidden units), one obtains the architecture used in Baldi (1994), where the
HMM parameters are reparametrised as normalised exponentials In protein applications,
for instance, one can use different NNs for insert states and for main states, or for different
group of states along the protein sequence corresponding for instance to different regions
(hydrophobic, hydrophilic, alpha-helical, etc...).

¢ HMM parameter reduction can easily be achieved using small hidden layers with H hidden
units, and H small compared to N or M. With a typical HMM for protein and the NN
described above, with H hidden units and considering only main states, the number of
parameters is H(N + M) in the HMM/NN architecture, versus N in the corresponding
simple HMM. For protein models, this yields roughly HN parameters for the HMM /NN
architecture, versus 20N for the simple HMM. ’

¢ The number of parameters can be adaptively adjusted to variable training set sizes, merely
by changing the number of hidden units. ‘This is useful in environments with large vari-
ations in data base sizes, as in current molecular biology applications. The total number
of protein families is believed to be on the order of a thousand (Chotia (1992)). One can
envision building a library of HMMSs, one model per family, and update the library as the
data bases grow.

¢ Because the number of parameters can be significantly reduced, training of hybrid archi-
tectures, along the lines described below, is also faster in general.

o The entire bag of well-known connectionist tricks can be brought to bear on these architec-
tures including: higher order networks, radial basis functions and other transfer functions,
multiple hidden layers, sparse connectivity, weight sharing, weight decay, gaussian and
other priors, hyperparameters and regularization, to name only the most commonly used.
Many sensible initialization and structures can be implemented in a flexible way. For
instance, by allocating different number of hidden units to different subsets of emissions
or transitions, it is easy to favor certain classes of paths in the models, when needed. In
typical HMM architectures for molecular biology applications, one must in general intro-
duce a bias favoring main states over insert states, prior to any learning. It is easy also to
tie different regions of a protein that may have similar properties by weight sharing, and
other types of long range correlations.

e By setting the output bias to the proper values, the model can be initialized to the average
composition of the training sequences, or any other useful distribution.

e Classical prior information in the form of substitution matrices is also easily incorporated.
Substitution matrices (for instance Altschul et al. (1991)) can be computed from data
bases, and essentially produce a background probability matrix P = (pxy), where pxy
is the probability that X be changed into Y over a certain evolutionary time. P can be
implemented as a linear transformation in the emission NN.
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¢ HMMs with continuous emission distributions can easily be incorporated in the HMM /NN
framework. The continuous emission distributions can be represented in the output layer
in many ways, for instance in the form of samples; moments and/or mixture coefficients.
In the classical mixture of gaussian case, means, covariances and mixture coefficients can
be computed by the NN. Likewise, additional HMM parameters, such as exponential pa-

" rameters to model the duration of stay in any given state, can be calculated by a NN.

e Finally, by looking at the structure of the weights and the activity of the hidden units, it
may be possible to detect certain patterns in the data.

With hybrid HMM/NN architectures, in general the M step of the EM algorithm cannot be
carried analytically. Here, we describe two simple training algorithms for HMM/NN architec-
tures. As in the case of simple HMMs, we using gradient descent on the likelihood and on the
likelihood of the Vietrbi paths. Learning can be on-line or off-line. Here we give the on-line
equations (batch equations can be derived similarly). So, for a single sequence O, we need to
compute the partial derivatives of Inp(0), or Inp(x(0)), where #(0) is the Viterbi path o
sequence O, with respect to the parameters @, § and b of the network. ;

7.2 GRADIENT LEARNING ON LIKELIHOOD

Let @(0) = Inp(0). H m;x(0) is the normalized count for the emission of X from i for O,
derived using the forward-backward algorithm (Rabiner (1989)), then we have

8p(0) _ mix(0) -
o - e p(0) (7.3)
so that K
0Q = ™Mix(0) .
deix _,:Z; €ix : (74) -

The partial derivatives with respect to the network parameters «, 8 and b can be obtained by
the chain rule, that is by back-propagating through the network for each i. The resulting on-line
learning equations are (for each ¢ and O)

ALxp = n[mix(0) — e;xm;] fu(om: + by)

AbX = n[mix(O) - e,-xm,-] (7 5)
Aay; = 6 fi(api + bp)[ Xy (miy (0) — esym;)Byn] - |
Aby = nfp(ani + b)) [Ty (miv (0) — esym;)By]

with 6;; = 1, and 6;; = 0 for j # ¢. The full gradient is obtained by summing over all sequences
Oy and all main states i. Thus, for instance,

