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Abstract
This paper documents development of a capability for performing shape-changing editing
operations on solid model representations in an immersive environment. The capability
includes part- and assembly-level operations, with pmt modeling supporting topology-
invtiant and topology-changing modifications. A discussion of vacious design
considerations in developing an immersive capability is included, along with discussion of
a prototype implementation we have developed and explored. The project investigated
approaches to providing both topology-invariant and topology-changing editing. A
prototype environment was developed to test the approaches and determine the usefulness
of imrnersive editing. The prototype showed exciting potential in redefining the CAD
interface. It is fun to use. Editing is much faster and friendlier than traditional feature-
based CAD software. The prototype algorithms did not reliably provide a sufficient frame
rate for complex geometries, but has provided the necessary roadmap for development of a
production capability.
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Introduction
This report documents the resuks and recommendations of the Immersive CAD LDRD
project. The project investigated approaches to providing immersive editing of CAD
geometry at VR framerates, including both topology-invariant and topology-changing
editing. A prototype environment was developed to test the approaches and determine the
usefulness of immersive editing. The prototype showed exciting potential in redefining the
CAD interface. It is fun to use. Editing is much faster and friendlier than traditional
feature-based CAD software. The prototype algorithms did not reliably provide a sufficient
frame rate for complex geometries, but has provided the necessary roadmap for
development of a production capability.

Modem feature-based modelers have provided an excellent mechanism for capturing
detailed design intent in a form suitable for establishing contractual agreements for making
parts. Their solid model underpimings provide exact, unambiguous, three-dimensional
geometry necessary for supporting downstream processes. Product data can be attached
anywhere in the model (on a face, edge, part, or assembly) in the form of attributes.
Parametric and variational capabilities permit studies of design space. Dimensions and
tolerances can be applied (to the degree we understand them). Their dialog with users is in
farnili= engineering terms (e.g. hole, slot, and pocket).

These modelers are the first practical approach to delivering solid modeling capability to
production design environments. Despite their success, current solid modeling tools fail to
provide a friendly conceptual design environment. They are very details-oriented,
requiring complete specification of every detail of how each feature relates to the part. If a
detail, such as a rotational degree of freedom, is left out, it cannot be added later without
serious model reconstruction, and cannot be varied without potentially serious model
redefinition.

Capture of editing intent seems to be a principal focus, even to the exclusion of capturing
design and manufacturing intent. Frequently, no provision is made for stating the
functionality of various features, or constraints such as wall thickness that would guarantee
manufacturability or part functionality, and the order of feature creation and feature
interactions dictates future editability.

Feature based modelers, while faster and easier than previous solid modeling tools, can be
terribly slow. Practical experience has shown models that require hours to load, and
minutes or hours to modify, depending on which feature is being edited. Time required for
regeneration tends to be proportional to the size of the feature list, rather than on the degree
of change in the final model.

Operators of CAD systems find the software interfaces disruptive. The designer decides on
the kind of edit to be performed and has to navigate both menus and complex dimensioning
models to arrive at the right series of mouse clicks to perform a simple action – nothing as
simple as grabbing the object to be moved and moving it. Operators have been observed
“wiggling” the geometry back and forth to achieve a more complete spatial understanding
of the shape of the object being edited.
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In the quest for speed, some feature-based modelers have compromised model accuracy.
Compromising accuracy can produce significant problems for using the geome~ in
downstream applications, especially in performing geometry slicing and Boolean
operations.



Paper and pencil (e.g. writing on the back of an envelope) continues to be the conceptual
modeler of choice. CAD tools tend to be used to capture the final design and make small
tweaks to shape, but engineers still draw on the back of a napkin to “get their ideas on
paper.”

Problem Statement
Given the wide variety of problems experienced with current modeling systems, our
problem is to investigate techniques for providing a responsive, intuitive conceptual
modeling tool, and develop a prototype for testing these techniques.

A basic requirement for intuitive editing is the capability for grabbing an object and
dragging it, without resorting to menus, and having that object move in “real time.” Real
time, in this context, means that, as far as possible, every operation works within virtual
reality frame rate – 15 frames per second or faster. It is desired that such speed occur on
contemporary hardware with a small number of processors (hopefully one).

Simultaneously, objects should behave in engineering terms – a hole should be able to act
as a hole, not permitting itself to interact with other objects in ways that compromise its
integrity to contain, attach, and be sufficiently strong, unless the operator so wishes.

