UCRL-JC-122529

CONF-FL0 569--10

pe-Off Layer Plasma
During a Disruption

Simulation of the Scra

azp 0 9 1995

G.D. Porter
G.R. Smith

A.G. Kellman
P.L. Taylor

T.D. Rognlien
J-A. Crotinger
This paper was prepared for submittal to
12th International Conference on Plasma Surface Interactions in Controlled Fusion Devices

Saint-Raphael, France

May 20-24, 1996

March 16,1996

DISTRIBUTION OF THIS DOCUMENT [S UNLIMITED )f

Vi)

RN

MR OIS




DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.




Simulation of the Scrape-Off Layer Plasma
During a Disruption

T.D. Rognlien, J.A. Crotinger, G.D. Porter, and G.R. Smith
Lawrence Livermore National Laboratory,
Livermore, California 94551 USA.
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The evolution of the scrape-off layer (SOL) during a disruption in the DIII-D
tokamak is modeled using the 2-D UEDGE transport code. The focus is on the
thermal quench phase when most of the energy content of the discharge is rapidly
transported across the magnetic separatrix where it then flows to material surfaces or
is radiated. Comparisons between the simulation and an experiment on the DITI-D
tokamak are made with the heat flux to the divertor plate, and temperature and
density profiles at the SOL midplane. The temporal response of the separate electron
and ion heat-flux components to the divertor plate is calculated. The sensitivity of
the solution to assumptions of electron heat-flux models and impurity radiation is
investigated.

o B s



J

1. Imtroduction

Disruptions in tokamaks can often be characterized by two periods: the first is
the thermal quench where the plasma energy of the core is lost, and the second is
the current-decay where the plasma current is lost [1). The scrape-off layer (SOL)
plasma takes on an important role during the thermal quench of a tokamak disruption.
Specifically, the SOL determines how the power from the core plasma is distributed on
material surfaces, how impurities radiation affects the power loss, and the properties
of the SOL for carrying halo currents. The location and temporal variation of the heat
load on surfaces are important input for material ablation calculations [2]. In addition
to the large heat fluxes, the plasma current is typically shunted through the vacuum
vessel in the current-decay phase, causing large J X B forces on the vessel. Also, the
large inductive electric field during the current-decay phase can produce damaging
run-away electrons. All of these consequences are of concern for large future devices

such as ITER.

In an effort to better understand the energy loss during the thermal quench, we
simulate the SOL plasma for the DIII-D tokamak [3,4] in a time-dependent fashion
using the SOL transport code UEDGE [5,6]. Our primary focus here is on the initial
thermal quench phase when most of the core energy is lost, but the total current
and the shape of the MHD equilibrium is maintained. In Sec. 2, we describe the
experimentally measured characteristics of a disruption in DIII-D, and the simulation
model is given in Sec. 3. Section 4 contains a comparison between the experiment
and the simulation where we discussion the importance of assumptions in the model,
and we give a summary in Sec. 4.

2. Experimental measurements during a disruption

Various types of disruptions can occur in the DIII-D tokamak, e.g., from puffing
deuterium or impurity gas and from exceeding a plasma S-limit. Impurity induced
disruptions in DIII-D are described elsewhere [3,4]. Here we consider a f-limit dis-
ruption that occurred on discharge 84539. This single-null divertor discharge had a
plasma current of 1.5 MA, a toroidal magnetic field of 1.2 T, and a g safety factor
of ~ 2.5. Neutral beam injection was ramped up to 17 MW before the disruption
near 2.2 s into the discharge. In Fig. 1, we show the plasma current (I,) and the
central soft x-ray signal (measuring the central electron temperature, T;) near the
time of the disruption. First, the plasma energy in the core decays (measured by Te.),
followed by the decay of I,,.

During the time of the thermal quench (2.20 s to 2.21 s), the heat flux on the
divertor plates rises rapidly and broadens as shown in Fig. 2. The inner and outer
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plate separatrix strike points are denoted by the dashed lines on the major axis .

coordinate, R. Note that the heat flux is predominately on the SOL sides of the strike
points. Also, often the temporal behavior is characterized by bursts with widths of
0.5-1 ms, which is about the temporal resolution of the instrument.

The electron temperature (T:) and density (n) are measured by a Thomson scat-
tering system near the outer midplane. Three time-slices are shown in Fig. 3, the first
being before the disruption, the second is half-way through the thermal quench and
the last is at the end of the thermal quench. Note the broadening of the SOL and the
decrease in the temperature deeper into the core. Because of the scale, the first two
time-slices do not show the maximum T, measured (near r/a = 0.4): at ¢ = 2.1860 s,
Te-maz = 1.5 keV and at ¢ = 2.2055 s, Te—maor = 1.0 keV. There are charge-exchange
recombination (CER) measurements of the ion temperature, T;, which is typically a
factor of two or more above T.

