. QONF-9507346 -5

ISMB-95

- ROBINSON COLLEGE,
CAMBRIDGE

Tutorial Programme
Sunday 15 July 1995

TUTORIAL T35

The Computational Linguistics
of Biological Sequences

(David Searls)

e swem \UGTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

ISMB’95 Tutorial Notes

Computer and Information Science
University of Pennsylvania
Clinical Research Building, Rm. 475
422 Curie Boulevard
Philadelphia, PA 191 04-61445
dsearls@cbil.humgen.upenn.edu

1 Background

Up to now, formal language theory and computational linguistics have dealt primarily
with natural human languages, artificial computer languages, and little else in the way
of serious applications. However, because of rapid advances in the field of molecular
biology it now appears that biological sequences such as DNA and protein, which
are after all composed quite literally of sets of strings over well-defined chemical
alphabets, may well become the third major domain of the tools and techniques of
mathematical and computational linguistics. The work of the author [6, 7, 8, 9, 10, 11]
and a number of others {1, 2, 3, 4] has served to establish the “linguistic” character
_of biological sequences from a number of formal and practical perspectives, while at
the same time the international effort to map and sequence the human genome is
producing data at a prodigious rate. Not only does this data promise to provide a
substantial corpus for further development of the linguistic theory of DNA, but its
enormous quantity and variety may demand just such an analytic approach, with
computational assistance, for its full understanding.

The language of DNA, consisting of strings over the four-letter alphabet of the
nucleotide bases ‘a’, ‘c’, ‘g’, and ‘t’, is distinguished first of all by the sizes of those
strings. The human genome contains 24 distinct types of chromosomes, each in turn
containing double helices of DNA, with lengths totalling over three billion bases.
Scattered among the chromosomes are genes which can extend over tens of thousands
of bases, and which are arguably the “sentences” of the genetic language, possessing
as they do extensive substructure of their own [8]. Moreover, genes and similar high-
level features occur in a wide range of forms, with arrangements of “words” of base
sequences seemingly as varied as those in natural language. Clearly any attempt
to specify and perhaps to parse such features must deal first and foremost with the
sheer magnitude of the language, in terms of both lengths of strings and cardinality.
However, there are other, more subtle challenges, having to do with the nature of
the strings to be described. Some of these features of the language, around which
the author has been developing grammatical formalisms and practical domain-specific
parsers, are described in this and the following section. The reader may find additional
biological detail in any standard textbook of molecular biology (e.g. [5, 14], or the
more concise [13]).

DNA is a double-stranded molecule, with the strands possessing an opposite di-
rectionality; the bases that lie across from each other in the two strands pair in a
complementary fashion, i.e. ‘g’ pairs with ‘c’ and vice versa, and ‘a’ pairs with ‘t’ and
vice versa. Inverting a substring of DNA actually requires not only that a double-
stranded segment be excised and reversed, but that the opposite, complementary
strands be rejoined, to maintain the proper directionality. The result is that in the
reversed string each base is replaced by its complement.

The biological “operation” of inversion is just one of many types of mutation to
which DNA is subject, in the course of evolution; others include deletion, insertion,

and transposition, in addition to simple point mutations involving substitution of
bases. One of the most important operations is duplication, which in fact is a central
mechanism of molecular evolution: a substring is duplicated, and then the copies may
evolve apart by further mutation until they assume different functions. This has sev-
eral important consequences. First, it suggests that duplication will be an important
feature of the language of DNA. Second, it indicates that features of a similar nature
can vary as a consequence of mutation, and indeed approximate matching will prove
to be an important factor. Third, it suggests that features might exhibit movement
phenomena, perhaps reminiscent of natural language, and again this is borne out by
observation: regulatory signals, in particular, exhibit a degree of “free word order”
in their relative placements. _

DNA is also noteworthy for the large degree of interleaving and even overlap in the
information it encodes. The business of a gene is actually to be transcribed to another
(similar) type of molecule called RNA; which has its own language determining how it
" can fold up into secondary structure and how it is further processed by internal dele-
tion (“splicing”) or other forms of editing. RNA, in turn, is most often systematically
translated to protein, which has a vastly different alphabet and functional repertoire.
While DNA has its own signals that determine operations performed directly on it in
the nucleus of the cell, it also contains within the same regions the encoded sequences
of RNA and protein and the signals necessary for their processing and functioning at
different times in other parts of the cell. This overloading of the language of DNA
can go to extremes, for instance in cases where more than one protein is encoded in
literally overlapping DNA sequence.

These various transformations'of the information in DNA can be modeled by
simple finite-state transducers, and in fact such transducers can be used to model
mutation as well. In a paper in this conference [12], we show how such transducers
can be used to derive algorithms that are characteristically used to find the best
~ alignment of strings that are thought to arise from a common ancestor.

Another general characteristic of much DNA is the relative sparseness of its in-
formation content. Genes comprise only a few percent of many genomes, and the
vast tracts between genes, though they may contain important regulatory regions or
establish global properties, are almost certainly expendable in some degree. Even
genes themselves are interrupted by long sequences called introns that do not encode
anything essential to the final protein gene product, and are in fact spliced out of the
corresponding RNA.

Finally, it should be borne in mind that the strings of these biological languages
are literal, physical objects. In particular, they interact not only with their envi-
ronment (including DNA-binding proteins that recognize specific “words”), and with
other strings (as in the double helix of DNA), but also with themselves (as in RNA
secondary structure). In the latter case, the RNA actually bends back upon itself
and base pairs as if it were the two halves of a double helix; this in fact occurs at
biological palindromes of the sort described above, for reasons that may be apparent.

Such structures can become quite complex and highly branched, producing not only
palindromic regions but additional forms of non-context free phenomena, and showing
evidence of a purposeful ambiguityin the sense that multiple structures arise from the
same sequence of bases 8, 9]. Such interactions between elements of a string folding
back on itself form natural dependencies, which we might well wish to capture using
appropriate grammar formalisms. '

While this tutorial will concentrate on nucleic acid sequences because of their
relative simplicity, it should be borne in mind that protein sequences are analogous
in many respects, particularly their folding behavior. Proteins have a much richer
variety of interactions, but in theory the same linguistic principles could come to
bear in describing dependencies between distant residues that arise by virtue of three-
dimensional structure.

- References

[1] V. Brendel, J.S. Beckmann, and E.N. Trifinov. Linguistics of nucleotide sequences:
Morphology and comparison of vocabularies. J. Biomol. Struct. Dynamics, 4:11-21,
1986. ’

[2] V. Brendel and H. G. Busse. Genome structure described by formal languages. Nucleic
Acids Res., 12:2561-2568, 1984.

[3] J. Collado-Vides. The search for a grammatical theory of gene regulation is formally
justified by showing the inadequacy of context-free grammars. CABIOS, 7(3):321-326,
1991. :

[4] T. Head. Formal language theory and DNA: An analysis of the generative capacity of
specific recombinant behaviors. Bull. Math. Biol., 49(6):737-759, 1987.

[5] B. Lewin. Genes V. Oxford University Press, Oxford, UK, 1994.

[6] D. B. Searls. Representing genetic information with formal grammars. In Proceed-
ings of the National Conference on Artificial Intelligence, pages 386-391. American
Association for Artificial Intelligence, 1988.

[7] D. B. Searls. Investigating the linguistics of DNA with definite clause grammars.
In E. Lusk and R. Overbeek, editors, Logic Programming: Proceedings of the North
American Conference, pages 189-208. MIT Press, 1989.

[8] D. B. Searls. The linguistics of DNA. American Scientist, 80(6):579-591, 1992.

[9] D. B. Searls. The computational linguistics of biological sequences. In L. Hunter,
editor, Artificial Intelligence and Molecular Biology, chapter 2, pages 47-120. AAAI
Press, 1993.

[10] D. B. Searls and S. Dong. A syntactic pattern recognition system for DNA sequences.
In H. A. Lim, J. Fickett, C. R. Cantor, and R. J. Robbins, editors, Proceedings of

3

the 2nd International Conference on Bioinformatics, Supercomputing, and Cample:z:
Genome Analysis, pages 89-101. World Scientific, 1993.

[11] D. B. Searls and M. O. Noordewier. Pattern-matching search of DNA sequences using
logic grammars. In Proceedings of the Conference on Artificial Intelligence Applica-
tions, pages 3-9. IEEE, 1991.

[12] D.B. Searls and K. Murphy. Automata-theoretic models of mutation and alignment.
Proceedings of the Third International Conference on Intellzgent Systems for Molecular
Biology, 1995.

[13] J.D. Watson, M. Gilman, J. Witkowski, and M. Zoller. Recombinant DNA. Scientific
American Books, New York, NY, 1992.

[14] J.D. Watson, N.H. Hopkins, J.W. Roberts, J.A. Steitz, and A.M. Weiner. Molecular
Biology of the Gene. Benjamin/Cummings, Menlo Park, CA, 1987.

Proteins (I)

- proteins are polymers of amino acids, a 20 letter alphabet
often written as single uppercase letters

- amino acids have side chains that vary greatly in terms
of properties such as charge, bulk, hydrophobicity (1 e.
tendency to avoid water), etc.

- proteins assume a 3-dimensional shape called their -
tertiary structure, which is a function of their primary
structure or sequence

- the tertiary structure of a protein determines its
biological function, e.g. by forming a specific shape
to fit another molecule, bind to it, and catalyze an
enzymatic reaction within an active site

Proteins (1)

- within the 3D
shapes certain
substructures may
recur, such as
alpha helices and
beta sheets, as
well as regions
of random coil

- these recurring
motifs are called
“the secondary
structure

Proteins (Ill)

- secondary struc-
tural elements
interact with
each other in a
variety of ways,
e.g. hydrogen
bonds between
beta sheets (either
parallel or anti-
parallel), charge
interactions,
hydrophobicity,
etc.

Proteins (IV)

- although proteins
(and nucleic acids)
are viewed as
strings of symbuols,
recognize that they
are folded "blobs"
in actuality

- a space-filling
model of the last
example (carbonic

anhydrase) shows
" the electron clouds

DNA Structure (l)

- DNA consists of nucleotide bases g, a, t, and c, strun
together on a directional sugar-phosphate backbone

) 5’ ‘_> 3,

T 11 T 1T 1T 71711
gattccgtata

- molecules of DNA normally exist in anti-parallel pairs,
bound by complementarity between bases a/t and g/c

%

Y
«Q

NN e
AW ot =
PN g

e 5 SN0Q =
s £V NN
NN) =4
NN e
o = NN D
st p AN DD

e
0
b7y
-
e 0

@
)

5’

‘DNA Structure (1)

- - the strands coil around
each other in a right-
handed double helix,
the bases on the interior
stacked like dishes

- the bases pair only via
hydrogen bonds, so can
be separated by heat

- g/c bonds are stronger
than a/t, so have higher
melting temperature

RNA ’Structure

- RNA is chemically similar to DNA, but has a slightly
different alphabet (g, a, u, c) and is single-stranded

5’ > 3’

T 1T 1T 1
uacegg

Q) =

I T 1T 1T 1T T 1TII T T I T T TIrrIrrI1
ccguauaagececuagmuuaau

- however, RNA is able to
fold back on itself to form
secondary structure, €.g.