Figure 1: “Hands-on” modeling concept.

Ideally, this fast, responsive modeler should be built upon a very numerically precise
representation, with no compromise of accuracy in the quest for speed.
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Representations
The fundamental representations used by modem CAD systems are feature-based and
boundary representations. Since this work is intimately tied to operations on these
representations, we provide a description of these models. These solid modeling
representations are presently in production use at Sandia, in Pro/Engineer [15], and ACIS
[1].

Constructive Representations
A constructive representation is a list of operations to be performed in creating a shape.
Examples include Constructive Solid Geometry (CSG) and Feature Based Modeling
(I?13M). Such representations permit easy change to geometry Shape-defining parameters
are explicit, so can be changed directly. These representations are not directly usable for
many applications, as the interactions between elements of the design (primitives, features,
etc) must be computed –the representation must be evaluated.

Evaluated Representations
An evaluated representation is a representation of geometry in which the shape of the object
is explicitly evaluated -- the object is expressed as what it is, not as a collection of
operations that would create the shape. Boundary representation and spatial enumeration
are examples of evaluated representations. These representations can be directly edited, but
only in fundamental terms (e.g. move a face). They are directly usable by most
downstream applications.

Feature Based Modeling
Feature-based design systems, such as Pro/Engineer, model designs in terms of an ordered
list of ~eatw-e.s (such as holes, slots, and pockets). The feature representation is a
constructive representation; each feature adds to the description of the model by adding or
removing material from the object.

Each feature has defining gecmzet~ and references. Defting geometry establishes the
shape of the feature; references relate the defining geometry of a feature to the geometry of
the part, for placement and sizing. References include dimensions and alignments.
Dimensions establish length and angular positional relationships. They have parameters
which establish the numeric values of lengths and angles, and which have names (e.g. d5 =
4.0). Alignments explicitly relate endpoints of edges to curves/surfaces of existing
geometry. Dimensions and alignments refer to sketch and part geometry to establish a
relationship defining the shape and position of the feature. Relations define relationships
between the va.hes of parameters. The Pro/Engineer model of relations partitions
parameters into sets of dependent and independent parameters. The values of dependent
parameters are derived by evaluating relations (e.g. dl = d2 * d3, where dl is a dependent
parameter). Independent parameters do nbt depend on any relations; their values are user-
supplied.

It is possible for a feature-based model to be a hybrid between constructive and evaluated
models. At each step during regeneration, an evaluated model exists. The hybridization
occurs if features are permitted to reference geometry in evaluated geometry in the
regeneration of previous features.

A feature-based model is evaluated to produce a boundary representation. The
Pro/Engineer term “regeneration” is synonymous with the term “evaluation”. In a typical
modification, one or more parameters are selected and changed, either through relations or
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through selecting the parameters of interesting dimensions of affected features.
Pro/Engineer reevaluates the feature list from the fust changed feature through the end of
the list to produce a modified version of the part. If any geometric relationship cannot be
evaluated under the modified set of parameters, the regeneration fails.

From a data content standpoint, feature-based models Me a richer source of information
than evaluated models. Feature-based models contain construction geometry (e.g. datums)
and a wealth of relationship information regarding how the part can be modified. Evaluated
models can be inferred from feature-based models, but the feature-based models cannot be
uniquely determined from evaluated models.

Boundary Representation
Boundary representation (b-rep) is a fundamental means of representing solid objects. It is
one of a family of geometric representations (including, for example, constructive solid
geometry and spatial enumerations), and is used in design systems because it is an
evaluated representation that conveniently represents precise surface information.

A minimal three-dimensional boundary representation (as present in Pro/Engineer) consists
of faces, contours (also called loops) and edgesl. Faces are bounded portions of surjiaces.
A face is bounded by one or more contours. A contour is a list of dkected edges. For a
given face, two notions of “interior” are necessary. The first tells which side of the
unbounded surface constitutes the outside of the face; a flag is used to define whether the
normal of the surface or its complement is outside. The second notion of interior tells
which side of each contour is in the bounded region of the face. The tangent direction of
traversal of edges, crossed with the dxrection of surface normal at a point in question,
determines which side of each edge is on the interior of the face. An edge is a bounded
portion of a cmve; two points are used to describe the beginning and ending of the interior
of the edge.

