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Abstract

Numerical studies of the nonlinear evolution of MHD—type tearing modes in
three-dimensional toroidal geometry with neoclassical effects are presented. The
inclusion of neoclassical physics introduces an additional free-energy source for the
nonlinear formation of magnetic islands through the effects of a bootstrap current
in Ohm’s law. The neoclassical tearing mode is demonstrated to be destabilized
in plasmas which are otherwise A’ stable, albeit once an island width threshold
is exceeded. The plasma pressure dynamics and neoclassical tearing growth is

_shown to be sensitive to the choice of the ratio of the parallel to perpendicular

diffusivity (xji/x.)- The study is completed with a demonstration and theoretical
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comparison of the threshold for single helicity neoclassical MHD tearing modes,
which is described based on parameter scans of the local pressure gradient, the
ratio of perpendicular to parallel pressure diffusivities x, / Xj|» and the magnitude

of an initial seed magnetic perturbation.



1 Introduction )

The performance gains of the last several years in tokamak fusion plasmas has gener-
ated a resurgence in the observation of low helicity magnetic oscillations [1,2]. Often, the
onset of such oscillations either cause the plasma to disrupt violently [3, 4] or to degrade
significantly the plasma confinement {1]. Experimental observations indicate that these
instabilities are associated with magnetic reconnection—an intrepretation based on the
observation of the slow growth of these instabilities and mode numbers which are reso-
nant in the plasma. Additionally, the electron cyclotron emission diagnostic indicates the
presence of flatspots in the electron temperature profile about the resonant surface that
are characteristic of magnetic island formation associated with the tearing events[l, 2, 1].

One theoretical explanation for such modes is destabilization from the perturbed
bootstrap current. Bootstrap currents arise from the viscous damping of the poloidal
electron flow. The portion of the flow produced from the poloidal projection of the dia-
magnetic current when balanced against electron-ion friction yields a parallel current
proportional to the cross-field pressure gradient, i.e., the bootstrap current. In the pres-
ence of a magnetic island, the pressure flattens within the island separatrix when parallel
transport is fast relative to perpendicular transport. The pressure flattening eliminates
the neoclassical bootstrap current within the magnetic island, but a cross-field pressure
gradient remains outside the island separatrix. Since the pressure contours deform due

to the island formation, a perturbed bootstrap current develops. For an equilibrium with




dp/dq < 0, where p is the equilibrium pressure and q is the inverse rotational transform,
this perturbation produces a destabilizing effect[5, 6, 7).

The destabilization mechanism is predicated on the assumption that the pressure
equilibrates on the modified magnetic surfaces. When the island width is small enough,
this is no longer a valid approximation as perpendicular transport mechanisms allow
the pressure to cross magnetic surfaces faster than the pressure can equilibrate on the
perturbed surfaces. When the magnetic island is smaller than a threshold value, the
helical perturbation of the pressure profile about the island is insufficient to destabilize
the island. An analytical model for the island dynamics which incorporates many of
these features can be developed by using a nonlinear Rutherford theory[8] amended to

included neoclassical effects[9]. In this particular model, the magnetic island width, W,

is given by
aw _ osBy W
117 =A + 9.2663 ;m, » (1)

where I ~ 0.8227, W; ~ 1.8W,, A’ is the stability index from resistive MHD theory[10],

W, = 2.83 (l‘i)o'zs( . )0'5, 2)

Xl €s3sM

€ = €05y Ss = poq Y, B, = —Poq?e;%p,. Here, x. and Xy are the perpendicular and
parallel pressure diffusivities respectively, the mode is resonant at p=rla=p,=r,/a
where g = m/n, p, is the pressure gradient evaluated at the resonant surface normalized
to the pressure on-axis, A’ is the tearing mode matching parameter, and G, is the nor-

malized pressure on axis. (Note that the introduction of Po is strictly for convenience
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when making comparisons with the later numerical simulations, the real dependency is
on the unnormalized local pressure gradient.) The la;st term in Eq. (1) describes the per-
turbed bootstrap current which is typically destabilizing in tokamaks. The novel aspect
of neoclassical instabilities is that magnetic islands can occur even in the limit of resistive
MHD tearing stability, A" < 0. This model is essentially the equivalent-of the Qu and
Callen model[5] or the model of Carrera et al. [6]in the limit x)/x 1 — o0, i.e., where the
pressure cémpletely equilibrates on each flux surface.