. N
o

i=1 o
‘and similarly for 8, and the biases. It is worth noticing, as in (Baldi and Chauvin (1994)), that
these learning equations are slightly different from those that would result by back-propagating
on the local cross-entropy error measure, between the emission distribution e;x and the target
distribution m;x /m;, derived from the forward-backward algorithm.
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7.3 VITERBI LEARNING

Here Q(0) = Inp(n(0)). The component of this term that depends on emission from main
states, and thus on «, B and b, along the Viterbi path = = #(0) is given by

-—(Z) lne;x=—-(§ ﬂxln%=—;;ﬂylﬁ% (7.7)
iX)er iX)en ! ier '

where Tix is the target, namely T;x = 1 if X is emitted from main state ¢ in 7(0), and 0
otherwise. Thus, remarkably, computing the gradient of Q(0) = —Inp(x(0)) with respect to
@, B and b is equivalent to computing the gradient of the local cross entropy

H(T,E)= - H(Tie) =~ Tyl

i€ ier Y

ey
Ty (7.8)
between the target output and the output of the network, over all 7 in #. This cross entropy error
function, combined with the softmax output unit, is the standard NN framework for multinomial
classification (see, for instance, Rumelhart et al. (1995)). In summary, the relevant derivatives
can be calculated on-line both with respect to the sequences Oy, ...,Ox and, for each sequence,
with respect to the Viterbi path. For each sequence O, and for each main state ¢ on the Viterbi
path 7 = 7(0), the corresponding contribution to the derivative can be obtained by standard

back-propagation on the cross-entropy error function H(T;,e;). Therefore, the Viterbi on-line
learning equations, similar to (7.5), are given by:

AByr = n(Tiy — eiy) fr(ean; + by)
Aby = n(Ty — eiy)

Aap; = b5nf7(ani + ba)[Cy Bya(Tiv — eiv) (7.9) |

Aby = nfy (e + b8 )[Bxn(l — eix) — Tyx Brreiv]

for (¢,X) € 7(0), with T;x = 1, and Tioy = 0 for Y # X. The full gradient is obtained again
by summing over all sequences Oy, and all main states 7 present. in the corresponding Viterbi
paths 7(Oy). Thus, for instance,

0Q Z Z OH(T;,e;) - -
= —_— (7.10)
da 45 ien(0) Oa

and similarly for § and the biases.

In (7.5) and (7.9), the HMM dynamic programming and the NN backpropagation components
are intimately fused. These learning algorithms can also be seen as GEM (Generalized EM)
(Dempster et al. (1977)) algorithms. They can easily be modified to accomodate different
target functions, such as MAP optimisation with inclusion of priors.

But no matter how complex the NN component, the final model for the data remains so far
a single HMM. A single HMM defines a probability distribution over the space of all possible
alphabet sequences. Only an extremely small fractions of such distributions can be represented
by a reasonably constrained ! HMM. HMMs, or the equivalent multiple alignment, essentially
generate the manifold of factorial distributions. In this sense, a HMM already provides a nice and
compact representation of a distribution over the space of all possible sequences. A given family

! Any distribution can be represented by a single exponential size HMM, with a start state connected to different
sequences of deterministic states, one for each possible alphabet sequence, with 2 transition probability equal to
the probability of the sequence itself.
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of proteins defines also a distribution D over the space of all possible amino acid sequences. Thus
our problem can also be viewed as an attempt to approximate D with a factorial distribution
F. A properly trained HMM defines a close to optimal factorial approximation F. We have .
seen that for many practical purposes, and in particular for data base mining, we can expect
factorial approximations to perform very well. HMM/NN provide a further improvement on
the flexibility and compression rate of such.parametrisations. In particular, they enable the
introduction of structure and constraints on the HMM parameters in a flexible way, and solve
the problem of parameter reduction. They are inadequate, however, for capturing variable
correlations. For this, one must consider more general HMM/NN hybrid architectures, where
the underlying statistical model is a set of HMMs, or a single HMM that can be modulated, as
a function of input or context.

To model the simple X - Y/X’—Y" example described above, four different emission vectors
are needed: e;,ej,e; and e;. Each one of these vectors must assign a high probability to the
letters X,Y, X’ and Y’ respectively. More importantly, there must be some kind of memory,
i.e. a mechanism to link the distributions at 7 and j so that ¢; and e; are used for sequence O,
and e; and € are used for sequence O'. The combination of e; and €} (or €} and e;) should be
rare or not allowed, unless required by the data. Thus e; and e; must belong to a first HMM,
and e} and e} to a second HMM, with the possibility of switching from one HMM to the other,
as a function of input sequence. Alternatively, there must be a single HMM, but with variable
emission distributions, modulated again by some input.