Parts and Assemblies
A design may represent apart or an assembly. A part is the smallest chunk of mass that is
individually considered in mechanical design and can be of arbitrary geometric complexity.
Assemblies are collections of references to parts and other assemblies; each reference has
an associated transformation for pIacing the referenced part or assembly within the
coordinate frame of the containing assembly. An assembly may contain more than one
instance of any given part. Assemblies describe groups of parts that work together to
perform a mechanical function.

There are both constructive and evrduated versions of assembly representations. A
constructive representation might define a set of features that place parts in the assembly
using positional relationships between them (e.g. contact and alignment relationships). The
evaluated version of an assembly representation is a list of pariYassembly references, each
having an associated transformation matrix to position the instance within the assembly’s
coordinate frame.

Facets
A faceted representation of a solid is a kind of boundary representation, where the
bounding loops have simple topologies (e.g. triangular or quadrilateral) and surface
complexity is minimal (e.g. planar or bilinear surface). A faceted solid has many more

1Boundary representationscan be much richer than Pro/Engineer’s. ACIS representsbodies, lumps, shells,
faces, loops, coedges, edges and vertices.
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faces than an “exact” model of the same object, but the faces have lower geometric
complexity. Such representations involve much simpler algorithms for manipulation, so
are more amenable to hardware optimization.

“Exact” solids can be converted to a faceted representation through a process called
“facetization.” Each face of the exact solid is triangulated; the runtime of such a process is
proportional to the number of faces, and the geometric and topological complexity of each
face.

5

Faceted representations are used in this work for rendering (using GL rendering hardware),
and for fast, approximate computation of geometric properties such as distance between
objects.



Part Modeling
Part modeling is the creation and modification of the shape of an individual part. Part
modeling involves changing the fundamental geometry and topology of the object. Such
editing operations are technically challenging from a solid modeling standpoint. Our work
in this area focuses primarily on developing and experimenting with approaches to
exploiting invariance in editing operations.

Previous Work
Historically, CAD systems offered solid model editing directly in terms of solid operations.
In constructive solid geometry, such editing operations were limited to editing the CSG tree
and modifying parameters associated with sizing and orienting primitives. In boundary
representation, the operations involved creating primitive shapes and applying Euler
operators and Boolean operations. Such editing operations never achieved wide acceptance
in the design community, ostensibly because such operations bear little resemblance to the
manner in which designers think about editing geometry.

More recently, feature based modeling systems (e.g. Pro/Engineer) have developed. These
systems have become a preferred approach for editing solid geometry because the
human/machine interface is represented in natural terms (hole, pocket, and slot). Such
systems maintain an ordered list of feature-based operations (e.g. “add hole”) whose
evaluation produces the part’s geometry. Each feature is a recipe for performing a single
editing operation. The feature contains the geometry and parameters required to size and
shape the feature, along with dimensions for positioning the feature. Evaluating the feature
involves creating its geometry (e.g. by sweep, primitive instantiation, etc.) and computing
the interaction between the feature and the rest of the model. Regeneration is the process of
producing the final geometry by evaluating each feature in turn, with each operation
potentially modifying all prior geometry. After regeneration, the geometry is rendered.
For wireframe display, edges are discretized and the resulting lines are drawn. For hidden
line display, unoccluded portions of edges must be computed, followed by discretization
and drawing as for wireframes. For shaded images, each face of the solid is faceted and
the facets are passed to a polygon rendering algorithm (frequently implemented in
hardware).

Gadh, et. al. [4,5,6] has performed work in immersive modeling with solid models. The
work has focused on topology-invariant modeling and on interface techniques. This work
differs in attacking the problem of topology change and detecting when topology change
occurs.

Complexity of Modeling Operations
In practical experience, model regeneration can take from seconds to hours, depending on
the complexity of the model. Particularly annoying is the fact that small edits can be either
very fast or incredibly slow, depending on where in the feature list the edit occurs. In
order to determine feasible approaches to providing fast, grab-the-object-and-move-it
operations, we examined the complexity of performing editing operations in feature-based
CAD systems.