The dynamics of the island evolution model can be summarized in the simple phase
space diagram of Figure 1 which assumes A’ < 0. The diagram shows two fixed points:
a nonlinear island threshold, below which island formation is suppressed, and a large
saturated island width. The two fixed points can be determined by setting the growth
rate of Eq. (1) to zero and solving the resultant quadratic for the island width. For a
sufficiently well separated threshold and saturation width, the solution to the quadratic

approximates as

2.8023 A’ S

0
X1
Wikreshola = B ('ﬁ) ) 3)

Wit 9.26e2-5£;—8. (4)

At small island width the perpendicular pressure transport dominates over the paral-
lel transport and the pressure profile is unaffected by the island structure, which then
produces no perturbed bootstrap current, and no island growth. As the island width

is increased, the island eventually perturbs the pressure profile and the perturbed boot-




strap current is then able to destabilize the island. An increase in the plasma pressure
gradient shifts the entire phase spacé curve upward. This then reduces the threshold for
the mode and also increases the saturated island width. Alternatively, an increase in the
parallel pressure diffusivity primarily shifts the instability threshold to smaller amplitude,
but leaves the saturated state at nearly the same value. This simple neoclassical MHD
model has shown remarkable dynamical agreement with the experimenta.l'observations
on TFTR[], 2].

To further explore the dynamics of the neoclassical MHD tearing mode in a realistic
toroidal geometry, numerical simulations based on neoclassical reduced MHD equations
have been conducted. In Section 2, the model equations for neoclassical reduced MHD
as implemented in the neofar code are presented. In Section 3, the dynamics of pres-
sure equilibration on magnetic field lines in the presence of an anisotropic diffusivity is
presented. In Section 4, simulation results based on this neoclassical MHD model are

presented. The results are summarized in Section 5.



2 Model Equations ]

In this section, a set of equations for the numerical simulation of resistive instabilities
in a tokamak are presented which include neoclassical viscous stress effects. The deriva-
tion of this reduced set of equations is presented elsewhere{11]. The model is formulated
based on a geometry defined by an ideal MHD equilibria in an axisymmetric toroidal
geometry. This equilibrium is solved numerically with the fixed boundary, equilibrium,
Grad-Shafranov code RSTEQ]12, 13, 14] and is used to define a nonorthogonal “straight-
field-line” coordinate system with the associated covariant and contravariant metric ele-
ments. The full set of two fluid equations are not solved; instead, after a decomposition
of variables into equilibrium (subscript 0) and fluctuation components (subscript 1), a
set of neoclassical reduced MHD evolution equations for the poloidal flux, the toroidal
vorticity and the plasma pressure are used that are valid in the limit of small inverse |
aspect ratio (€ < 1) and low plasma pressure (8 < 1). The equations are implemented
and solved numerically in the code neofar which is based on the formalism of the initial

value code FAR [15).

In axisymmetric systems the equilibrium magnetic field may be expressed as
B=1IV(+V(x Vi, (5)

‘where I can be shown to be a flux function from axisymmetry. When the radial projection

‘of the ideal MHD equilibrium force balance is combined with Ampere’s law and the




representation of the magnetic field, the result is the Grad-Shafranov equation [16], which

is expressed as

/30 2dp _ 1 dl
- (jo8) --fa s - 1 .

where the following normalizations have been made [13]. Length scales have been nor-

malized by the plasma minor radius @ = e¢Ry, where R, is the Shafranov-shifted major

axis and e is the inverse aspect ratio defined as

&€ =— / V ’ (7
but with the exception that the cylindrical coordinate R has been normalized by Ry. The
magnetic field has been normalized by the value (in units of Gauss) B* = walt Bg* , where
I/L,en =1 at the plasma edge. The flux ¥ has been normalized by * = —e?*Rpl 1.
The pressure is normalized to po, the pressure on axis, which leads to the definition
Bo = 8mpoRY/ 17 -

At this point it is also convenient to define two timescales which will be relevant
for the initial value equations. The first is the resistive time 7 which is defined as
TR = € Ry '4mwc2, and will be used to normalize all times. The second is the Alfven
time 74 which is defined as 75 = I2_;p5' Rg*(47)~1. The ratio of these two time scales,
S = 7R/74, is defined as the Lundquist or magnetic Reynold’s number and for a hot
tokamak plasma has the property S > 1; e.g., in TFTR S ~ 108.