In both cases, we consider that the emission distribution of a given state depends not only on
the state itself, but also on an additional stream of information I. That is now 8 = f (3,I). Again
in a multiple HMM/NN hybrid architecture this more complex function f can be computed by
a NN. Depending on the problem, the input I can assume many different forms. One possibility,
is to consider I as a representation of contextual information. When feasible, I can even be
equal to the currently observed sequence O itself. Local connectivity in the NN can also ensure
that only local context be taken into consideration. Other inputs are however possible, over -
different alphabets. An obvious candidate in protein modeling tasks would be the secondary
structure of the protein (alpha helices, beta sheets and coils). In general, I could also be any
other array of numbers representing useful information for the HMM modulation. Examples of
such architectures will be given at ISMB95. '

8 CONCLUSION .

We have briefly reviewed the general Bayesian framework for statistical modeling and inference.
The framework provides a solid probabilistic foundation for machine learning approaches to
problems in computational molecular biology. The framework has been applied to the theory
of HMMs for sequence, analysis, in an elementary way. In most cases, we have just focused on
trying to obtain a single model, with a high likelihood. We have not made use of the distribution
over the entire space of models, mostly for computational reasons. Even in the case of a pairwise
alignment problem, a full Bayesian approach would require integrating over all possible pairwise
alignments. Likewise, in these notes, we have not attempted to compare HMMs to other model
classes in a rigorous Bayesian way. In spite of all these approximations, HMMs have emerged
has a flexible and powerful tool for modeling sequence consensus, multiple alignments, and data
base searches. Specific examples of applications to protein and DNA modeling are given in
the tutorial slides and, in more detail, in the references at the end. We have also examined the
optimality of HMMs and their limitations, as well as 2 possible direction of research to overcome
these limitations, by using hierarchical hybrid HMM/NN models. Other relevant generalisations
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of HMMs for machine learning approaches to computational molecula biology include Stochastic
Context Free Grammars, Stochastic Graph Grammars, and Belief Networks.
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B.SLIDES




I. INTRODUCTION

Examples of Compﬁtational Problems

].E’hysica.l and Genetic Maps

Pairwise and Multiple Alignments

Motif Detection/Discrimination/Classiﬁca;tion
Data Base Searches and “Minfng”
Phylogenetic Tree Recons;cruction

Gene Finding and Gene Parsing

Secondary Struct‘;ure Prediction

Tertiary Structure Prediction

 —— e ——




Multiple Alignment

No definition of what a good alignm.ent is (low entropy, de-
tection of motifs).

The multiple alignment problem is NP complete.

Pairwise alignment can be solved efﬁciently by dy\hamic pro-
gramming in O(N?) steps.

For K sequences of average length N, dynamic programming

scales like O(IN¥ ), exponentially in the number of sequences.

Problem of variable scores and gap penalties.




Machine Learning

Extract information from the data automatically (inference)

via a process of model fitting (learning from examples).

Model Selection: Neural Networks, Hidden Markov Models,

Stochastic Grammars,...
Model Fitting: Gradient Methods, Monte Carlo Methods, ...

Machine learning approaches are most useful in areas where
there is a lot of data but little theory.




II. STATISTICAL MODELING
AND INDUCTION

Bayesian framework for induction: we start with hypothesis
space and wish to express relative preferences in terms of

background information I (the Cox-Jaynes axioms).

Axiom 0: Transitivity of preferences.

Theorem 1: Preferences can be represented by a real number.

m(H)
Axiom 1: There exists a function f:

w(H) = f(=(H))

Axiom 2: There exists a function F:

(4, B) = F(r(4),7(B|4))

Theorem 2: There is always a rescaling w such that p(H) =
w(w(H)) is in [0,1].




Probability as Degree of Belief

Sum rule:
p(H|I) =1~ p(H|I)

Product Rule: : »
| p(A, BII) = p(A|Ip(BI4, I)

Bayes Theorem: (Bl A)p(4)
p(BlA)p(A
A|B) =
p(41B) = E=

Induction form:

p(DatalModel)p(Model) -
p(Data)

p(Model|Data) =

Equivalently:

p(Model|I)

p(Model|Data, I) = p(Data|Model, I) p(Datall)

Sequential aspect: can have D= (D,,...,D,)and I = (Dyy ...y D, _y).
How to update probabilities in light of new data.
Fundamental computational problem: calculate p(Model|Data)

and corresponding expectations. Intractability and need for
approximations.

T o RV



Model Fitting and Prediction

Model Fitting and Model Comparison [Learning)]

, _ p(M)
max p(M|D) = p(D|M )m

Equivalent form:

maxlog p(M|D) = log p(D|M) + logp(M) — log p(D)

M = M(w) w = vector of parameters

min log p(M(w)|D) = —log p(D|M (w)) —log p(M(w)) +logp(D)

Maximum A Posteriori (MAP), Maximum Likeliood (ML),
Priors and Regular‘ization.