The regeneration process currently implemented in CAD systems treats geometry
generation as a monolithic process. The shape of each feature and its interactions with other
features in the model are computed from scratch each time the model is changed.
Computation of the feature’s geometry is a function of the geometric complexity of the
object (frequently linear, but possibly more costly, as in computing fdlets). Computation
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of the feature’s interaction with the remainder of the model is, topologically, related to the
number of faces in the feature, the number of faces in the object being interacted with, and
the complexity of each face. This topological complexity is roughly O (n310gn), where n
relates to the number of faces. This complexity results from the size of the potential output;
the number of intersections present in th~ output can far outweigh the size ;f the input ifi
pathological cases. The complexity of each face/face comparison is related to the pairwise
complexity of the surface definitions involved (plane/plane intersection costs linem time
evaluation of closed-form equations, while NURBWNUR13S intersection costs quadratic
time in the complexity of the surface patches, computing iteratively to convergence).

Feature1:
Block

w=30, d=30, h=5

Feature 2:
Protrusion

w=30, d=5, h=20
from face 1, aligned...

Feature 3:
Through Hole

d=5
through face 1, aligned..

Feature 4.
Through Hole

d=5
through face 7, aligned..

Facets

Figure 2: The regeneration process.

The complexity of faceting is proportional to the number of faces to be faceted, the
geometri; com-plexity of the sfirf~ce, and the number and geometric complexity of the edges
bounding the face. The runtime for rendering facets in hardware is linear in the size of the
faceted representation.

Simplified Representations
Sincethecomplexity of editing operations is a polynomial function of the complexity of the
model, it is clear that operating on simplified models can provide significant speed
improvements. Note that simplification recommendations are only recommendations, as it
is necessary to provide the designer with an adequate representation for the design process
to proceed – overly simplified models are useless.

The topology of models is a primary factor in the speed of operations. Adding features
costs roughly O (n310gn) time, so reducing the number of faces in the model being
operated on is a significant consideration. Some features, especially fillets, by their very
nature add a significant number of faces to the model. Filleting a simple block triples the
number of faces in the model. Other features (e.g. holes, slots and pockets) tend to have
significantly less interaction most times, so cause roughly linear growth. It is important to
keep the model small by limiting the number of interactions wherever possible. “Feature
suppression” is available in production modelers, and if carefully used can provide a
mechanism for leaving out complex geometry most of the time.
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Geometric locality can significantly decrease the expense of feature editing. Every
boundary-representation system has some kind of boxing technique for determining
whether faces interact – if the boxes don’ t interact, the faces don’ t. In cases where faces
have small geometric extent relative to the size of the model, a significant reduction in
computational effort is realized. The value of exploiting geometric locality is dependent on
the design being created; this is a function of the object being designed (and the designer’s
thought process).

The geometry of faces can have significant affect on the speed of operations. Quadric
surfaces can be intersected in constant time, while NURBS surfaces involve iterative
solution over pairs of patches. Many of the world’s engineered artifacts can be described
using quadrics – those that cannot are surfaces found in consumer products (e.g.
telephones), automobile bodies, and aircraft surfaces. Blend and variable radius fillets
create NUR.BS surfaces; they can also be created to represent surfaces that might otherwise
be represented using a lower-order representation (e.g. torus). Again, avoiding or
suppressing features that produce complex surfaces can keep speed high.

Curyed surfaces tend to cause large numbers of facets to be required for rendering.
Facetization parameters can be adjusted to limit the number of facets required to render the
object, but have only a limited effect on the facetization. Curved geometry tends to place a
lower bound on the number of facets required to adequately render a shape. Adjacency
between curved faces and the requirement for facet contiguity can cause some faces to
display quadratic growth in facet count. Adjusting facet parameters produces, at best, a
linear decrease in the number of facets on the body, so are somewhat ineffectual in
reducing facet count. Suppressing complex surfaces altogether can strongly reduce the
number of curved surfaces and face/face facet interactions, dramatically reducing facet
count.

The dkcipline involved in producing representations that simplify easily (either through
clever modeler construction or clever model construction) is more important in an
irnmersive environment than in traditional CAD. In traditional CAD, slowness is
annoying. The user asks for something and waits. In immersive CAD, the rapidly
generated images provide a critical link in the feedback loop between man and machine.
Sluggish response destroys the illusion of being immersed.

A side benefit of producing simplifyable models is that simplification is useful for enabling
and accelerating downstream applications, especially finite element meshing [3].

An approach to exploiting simplification during part editing is to regenerate only that
portion of the model that can be conveniently computed within the frame rate’s limitations,
then display that model. It is necessary that the modified geometry can be included in that
computation, but all other geometry is potentially optional.