The model presented here is a close derivative of the reduced-MHD models of both

Strauss [17] and also Hazeltine and Meiss[18], but while these models neglect viscous stress
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tensor effects, this model includes such effects based on neoclassical closure arguments[19].
This neoclassical reduced MHD model consists of a lowest order in € parallel projection
of Ohm’s law, which is given by

0, - _{_[a¢1_13¢1]_ 1 0y 0y 1 940y

ar 9 qd0| pRZ B0 Op ' pRZOp 06
2 - -
+R -5V, (®)

where the toroidal projection of the current is

1 o
woe ©)

. 1
=A ¢1=V-§V¢-—

and the parallel projection of the stress-tensor term is defined in Appendix A.
The second evolution equation is for the toroidal projection of the vorticity w$, which

is given by

?ﬂ‘ 1 %auﬂ_ 1 990wt 1 @BJé_ 1 6_¢6J§
0r ~ pR?0p 00 ~ pR2 06 Op pR* 36 Gp pR20p 06

9 /1 9 Ip10 .. Id
7P 8 C
5, (RZ) ~Ng (Rﬂ) * Rqpo0 T e

1 8%paJf 1 dypaJt 2
FE90 0 ~ oI 3y B0 ~-V¢-VxV.7, (10)

where wf is given by Eq. (9) with v replaced by ¢.
The interpretation of each of these terms is as follows. The first two terms on the
right-hand-side represent the convection of vorticity, the f{’ and ff are curvature pieces

and expand as

75 (@) 15 (w) = () (o (2) + oo (3}

e e e



10

16%p, Y (g2 8 1 g?%108 1

+ {Zapa(} {ﬁ% (ﬁ) MVZPYT (ﬁ)}
10p; —Bol 0 (1
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The last two terms of Eq. (11) are often referred to as the pressure curvature pieces
and lead to the Glasser effect [20, 21], which produces a stabilizing effect linearly and
nonlinearly when the equilibrium has good average curvature. However, the bootstrap
current dominates over these terms and so they have been dropped in the following
simulations. The 6 remaining current pieces are the linear and nonlinear portions of
B-V J¢. The final stress tensor term is the ion viscosity which is composed of a Braginski-
like term given as vA*w¢ and also a neoclassical term described in Appendix A. The final
evolution equation is for the perturbed pressure, p;, which is given by

0 - - i
—31%+UI'VPO+UI‘VPI=_V'QI, (12)

where the equilibrium heat source has been balanced with the equilibrium portion of the
heat flux (@ = —x 1 V?po) and changes to the resistive heating are deemed to be small.

The ¢; fluctuation is given by

(13)

. BB.V BB, -v
g1 =—x1Vpr — (x1 — x1) b3 Po} )

B2 B?
where B, - Vpo is equal to zero, since the equilibrium pressure profile is a flux function [

ie., po = po(p) and B-Vp =0 ]. Also, the diffusivity has been normalized by €?R2 /TR

and factors of 1/B% ~ 1/B2.
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The numerical model implemented in the neofar code is equivalent to that of its parent
code FAR which is an initial value (’:ode that solves the linear portion implicitly with
a block tridiagonal solver [22] and the nonlinear term explicitly. The explicit portion
(and especially that nonlinear portion associated with the parallel pressure transport)

generates the strongest constraints on the numerical implementatation due to stability

requirements.

. — TR 8 = )
e 7 e T



12

3 Pressure evolution dynamics:

The model in this paper uses an anisotropic pressure diffusivity which accounts for differ-
ences in the perpendicular (x, ) and parallel (xy1) heat transport. In a real plasma these
coefficients, along with the plasma resistivity, would depend on various plasma parameters
(temperature, density, turbulence levels, etc.). However, the assumption has been made
that in the vicinity of any particular island the effect of topological changes associated
with the island are likely to be dominant over these spatial variations. Consequently,
Xrand xj will be assumed to be constants across the entire extent of the plasma. In
* principle, neofar could be run in a fully nonlinear turbulent mode with dynamic versions
of x1 and xj which could address such effects, but at the expense of more complicated
nonlinear terms and much longer compute times.