Bayesian Prediction. Need to integrate across models. Ex-

ample (deterministic case) y = £, (z)

E@w) =/ f. (@) P@|D)dw

Hierarchical Modeling:
Pw) = | P(w|e)P(e)da

Fundamental computational problem: calculate p(Model|Data)

and corresponding expectations. Intractability and need for
approximations. '




Model classés:

Bi‘r.lomia,l/Multinomia,l Models
Neural Networks

Hidden Markov Models
Stochastic Grammars

Belief Networks

Examples




Explectations, Optimization and
Learning Algorithms

The goal is to compute the expectation of < f(z,,...,z,) >:

< f(zyy ey zy) >= 2 P(zyy ey 2, ) (21 ey )

(Z15---2%0)

This can be done using, for large N, using the approximation

< f(Zyyeyz,) > ! > f(zy, .y z,)

(T1yeeey z,)
provided (z,,...,z, ) are sampled according to their distribution

P(z,,....z,)-

To sample from P, it is often necessary to use a Monte Carlo
Method (Gibbs Sampling or Metropolis Algorithm)




Gibbs Sampling and Metropolis Algorithm

« Problem: sample (X,,...,X,) according to P(X,,..., X,)

o Gibbs Sampling and Metropolis Algorithm are Markov Chain
Methods.

« Gibbs Sampling: iteratively sample each single variable, con-

ditioned on the most recent value of all the other variables.

Starting from (z¢,...,2.)

g1

select 21" according to P(X,|X, =2!,..,X, =z¢)

select 2,7 according to P(X,|X, =ai*',.. X, =1')

select *' according to P(X,|X, =z!*',., X, , =z'*},

« Metropolis Algorithm: iteratively generate random perturba-
tions of the current state and accept or reject them accord-
ing to a certain probability @ (usually derived from statistical
mechanics/downhill steps are alway accepted/uphill steps are
accepted probabilistically depyending on the temperature).

e Symmetric global probabiliétic version of the a.lgoritlim:

Starting from z* = (z!,...,z")

randomly generate a new point z* = (a7,...,27) accoi'ding to a
probability distribution Rsatisfying everywhere R(z,z") = R(z*,x)
and R(z,zx)3#0 :

if P(z*) > P(z), then accept z*, i.e. z'*! =z"

if P(z*) < P(z), then accept 2* with probability Q = 2&2)

(=
P(z)




Statistical Mechanics

S =(2,...,2,) state of a system with energy E(S)= f(zi,...,z,)

Boltzmann-Gibbs distribution (maximal entropy under ob-
served < f >):
: P(S) =e PE(S) ~
VA
Z is the partition function (normalizing constant) and B8 =
1/ET

Metrop olis Algorithm:

Starting from §' = (z!,...,2")

randomly generate a new point S* = (z},...,z;) according to a
probability distribution Rsatisfying everywhere R(S,S5*) = R(S ,5)
and R(S,S5%)#0 '

if E(S*) < E(S), then accept S*, i.e. S+ =5

if E(S*) > E(S), then accept S* with probability Q = e #E(ST)-E(s)]

Optimization by Simulated Annealing: In order to optimize
f, we can view it as the “energy” function of a statistical me-
chanical system. At low temperature, the Boltzmann-Gibbs
distribution’ is dominated by the ground state so that, as

B — oo:
e~ BE(S)

VA

<8S>=2. 8

)

~ ‘S’opt

Simulated annealing combines the Metropolis algorithm with

a schedule for lowering the temperature.




Learning

Optimize p(M(w)|D) [NP complete problem].

Gradient Methods (gradient descent, conjugate gradient, back-

propagation,...)
OFE

w(t+1)=w() - Urwm

Monte Carlo Methods: Simulated Annealing‘

Other Methods: Expectation/Maximization (EM) Algorithm




III NEURAL NETWORKS

Early Neural Networks: one layer of hidden units, sigmoidal
transfer functions, LMS error

Modern Neural Networks: general class of bayesian statistical

models

N=network D=data={(z;,v:)} [input/output pairs usually in-
dependent of each other -

N is deterministic
D is stochastic

output of ﬁef;work=out(a:,-)=f(z'n(x,-)):average or expectation
of y; given z;




Goal; to maximize P(N|D) or to minimize L

L = —log P(D|N) — log P(N) + log P(D)

logP(N) corresponds to the prior on the network and leads for
instance to weight sharing, weight decay, and so on.