- a simple stem-and-loop

4,« i.
. o,
ﬂ_ﬁ“éﬂv,

oy

- base-pairing need not be
perfect; the structure de- 3’
pends on thermodynamics

fom (1) NN ()
oot () NN €D ma
fam NG ==
oo Q1) NN £ od
josm 019 NN £ e

F

Hybridization

- heating and then renaturing total .
genomic DNA reveals different Slenglg'ecggg:
classes of "complexity" (the | e
inverse of repetitiveness),

suggesting not all DNA
percent | has high infor-

strand mation content intermediate repeats, e.g. alu

simple sequence, e.g. telomeres, centromeres

log(DNA concentration * time) —

Gene Structure

- eukaryotic genes are interrupted by sequences that
are spliced out in the process of gene expression

promoter start acceptor stop polyA
B { a
DNA 5 E3
transcription |
processing
»” polyA tai
messenger RNA }V//// //)uun%gia’un tail
\ ,/ ¥UTR
transiation e

Ve
\ /
protein @f’

Gene Distribution

- genes only constitute a few percent of the genome,
and are sometimes distributed in related families
with coordinate control at different times and
places in development, etc.

-~ Beta Hemoglobin Gene Cluster (~70kb)

€ Gy Ay ¥) B
LCR —¥a Me— Na DA AA

Alpha Hemoglobin Gene Cluster (~40kb)

4 a2 al
LCR — N Dl Hu—

Chromosomes

- in higher organisms DNA is packaged into
= chromosomes, where it is highly coiled and
supercoiled, and complexed with proteins

- in diploid organisms, chromosomes occur in
pairs (with the exception of the sex chromo-
somes); humans have 24 distinct chromosomes

- genetic variation arises by mutations of the
DNA, and by recombination between the
paired (but non-identical) chromosomes

- the entire complement of DNA in an organism
is called the genome, and it comprises about 3
billion bases in humans

Classical Genetics

- traits are encoded in the DNA as genes, which vary among
individuals; different "versions" of a genetic locus are
called alleles, and the phenomenon is called polymorphism

- in classical genetics the distance between
genes was measured in terms of frequency

- of recombinations between them, and this
is still one of the most important tools for
dlscovermg the location of diseases, etc.

[- - there are currently estimated to be

about 100,000 genes in the human
A1 14 genome, and a polymorphism every
b

B 100-200 bases on average, yet only
ca. 1% difference from chimpanzee

Replication

- - replication of DNA is possible because of the
specificity of base-pairing, allowing enzymes called
DNA polymerases to synthesize a new strand from
a template, in a 5’ to 3’ direction

- polymerases are mostly processive,
i.e. they move along the template
synthesizing the new strand; they
can be seen as finite transducers:

- polymerases require a specific
primer to hybridize and initiate
the reaction, plus bases to add

Transcription

- RNA polymerases mediate the transcription of
RNA from a DNA template, generally under the
influence of transcription factors that recognize
specific start signals in the DNA

- RNA polymerases also synthesize
5’ to 3’, but from one strand only

- reverse transcriptases can copy
from RNA back to DNA, and are
made by tumor viruses; they are

an important tool for creating
cDNA libraries from mRNA

Translation

- translation from RNA to protein involves a more
complex cellular machine called a ribosome

- ribosomes map triplets
- of bases to amino acids

using an adaptor called

transfer RNA

protein (S \Y ¥~ (F)amino acid

The Genetic Code

- the mapping from triplets or codons to amino acids
lacks three cases: the stop codons that end proteins

Second Position

u C a o

uuu Phe(F) | ucu Selj'(S) uvau Tyr(Y) | ugu Cy§ Clu

ul auc. - uce ; uac uge c

uua Leu (L) | uca uaa STQOP | uga STOP | a

uug " ucg " uag STOP |ugg Trp(W) | g

cuu Leu(L) | ccu Pro(P) | cau His(H) § cgu Arg(R) |u

c cuc cce ; cac Gln (@) cge) c

] cua ceca caa n cga a .
F irst cug i} ceg " cag § cgg . g Thlrd

Position auu le(D | acu Thr(T) | aau Asn@N) | agu Ser(S) | u | Position
q | auc . ace ; aac age c :

aua aca aaa Lys(K) | apa Arg(R) | a

aug Met (M) | acg " aag " agg g |

guu Val(V) | gcu Ala(A) | gau Asp(D) | ggu Gly(GQ) | u

guc . gec . gac "1 eee ' c

g gua gea . gaa Glu(E) | gga " a

gug geg gag geg g |

Mutation

- substitution of bases may have little effect (e.g. at
the 3rd codon position, or if a similar amino acid
is substituted) or may be fatal (e.g. creating a stop)

- insertions and deletions (indels) may or may not
cause frameshift mutations, usually fatal

mRENA ST TTTTTT T T T T T3
cguuuagacccec
wild type R u L D P
insertion R "F R P
deletion R X STOP
reversion R X XX D P
Evolution

- evolution proceeds primarily by duplication of genes
followed by divergence of function through mutation

- the most important activity

ggcatt

in computational biology is
the detection of distant
similarities or homologies
among present-day agcatt
sequences '

- construction of the most agcata
parsimonious phylogeny | / \

Edit Distance

] a finite transducer that models mutatlon can be
minimum-distance editor |

x/x
xix - x/x

xle

D[i—1,j —1]+6;; where 6;;=0 if z;=y; else §;; =1
D[i,j]=min< D[i—1,5]+1
Dlij — 1] +1 DO =i D[] =

Dynamic Programming |

- dynamic programming finds edit distance in O(mn)
- each positionin [T ¢ 6 ¢ a2 ¢ 1 c a]

the matrixonly __ o\t 2 3 ¢ 5 6 7 8 9

depends on its a1 1 2 3 4 4 5 6 T 8§

neighbors tothe |T| 2 1{?® > * ® ® > ¢& 7

left, above, and |¢| > ? ? ° % ° ©° 5 ¢

diagon a].].y, tO T 4‘ 3 2 2 N 3 4 S 5 6 6

align the inputs |¢| > * ° % 287 % ° 7

v a 5 5 4 3_ 3 2 —3 \ 4 5 6

l —TCGGAGTCAJ TI 7 6 S 4 4 3 3 34 5

Lt cl e 7 6 5 5 4 4 4 34

[ATCTGA—TCA | al 5 & 7 6 6 5 5 5 4 3

Affine Gaps

- a more realistic
xe model of indels
treats each gap as
a single event, with
a large initial cost
and then a smaller

ely incremental one to
enlarge it [Gotoh]

sle—1,b-1] if ma_yb . sla— 1,8+«
s[a, b = min sla—1,0-14+0c if z.# ’d[a b = mn{ dla— 1.8+ 3
l (.i[a’b] _ ila,b] = mm{ §[a,b— 1]+
i[a, b] s[0,0] =0 ila,b—1]+ 8

Local Alignment |
e X/ x/y x/e - modern search

algorithms use
similarity, not
distance, and

find short local
alignments
[Smith &
Waterman]
sla—1,9] efa-1,6—-1]+1 if z.=y
s[a,b]:max{ sla,b—1] = max eli,] lefla—1,6—-1-1/3 if z. #Fm
ela, b] ST ela,b] = max e%a —b 1, b% - 4;3
fla—1,8] _ ele, b~ 1] —4/3
fla b]—max{f[b—1] =0 [a,b] (= 0)

2 Theory

In the realm of formal computational linguistics, a language is defined in terms of
an alphabet T, which is a finite set of symbols; in the case of DNA sequences, such
symbols should be the nucleotide bases, so that we have Lpna = {g,c,a,t}. A DNA
molecule can then be represented as a string over ED\IA, that is, a finite sequence of
symbols from ¥pna. The set of all possible strings over an alphabet is denoted by
T*, and a language, formally, is any subset of *.

The concern of formal linguistics is the finite representation of languages which
may themselves be infinite; the goal is an economy of expression, in an abstract rep-
resentation, as an alternative to exhaustively enumerating all the allowable strings in
a language. Such cogency may also have the benefit of capturing some kind of es-
sential, clarifying generalization about the structure or syntaz of a linguistic system,
preferably related to the meaning or semantics of the language elements. For this
purpose, language generators called grammars have proven extremely useful. Gram-
mars specify languages through sets of rules or productions, which achieve the desired
succinctness largely by referring to each other and to themselves recursively. Perhaps
the most important class of grammars is the contert-free grammars (CFGs, which
specify the contezt-free languages, CFLs). A CFG has the set ¥ of symbols from
the language, called terminals, and an additional set of symbols called nonterminals;
these symbols are used in a finite set of rules whose members are denoted by A — u
where A is a nonterminal and u is a string of terminals and nonterminals. A gram-
mar generates the string elements of its language by taking a starting symbol S and
rewriting it, by repeatedly finding a rule whose left-hand side matches some nonter-
minal in the current string, and substituting that rule’s right-hand side, until the
string contains all terminals. Such derivation steps are denoted by a déuble arrow,
==, so that for the simple grammar with ¥ = {a, b, c}, nonterminals S and)& and
rules § — aX, X — bX, and X — ¢, one possible derwatlon is:

S = aX = abX = abbX = abbc

We can say that the language generated by a grammar G is the set of all strings w
over ¥ such that w is derivable from S, or in set notation {w € £* | § =-* w},
where ==* denotes any number of applications of ==. For the example given, this
grammar formalism would appear to be preferable to either trying to list the infinite
set of strings {ac, abc, abbc, abbbe, - - -}, or using the informal description {w [w is an
a followed by any number of b’s followed by a ¢}. For one thing, it makes feasible
the computational task of parsing a string to determine whether it is in the language
specified by the grammar. A useful byproduct of parsing is the production of a parse .
tree reflecting the grammar rules applied and giving a kind of structural description
of grammatical features in the input string—exactly the kind of output that is desired
.in describing certain biological sequence data.