Partitioning the model into degrees of detail is very effective in exploiting simplification. If
the model is partitioned into those features that define major shape, followed by features of
increasingly smaller details, it is straightforward to enable an algorithm to use that
partitioning to organize work. Partitioning can be attempted algorithmically (e.g. based on
size of faces, feature dependency, and geometric location), but performing the partitioning
as part of design permits maximal user control, and is suggestive of design importance to a
degree not likely obtainable by automatic recognition.
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Choice of Representation
Given that we have a vtiety of representations (features, exact b-rep, and facets), we have
an opportunity to choose which representations to ed:t. Maximal engineering content
occurs within the feature-based model. It is expressed in engineering terms, and carries
any engineering constraint information. The feature-based model cannot be viewed,
however, as it is a constructive model. It must be evaluated. The exact b-rep contains less
engineering information than the feature-based model, and more than the faceted model. It
is an “exact” model of the engineered artifact. The exact b-rep can be rendered using ray
tracing, but this is too slow to achieve the requisite frame rate. The exact b-rep is available
for import from other CAD systems, though, while feature-based models can only be
translated between CAD systems through major custom development (essentially
reimplementing the generating CAD system’s feature evaluator in the receiving system).
The faceted representation is almost devoid of engineering content (it being an
approximation of the shape of the object, with no explicit engineering information), but is
fastest to render and easiest to modi@. Faceted representations are trivial to translate
between systems.

In order to provide maximum operational flexibility, we desire a system that is capable of
importing data from any source and editing it with maximal engineering fidelity. This
translates into a requirement to import whatever data is available, and represent multiple
models internally. Selection occurs on the lowest-level entities in the system (i.e. facets).
Those entities point to the entities that created them (i.e. exact faces) if present. Those
entities point to the entities that produced them (i.e. features). Constraints on editing
operations are implemented at the highest level available. Thus, if only facets are present,
editing operations move nodes of facets. If faces are present, selection of a facet actually
selects that face, and all the facets on the face move. If a feature is present, selection
proceeds to select the feature, so all the faces produced by the feature move.

Opportunities for Exploiting Invariance
Typical design editing operations include adding, deleting, moving and resizing individual
features. Operations such as inserting a hole, moving a boss, or wideninga slot typically
involve relatively few faces out of the entire model. Moreover, such operations rarely
introduce changes in the interactions between features – if a hole begins to intersect another
hole, it’s design integrity might be compromised. If most of the model is unchanged
during an editing operation, most of the computation involved can be avoided, speeding up
interaction dramatically with no compromise in accuracy. There are various degrees of
invariance: script invariance, topology invariance, geometry invariance, and facet topology
invariance.

The Small Change Assumption
Solid modeling editing operations tend to change small portions of the model at a time (e.g.
move a hole or a single face), rather than moving every face simultaneously. Even though
certain editing operations might suggest global changes, changes are most easily
understood if they are somewhat localized. This tendency toward localized editing
operations suggests that the number of faces that move during editing will be small
compared to the overaIl model.

While the small change assumption isn’t an invariance that can be directly implemented into
algorithms, it is necessary to note that any attempt at real-time solid modeling, without
complete model regeneration, is dependent on being able to strongly limit the number of
modeling operations required to compute the changed model. Without the assumption that
edits are small compared to the overall model, this work is for naught.
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Script Invariance
Whenever a feature is mod.ii5ed, it is easy to notice that all of the features before it in a
feature list have not changed. Thus, any work involving generating geometry to that point
in the script can be avoided if the results of that work are cached. Such a cache can be
easily implemented (at significant memory cost) by making copies of the geometry at some
interval (e.g. every 5 features) during the regeneration process. Any time regeneration
occurs, locate the cached geometry before the earliest modified feature, and regenerate from
the cache. This technique is used in commercial CAD systems, but it alone cannot provide
enough reduction in computation to achieve VR frame rates, because the list of features that
must be reevaluated will still be long (possibly involving every feature in the list).

Taking advantage of script invariance c$ter the modiiled feature is more difficult. In cases
where the mochfied feature affects later features, it is necessary to regenerate the affected
features, just as in traditional regeneration. In cases where the modified feature doesn’t
affect the modified feature, it is necessary tore-play the topological and geometric
modifications to the model, without incurnng significant computational cost. Research in
persistent data structures is promising as a mechanism for minimizing the cost of replaying
operations while minimizing computation.