- The likelihood term has the form

E = _logP(DlN) =, logP(yilmi)

1

Additional hypothesis can be made regarding P(y;|z:, N).

If P(y.|z;,N) is gaussian, then the output transfer function
should be linear, and E is the least mean square error func-
tion.

If P(y:|z;,N) is binomial, then the output transfer function
should be sigmoidal, and E is the cross-entropy (or KL) dis-
tance.

If P(y:|z;,N) is multinomial, then the output transfer func-
tions should be normalized exponentials (“soft-max”), and F
is the cross-entropy (or KL) distance. "

Generalized linear models: Bayesian.analysis suggests the
proper choice of transfer function as well -as error function.

Analysis can sometimes be extended to hidden layers.




IV HIDDEN MARKOV MODELS

A Hidden Markov Model is completely defined by

A set of sta,tes';
An alphabet of symbols;
A transition probability matrix T = (¢;);

An emission probability matrix E = (e;x ).




Basic Ideas

As in speech recognition, use Hidden Markov Models (HMM)

to model a family of related biological primary sequences.

As in speech recognition, use a left to right HMM: once the
system leaves a state it can never reenter it. The basic ar-
chitecture consists of a main backbone chain of main states,

and two side chains of insert and delete states.

The parametel}s of the model are: the transition probabilities
t;; and the emission probabilities ¢;x. These parameters are

adjusted during training from examples.

After learning, the model can be used in a variety of tasks
including: multiple alignments, detection of motifs, classifi-

cation, data base searches.







Three Basic Algorithms for HMMs

The forward algorithm: given a sequence O = 0,,...,0;, re- -

cursively computes

a, (i) = P(s;, 0, , ey O, [M)

The backward algorithm: given a sequence O = O,,...,0,,

recursively computes

B.(5) = P(s:,0.4 1, .., Or [ M)

‘The Viterbi algorithm: given a sequence O = 0.,...,0r, recur-
sively computes the most likely path 7 through the system,
consistent with O (maximizes P(x,0/M)).

Each one of these algorithms is based on dyna,-mic program-
ming and scales like O(IN?). '




Learning

The Baum-Welch algorithm:

Compute the expected number n;; (resp. m;;) of times the
i — j transition (resp. letter j emission from state %) is used,

. using the forward-backward algorithm.

Reset the model parameters to the observed frequencies in-
duced by the data according to

i, =— and e} =—"
’ 7 ! €:.

The Baum-Welch algorithm converges to a pos;sibly local
maximum likelihood estimator! ..(special case of EM algo-
rithm).




On-Line Lea-rning Algorithms

First, use a “normalized exponertials” representation for all
the model parameters

Aw,-,- ekv;x

e
and ¢, =

t = —
1J Zke""’i*

Learning equations (and similarly for the emission parame-
ters):
Aw.. = 77(&’_ _t..)
ij ni ij

Aw,-,- = U(nij - nitij)
Aw;; =n(T; —t;)
where Tj; =0or1is the target determined by the correspond-

ing Viterbi path.

Properties: smooth, on-line or batch, with or without the
Viterbi best path approximation, 0 probabilities are not ab-
sorbing, convergent (special case of a GEM algorithm / ap-

proximation to gradient descent on negative log-likelihood).




Immunoglobulins

294 sequences (V regions) with minimal length 90, average
length 117 and maximal length 254.

Model described here has been trained with a random subset
of 150 sequences.




1 2 3 4
PHO0106 ° mklpvrllvlimfwipasssDvVMTQTPLSLpvSLGDOASISCRSSQSLVHSNgnTYLNWYLQ-—KAGQS—--p-KL