CFGs have proven to be very useful in the field of compiler construction, where, in

1

the form of BNF (Backus-Naur Form) descriptions, they are used to specify program-
ming languages and their parsers. An even more interesting application of computa-
tional linguistics, however, is in understanding natural language—a complex problem
that has stimulated a large body of research. Although straightforward CFGs can
be written that cover many aspects of natural language syntax, natural languages in
their full generality are now thought to require greater than context-free power (8.

Regular expressions also specify languages. However, the set of regular languages
is strictly a subset of the CFLs, for no regular expression can specify certain self- -
embedding structures such as palindromes; computationally, these require a stack to
store information about dependencies between distant elements of the string. In fact,
even the CFLs are a strict subset of the contezt-sensitive languages (CSLs), described
by grammars that have more than one symbol on the LHS of rules. While CFLs are
restricted to describing nested dependencies, CSLs can specify crossing dependencies,
such as those found in copy languages, which contain duplicated strings of arbitrary
extent. These language classes all take their place on the Chomsky hierarchy of lan-
guages, which categorizes the linguistic complexity of any given language, and which
serves as the basis for analysis of the decidability and/or tractability of recognizing
strings of any language with general-purpose parsers. O(n) parsers are easily de-
signed for regular and determinsitic CFLs—those that can be recognized without the
need to backtrack on the input string—and O(n®) parsers exist for any CFL. Certain
well-defined characteristics of CFLs may permit more efficient general-purpose pars-
ing, and for any particular, narrowly-defined language special-purpose linear-time
recognizers can often be designed. Languages beyond context-free are increasingly
more difficult to recognize by general-purpose parsers, and much effort has gone into
defining language classes “slightly greater” than context-free that are adequate to a
particular domain (such as natural language) yet can be parsed efficiently.

The mathematical discipline of formal language theory also provides many tools for
evaluating properties of grammars and languages such as their ambiguity, referring to
strings that may be derived via multiple distinct parses. A simple example of this from
natural language would be the sentence I was given the paper by Watson and Crick,
which with different syntactic parses could either suggest that someone gave me their
famous paper, or that those famous persons gave me some paper. Much of the field
of Natural Language Processing is concerned with reducing the syntactic ambiguity
of sentences by incorporating knowledge of semantics, etc., into the analysis.

We suggested in 1988 [9] that nucleic acids were beyond regular and at least
context-free, based on the phenomenon of secondary structure: the stem portion of
a stem-and-loop structure entails nested dependencies between base-paired residues,
which are easily specified by a self-embedding CFG, but which in the general case
are beyond the capabilities of any formal regular expression. It was also suggested
[9, 10] that DNA may be beyond context-free as well, due to the phenomenon of direct
repeats, which constitute a copy language with crossing dependencies that cannot be
described with essentially stack-based context-free formalisms. Subsequent work [11]

formalized these conjectures.

Formal discussion of the linguistic status of DNA, like that of natural language,
may be based on empirical phenomenology, but in the case of nucleic acids may also
rest on the actual physical structure of the molecules, and in particular the ability to
form secondary structure. We have offered formal proofs that idealized representa-
tions of such structure are indeed non-regular [11]. Beyond this, however, the simple
existence of direct repeats is somewhat unsatisfying as evidence for the purely formal
status of DNA, since direct repeats can be found even in regular languages (and in
fact particular repeats are required to exist in both infinite regular languages and
CFLs, by the so-called pumping lemmas [4]); it is only when direct repeats with no
particular bounds on their extent can be shown to be necessary in a language that
it can be said to be greater than context-free on that account. So as not to depend
entirely upon ad hoc phenomenology, we sought examples which, like that of inverted
repeats, could be grounded in actual physical structures and processes arising in the
molecules themselves. A series of such arguments were presented in [11], based upon
(1) the potential for circularization of DNA with terminal direct repeats, (2) unequal
crossing-over in multiple tandem repeats, and, most importantly, (3) the existence
of pseudoknots in structural RNA, which entail crossing dependencies between stems
within each other’s loops. It is interesting that dealing with pseudoknots has required
major reimplementations of some RNA structure prediction programs [1]; the relative
difficulty of this can in part be explained by the transition to greater-than-context-
free recognition which can thus no longer be strictly stack-based. This points again
to the utility of a solid formal linguistic characterization in the design of recognition
algorithms in any given domain. _

A number of additional formal results were given in [11], dealing with other lin-
guistic attributes, again based on a somewhat idealized model of the structural char-
acteristics of nucleic acids. Inverted repeats, for example, were shown to be nonde-
terministic languages, and the branching or recursive nature of secondary structures
implies their language is non-linear (in this context, meaning that any grammar de-
scribing them must have a rule with more than one nonterminal on its right hand
side). These results rule out the use of certain O(n?) simplifications of general-purpose
context-free parsers (which are otherwise O(n?)). -

The ambiguity of general secondary structural grammars (that is, their ability to
produce more than one essentially distinct parse for the same primary sequence) was
also explored in {11}, and it was shown that this grammatical ambiguity reflects alter-
native secondary structures in a biologically relevant way. (Since that time, we have
proven that, while the most general language of ideal orthodox secondary structure is
actually deterministic and thus unambiguous, certain biologically plausible secondary
structure sublanguages are inherently ambiguous, i.e. impossible to describe by any
unambiguous grammar). An understanding of the nature and degree of ambiguity
of languages in a domain is important, for example in implementing deterministic
speed-ups to parsers.

| 4 _ _

Given that biological sequences are beyond context-free, it is of interest to carefully
circumscribe their exact boundaries. We suggested in [10], and demonstrated in 11},
that the language encompassing all of the phenomena described above in nucleic
acid structure lies not only in the CSLs, but within a restricted subset known as
the indezed languages. (It is interesting that the indexed languages have also been
claimed to suffice for natural languages [2].) A subset of the indexed languages with a,
very perspicuous grammar formalism particularly well-suited to nucleic acids, known
as string variable grammar, was developed by us [10, 11]; examples are given in the
next section. .

We have also explored closure properties of the Chomsky hierarchy under biologi-
cal operations—that is, whether language classes of interest, after undergoing certain
biological processes, can be expected tc remain at the same level in the Chomsky
hierarchy or not. It was formally demonstrated in [11] that regular languages and
CFLs are closed under double-stranded replication and under simple recombinational

- events such as scission and ligation. Deterministic languages, however, are not closed
under these operations, so that, for example, certain features can be recognized more
efficiently on one strand of DNA than on the other, or in other than a leftmost fashion,
suggesting the use of so-called island parsing strategies. With regard to evolutionary
operations such as duplication, inversion, and transposition, it was shown that CFLs
are not closed, suggesting that genomic rearrangements on an evolutionary scale may
be responsible for increasing the mathematical complexity of the genetic language.

PR RRIRON ' One of the more remarkable aspects of grammar-based descriptions of folded struc-
ture is the observation that derivation trees from the grammars physically resemble
the actual secondary structures as they are usually portrayed. This has led to several
machine learning approaches to prediction of secondary structure based on stochastic
grammars [3, 7], and has caused us to examine new formalisms that stress the struc-
tural aspects of derivation trees for grammars that are beyond context-free. Among
these are tree-adjoining grammars and variations upon them (5, 6]. Recently, the
author has developed a new formalism that directly addresses the problem of repre-
senting relationships befween strings in a language, rather than/just within the same
string. A cut grammar has a new symbol that allows a derived string to be cut at
multiple places, so that the language derived is actually a set of strings all related by
having come from the same derivation [12]. This allows us to express the results of
hybridization of oligonucleotides, for example.

References

[1] J. P. Abrahams, M. van den Berg, E. van Batenburg, and C. Pleij. Prediction of RNA
secondary structure, including pseudoknotting, by computer simulation. Nucleic Acids
Res., 18:3035-3044, 1990. ’

[2] G. Gazdar. Applicability of indexed grammars to natural languages. Technical Reporf
CSLI-85-34, Center for the Study of Language and Information, Stanford, 1985.

4

[3] L. Grate, M. Herbster, R. Hughey, I.S. Mian, H. Noller, and D. Haussler. RNA mod-
eling using Gibbs sampling and stochastic context free grammars. In Proc. of Second
Int. Conf. on Intelligent Systems for Molecular Biology, Menlo Park, CA, August 1994,
AAAI/MIT Press. '

[4] M.A. Harrison. Introduction to Formal Language Theory. Addison-Wesléy, Reading
MA, 1978.

[5] A. K. Joshi. An introduction to tree adjoining grammars. In A. Manaster-Ramer,
editor, Mathematics of Language, pages 87-114. John Benjamin, Amsterdam, 1987.

[6] A.K. Joshi, K. Vijay-Shanker, and D. Weir. The convergence of mildly context-sensitive
grammar formalisms. In P. Sells, S.M. Shieber, and T. Wasow, editors, Foundational
Issues in Natural Language Processing, pages 31-81. MIT Press, Cambridge, MA, 1991.

(7] Y. Sakakibara, M. Brown, L.S. Mian, R. Underwood, and D. Haussler. Stochastic
context-free grammars for modeling RNA. In Proceedings of the Hawaii International
Conference on System Sciences, Los Alamitos, CA, 1994. IEEE Computer Society
Press. '

[8] S.M. Schieber. Evidence against the context-freeness of natural language. Linguistics
and Philosophy, 8:333-343, 1985.

[9] D. B. Searls. Representing genetic information with formal grammars. In Proceed-
ings of the National Conference on Artificial Intelligence, pages 386-391. American
Association for Artificial Intelligence, 1988.

[10] D. B. Searls. Investigating the linguistics of DNA with definite clause grammars.
In E. Lusk and R. Overbeek, editors, Logic Programming: Proceedings of the North
- American Conference, pages 189~208. MIT Press, 1989.

[11] D. B. Searls. The computational linguistics of biological sequences. In L. Hunter,
editor, Artificial Intelligence and Molecular Biology, chapter 2, pages 47-120. AAAI
Press, 1993.

{12] D.B. Searls. Formal grammars for intermolecular structure. First International IEEE
Symposium on Intelligence in Neural and Biological Systems, pages 30-37, 1995.