The particular choice of values for x, and x| will reflect three time scales: the parallel
equilibration time, the energy confinement time, and the resistive time. The ratio of the
first two time scales is based on the observation that free streaming of electrons along
the magnetic field lines produces rapid equilibration of pressure along a field line, while
the pressure transport across the magnetic field lines is constrained. This implies that
Xi/xL > 1. This choice of Xjj also plays a significant role in the determination of a
short enough time step to avoid numerical instability associated with the explicit time
advance of the nonlinear portion of the parallel heat flux, yet long enough to simulate;

the island growth over a fraction of the resistive time scale. The ratio of the last two
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time scales is based on the experimental observation that the energy confinement time
(~ 100 ms in TFTR) is faster than the resistive timescale (~ 10s in TFTR), which
implies a dimensionless y; ~ 100. This choice of X1 is central to insuring that the
pressure “rapidly” equilibrates while the island evolves, rather than the pressure gradients
external to the magnetic island steepening during island growth or significantly lagging
the evolution of the magnetics, i.e., the pressure relaxation has not completely propagated
to the magnetic axis but requires a finite time of order the energy confinement time to
e(iuilibrate throughout the plasma.. The general criterion required to avoid pressure
steepening is xT'WdW/dt < 1 [23]. For A’ unstable modes this can sometimes be
violated during the early linear evolution of the mode, but since this is associated with
an extremely small magnetic island, this regime is largely irrelevant for experimental
comparisons and will not be an issue for the choice of parameters used for the bootstrap

current driven modes of this paper.

For x, = 100 and x| = 107, the pressure dynamics can be described based on rapid
parallel transport which effectively “short-circuits” the perpendicular pressure gradient
across the island region. This flattening of the pressure profile across the island appears
as a pressure decrease in the 0/0 harmonic of the pressure between the magnetic axis and
the island. A simple estimate of this pressure drop on axis based on the “belt” model of
Chang and Callen [24] is pojo = —Wdpo/ dply,» where W is the island width and dpe/dp

is the equilibrium pressure gradient evaluated at the rational surface.
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To test the robustness of the numerical simulations, to assess the helical structure
of the pressure contours, and to assess the pressure equilibration on the magnetic flux
surfaces—a feature which is necessary for the threshold destabilization of the neoclassical
tearing mode— a single large “static” magnetic island is considered but in the absence
of a pressure convection term. In an ideal situation, where Xji/X1 — oo or where the
magnetic fluctuations are zero, the pressure contours and field lines would exactly co-
incide. However, in the vicinity of the island X-point even though the perpendicular
transport is slow, the transit time across the X-point for a small distance &, is quite
short: 7y =k} x1 = x1/(65)%. On the other hand, the singular nature of the separatrix
requires heat to travel an infinite distance in the parallel direction to cross the X-point:
T = kﬁx”. If a Taylor expansion of a mode is made about the rational surface, then
ky = 62(m/q)(dg/dp). A balance between these two time scales generates a scale length

at which the transport changes form being parallel to perpendicular dominated. The

0.25 -0.5
‘ Xi qdp N
P=po

which for realistic plasmas is very small (~ 10~3). This combination of scale lengths and

‘'scale length is

; ' (14)

timescales allows the island to support a weak pressure gradient across the X-point rather
than producing a distinct X-point in the pressure contours. This feature proves to be

pivotal for the amplitude threshold for generation of the neoclassical MHD instabilities

of the next section.
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The degree to which the pressure has equilibrated along a flux surface can be quantified
by computing the pressure variance (0?) along any particular magnetic field line. In
Figure 2, this pressure variation is presented for simulations based on a static magnetic
island of approximately 20% of the minor radius for various levels of X)i/x1 with select
starting points which cross in the vicinity of an island X-point. This variance should’
be contrasted with a diagnostic-like variance which would sample pressure from different
magnetic field-lines but at a constant radius. As expected, the pressure variation is largest
near the resonant rational magnetic surface, and for xil/x1 = 10° has a magnitude of
~ 1 —2%. The variance is largest near the mode rational surface, because the field
line passes through the vicinity of the island X-point where transport is dominated by
perpendicular diffusion to regions near the separatrix across the island O-point where
transport is dominated by parallel diffusion. This trend is further clarified in Figure 3

which illustrates that the peak pressure variance decreases as a function of X/ xL-