B27563 LQQOPGAELv-KPGASVKLSCKASGYTFITN-——YWIHWVKQ~~RPGRGLE-WIG
MHMST6 ESGGGLV-QPGGSMKLSCVASGFTFSN~~~YHMNWVRQ-~SPEKGLE-WVA
D28035 mefglswiflvailkgvqcEVRLVESGGDLv—EPGGSLRVSCEVSGFIFSK~——AWMNWVRO--APGRGLQ-WVG
D24622_ I-SCKASGYTFTN-——YGMNWVKQ--APGKGLK-WMG
PHO100 LvQIQQSGPVLV-KPGTSMKISCKTSGYSFTG—~~YIMSHVRQ-—-SHGKSLE-WIG
B27888 : ~—-EVvMLVESGGGLa-KPGGSLKLSCITSGFTFSI~-~~HAMSHVRQ——TPEKRLE-WVA
PLO160 - QVOILQOSGPGLY-KPSQTLSLTCAISGDSVSSns~AAWNWIRQ-—SPSRGLE~-WLG
E28833 : DvVMIQTPLSLpvSLGDQASISCRSSQSLVRSngnTYLHWYLO--KPGQP~-p-KL
D30539 EvKLVESGGGLV-QSGGSLRLSCATSGFTEFSD-~~FYMEHVRQ~~PPGKSLE-WIA
C30560 - QVHLOQSGAELV-KPGASVKISCKASGYTFTS-~~YWMNWVKQ-~RPGQGLE-WIG
AVHMSX4 - EvKLLESGGGLV-QPGGSLKLSCAASGFDFSR~——YWMSHVRQ--APGKGLE-WIG
C30540 EvKLVESGGGLV—~QPGGSLRLSCATSGFTFSD~~——FYMEWVRQ-—PPGKRLE-WIA
PLO123 EvQLVESGGGLV~QPGGSLRLSCAASGFTFSS——~YHMSHVRQ--APGKGLE-WVA
H36005 EvQLVESGGGLV-KPGGSLRLSCAASGFTFSN-—AWMNHVRQ—APGKGLE-WVG
PH0097 2 DVKLVESGGGLV-KP GGSLKLSCAASGFTFSS——~YIMSHVRQ--TPEKRLE-WVA
137267 gsimg - vQLOQSGPELV~KPGASVKISCKTSGYTFTE=—YTMHWVKQ-—SHGKSLE-WIG
A25114 DvHLQESGPGLV~KPSQSLSLTCSVIGYSITRg—YNWNHWIRR--FPGNKLE-WMG
D2HUWA - RIQLOESGPGLv-KPSETLSLTCIVSGGPIRRtg-YYWGWIRQ~-PPGKGLE~HIG
A30533 - EVKLVESGGGLV-QPGGSLRLSCATSGFTFSD~—-FYMEWVRQ~~PPGKRLE~HWIA
..-."....-......-..I...-Q‘Qlc.l-...l....0...-.-...*.QQ...;..Q..Q.....OOQQI.O.......Q
S 6 7 8 9 0 1
PHO106 LI-YRV-—--SNR-FSGVPDRFSGSG~-SGTDFTLKISRVEAEDLGIYFCSQ
B27563° RI-DPNSGGTKY~-NEKFKNKATLTINKPSNTAYMOLSSLTSDDSAVYYCARGYDYSYY~—m————— AMDYWGQGT
MHMST6 EIrLKSGYATHY-AESVKGRFTISRDDSKSSVYLOMNNLRAEDTGIYYCTRPGV PDYWGQGT
D28035 QIKNKVDGGTIDYAAPVKGRFIISRDDSKSTVYLOMNRLKIEDTAVYYCVGNYTGT~—~————————- VDYWGOGT
D24672 WI-NTYTIGEPTY-ADDFKGRFAFSLETSASTAYLQINNLENEDTATYFCARGSSYDYY~—mmoemmer, AMDYWGQGT =~ *
PHO100 LI-IPSNGGTNY-NQKFKDKASLTVDKSSSTAYMELLSLTSEDSAVYYCARPSYYGSRnyy————- AMDYWGQGT
B27888 AI-SSGGSYTFY~PDSVKGRFTISRDNAKNTLYLQINSLRSEDTAIYYCAREEGLRLDdy ————--AMDYHGQGT
PL0160 °~ RT-YYRSKWYNDYAVSVKSRITINPDTSKNOFSLOLNSVTPEDTAVYYCARELGDA-—————————- FDIWGQOGT
E28833 LI-YKV--—SNR-VSGVPDRFSGSG—-SGTDFTLKISRVEAEDLGVYFCSQSTHV:
D30539 ASrNEANDYTTEYSASVKGRFIVSRDTSQSILYLOMIATLRAEDTATIYYCSRDYYGSSYW—————=~ YFDVHGAGT
.C30560 ° EI-DPSNSYTNN-NQKFKNKATLTVDKSSNTAYMOLSSLTSEDSAVYYCARWGTGSSWHg——————— WEAYWGQGT
AVMSX4 EI-NPDSSTINY-TPSLKDKFIISRDNAKNTLYLOMSKVRSEDTALYYCARLHYYGY—-——————-——-AAYWGQGT
C30540 ASrNKAHDYTTEYSASVKGRFIVSRDTSQSILYLOMNATRAEDTAIYYCARDADYGSSshw————— YFDVWGAGT
PL0123 NI-KQDGSEKYY~-VDSVKGRFTISRDNAKNSLYLOMNSIRAEDTAVYYCAR -
H36005 RIkSKTDGGTTDYAARPVKGRETISRDDSKNTLYLOMNSLKTEDTAVYYCTTDRGGSSQ———~————— GDYWGQGT
PHO0097 - TI-SSGGRYTYY-SDSVKGRFTISRDNAKNTLYLOMSSLRSEDTAMYYSTASGDS FDYWGQGT