Regular Languages

e regular languages are those generated by simple
finite state automata, and (equivalently) by
grammars whose rewrite rules or productions have
only single nonterminals at the ends of their right
hand sides, e.g. for {0{1792% | 4, 5,k = 0}:

'S—>0SIA A—>1AIB B-—>2Bls

S=0S = 04A =014 = 011A = 0111A =
= 01118 = 011128 = 0111228 = 011122

Sl

Context-Free Languages

e context-free languages are modeled by pushdown
automata, which have memory in the form of a
stack, and by grammars with no limitations on their
right hand sides, e.g. for {0°172° | 4,5 > O}:

S——>082IA | A—>1Als

S = 0S2 = 00S22 = 0005222 = 0004222 =
= 00014222 = 000114222 = 00011222

Beyond Context-Free

e {0172¢ | 4, 4, k > 0} requires even greater power:

S_30SA21012 14 —>11 24— A2

S => 0SA2 => 00SA2A42 = 000124242 =
— 0001A22A42 = 000112242 => 000112422 =
— 000114222 => 000111222

The Chomsky Hierarchy

e recursively enumerable languages use an infinite
tape for memory, i.e. a Turing machine, and are
equivalent to grammars with any number of
additional symbols on their left hand sides

e context sensitive languages require a tape bounded
in the size of the input, and left hand sides cannot
be longer than rlght hand sides

e the Chomsky hzera'r'chy, RLCCFLcCCSL C RE,
establishes the subsumption relationships

e in ascending the Chomsky hierarchy, language
classes become less tractable in terms of recognition
(parsing), decidability and closure properties, etc.

e natural language is thought to be “slightly greater”
than context free

Réverse Complementarity (I)

 we will uniformly adopt the alphabet of DNA:

Yo = {8, c,a,t} (1)

the following function indicates bases that are able

to physically and informationally base-pair between
strands of double-helical DNA:

g=c¢ C=g, a=t, and t=a (2)

this operation can be extended over strings and
constitutes a homomorphism, since we can say that
sk

-7 = (uv) foru,v€X’,, and z=¢€ (3)

we will abbreviate (3) as @wv; this homomorphism
and string reversal have the following properties:

@) =w, (wH)f=w, and @WF) =@* (1)

"Reverse Complementarity (II)

the composition of base complementarity and
reversal, written w’, is the “opposite strand” of a
string w of DNA; it is not a homomorphism, since

wf - R £ wo)® =78 -uwf where u#v (5)
rather, it is a group-theoretic involution; this allows
DNA to be replicated from opposite strands:

- @R =@HF) = @) =w (6)
consider strings identical to their opposite strands:
| Ly={we=, |lw=2"} (7
dividing any such w into equal halves, we see that
w = uv = w’ = vfaf ® where |ul|=|v| (8)
so that L, is in fact the language

L,={ut®|ue L} (9)

DNA

= U

Inverted Repeats

e inverted repeats are common in nucleic acids:

e we could specify these with the following grammar:
S —bSb| A A—bA|e where be X, (10)

e however, the A rule (for the loop) can specify any
string, so the resulting language is X and trivially

DNA

regular; therefore, we idealize to hairpins:
S — bSb | e (11)

DINA is Not Regular

e let an ideal string be one with equal numbers of
each base type b and its complement & (i.e. all bases
are potentially paired); the self-embedding
context-free grammar S — bS5 | € of ideal inverted
repeats in fact yields L,, and is clearly not regular

e one way to model non-ideal inverted repeats would
be to require a minimum length p for the stem and
a maximum length ¢ for the loop:

L, = {uvaf |u,v € X, |u|>p, and |v|< q} (12)

DNA?

e this is non-regular and still context-free, even
“biological”, but may not find the longest stem; for
purposes of recognition, the following is more useful:

S — bSb| A
A — ble|bBd where b # d (13)
B — bB|e ‘

DINA Is Not Linear

e nucleic acids form recursive secondary structure:

e let an orthodoz string be €, or the result of adding
an adjacent complementary pair bb at any position
in an orthodox string; this language is given by

S —bS5|SS|e (14)

DNA Is Nondeterministic

e the language L, of ideal inverted repeats requires
guessing about the midpoint, so is nondeterministic

e surprisingly, the more general language L, of ortho-
dox secondary structure is deterministic; though the
grammar given above is nondeterminstic, it is
weakly equivalent to the deterministic Griebach
normal form grammar

S — bSpS | e for each b € X,
Sb — B 1 dS(/,SI, fOI‘_d ?é B ' (15)

e nevertheless, constraining this very general language
of secondary structure to give specific nonlinear
languages may reintroduce nondeterminism, for
example the dumbbell language of adjacent stems,
L,; = {uaffvo?f | u,v € =¥ _}, specified by

DNA

S — AA A — bAb | ¢ (16)

DNA Is Not Context-Free (I)

e tandem and direct repeats are frequent in DNA:-

...

e these are copy languages, e.g. L. = {ww | w € ¥},
which are beyond context-free; structural correlates
may lead to alternative hybridization, unequal

crossing over, even circularization:

DINA Is Not Context-Free (II)

e also, consider RNA pseudoknots:

e an ideal language of pseudoknots would be
Ly = {uvafof | u,v € =X} (17)

. DNA
which is not context-free, since
L) = LyNngtatettt
= {gla/c’t/ | 1,5 > 1}
is not only non-orthodox, but homomorphic to a
well-known non-context-free language

(18)

DNA Is Not Context-Free (III)

e attenuators are binary switches that control certain
bacterial genes using alternative secondary structure

e these occur in forms whose formal expressions are
beyond context-free, since they contain copies:

L, = {wwau; |we =X . (19)

DNA

Loy = {wwfuww? |we T } (20)

DNA

e L,» is a subset of both the hairpin language L,
and the dumbbell language L,, and in fact is the
intersection of either with the copy language

DINA Is Inherently Ambiguous (I)

e in fact, any grammar for L,> must give rise to mul-
tiple leftmost derivations (as does the orthodox):

S = 55 = g5cS = gaStcS = gatcS
= gatcgSc = gatcgaStc = gatcgatc
S = gSc=gSSc = gSSSc= gaStSSc
= gatSSc = gatcSgSc = gatcgSc (21)
= gatcgaStc = gatcgatc
S = gSc = gaStc = gatSatc
= gatcSgatc = gatcgatc

DINA Is Inherently Ambiguous (II)

e alternative structures like those above are obviously
not captured by the deterministic Griebach normal
form grammar for L, which returns only one
structure for any input

e on the other hand, the straightforward ambiguous
grammar for L, also generates more than one -
leftmost derivation for the same secondary
structure, i.e. it is also structurally ambiguous

e we can design a structurally unambiguous grammar,
that generates exactly one leftmost derivation per
secondary structure, though the degree of ambiguity
is still exponential in the size of the input:

S — Ale
A — bAb| AB | bb (22)

B — bAB | bb

Closure under Replication

* .

DNAT -~

REP(L) = {w,w" |w e L} = LUL" (23)

e consider the operation of replication, for L C =

e the languages in the Chomsky hierarchy are all
closed under the operations of homomorphism,

- string reversal, and union, and so also under
replication; in fact, we observe a fixpoint:

REP*(L) = REP(L) (24)
e but, deterministic context-free languages, e.g.
Lp = {gla’thc* | i =5 + k} (25)

are not closed under replication, since
REP(Lp) = {grat’c’ |p=q+7 or s=gq+ 71} (26)

is not only nondeterministic but inherently
ambiguous, necessarily having multiple leftmost
derivations whenever p =g+ 7r =3

Closure under Recombination

e the classifications of the Chomsky h1erarchy are also
closed under ligation (and its closure)

LIG(L) ={zy |z, y€ L} = L- L (27)

since DNA can only ligate head-to-tail, and this
holds true even in populations of double-stranded
DNA:
LIG(REP(L)) = LIG(L U %) (28)
=(L-L)Uu(L-THu T®-LH)u@?-TH
e the same is true of scission (and its closure)
CUT(L) = {z,y | zy € L} = PRE(L) U SUF(L) (29)
cUT*(L) = {u | zuy € L} = PRE(SUF(L))

e although we cannot directly model ligation which
circularizes strings, we can model their scission:

cUT(LIGC(L)) = {vu | uv € L} = cYC(L) (30)

CIOSure under Evolution:

e evolutionary rearrangements can also be modelled:
DUP(L) = {zuuy | zuy € L}
INV(L) = {zuf'y | zuy € L}
XPOS(L) = {zvuy | zuvy € L}
DEL(L) = {zy | zuy € L}

where z,y,u,v € ¥ and L C =*

DNA DXNA

(31)

e regular or context-free languages could not be closed
under duplication, since this creates copy languages;
neither are they closed under inversion (which
makes copy languages from inverted repeats) or
transposition (which makes pseudoknots from them)

e only under deletion are the lower levels of the
Chomsky hierarchy preserved — thus, evolution may
tend towards increasing linguistic complexity

Closure under Expression

e during gene expression, transcription, processing,
and translation may take place at different times
and/or in different compartments of the cell

e thus, the signals relevant to the DNA, various forms
of RNA, and protein, are all projected back to the
DNA, and to the extent these can or should be
viewed as separate languages, the DINA must be
seen as the intersection of those languages

e this is significant since (for example) the context-free
languages are not closed under intersection

e there is evidence that secondary structure may play

~ a role in expression (e.g. regulating alternative
splicing), and in fact it may interfere with ribosome
binding — and context free languages are not closed
under complementation

Parse Trees and Strucfure

e secondary structure grammar derivations not only
capture base-pairing dependencies in rules, but the
resulting trees resemble the overall structure

27 st

DINA As An Indexed Language

e the language of all ideal strings can be shown to be
context-sensitive; however, the phenomena in DN A
may be subsumed by the indezed languages, Whlch
lie between context-free and -sensitive

e indexed grammars can be thought of as having
stacks attached to nonterminals, which are passed
along to each nonterminal arising in a derivation,
e.g. for tandem repeats

S —bSh| A AP — Ab A— e (32)
gives rise to
S = gS?’ = gCch = gcaS“"% = gCaAa.cg — (3)
gcaA®a = gcaAd®ca = gcaAgca = gcagca

e similar grammars suffice for inverted repeats,
pseudoknots, etc. of seemingly arbitrary complexity

DINA as a TAG Language

e certain biologically-relevant languages that are
beyond context-free can be captured as a more
tractable tree-adjoining grammar, e.g. the
attenuator language L., = {wwfw | w e =X, }:

I: &1 — S A: ,8: S‘r\r;
1
€ S (34)
7T
S~na

e this grammar captures base-pairing and alternative
base-pairing in constituent structure

e however, TAGs do not appear to handle L,» or the
pseudoknot language L; = {uvafvf | u,v € =X}
(though extensions such as multlcomponent TAGS
might suffice)

Cut Grammars

e a cut gratnmar is an ordinary grammar with a new
symbol, 6§, at which derived strings are simply cut