The final issue which the pressure evolution affects is the numerical stability of the
time advance scheme, especially due to the explicit nature of the nonlinear terms. A
reasonable choice of timestep during the nonlinear phase of mode growth to insure sta-
bility for a value of x| = 107 is 10~%7g when 1; ~ 10~%. As ¥, increases in value this
timestep must be further reduced to insure stability. With this timestep and with the
advantage of larger timesteps in the early linear pha.se: of island growth, a typical run of 15

modes requires roughly 2 weeks in real time on an IBM/RISC6000 model 370 (25 Mflops,
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SPEC92Int=70.3, SPEC92FP=121.1, see http://infopad.eecs.berkeley:edu /CIC/summary/).
This necessity of balancing compute times v;rith numerical stability requirements will limit
the simulations to unrealistically small values of Xii/x1. While this solution will not gen-
erate the pressure equilibration equivalent to experimental conditions, it will be sufficient

to elucidate the threshold destabilization of the neoclassical MHD tearing mode.
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4 Neoclassical Tearing Modes

Neoclassical effects arise from the viscous damping of the poloidal eléctron flow. The
portion of the flow produced from the poloidal projection of the diamagnetic current
when balanced against electron-ion friction yields a parallel current proportional to the
cross-field pressure gradient, the bootstrap current. When (dpo/dp)/(dg/dp) < 0, this
perturbation reinforces the magnetic perturbation of the island and an instability may
grow in time. [The neoclassical modes are predicted to be stable in reversed shear tokamak

discharges where (dpo/dp)/(dg/dp) > 0.]

In the limit x;;/x. — oo, the pressure exactly equilibrates on the magnetic flux
surfaces (E -Vp = 0), and the magnetic island grows from very small amplitude. However,
the introduction of finite values of X|| and x1 at small island amplitude produce an
insufficient perturbation of the pressure pré;ﬁle to destabilize the neoclassical magnetic
island—a threshold in magnetic island width, W}h,e,;,;zd. As described in Section 1, when
the island width is smaller than this width, [W < Wikreshora, where Wikreshotd is given by
Eq. (4)] the island width decays in amplitude; however when the island is larger than
this width, (W > Wikreshota) the island width grows in amplitude. This dependence on
the initial perturbation magnitude is illustrated in Figure 4 for an equilibrium q-profile

of g = 1.01(1 + (p/2.2)*)"/2, a p-profile of py = (1 —p?) with Bo = 0.068, and where 4, is
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initialized to

z,bl’m/n(t - 0) _ ‘I,start (P/Pa) (15)

‘Ilstart (1 - P—m) / (1 - p;m)

where W, is the value of 3 at the resonant surface, Ps-

The neoclassical MHD threshold is also strongly dependent on the local pressure
gradient as parameterized by [, since the bootstrap current depends directly on the
gradient of the plasma pressure. Subsequently, as the pressure gradient is increased, a
given initial seed magnetic perturbation may cross the threshold and be destabilized, as
is illustrated in Figure 5.

Much of the prior analysis can be combined into a threshold curve for a given x/x1
by performing parameter scans over By and .. Figures 6, 7, and 8 provide such a
threshold curve for the 2/1, 3/1, and 3/2 modes, respectively, and compare the numeri-
cally computed threshold with the analytic predictions of the threshold. Iﬁ general, the
numerical simulations show good qualitative agreement with the theoretical predictions
and confirm that as the pressure gradient is increased, a successively smaller seed per-
turbation is required for destabilization of the neoclassical MHD tearing mode. These
figures also illustrate a quantitative difference between the theory and the simulations.
This difference is not a real defficiency in the model, but rather due to inaccuracies in
determining the appropriate value of A’ to be used in the theoretical prediction. The
simulations do not compute a value of A’. (In the absence of the bootstrap current the

tearing modes are stable in the simulations, which indicates that A’ < 0.) Instead, the
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assumption has been made that A’ = —2m/p,. However, any negative value of A’ would

have sufficed to generate a similar threshold curve.

The most important feature which can lower the neoclassical tearing mode threshold is
an increase in the ratio of x;/x.. Unfortunately, numerical difficulties preclude increasing
this ratio to a TFTR relevant value of Xi1/xL ~ 10'°. However, decreasing this ratio as
is illustrated in Figure 10 demonstrates the strong stabilizing/destabilizing role this ratio

plays, since previously unstable initial conditions have now been stabilized.