I37267 GI-NPNNGGTSY~-NQKFKGKATLTVDKSSSTAYMELRSLTSEDSAVYYCARRGLTTVVaksy—-———YFDYWGQGT
A25114 YI-NYDGS-NNY-NPSLKNRISVTRDTSKNQFFLKMNSVITEDTATYYCARLIPFSDGyyedyy——AMDYWGQGT
D2HUWA GV-YYTGS-IYY~NPSLRGRVTISVDTSRNQFSLNLRSMSAADTAMYYCARGNPPPYYdigtgsddGIDVHGQGT
A30539 ASrNKANDYTTEYSASVKGRFIVSRDTSQSILYLOMNATRAEDTAIYYCARDYYGSSYvHW—————~ YFDVWGAGT

o--.'-o.o.o-.--.-..oo.-o-o.--o---oooo.oo-o-o.....-.......-*...c...c...oooo-go-co.--.o

PHOL06  ——=——e tthvpptfgggtkleikr~ ~
B27563 SVTVSSs
MHMST6 TLTVSS
D28035 LVTVSS
D24672 SVIVsSS
PHO100 SVTIVSSak
B27888 SVTVS
PL0160 MVTVSS
E28833
D30539 TVIVSS
C30560 LVTIVSA
AVMSX4 LVIVSAe
C30540 TVTVSS
P1.0123
H36005 LVTVSS
PHO097 TLTVSSak g
137267 TLTVSS .
A25114 -
D2HUWA TVHVSS
A30539 TVIVSS

®eccesaccswsecccas s ssessesse a0t




G-Protein-Coupled Receptors (GPCR’s)

e« 145 sequences with minimum length 310, average length 430
and maximal length 764.

« Model used here has been trained with 143 sequences (3 se-
quences contained undefined symbols) using the Viterbi best

path approximation -

e Multiple alignment very similar to the one in Probst et al.
(1992); the 7 transmembrane domains (alpha helices) and the

conserved residues are clearly visible.




Main State Entropy Values
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~ Analytical Expressions

Slope of scores of random sequences with fixed source P = (px )

(determined by optimal insert state k):

In};in[—].ntkk —Z p}: lnekX]

X

Variance of Scores:

I[Ey (In® e,x ) — Ep (Ine, x )] = [Vary [Ine, x |

Central Limit Theorem for la,r.ge length I (scores are normally
distributed)

e e o g o & g e st~ - . . - —— - . e e e
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Limitations of HMMs

Large Number of Para,m.eters/Small Families (Overfitting)

Long Range Correlations/First Order Markov Model (Under-
fitting)




Caveats

HMMs seem to be well constrained.

HMMs have been trained on as little as 35 sequences. HMMs

could be trained on 2 sequences only.
Regularization.

Constant long range correlations are easily captured by HM Ms.
-Simple variable long range correlations can also be captured

(X =Y and X’ - Y") in some cases.

Variable long range correlations are rarely the problem in

data base mining.

Model hierarchy. HMMs are equivalent to good multiple
alignments. HMMs are equivalent to factorial distributions
over the space of sequences. Within this class, well trained
HMMs are optimal.

For long range correlations (i.e. when the best factorial ap-
proximation is not good enough), and if one is to stay with
HMMs, one must have multiple HMMs or a way of modulat- .

ing a single HMM as a function of input sequence (classifica-
tion).




Normalized Exponential Representation

No limitations on v’s or w’s during learning
Avoid 0 emission or transition probabilities

Equivalent to having one or several independent little soft-
max neural networks for each HMM state







00000
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Hybrid Hierarchical Modeling

Two General Ideas: compute and modulate the parameters
of a probabilistic model via another model, typically a neural

network.

First derived in the case of HMMs (HMM /NN hybrid archi-

tectures) for protein modeling applications. .

(General Setting

Data D.

Clgss of Probabilistic. Models M(§), parametrised by 4.
Goal: approximate P(f|D) and possibly its mode. -

Problem 1: Model is too» complex; resulting in~overﬁtting. i

Problem 2: Model is too simple, resulting in underfitting.




Solution

Problem 1: Reparametrise the model in the form:

0 = F(w)

- Problem 2: Change model class or use multiple models with:
6 = F(I)

where I is some input or context.

In the most general case, one can combine the two together
to have: '

6 = F(w,I)

Of course, F can be computed by another modél, for instance
a Neural Network (universal approximation properties). This
yields hierarchical hybrid M /NN architectures. These steps
can also be iterated hierachically several times.

Unified training algorithms (likelihood is “back-propagated”).