~ssh

&

£ H E

s—§—s—§——s—§——s—?—e S — bShH | (35)

gt £, &

_—
il

" s—s——s—s—-—s—s——s—-s S —bSb|é (36)

e this will allow us to use grammars to describe
intermolecular as well as intramolecular interactions

e given a string u = u16u26 - - - du,, where u; € 3* for
1 <i<n(and § &€ X2), we define a cut function

’&’Q:Cf {u17u27"'7un} (37)
and an uncut function
u dof UiU2 - -~ Up (38)

Cut Languages

e for a given cut grammar G with start symbol S, we
define the cut language

(@) E{ae2|85="u} (39)
(a set of sets), and the uncut language
LA E{aex*| S ="u} (40)
e we foi]l also consider the cut language union
ULG)={uvwex*|S="vand u € 9} (41)

e for the double-strand grammar G, : S — bSb | 6,

-z;(Go = {{w, ﬁR} | v € Shea } (42)
which is related to the stem language by
L, = IL(Go) = { v | {u} € L(G,)} (43)

Nick Languages

e nicked double-stranded DINA can be modelled by
S —bSb|6S|S6]6 (44)

e we can also require a minimum “overhang” to create
what biologists call “sticky ends”: '

S — bSt | wsSw: | wSsWF |6 (45)

for each w € 7 where n is the desired length (or
for particular w’s to model restriction enzyme sites)

e thus, cut grammars can be used to formally describe
‘hybridization of populations of strings, e.g. cut
language elements as sets of hybridizable “oligos”

Nonlinear Cut Languages

e by analogy with orthodox structure, we can model
— end-cut hybridizaﬁon: S —bSb|SS|6
— fork-cut hybridization: S — bSb | S6S | ¢
— generalized hybridization networks:
S —bSH|SS|S6]6S|e (46)

Circular Cut Languages

e using the start symbol to leave one end of the
double-stranded molecule open, and a § to cut open
the other end, seems arbitrary given the symmetry

e to “close off” the start of a derivation tree, we can
define a circular cut function

g

{unuly Uz, ’U’S; Tty un—l} : (47)
which is only defined when at least one § is derived

‘e then, for G, : S — bSb | §, we have ordinary stems
U L(G,) = L(G,) = L, (48)

which is to say, the set of stems open at the start is
the same as the set open at the terminus

e for any G we can form a G’ by adding a new start
symbel S’ and rule S’ — S§6, to get L(G') = L(G)

; < Ligated Languages

e we may wish to distinguish ligateable cuts from
non-ligateable ones, e.g. nicks vs. gaps or ends

e a ligation grammar is a cut grammar with an
additional new symbol v, where for any
U = wiYyusy - - - yu, with u; € (X U {6})* for each
1 <7 < n, we define the ligate function

'I:JL'—: {’&1,'&2,"',’&”} (49)

e given a ligation grammar G with start symbol S we
define the ligated language

L(G)={u1e2|85="u} (50)

while the cuts act on both §’s and ~’s, as before

Regular Hybridization

e given a right-linear grammar R, i.e. one with rules
of the form A — wB and A — w, we can create
oligonucleotides encoding the rules of the grammar,
together with additional splint oligos, so as to
hybridize to structures like

L ow X, s X u Y, & Y, v
3 12 i {3 i | ? E2 e | 5 [-y can o
§$—§—S§—A—A—A—A—B-——B——§—§-—A-—A-—A—B—B—B—C—C—C—C— v
'ly ‘ly t 4 ¥ i y £ 2 ‘!! ,'Y*'S‘Iiii | £ & 3 'ly ‘|Y -‘y

XR XE TR TR
which are described by a grammar Gp:
S —~vySb| Ab
A —bAb | Bé
| (51)

B —bBb | bSb | bCh
C —~vyCb| ~b

e arbitrary derivations from R can be produced by
“complete” hybridization

Context-Free Hybridization
e by allowing branched hybridizatio_n, we can similarly
model arbitrary context-free grammars (in Chomsky
normal form) with oligos like the following:

A—=BC A——w

e could non-context-free secondary structures derive
arbitrary non-context-free languages?

Cut Language Closure

e given a context-free cut grammar G, we can
— change each § to €, and fgr this ordinary G
clearly L(@) = L(Q®), so L(G) is context-free
— create an ordinary G (by a construction due to
Tilman Becker) which “chooses” each pair of
adjacent é6’s and generates only the intervening
substring, so that UL(G) = L(G) is context free

S

u,% u26 --0u d v1v26w16w16 - dw,

Cut Language Recognition

e the membership problem for cut languages: given a
cut grammar G and aset V C ¥* is V € L(G)?

e this problem is NP-hard, by reduction from
Directed Hamiltonian Path (due to Michael Niv):
Given a graph (V, E), where |V| = n, the start
vertex is v, and the end vertex is v, if we define a
cut grammar with alphabet 3 = V', nonterminals
{A: |1 <14,7 <n}uU{S} and rules '

S — 'UlA%
A; — Svp ALY forall (k) € E, 1 <i<mn (52)
Al — € -
then V & i}(G)I iff there is a path of length n that
passes through every vertex in V' just once (DHP)

e ironically, Adleman “solved” DHP by hybridization

3 Implementation

Linguistic methodology is not limited to computer languages or human natural lan-
guages, but can be extended to all manner of signals, images, or other data which
have underlying structure. This observation has led to the development of the field of
Syntactic Pattern Recognition (SPR) [6]. SPR makes use of the tools and techniques
of computational linguistics, such as grammars and parsers, to specify and search for
patterns in data. Because grammars intrinsically promote the hierarchical abstrac-
tion of features, these can be built up to a very high level while maintaining a clear,
modular “knowledge base.” Moreover, grammars by their nature detect individual
features in this higher-level context, which creates a much greater degree of discrimi-
nation than isolated searches. SPR benefits from a strong formal foundation, but also
incorporates features that extend the expressive power of grammars where necessary
for the domain. For example, “noisy” signals can be dealt with by so-called stochastic
grammars [6], which incorporate probabilities into grammars in a natural way. SPR,
in fact, has been classified as a form of pattern-directed inference, and indeed we have
found that it provides an excellent framework for the incorporation of heuristics at
many levels. SPR has been successfully applied to such problems as general signal
processing, handwritten character recognition, and karyotype analysis by the author
[17, 19] and many others [6], and our results with SPR and the linguistic analysis of
DNA suggest that they are appropriate approaches to the complexities of this domain
as well. '

For this purpose we use the Prolog programming language, which implements a
procedural interpretation of a subset of first-order predicate logic. It uses a particu-
lar clausal form that allows programs to be written as databases containing atomic
predicates called facts, e.g., protein(hemoglobin), and rules which are written in
the form protease(X) :- protein(Y), degrades(X,Y). This can be read “X is a
protease if Y is a protein and X degrades Y.” Prolog’s rules and facts, together called
relations, can be queried to perform inferences by backward-chaining proof, using a
mechanism called resolution, and the resulting system is able to perform computation
as controlled deduction—in fact, a form of theorem proving.

Prolog’s history is closely linked with the formalism of Definite Clause Grammars
(DCGs), and the notion that grammars can be expressed as rules of a Prolog program
[14]. The process of parsing a string then becomes that of proving a theorem given

that string as input-and the “axioms” of a grammar. In practice, such a grammar
would appear as in the code below.

s --> [a], x.
x --> [, x | [].

In Prolog, logical predicates begin with a lower-case letter, and in DCGs these
correspond to nonterminals. Terminals are shown as Prolog list elements; lists gen- .
erally appear within square brackets, with list elements separated by commas (e.g.,
[a,b,c]). The vertical bar in the second rule is an “or” (disjunction).

1

DCGs actually require a translation step to become Prolog clauses, because Prolog
must have a mechanism for manipulating the input string, which it does by main-
taining the string in “hidden” parameters of the nonterminals. The first DCG rule
above would be translated to the following Prolog rule:

s(s0,8) :- so=[als1], x(s1,S).
x(S80,S) :- so=[blsi1], x(s1,s) ; soO=[c]s].

(Note that variables in Prolog begin with upper-case letters). When nonterminals
are translated, they have two variable parameters added—sometimes called difference
lists—corresponding to the lists that will be passed in and then back out, i.e. the input
string and what is left of it after the nonterminal consumes some initial string from it.
Terminals are translated such that the specified alphabetic elements are “consumed”
from the front of the input list. The difference lists are arranged so that the span
of the LHS nonterminal is that of the entire RHS. Thus, actual top-level calls to s
would succeed in forms such as s([a,c],[1) or s([a,b,b,c], []1) (with the empty
list being the necessary remainder after the parse succeeds); in our implementation,
a double-arrow infix operator is used to express such queries, following the formal
notation, e.g. s ==> "abbc". Note also that a useful alternative notation for lists
is as strings within double quotes (whose elements actually correspond to ASCIL

' character codes); we will use this for DNA, e.g., "gattac".

DCGs actually have expressive power far beyond context-free, by virtue of the
fact that Prolog code can be freely embedded (within curly braces); in addition,
parameters may be attached to nonterminals, and terminals may appear following
the left hand side nonterminal. We have used DCGs to develop a syntactic pattern
recognition system for DNA sequences, known as GENLANG [15, 16, 18, 19, 20].

One advantage of logic grammars lies in the rapid prototyping capabilities of Pro-
log, and in particular the ability to easily add new syntactic constructs. For example, ~
in GENLANG queries are of the form <pattern>:<parse variable> ==> <input>,
where new infix operators separate grammar elements: the patiern generally contains
the top-level nonterminal in the grammar, the parse variable is a logic variable (de-
noted by an initial uppercase letter) to which a parse tree will be bound, and the input
is as described below. In the parse tree, nonterminals are typically adorned with in-
formation about their cost (in number of mismatches), their location in the input, the
actual primary sequence recognized, etc. Similarly, gaps of either unbounded (...)
or bounded (e.g. 19...27) extent are available in the language.

A more significant extension to DCGs, called string variables [16, 18], also benefits
from the Prolog milieu. A string variable is a logic variable appearing in the body of a
grammar rule, which stands for a string of arbitrary extent, and which may optionally
have applied to it operators such as the tilde which denotes reverse complementarity.
Such a feature’in this domain makes it easy to specify even complex arrangements of
direct and inverted repeats, such as are characteristic of secondary structure:

tandem_repeat ---> X, X. stem_loop ---> X, ..., “X.

pseudoknot ---> X, ..., Y, X, ..., 7Y.

attenuator ---> X, ..., X, ..., X.