Once the island is over the neoclassical threshold and the initial transients have de-
cayed away, the island width growth rate is proportional to the island width as illustrated
in Figure 9. In this particular case, the island width has reached over 20% of the plasma
minor radius. However, the calculation has been terminated at this point because in
order to maintain the stability of the pressure evolution the time step must be reduced
below 0.0174, which would then imply much longer compute times. Also, the predicted
saturation level for the mode is beyond the size of the tokamak, so saturation is not
likely to be obtained. In either case, the small island assumption of the analytic theory
is also violated and the theory cannot be accurately applied to explain the simulation.
Neither the large thresholds nor the large saturation levels presented in the prior simula-
tions should be construed as a generic part of neoclassical MHD. In order to simulate the
physics which has been described, rather extreme parameter ranges have been required

which are in general not realizable in actual machines. However, this was required since




the simulations are limited by x/xj-

20
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5 Summary -

The reduced magnetohydrodynamics (MHD) paradigm has been extended to include vis-
cous force (V - 7:‘r‘) effects based on neoclassical closurgs. This neoclassical reduced MHD
model consists of evolution equations for the perturbed flux, toroidal vorticity, and plasma
pressure, through a parallel Ohm’s Law, a toroidal vorticity evolution, and a plasma pres-
sure evolution equation. The plasma pressure evolution includes an anisotropic pressure
diffusivity to account for rapid parallel energy transport. The viscous stress tensor adds
a bootstrap current contribution to the parallel Ohm’s law [Eq. (8)] and a neoclassical
viscosity to the vorticity evolution equation [Eq. (10)]. The model is principally valid
only in the large aspect ratio limit due to the assumptions c;f plasma incompressibility
and the use of only a single stream function to define the flow velocity (i.e., the velocity
isan E x B flow.) Even though the model is strictly valid qnly in a large aspect ratio
limit, the equilibrium metric elements, which describe the toroidal geometry, are retained
to all orders to allow for poloidal mode coupling.

Single helicity, neoclassical MHD driven tearing modes are demonstrated to exist
through numerical simulations. The neoclassical tearing mode is driven by the elimina-
tion of the bootstrap current within the island separatrix due to the rapid relaxation of
pressure gradients via fast parallel electron heat transport along the closed helical mag-
netic field lines within the island. However, since the parallel pressure diffusivity is finite,

the pressure does not completely equilibrate across the island separatrix. A threshold
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value for the magnetic perturbation at the mode rational surface is then required to
provide a sufficient flattening of the pressure profile about the island to destabilize the
island. The scaling of the threshold with the ratio of perpendicular to parallel diffusivities
and the local pressure gradient is in qualitative agreement with the analyific predictions.
However, the numerically limited Xj1/x+ = 10° is much lower than realistic values.

More recently, the neoclassical enhancement to the ion poloarization current has been
predicted to provide a nonlinear island threshold for the form;tion of magnetic islands[25].
In this model, the predicted ion polarization induced threshold is on the order of the ion
banana width in very collisionless plasmas. The effect of this work is not included in the
present simulations. In order to describe this effect, 2-fluid equations are needed as well
as a very complicated viscosity which would depend upon the mode frequency, nonlinear

island width, and the plasma collision frequency.
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A Neoclassical closure. ;

The starting point for the neoclassical stress-tesnor closure used in this model is appro-
priate in the limit of long collisional mean free path length (or low collision frequency)
and accounts for the viscosity between trapped and untrapped particles[19, 26, 27, 28].

The stress tensor, 7:‘1:, is represented in a Chew—Goldberger-Low form ‘as

BE T
lla = (ﬁ - g) (P11 = PL)ey (16)

A
Au

~o
o —

where

(B® #,-VB?

(EzElhy B

the subscript alpha indicates electron’s or ions. The (®) is a flux surface average of the

(Pl = PL)e = —2manapia (17)

quantity ®. The viscous damping frequencies are approximated by [19, 27]

2.3¢X/%y,

b= s Lol 302y’ 49
O7vee” +1.020..)(1 + 1.071,. 6/ %)

0.66€1/2y;
i L 19
# (1 + 1.0322/% + 0.310:)(1 + 0.660,:6?) (19)

where

Vea = Vg€ 2Rquﬂ 1 (20)

in which v, is the collision frequency of plasma species o and Vi, is the thermal velocity
of species a. Here, ¢, = p/R is the ratio of the local plasma minor radius to the plasma

major radius. The species velocities which appear are given by

V=0 — —J, l (21)
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and in the case of ions #; = ¥. In both Ohm’s law and the momentum balance the

relevant expression for the viscous force will be

o f fo(BY f 3 ! '
=BB-V(-—>+—V(—)—ﬁvaxB-gw, (22)