Hybrid HMM /NN Architectures

In the case of a single HMM ‘model, compu'te the transition
ahd/or emission parameters using one or several Neural Net-
works. '

HMM states can be partitioned into different groups. For in-

stance main states/insert states or hydrophobic/hydrophilic.
regions.

Output biases can be used to initialize to average family com-

position.

By varying the number of hidden units, one can.ge_t backbone
regularization, parameters reductio'n, and automatic fit to

evolving sequence data bases.
Great flexibility: different possible NN architecture and pri-
ors or regularizers (multiple layers, sparse connectivity, weight

sharing, weight decay, mixtures,...).

Analysis. of ' weights and hidden units may reveal inter‘ésting
patterns.

Integrated learning algorithms that blend HMM learniﬁg with
NN back-propagation.

Training can be faster (less parameters).




Applicable to other domains (HMMs with continuous emis-

sions or transit parameters become easy).

Different from previbus hybrid architectures, where NNs are
often used in early stages (preprocessing, feature extraction)

and HMMs in later stages (word/language models).

Most simple HMM /NN architectures do not solve the vari-
able long range correlation problems, since ultimately they
yield a single HMM. However, it is possible to have additional
input,‘ and/or hidden and/or output units to modulate a sin-
gle HMM or to produce multiple different HMMs. Related

to self-organisation and classification.




Output emission distributions

Input: HMM states

Output emission distribution

Hidden layer

Input: HMM states

s e e = -



Multiple HMM Models

Mixtures of HMM Expert‘s (n HMMs M,,...,M,):

P(0) = > Py, (0)

i=1

Mixtures of Emission Experts:

PG, X, I) =2 \(4,X,DPG,X,I)

j=1

PG,I) =% X\ G, D)P.G,T)

i=1

PG,D =% \(DP )

i=1




Y

B




Output emission distribution

Emission

experts l | |

Hidden Layer

Control Network

Input: HVIM states Input

: context



Gene Modeling experiments

Several experiments have been conducted using training sets
consisting of exons only, flanked exons, flanked acceptor sites,
flanked donor sites, reversed flanked exons and random se-

quences of similar composition.




——

STRUCTURE OF EUCARYOTIC GENES

exon intron

EXON

3" splice site S splice site
acceptor site donor site

CONSENSUS SEQUENCES

TTrTTTTTr'r' C ' Cc A
cccccececee NT-AG G - AAG GTGAGT
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| Zomw“_, Segment

This is the repeated segment of the model after training

() )— (> (10 )—(D)—(2)—(3)—()—5)—ts

Ve
Ve \ 7/ /
’ \ ’ ’
| . | _ _ _ _ | | | N | ., _ .
A\ A a1 A= I 1 A I a1 N am N\ A
’7cm ¢ cn 276 r7cm LY r7cm 761 ¢ 76l s Zcmm \ Gm ’7cm
V¢! A\ C . \ \c1t A \ct \ N\ C \\¢! \ \Cmm L \(C - \\ct \ cm L\ ¢!
] e/ ™, . /L /. T /. T /. 04 T /. g >3l
| _ N _ ~ _ N _ N _ N _ > | AN
~ N N N N N NN
1 1 N 1 N 3 AN ) N 1 N 1 N\ LN
Al AW ANR Al AN A Al AR am Al AR
cm Gm G Gmm Gm Gt cm an Gl G cm
cm cm cy  [™"Icm cm cn (ee—m [eemlcmm ct ct cm
T8 T T ™R T T R T T T . bl [ |

Notice the distinct pattern ["T][AT]G in states 12-14.

Compare with entropy plot.




Model Scores

NLL, training

NLL, testing

T —

# parameters

Standard model 203.2 200.3 2550
with randomized seqs - ‘
Standard model 198.8 196.4 25501
with real sequences

Tied model 198.6 195.6 340

with real sequences

NLL = negative log likelihood.




- Model trained on 500 random exons. Thicknes of arrows from ‘outside’ sl_10w )

the probability of starting in the state.







/ STOCHASTIC GRAMM AR

e A formal grammar is entirely defined by an alphabet, a set

of non-terminal sysmbols, and a set of production rules.

e Chomsky Hierarchy (Regular Grammars, Context-Free Gram-
mars). .

« Regular Grammars (RG):

z—Ax and z— A

o Context-Free Grammars (CFG):

z—xzx and z — AzA

« Other Grammars: Graph Grammars (GG) -

o Stochastic Grammars (SRG,SCFG, SGG): Probabilistic pro-

duction rules.




RNA Modeling

« Watson-Crick base pairing:
x — AzU

z— UzA
z — CzG

z — GzC

« Examples.