(A somewhat different notation will be presented in the tutorial.) These descrip-
tions are at a much higher level than the corresponding context-free grammars [16],
and in fact most of them are even beyond context-free, yet despite their widely vary-
ing linguistic complexity they are expressed with comparable ease in this formalism.
Even so, these are relatively abstract descriptions and for purposes of parsing require
“rea] world” constraints on their length and degree of mismatch allowed in stems; we
next describe the mechanism for controlling these.

Objects in GENLANG, e.g. nonterminals, can have attached to them an attribute
list as shown in this example: '

" foo:[cost=S+2%C] ---> "atg", ...:[step=3,S=size], bar:[size<50,C=cost].

Here, the control attribute step=3 specifies that the gap (...) is to increase in
increments of 3; the constraint attribute size<50 keeps the span of the nontermi-
nal bar under 50; the specification attribute cost=S+2%C redefines the cost of the
nonterminal foo to an arithmetic function of the size of the gap and the cost of the
bar; and the assignment attributes S=size and C=cost serve to bind those variables.
(The default cost of foo would have been the number of mismatches in the "atg"
plus those within bar.)

Attributes are managed by way of additional “hidden parameters” in the imple-
mentation of the grammar. Just as the difference lists serve to unburden the grammar
designer of the low-level programming involved in input list management, a total of
ten hidden parameters now hide from the user such details as the accumulated cost
of parse trees and the cost thresholds applied by the grammar, additional constraints
on the size ranges of individual elements in the grammar, and the parse tree itself.

Gaps represent regions that are “skipped over”, but in fact it is the gaps that
do the skipping—they constitute the multiple, embedded search engines of a typical
grammar, and the source of most of its non-determinism—and so careful attention
to their implementation has been necessary. One important feature is delayed (lazy)
evaluation: gaps encountered in the course of a parse are “packaged” and passed
down the parse tree; and are not actually evaluated until they in turn encounter some
feature with which they may combine for more efficient evaluation. For example, the
combination of a “lazy gap” with a string of bases might under the right circumstances
allow the string simply to be looked up in a hash table, rather than searched for in
the primary sequence. GENLANG does, at the option of the user, hash its input into
k-tuples of varying sizes, and permits many hundred-fold more efficient recognition
of features such as direct repeats.

The implementation of lazy gaps also lends itself to finer control over the search
strategy used by the parser. The logic-based parser is ordinarily breadth-first on

3

*e

the input, in the sense that all applicable rules will be tried at every position in a
parse before moving on to the next position following a gap. However, a lazy gap
will be passed to the first applicable rule, and that rule will be tried in every possible
position permitted by the gap, before the gap is passed on to the next applicable
rule—in other words, depth-first search on the input. The search style in GENLANG
can be controlled either at a global level, or locally through the use of the attributes
deep, wide or best (the latter performing best-first search within a defined range).

A rule such as foo:[consensus] ---> "gat" | "gaa" | “gta" | ... would
ordinarily succeed upon recognizing any of the disjuncts on the input string (or,
any of the disjuncts with mismatches allowed up to the cost threshold established
higher in the parse tree). However, with the consensus attribute, the disjuncts are
treated as exemplars in the calculation, at compile time, of a weight matrix which
now contributes the cost at this point of the parse. Moreover, the order in which
the parser examines positions in the input string is reordered at compile time, so

- that the most “informative” positions—that is, those for which inappropriate input

will most rapidly cause the nonterminal to exceed its cost threshold and thus fail—
are examined first, for optimal efficiency. Base frequency data may also be entered
into the grammar in tabular form, based on published data; however, there is little
or no performance penalty at compile time even for large lists of exemplars, and the
former technique allows the user to enter new data freely, postulate classes by dividing
exemplars among several nonterminals, etc. There are several methods available for
calculating costs from base frequency data (e.g. the attribute cost=neglog uses a
negative logarithm of base frequency), which are user-definable as well.

We have used GENLANG to develop grammars for a number of higher-order pat-
terns in sequence data, including transfer RNAs, described in the tutorial. Perhaps
the most active current area of higher-order pattern recognition in biology is that
of finding protein-encoding genes. In actual practice, this activity seems to devolve
to two problems: recognizing splice sites, and distinguishing coding regions (exons)
from noncoding regions. To a large degree these problems are duals of each other, in
that completely solving one would essentially provide a solution to the other. Until
recently, however, they were addressed separately; recognition of splice sites was at-
tempted using techniques such as weight matrices and neural nets [2, 10, 11, 13, 21},
while a variety of statistical techniques, beginning with codon usage frequencies and
extending also to Markov chain models and connectionist methods, have been applied
to the identification of coding regions [1, 3, 4, 9, 22]. While the results of these studies
have been increasingly impressive, using these distinct approaches in isolation may
never be completely satisfactory.

The most successful such system, the multiple-sensor neural net Grail [22], in fact
uses a combination of evidence from seven previously-described algorithms to identify
about 90% of large exons with about one in six false positives. The trend, in fact,
is toward layered or rule-based architectures which combirie evidence about not only
coding regions but splice sites as well, to better delineate the former and to reduce the

combinatoric possibilities of the latter {5, 7, 8, 12]. These systems owe their success to
a hierarchical organization of evidence based on statistical measures, and above all to
their ability to consider that evidence in mutual context. We have implemented gene
finder based on a simple gene grammar, as described in the tutorial, which has been
surprisingly successful in comparison with highly-specialized procedural gene finders.

References

[1] M. Borodovsky. Genmark: System for predicting protein coding regions. Technical
Report Version 1.1, Georgia Tech School of Applied Biology and Office of Information
Technology, genmark@ford.gatech.edu, 1992.

[2] S. Brunak, J. Engelbrecht, and S. Knudsen. Prediction of human mRNA donor and
acceptor sites from the DNA sequence. J. Mol. Biol., 220:49-65, 1991.

[3] G. Fichant and C. Gautier. Statistical method for predicting .protein codmg regions in
nucleic acid sequences. CABIOS, 3: 287—295 1987.

[4] J. W. Fickett. Recognition of protein codmg regions in DNA sequences Nuclezc Acids
Res., 10:5303-5318, 1982. :

[5] C. A. Fields and C. A. Soderlund. gm: a practical tool for automating DNA sequence
analysis. CABIOS, 6(3):263-270, 1990.

[6] K. S. Fu. Syntactic Pattern Recognition and Applications. Prentice-Hall, Inc., Engle-
wood Cliffs, NJ, 1982.

[7] M.S. Gelfand. Computer prediction of the exon-intron structure of mammalian pre-
mRNAs. Nucleic Acids Res., 18:5865-5869, 1990.

[8] R. Guigo, S. Knudsen, N. Drake, and T. Smith. Prediction of gene structure. J. Mol.
Biol., 226:141-157, 1992.

[9] A. K. Konopka. Towards mapping functional domains in indiscriminantly sequenced
nucleic acids: A computer approach. In Structure and Methods, pages 113-125. Ademne
Press, 1990.

[10] M. Kudo, Y. Lida, and M. Shimbo. Syntactic pattern analysis of 5’ splice site sequences
of mRNA precursors in higher eukaryotic genes. CABIOS, 3:319-324, 1987.

[11] A.S. Lapedes, C. Barnes, C. Burks, R. M. Farber, and K. M. Sirotkin. Application of
neural networks and other machine learning algorithms to DNA sequence analysis. In
G. L. Bell and T. G. Marr, editors, Computers and DNA. Addison- VVesley, Redwood
City CA, 1988.

12] R. Legouis et al. The candidate gene for the X-linked Kallmann Syndrome encodes a
g
protein related to adhesion molecules. Cell, 67:423-435, 1991.

[13] K. Nakata, M. Kanehisa, and C. DeLisi. Prediction of splice junctions in mRNA.
Nucleic Acids Res., 13:5327-5340, 1985.

[14] F.C.N. Pereira and S.M. Shieber. Prolog and Natural-Language Analysis. Center for
the Study of Language and Information, Stanford CA, 1987. -

[15] D. B. Searls. Representing genetic information with formal grammars. In Proceed-
ings of the National Conference on Artificial Intelligence, pages 386-391. American
Association for Artificial Intelligence, 1988.

[16] D. B. Searls. Investigating the linguistics of DNA with definite clause grammars.
In E. Lusk and R. Overbeek, editors, Logic Programming: Proceedings of the North
American Conference, pages 189-208. MIT Press, 1989.

[17] D. B. Searls. Signal processing with logic grammars. Intelligent Systems Review,
1(4):67-88, 1989. '

[18] D. B. Searls. String variable grammar: A logic grammar formalism for the biological
language of DNA. Journal of Logic Programming, 1995. In press. :

[19] D.B. Searls and S. Liebowitz. Logic grammars as a vehicle for syntactic pattern recogni-
tion. In Proceedings of the Workshop on Syntactic and Structural Pattern Recognition,
pages 402-422. International Association for Pattern Recognition, 1990.

[20] D. B. Searls and M. 0. Noordewier. Pattern-matching search of DNA sequences using
logic grammars. In Proceedings of the Conference on Artificial Intelligence Applica-
tions, pages 3-9. IEEE, 1991. '

[21] R. Staden. Computer methods to locate signals in nucleic acid sequences. Nucleic
Acids Res., 12:505-519, 1984.

[22] E. C. Uberbacher and R. J. Mural. Locating protein-coding regions in human DNA
sequences by a multiple sensor-neural network approach. Proc. Nat. Acad. Sci. USA,
88:11261-11265, 1991.

Logic Grammars (I)

e definite clause grammar is an alternative Prolog
" notation, creating a recursive-descent parser:

sentence --> noun_phrase, verb_phrase.
noun_phrase —--> determiner, modlfled noun.
modified_noun --> noun |

adjectlve, modified_noun.
determiner --> [the]. noun --> [man].

e we use a derivation operator to denote a parse query
(which may be over an initial substring):

| ?- sentence ==> [the,old,man,saw,me].

yes '

| ?- noun_phrase ==> [the,old,man,saw,me]/R.
R = [saw,mel

Logic Grammars (1II)

e logic grammars also allow parametérs, and
embedded Prolog code (in curly braces)

sum(S) —--> [X], sum(S0), {S is X+SO}.
sum(0) --> [J.

e terminal strings may also be replaced on the input
string, when they appear after the non-terminal on
the left hand side of a rule:

- inversion, [Y] --> [X], {Y is -X}, inversion.
inversion --> [J.

e this allows grammars to alter the input, and to
perform wholesale operations on strings, when
invoked in the following pattern:

inversion ==> Input/Output.