Exploitation of simplified models has an effect on exploiting script invariance. If the model
is constructed as a progression from most significant to least significant features, features
of similar significance will be evaluated at the same time in model construction. Thus if
any portions of the model cannot be visited in the frame rate, they will at least be the least
significant features, and the most significant portions of the model will be maximally
available for display during editing.

Topology Invariance
Most design changes that don’t involve adding new geometry are topologically invariant.
The editing operations that don’t involve adding new geometry are changing the size or
location of various features. Any new interactions between features that might occur (e.%
a hole intersects another hole) are likely to change the ability of the features to achieve their
designed function.

In any editing scenario, if it can be shown that the topology of the model is invariant, then
the only required computation for an edit is computing the equations of the curves and
surfaces that move. The interrelationships between entities (the number and connectivity of
faces, edges and so on) remain unchanged.

Geometry Invariance
Even in cases where the topology of the model is changing, the geometry of the model is
changing very little. Tracking editing operations as they are performed guarantees that the
changes between any two frames are small. For small motions, the new interactions will
occur in the geometric neighborhood of the objects being moved. It is unnecessmy to
compute the potential interactions between all faces in the model – it is sufficient to compute
the interactions between moving faces and faces in their local geometric neighborhood, if
such faces can be located easily.

Facet Invariance
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For any editing operation, a significant number of faces will be unch+ged. For such
faces, the facets are invariant. In cases where faces have only been rigidly transformed
without any change in their bounding edges, it is possible to apply rigid motion to facets
without performing any refaceting.



In cases of faces that have changed geometry nonrigidly but are topologically invariant, it is
possible that the topology of the facetization can be reused. Whether this is true depends
on whether facets have become degenerate or inverted. It is possible to relax facet vertices
to the changed boundaries, then check to determine whether any affected facets have
become degenerate. Degenerate facets can be removed and an incremental faceting
algorithm invoked to close the holes in the faceting. Updating, checking, and correction can
occur in roughly linear time, and much faster than refaceting every changed face.

An Editing Algorithm
Having identified opportunities for exploiting invariance, we are faced with producing an
algorithm suitable for maximally exploiting invariance during editing operations. We
assume that a small number of faces of the model are being modified at any given time.

Facets
It is desired to have the ability to view the geometry using any viewing model (wirefrarne,
hidden line, smooth shaded) during the editing process. Viewing as wireframe requires
that the edges of the model be discretized; viewing (and selecting) as a shaded image
requires that the faces be discretized (faceted). Faceting faces is more computationa.lly
expensive than discretizing edges, so the following discussion will focus on faceting as the
limiting case.

The simplest exploitation of facet invtiance is to only refacet those faces that were
changed, simply redisplaying any faces that were left unchanged. The modified faces
(moving faces, faces previously adjacent to moving faces and newly adjacent faces) have
their facets deleted and recreated with the new geometric model.

A more complex model for exploiting facet invariance is to locally edit the facets of a face to
match the changed geometry. This means local modification to facet geometry and
topolo=q. Results in finite eiement adaptivity and rezoning might provide excellent
resources in this area.

Since faceting is roughly linear in time with model complexity and refaceting is easy to
implement, we implemented refaceting. Time constraints prevented investigation of local
facet modification. We suspect, without proof, that facet modification is of limited
significance in increasing editing speed. We focused on more significant efficiency issues.

Detecting Topology Invariance
Once a face is selected, it can be moved. During most motion, the topology of the model
will not be changing. Occasionally, the face will either become too close to a face it was
not adjacent to or will move too far from a face it was adjacent to, resulting in a topology
change. Since topology changing potentially requires Boolean operations and topology-
invariant editing does not, we must be able to distinguish between the two possibilities.

An obvious approach for determining the potential for topology change is to compute
distances between faces in the model. In order for such a distance measure to work, it
must be sufficiently fast to work within the frame rate, leaving time for the requisite
modeling operations to be performed. Our real-time distance computation algorithm of
choice is from [20]. This algorithm is derived from Gilbert’s algorithm [1 1], which
provides very fast distance computation between convex objects by noting that, for convex
objects, search for closest points is essentially an unconstrained global optimization with no
local optima. Search for closest point pairs is limited to search through entities adjacent to
the last closest pair before the motion took place, and is roughly O (1) in time. The C-
Space Toolkit (CSTk) [22] extends Gilbert’s algorithm to nonconvex objects by producing
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nested geometric hierarchies that bound the nonconvex objects, which limit the number of
comparisons to be performed. It also performs distance calculations between translational
and rotational sweeps of objects (rotational sweeps are less exact than translational
sweeps). The algorithms are capable of applying affine transformations to the geometries
being compared, permitting the compared objects to be scaled. Distance updates are very
fast; building the hierarchies can be somewhat slow. The CSTk assumes that objects being
managed are topologically invariant, and are only geometrically modified by application of
affine transformations; under these constraints, hierarchies need only be built once.
Unfortunately, our application permits topology to change and allows arbitrary geometric
operations.