3. Numerical model

The UEDGE code solves for the plasma fluid equations in the 2-D poloidal plane,
including the region somewhat inside the separatrix and extending into the SOL. A
finite volume discretization method is used, and the resulting difference equations
are solved with a fully implicit Newton method [5,6]. The code has been used in

- a steady-state mode to model many normal (non-disrupting) DIII-D discharges [9].

The 2-D mesh is derived from the poloidal magnetic flux surfaces as one coordinate
which are constructed by the GA EFIT code. With the poloidal flux, 1, normalized
to unity on the separatrix, we take the inner simulation boundary to be . = 0.98
and the outer boundary at t,, = 1.10; the private flux region is also included.

Plasma equations are solved for the ion density, n;, and ion parallel velocity Vil
and separate equations are used for the electron and ion temperstures, T, and T:.
Poloidal transport is the geometrical projection of the parallel transport from Bragin-
skii {7], except that thermal flux limits are used as discussed below. Radial transport
is described by anomalous diffusion coefficients chosen to fit experimental data. We
can use separate diffusion coefficients for density (D), electron energy (x.), ion energy
(xi)- The neutral species is modeled by a simple 2-D diffusive fluid equation for the
present calculations. Atomic physics rate coefficients for ionization, recombination,
and the associated energy loss are provided by look-up tables as described elsewhere

[8].

The practice of adjusting the radial diffusion coefficients to obtain a fit to exper-
imental data requires some comment for the case of disruptions where the details of
the transport are not well understood and may not even be diffusive. However, given




that the plasma energy is somehow transported to open magnetic field lines in the
thermal quench time, we can study the 2-D effect of the competition between the
radial flux and the assumed classical parallel transport to see if a consistent picture
evolves.

One correction to the classical parallel transport that we consider is limiting the
thermal heat flux. With the diffusive thermal fluxes being ¢.; = —&.:07.:/0s, the
modification is as follows

Ke,
Kei = T T (1)

(1 + lgeil/as)

Here ¢; = cfnvse i Te; is the thermal flux reduced by the coefficient ¢;. More discussion
of flux limiting for normal discharge parameters is given elsewhere [10]. However, for
disruptions, little is know of the particle distribution functions. Therefore, we shall
treat c; unknown,-and investigate the effect of taking different values.

4. Simulation of the SOL and comparison with the experi-
ment

We obtain a pre-disruption equilibrium with GEDGE by using the anomalous
diffusion coefficients of D = x. = x; = 1 m?/s. While these give fair comparison
with the data, no attempt was made to fit the pre-disruption data precisely as we
focus on the disruption period. The recycling coefficient at the plates are set at 0.95
throughout the simulations. As can be seen from Fig. 1, the energy of the plasma is
lost in a time of about 10 ms and the energy striking the plates in this timeis ~ 1 MJ.
Allowing for a 50% duty factor for the load on the plates (see Fig. 2, we translate
this into a boundary condition at the core edge for UEDGE of 1 MJ/(0.5%x10 ms) =
200 MW, which we divide equally between the ions and electrons. With this boundary
condition, UEDGE evolves the SOL plasma to equilibrium.

We have run a number of simulations with different anomalous diffusion coeffi-
cients to fit the shape of the divertor heat-flux profiles shown in Fig. 2 and find that
a reasonable fit is found for D = x. = x; = 20 m®/s. The temporal evolution of
the heat flux profiles on the inner and outer divertor plates is shown in Fig. 4. The
five rising curves correspond in order to increasing times from the initiation of the
disruption (see caption). Thus, the increased heat flux first arrives at the outer plate,
it being closer to the outer midplane where a majority of the power is injected into
the SOL owing to the more compressed flux surfaces there. The flux on both plates
is close to steady state by ¢ = 0.3 ms, and the total power to each plate is nearly
the same. The time scale and shape are consistent with the experimental profiles
shown in Fig. 2. There is even a suggestion of the heat pulses being narrower and
more peaked on the inner plate, but the data is too varied for a clear conclusion.



The inner/outer asymmetries may also have to do with toroidal variations that we do
not consider. We did include parallel electric currents from electrostatic fields which
lead to small changes in the asymmetry for the disruption period, but do enhance the
outer plate power by 30% for the pre-disruption equilibrium. We plan to extend this
to inductive fields.

The total heat-flux profiles are not too sensitive to the choice of the flux-limit
factors, ¢y, for the electrons and ions; the results in Fig. 4 has ¢ = 0.1 for electrons
and cs; — oo for ions. The plate temperatures do decrease with c; somewhat, but the
midplane values where we have the Thomson data are not strongly affected. The peak
plate T, is about 250 eV without flux-limiting and 200 eV with c;. = 0.1. An enhanced
energy transmission factor from kinetic effects decreases the plate temperatures; here
we have used standard values of 4.0 for electrons and 2.5 for ions. Another effect
reducing T, at the plate is impurity radiation.