Logic Grammars (III)

e a DCG translator adds “input/output” parameters
called difference lists to a grammar rule, converting
it into a -‘Prolog rule that accepts an input string
and returns the “leftover” |

a —> b, c. a(S0/S) :- b(80/81),
| c(81/8).

e terminal elements are shown in Prolog lists (or
double-quoted character strings), which are
translated to a form that consumes input

a —> [x,y,z]. a(S0/S) :- S0=[x,y,zlS].
e parameters and attached code are easily added

a(X) —--> b(xX), a(X,80/8) :—- b(X,80/8),
{Code}. Code.

A Gene Grammar (I)

e genes can be described hierarchically, with
interspersed “gaps” (bounded or unbounded):

gene —-> upstream, xscript, downstream.
upstream —_>
cat_box, 40...50, tata_box, 19...27.
xXscript —-> _
cap_site, ..., xlate, ..., polyA_site.

e terminal elements are double-quoted DINA bases:

cat_box --> pyrimidine, '"caat".
tata_box —--> "tata'", base, "a'".
cap._site —-> "ac".

base —--> purine | pyrimidine.
purine —_ ||gn l Wt
pyrimidine -—--> "t" | "c".

A Gene Grammar (III)

e to write a grammar for a protein coding region, we
first specify codons (including stop codons)

stop_codon --> "tga" | "ta'", purine.
‘codon(met) --> "atg".

codon(phe) --> "tt", pyrimidine.

codon(ser) —--> "tc'", base. % etc...

e exons and translated regions are defined recursively:

xlate([met|RestAAs]) —--> codon(met),
rest_xlate(RestAAs), stop_codon.

rest_xlate(AAs) --> exon(AAs). .

rest_xlate(AAs) --> exon(AAsl), intron,
rest_xlate(AAs2), {appehd(AAsl,AAs2,AAs)}.

exon([]) --> [J. | :

exon([H|T]) --> codon(H), exon(T).

A Gene Grammar (IV)

intron
splice :
exon N ' ! exon N+1
]
3
(ISR N [TR SN TN N | IR Yy Ny N [B I B reading
IR O DU [NS Y NN O DU (N TN (SN SRS O SN I WU I WS} N
(IS I U N SR I SO 1 TN O CANNE T N WU SR B O B N | y Jrames

e introns are handled using a context-sensitive rule to
account for splices that straddle any reading frame:

intron —-—-> splice.
intron, [B1] --> [B1], splice.
intron, [B1,B2] --> [B1,B2], splice.

Splice —_> Hgt" s . e e s "ag" .

String Variable Grammar (I)

e in a logic grammar framework, we can extend
context-free grammars to allow variables on the
right-hand sides of rules, specifying substrings of
tokens to which arbitrary substitutions are applied

0+ -—> 0.
[HIT]+F --> F:H, T+F.

-_ -—> 0. :
[HIT]-F --> T-F, F:H.

1:X --> [X]. 7. identity substitution
palindrome'—¥> X+1, X-1.

copy —-> X+1, X+1.

e thus palindrome and copy languages appear similar

String Variable Grammar (II)

e SVGs handle arbitrary numbers of copies (beyond
~ the capability of TAGs), and many other non-con-
text-free formal languages, e.g. {a™d"c” | n > 0}:

F:_ --> [F]. % functor substitution

aNbNcN —--> N+a, N+b, N+c.

e complementarity substitutions come in “flavors”:

d:t --> [a]. d:g —--> [c]. 7. DNA/DNA
d:a --> [t]. d:c ——> [g]. 7% subst’n
r:u --> [a]. r:g ——> [c]. 7% RNA/DNA
r:a --> [t]. r:c ——> [g]. 7% subst’n
s:u —--> [a]. s:g ——> [c]. 7% secondary
s:a ——> [ul. s:c ——> [g]. % structure

s:g ——> [u]. s:u ——> [g]. % (non-WC)

String Variable Grammar (III)

e some biological SVGs:

stem_and_loop ~-> Stem+1, Loop+l, Stem-s.
pseudoknot --> X+1, Y+1, X-s, Y-s.
attenuator --> X+1, X-s, X+1.

tRNA --> W+1, X+1, X-s,
Y+1i, Y-s, Z2+1, Z-s, W-s.

e recursion and string variables as parameters:

cloverleaf --> X+1, leaves, X-s.
leaves —-> Y+1, Y-s, leaves | [J.

éluster(X) ——> [0 | X+1 | X-d), cluster(X).

String Variable Grammar (IV)

e used this way, SVGs lie strictly between context-free
and indexed grammers in generative power

e allowing composition of string variable substitutions
increases their expressive power, e.g. {aQn | n > 0}:

2:X -—> [X,X]. % doubling substitution

double(X) --> X+1 | double(X+2).
e this allows multi-level grammars:

p:’A° ——> [g,cl, ([al | [gl | [cl | [ul).
p:’B’ -=> [g,al, (Lcl | [ul).
% etc... % protein substitution

protein(X) ~-> rna(X+p).
rna(X) —--> dna(X-r).
dna(X) --> X-4d.

'String Variable Grammar (V)

e left-hand-side string variables are useful for
modelling mutation and evolution

duplication, X+1, X+1 —-=> X+1.
inversion, X-d —--> X+1.
transposition, Y+1, X+1 --> X+1, Y}l.

evolution --> [] | event, evolution.
event, X+1 --> X+1,
(duplication | inversion | transposition).

e in fact, additional biological knowledge can be
incorporated, e.g. the fact that repeats S may give
rise to excision of the intervening sequence X as a
circle C (created here using recursive derivation)

excision(C), S+1 —--> S+1, X+1, S+1,
{(8,X)==>C/C}.

String Variable Grammar (VI)

e gene expression can also be modelled by means of
such “side-effecting” grammars (using an additional
predicate end that ensures the entire string is con-
sumed), invoked as expression ==> DNA/Protein

expression —-—>
transcription, processing, translation.

transcription, X-r --> X+1, end.

processing, X+1 —--> X+1, (g,ul, _+1, Ea,g],
processing. '
processing --> [].

translation, [’M’|[X]+1 --> _+1, [a,u,gl,
X+p, termination, _+1, end.
termination —--—-> [u,g,a] | EU,a,ng | [u,a,al.

Transfer RNA Syntax

a
c
c
Acceptor
Arm -
3 —| T¥CAM
D Arm -
s/ “TT111
L ~—s,,,
9g4.2 \ . t
— ~
A Y
=N
Anticodon = Extra Arm
Arm

Yeast ChIII tRNA Parsing

tRNA("ttg"): span=90470/90583
"ggttgtt": span=90470/90477 cost=0
turn: list="tg"
D arm: span=90479/90496
stem: list="gcc".
loop: list="gagcggtctaa" cost=0
~stem: list="ggc" cost=0
base: list="g"
anticodon arm: span=90497/90546
"cctga": span=90497/90502
loop: cost=0)
pre_codon: list="tt"
~codon: list="caa"
purine: list="g"
intron: span=90508/90540
...: size=7
“ttg": span=90515/90518 cost=0
: size=22
base: list="c"
~"cctga™: span=90541/90546 cost=0
extra arm: span=90546/90559
...: size=13
TpsiC arm: span=%0559/90576
stem: list="aagag"
loop: list="ttcgaat” cost=6
~stem: list="ctctt" cost=0
~"ggttgtt”: span=90576/90583 cost=0.5

Group I Introns

p5 =
a
a a
-— -— a a
—-— — Gumug
u-g —-— P g-c Q
= =|p2 p4 o=g
—pl —p p3 u"--a E?‘
it u&,', 111
a R o
gaucagg
(NERRNN i
2 . agauvauagucec — () —
p —-—
s ¥ —| P9

Fungal Mitochondrion
Intron Parsing

group I intron: span=3237/4660 e
conserved regions: span=3237/4638
P region: span=3237/3249 cost=297
list="aatttcaaaaac*
P-Q loop: span=3249/3283
...t size=34
Q region: span=3283/3293 cost=230
list="gatttgaage*
...: size=135
R region: span=3428/3442 cost=258
list="gttcaacgactaag"*
R-S loop: span=3442/4626
...t size=82
ORF: span=3524/4508 size=984
...t size=118
S region: span=4626/4638 cost=134
list="aagacatagtct"
secondary struture: span=3230/4660
P3: span=3230/3235 list="ttggg*
pd: span=3240/3246 list="ttcaaa“
pS/~p5: span=3249/3283
~p4: span=3285/3291 list="tttgaa"
p6/~p6: span=3290/3431
p7: span=3435/3440 list="gacta"
~p3: span=3476/3481 list="cccaa"
p8/~p8: span=3481/4625
~p7: span=4632/4637 list="tagtc*
p9/~p9: span=4640/4660

Compositional Gene Search

3 > |

Syntactic Gene Search

gene

N

€xon intron €xon

/ \/ \\\

cap start donor branch acccptor stop polyA

promoter

Gene Search Combinatorics

2 Potential Internal Exons

Potential Genes =

Nondeterministic Parsing

——V//////J/A,é%&fz

—?//////////////7////3%\@

— I~

— A~
I~
— /g/—\fZ///:/\z
— 7 /A}/—\ff//ﬁ} ' 5

— 777777 ///}/—\WZF/\E ;
——W / ” / // // M :

Gene Prediction Metrics

P
7 ~
” ~ .
L7 e \alternatz_ve
2 ~. splice

. ~
z ~

actual exon

"N\

s predicted exon
——

false true false true
negative positive positive negative

Training/Test Sets

clustering

splice junction WM
non-coding PA
non-coding hextuples

start codon +WM
coding PA
coding hextuples

parsing
set (48)

exonsjgene
infernal exon lengths
upstream fextuple

(3x cross-

grammar
validation)

wand 6

Syntactic Training

1.0
) . Y= — -V
=~ .
607
0.94
a-—-—"* — 553%
0.8 -
A 4 a
A
® ~ S0%
0.7 4
Specificity v
Sensitivity a - 456,
0.6 Correlation e
Exon Fraction =
i~ 40%
T T T T T
0 1 2 3 4

Training Epoch

Relative Performance

Correlation
Sensitivity
Specificity

- PPV

Exons

Genes

Epoch
Rank

Inter-Species Comparison

Correlation Coefficient / Exon Fraction) i
Distance;, =

CCqy CCpy - CCpy CC5

UPGMA Dendrogram

Early Work

- the earliest references to linguistics of DNA were simply
the free use of the linguistic metaphor by biologists, e.g.
in naming processes such as transcription, translation,
proofreading, editing, etc., and the occasional purely
philosophical treatise by eminences such as Chargaff

- the first investigations by linguists (e.g. Shanon) were
skeptical, based on a very limited view of the genetic
code and protein translation as devoid of context

- Jimenez-Montano and co-workers made first use of
grammars, but essentially only as data structures for
analysis of information-theoretic complexity of
protein sequences

- Brendel and Busse proposed a simple automaton for
- gene expression, in what was the first demonstration of
any faith in the utility of linguistic formalisms, but they
never pursued the work further

[1] E. Chargaff. Preface to a grammar of biology. Science, 172:637-642, 1971.