AW

v Bz| " B2 9

where f = p; — p1. In the case of electrons, this form can be reduced to a form which

depends on the pressure gradients[11, 29],

Bp g o OB (B 1 p(108)
I T Gp )| e v, <[B"0-VBQ2]2) R2Biq \p 86

[}

(Lom ) Bpe (B3 1 18B3p[0Bf I dl
p ol |ev, ([3’02732]2) R?Bip 00 q| 8p R2dp

0

L10m ) =28p  (BY 1 plioBidl
p- a8} e v, ([B';,:Bg]z) RiB§ q p 06 dp

0

Ops |2Bp. (B 1 18BZ dI

T 1 e <[B},.VB2:]2) RiBip 30 dp

By

4 lpe (BY) 1 dI 13_33)’
dp | v, ([E’og)ag]z) RiBidp \p 96

104 |~1p. (B} 1 dI9B218B?

p a8 ) e v, ([g;,.v32]2) RiBidp ap p 09 [’

+ (23)

BT

An additional approximation is made that the viscosity coefficients are assumed to be

constant across the plasma extent. In the vicinity of an island this is probably a reasonable

approximation.




26

‘The neoclassical contribution to the stress tensor term in the vorticity evolution equa-

tion is analogously derived from the above expressions. The form which has been used

in the simulations is given by
s (8% Jlwm 1 1 (B® [18B%\*
V(- VxV.-7 = {gp—"’} {6—2-1-/:;3232}22([3-;232]2) ;ao
Lo 1w 11 e [B 10
dp €2 ve; B2R? p 9p0b R"’([B-;Bz]z)P 06
; [LP 1w 1 1 (BY) (987’
p?060%| | e2v.; B2R? R? <[§_;732]2) dp
i 1 2 (B s 108
p 08} | € v, B2R? 0p08 | R? ([3-232]2) p Op

+ 1041) 2m 1 1 (B 0B’10B? 24)
p 6p08 €2 v,; B2R? R? ([Egzm]z) Op p 00 [ (
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% Threshold for instability

dw
dt

—-

W /

Saturation

Figure 1: Phase diagram of the neoclassical MHD tearing mode.
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Figure 2: An increase in x)/x. increases the degree to which the plasma pressure equi-
librates on the flux surface. The pressure variance is computed by following individual
field lines approximately 3200 times around the torus (200000 iterates at a A¢ = 0.1 step
size) and computing the pressure along the field line. This pressure is used to compute
the mean pressure on a field line and also the pressure variance. Initial starting points

cross through an island X-point.
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Figure 3: An increase in x|j/x . decreases the peak pressure variance. The peak is located
at or near the mode rational surface.
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Figure 4: Destabilization of the neoclassical tearing mode requires a finite perturbation
to initiate the mode. Here, \Pm,t is the magnitude of the initial perturbation evaluated
at the mode rational surface. The initial profile shape decays toward zero value at both
boundaries. The oscillatory behavior of the decaying solutions is a linear effect driven by

B. V¢ causing ¥, to oscillate as it decays.
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Figure 5: For a given initial magnetic perturbation, an increase in plasma pressure causes

destabilization of the neoclassical MHD tearing mode.
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Figure 6: Neoclassical MHD tearing threshold for the 2/1 mode based on numerical

simulations are in rough agreement with the predictions of neoclassical MHD theory.
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Figure 7: Neoclassical MHD tearing threshold for the 3/1 mode based on numerical

simulations are approximately a factor of 10 larger than the predictions of neoclassical

MHD theory.
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Figure 8: Neoclassical MHD tearing threshold for the 3/2 mode based on numerical

simulations are approximately the same as the predictions of neoclassical MHD theory.
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‘Figure 9: After the neoclassical threshold, the island width grow rate is proportional to

the island width, until nonlinear effects begin to slow the island growth. The simulation

was terminated at an island width of 20% of the minor radius due to numerical problems.
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Figure 10: Reduction of xjj/x. to 10* increases the neoclassical threshold. Injtial condi-

tions which were unstable at Xji/x1 = 10° are now stable.
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