Bolometer measurements indicate that ~ 30—40% of the energy is radiated during
the disruption. We have modeled this by using a fixed-fraction model of carbon
impurities corresponding to a well-mixed plasma. In order to get ~ 30% of the power
radiated, we need a carbon fraction of 25%. The radiation occurs close to the divertor
plates, but peaks about 6 cm away from the separatrix where the plate T, is reduced
to ~ 10 eV; in this case, the peak plate T. is reduced to 100 eV. The effect on the
plasma heat-flux profile is shown in Fig. 5;the absorption of the impurity radiation
on the plate is not included, but would broaden the profile modestly. In the current

decay phase, it will be important to evolve the impurity species [1].

Direct comparison between midplane experimental data of 7. and T: and the
simulation with 25% carbon is shown in Fig. 6. The dotted line for T: for 6R =
R — R, < 0 does connect to a data point not shown. The comparison would fit
better if the separatrix position were moved about 1 cm, shifting the experimental
data outward. Such a shift is not unreasonable given the uncertainty in the data.
The high experimental T; at R = R — R,, = 2.6 cm appears similar on many time-
slices, and may be erroneous. The experimental density (not shown) decays a factor
of two over the simulation region while the simulation density only decays about 20%.
The effect of removing the impurity radiation is to increase the midplane simulation
temperatures by 30-40% in the SOL region.

5. Summary

We have simulated the thermal quench phase of a high-f disruption in DIII-
D using the UEDGE transport code. Choosing anomalous diffusion coefficients of
20 m?/s gives a reasonable fit to the divertor heat-flux profiles. The response time
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of ~ 0.3 ms is roughly consistent with the data. Kinetic effects such as thermal
flux limits and enhance energy transinission primarily affect the temperatures on the
plates, and not the heat flux profiles. Impurity radiation also reduces the plate T, and
narrows the heat flux profile. Rough agreement is found for the midplane temperature
profiles and shifting the separatrix 1 cm would improve this.

These calculations show the feasibility of modeling a number of the SOL aspects of
disruptions with a transport code that could be used in ablation studies; the detailed
nature of the escaping energy spectrum requires a kinetic treatment. Important
additional work is to assess the response of the growing SOL to carrying current
induced by the rising loop voltage.
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Figures

Fig. 1. Variation of plasma current and central soft x-ray signal measuring Te. for
DIII-D discharge 84359.

Fig. 2. Temporal and spatial variation of divertor plate heat flux as measured by
the IRTV system for discharge 84359. The dashed lines denote the approximate
location of the inner and outer separatrix strike points.

Fig. 3. Electron temperature (T') and density (n) near the edge region of the midplane
as measured by Thomson scattering at various times.

Fig. 4. Time history of heat flux on the inner and outer divertor plates from UEDGE
with D = y. = x; = 20 m?/s. The five curves with increasing heat flux correspond
respectively to the times 0 s, 0.03 ms, 0.1 ms, 0.3 ms, and steady-state.

Fig. 5. Plasma heat flux on outer plate with and without 25% fixed-fraction of carbon
(coronal model).

Fig. 6. Comparison of T, (Thomson scattering) and T; (CER) at the midplane for
t = 2205 s (lines with data points) with the UEDGE simulation (lines without
data points).



2.0

1.0

0.0
1.0

Plasma Current (MA)

NI (NI I AN AR AN A A A T AT A I
Central Soft X-Ray (arb)
] "I Thermal

quench

06 F
00 Lovrrivasitinein,,
2.19 2.20 2.21 222
Time (s)
Fig. 1




Heat Flux (MW/m?)

2007

sk
o
L=

(W i/ <

W 5

'Il\‘\\é}g}”/}&‘\\\‘ \% ‘k;f-
Wit M

&

.’T/ PANY
]



T (keV) n (10°m™)

0.16 1=2.18608 120 1=2.1860 8

- ; Eﬁ#@%

X i :
000l B, .| g0 ; |
0.15 A=220568  q50 t=2.2066 5

'IEK:

i : - e

: - %
0.00""3"54..1_-_00....#-.-,,,
0.16 t"‘2 2105 s 12.0 t—'2 2105 s

Eﬁ!‘“‘% Z ?%}éi

ﬁ 5 miiigi-!;

0.00 'eboetet P F 0.0 boweter 1 L3 1 et
05 - 10 156 05 1.0 1.6
r/a | r/a
Fig. 3




_ Poloidal heat flux (MW/m?)

120

80

02 -01

Inner
plate

0

Outer
plate

4

~

Y S~——s

0 0.1 02

Distance from strike point (m)

Fig. 4



Poloidal heat flux (MW/m?)

120

(o0
(=]

o
1=

0 . .
' 0.1
Distance from strike point (m)

Fig. 5




0.02 0.04 0.06

0 R[m]

0

Fig.6