[2] B. Shanon. The genetic code and human language. Synthese, 39:401-415,
1978. .

[3] W. Ebeling and M. A. Jimenez-Montano. On grammars, complexity,
and information measures of biological macromolecules. Math. Biosci.,
52:533-71, 1980.

[4] M. A. Jimenez-Montano. On the syntactic structure of protein sequences
and the concept of grammar complexity. Bull. Math. Biol.. 46(4):641-659,

1980.

[3] V. Brendel and H. G. Busse. Genome structure described by formal
languages. Nucleic Acids Res., 12:2561-2568, 1984.

........................

Vocabularies and Codes

- Trifinov and colleagues (Weizmann Institute) coined the

use of the term "linguistics" in relation to DNA, but use it
to refer to vocabularies, or tendencies of certain words to
appear with different frequencies in certain contexts, and
more recently to the notion of overlapping "codes" or
signals of various types which overload the DNA and
increase its information-theoretic complexity

(1] E.N. Trifinov and V. Brendel. Gnomic — A Dicté’onary of Genetic Codes.

Balaban Publishers, Rehovot-Philadelphia, 1986.

[2] V. Brendel, J.S. Beckmann, and E.N. Trifinov. Linguistics of nucleotide
sequences: Morphology and comparison of vocabularies. J. Biomol.
Struct. Dynamics, 4:11-21, 1986.

[3] J.S. Beckmann, V. Brendel, and E.N. Trifinov. Intervening sequences ex-
hibit distinct vocabulary. J. Biomol. Struct. Dynamics, 4:391-400, 1986.

[4] E.N. Trifinov. Nucleotide sequences as language: morphological classes of -
words. In H.H. Bock, editor, Classification and Related Methods of Data
Analysis, pages 57-64. Elsevier (North Holland), 1988.

[5] E.N. Trifinov. The multiple codes of nucleotlde sequences. ‘Bull. 11/[ath
Biol., 51:417-432, 1989.

[6] S. Pietrokovski, J. Hirshon, and E.N. Trifinov. Linguistic measure of
taxonomic and functional relatedness of nucleotide sequences. J. Biomol.
Struct. Dynamics, 7:1251-1268, 1990.

[7] S. Pietrokovski and E.N. Trifinov. Imported sequences in the mitochon-
drial yeast genome identified by nucleotide linguistics. Gene, 122:129-137,
1992.

[8] E.N. Trifinov. DNA as a language. In H.A. Lim. J. Fickett, C.R. Cantor,
and R.J. Robbins, editors, Proceedings of the 2nd International Confer-
ence on Bioinformatics, Supercomputing, and Complez Genome Analysis,
pages 103-110. World Scientific, 1993. |

Vocabularies and Statistics

- the vocabulary-based approach has been picked up by
mathematicians (notably Gelfand and Pevzner) studying
base compositions using Markov models, etc.

[1]‘ P. A. Pevzner, M. Y. Borodovsky, and A. A. Mironov. Linguistics of nu-
cleotide sequences: I. The significance of deviation from mean statistical
characteristics and prediction of the frequency of occurrence of words. J.
Biomol. Struct. Dynamics, 6:1013-1026, 1989.

[2] P. A. Pevzner, M. Y. Borodovsky, and A. A. Mironov. Linguistics of
nucleotide sequences: II. Stationary words in genetic texts and zonal
structure of DNA. J. Biomol. Struct. Dynamics, 6:1027-1038, 1989.

[3] M.S. Gelfand, C.G. Kozhukhin, and P. A. Pevzner. Extendable words in
nucleotide sequences. CABIOS, 8(2):129-135, 1992. '

[4] M. S. Gelfand. Genetic language: metaphore or analogy? BioSystems,
30(1-3):277-288, 1993.

Stochastic Grammars

- Dav1d Haussler and colleagues (U.C. Santa Cruz) study
RNA structure using stochastic context-free grammars as
a generalization of hidden Markov models

- [1] Y. Sakakibara, M. Brown, 1.S. Mian, R. Underwood, and D. Haussler.
Stochastic context-free grammars for modeling RNA. In Proceedings of

the Hawaii International Conference on System Sciences, Los Alamitos,
CA. 1994. IEEE Computer Society Press.

[2] Y. Sakakibara, M. Brown, R. Hughey, 1.S. Mian, K. Sjélander, R.C.
Underwood. and D. Haussler. Recent methods for RNA modeling us-
ing stochastic context-free grammars. In Proceedings of the Astlomar
Conference on Combinatorial Paitern i\/[atchzng New York, NY, 1994,
Springer-Verlag. In press.

‘Regulatory Grammars

- the work of Julio Collado (now at U. of Mexico,
Cuernavaca) is based on the application of ideas from
transformational grammar to account for variation in the
arrays of regulatory elements associated with bacterial
genes

- Collado claims a formal proof that context-free grammars
are inadequate, based on the pumping lemma and the
observation that order of regulatory factors are independent

- of the genes they control [2]

- to date, no practical applications have been developed

(1] J. Collado-Vides. A transformational-grammar approach to the study of
the regulation of gene expression. J. Theor. Biol., 136:403-425, 1989.

[2] J. Collado-Vides. The search for a grammatical theory of gene regulation
is formally justified by showing the inadequacy of context-free grammars.
CABIOS, 7(3):321-326, 1991.

[3] J. Collado-Vides. A syntactic representation of units of genetic infor-
mation — a syntax of units of genetic information. J. Theor. Biol.,

148:401-429, 1991.

[4] J. Collado-Vides. Grammatical model of the regulation of gene expres-
sion. Proc. Nat. Acad. Sci. USA, 89(20):9405-9409, 1992.

[5] J. Collado-Vides. The elements for a classification of units of genetic
information with a combinatorial component. J. Theor. Biol., 163(4):527~
548, 1993.

[6] J. Collado-Vides. A linguistic representation of the regulation of tran-

scription initiation. I. An ordered array of complex symbols with distinc-
tive features. Biosystems. 29(2-3):87-104, 1993. .

[7] J. Collado-Vides. A linguistic representation of the regulation of tran-
scription initiation. II. Distinctive features of sigma 70 promoters and
their regulatory binding sites. Biosystems, 29(2-3):105-128, 1993.

- Splicing Systems

- Splicing Systems are formal structures developed by Tom
Head (now at SUNY Binghampton) and others to study
the generative capacity of restricting and religating sets of
double-stranded linear and/or circular DNA molecules

[1] K. Culik IT and T. Harju. The regularity of splicing systems and DNA.
In 16 International Colloguium on Automata Languages and Program-
ming (Lecture Notes in Computer Science 372), pages 222-233. Springer-
Verlag, Berlin, 1989.

[2] K. Culik II and T. Harju. Splicing semigroups of dominoes and DNA.
Discrete Applied Mathemalics, 31:261-277, 1991.

(3] K.L. Denninghoff and R.W. Gatterdam. On the undecidability of splicing
systems. International Journal of Computer Mathematics, 27:133-145,
1989.

[4] R.W. Gatterdam. Splicing systems and regularity. International Journal
~ of Computer Mathematics, 31:63-67, 1989.

[5] R.W. Gatterdam. Algorithms for splicing systemsy. SIAM Journal of
Computing, 21:507-520, 1992.

[6] T.Head. Formal language theory and DNA: An analysis of the generative
capacity of specific recombinant behaviors. Bull. Math. Biol., 49(6):737-
759, 1987.

[7] T. Head. Splicing schemes and DNA. In G. Rozenberg and A. Salo-
maa, editors, Lindenmayer Systems — Impacts on Theoretical Computer
Science, Computer Graphics, and Developmental Biology, pages 335-342.
Springer-Verlag, Berlin, 1992. (also in Nanobiology 1:335-342, 1992).

[8] R. Siromoney, K.G. Subramanian, and V.R. Dare. Circular DNA and
splicing systems. In Parallel Image Analysis (Lecture Notes in Computer
Science 654), pages 260-273. Springer- Verlag, Berlin, 1992.

[9] R. Siromoney, K.G. Subramanian, and V.R. Dare. On identifying DNA
splicing systems from examples. In (Lecture Notes in Artificial Intelli-
gence 642), pages 305-319. Springer-Verlag, Berlin, 1992.

Structure and Search

- my own work is based on:
- the study of structural phenomena in biological sequences
and their classification in terms of formal language theory
- the development of domain-specific grammar/parser
systems and their use in syntactic pattern recognition
tasks such as gene search

[1] D. B. Searls. Representing genetic information with formal grammars. In
Proceedings of the National Conference on Artificial Intelligence, pages
386-391. American Association for Artificial Intelligence, 1988.

[2] D. B. Searls. Investigating the linguistics of DNA with definite clause
grammars. In E. Lusk and R. Overbeek, editors, Logic Programming:
Proceedings of the North American Conference, pages 189-208. MIT
Press, 1989. '

[3] D. B. Searls and M. O. Noordewier. Pattern-matching search of DNA
sequences using logic grammars. In Proceedings of the Conference on
Artificial Intelligence Applications, pages 3-9. IEEE, 1991.

[4] D. B. Searls. The computational linguistics of biological sequences. In
L. Hunter, editor, Artificial Intelligence and Molecular Biology, chapter 2,
pages 47-120. AAAI Press, 1993.

[5] D.B. Searls and S. Dong. A syntactic pattern recognition system for DNA
sequences. In H. A. Lim, J. Fickett, C. R. Cantor, and R. J. Robbins, edi-
tors, Proceedings of the 2nd International Conference on Bioinformatics,
Supercomputing, and Complex Genome Analysis, pages 89-101. World
Scientific, 1993..

[6] D. B. Searls. The linguistics of DNA. American Scientist, 80(6):579-591,
1992.

[7] D.B. Searls. String variable grammar: A logic grammar formalism for the
biological language of DNA. Journal of Logic Programming, (in press).

[8].S. Dong and D. B. Searls. Gene structure prediction by linguistic meth-
ods. Genomics, 23:540-551, 1994