An alternative approach for predicting topology change is invocation of a topology-
invariant geometry-updating algorithm, followed by checking for errors and self-
intersections. The error check is simple; the self-intersection test is rather expensive.

Performing topology change tests via distance computation can provide benefits beyond the
simple topology check, so it is preferred. The distance computation involves a certain
amount of overhead, but avoids the self-intersection test.

A remarkable benefit of providing algorithms for computing proximity is the ability to
implement a wall thickness constraint. Contrary to popukir naive expectation, modem
CAD systems have no significant ca ability for guaranteeing the manufacturability or

?functionality of pants being designed . They are simply generators of geometry from a
script of manufacturing-like instructions. With a wall thickness constraint, it is possible to
globally apply a new kind of constraint that guarantees that every feature is sufficiently
bounded by material to be strong enough to manufacture and use. This capability is
achieved by simply modifying the tolerance on the proximity algorithm used to detect
topolob~ changes – the tolerance corresponds to the desired wail thickness- This tolerance
can be applied globally, or on a face-wise basis, or on the basis of any spatial function, as
desired.

Choice of Representation for Determining Topoiogy Change
In order to compute distances between moving faces and stationary faces, we must
represent the shape of these objects (we will call this representation the de-representation,
or de-rep). This is more difficult than it seems, as the faces can change shape as they are
moved. There is some latitude in choosing distance-calculation representation: representing
the face’s feature as an object, attempting to compute the modified shape of the face, or
approximating the face by transforming the unmodified face’s facets. Additionally, there is
some latitude in deciding whether to use the exact face or some other representation (e.g. a
skeletal representation).

In the case where a face has a defining feature, it is possible to define the shape of its
interaction volume by using the feature to define the shape. For example, for a blind hole,
a cylindrical volume could be used. This approach has the advantage that for many feature-
based operations, the interaction volume will have a constant topology and will be edited by
applying only aflhe operations, so the de-rep need only be computed once for use with the
CSTk. The approach is deficient for features whose shape is defined by geometric context,

2Some CAD systems do permit constraints to be applied between parametervalues. Implementing a wall
thickness constraint is very cumbersome using such a capability, however, because of the need to constrain
every face-face pair, and the trigonometric natureof the constraint. For n faces, a complete wall thickness

constraintwould require n2 nonlinear constraintsto be created and maintained.
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such as blends, fdlets, and “through-next” holes (whose depth depends on what they
interact with), since the extent of the geometry is unclear.

It is possible to compute the modified shape of a moved face by reintersecting the surfaces
used for edge definitions, based on the new location of the moved face. This approach
would fail If the faces cannot be intersected, but such failure is expected in cases of
topology change anyway. This approach is quite general, but essentially involves the same
work as performing the topology-invariant edit, even if it won’t work. The approach does
require recomputation of de-reps.

Approximating a face by simply transforming its facets is a fast, simple approach to
approximating the shape of a moved face. It is technically incorrect, but works well under
the assumption that faces are moving reasonably small distances. Remembering that the
purpose of computing distance is to avoid using topology-changing algorithms, it is only
necessary that the distance calculation is conservative: that it doesn’t fail to invoke the
topology-changing algodhm when it is needed. An appropriate tolerance (roughly
equivalent to the size of the expected error) can be applied to make the algorithm
conservative. De-reps must be recomputed using this approach.

Representing stationary faces involves roughly the same mechanics as representing moving
faces. The faces adjacent to moving faces require a bit of special handling. During a
move, moving faces are constrained to not contact objects they weren’t originally in contact
with. For non-adjacent faces, this is simple face/face contact. For adj scent faces, this is
edge/face or verteflface contact between edges and vertices of the adjacent stationay face
and the moving face. This special case was encountered in moving a face of a tetrahedron.
Without a vertetiface constraint, there are no non-adjacent faces to prevent a moving face
from causing a topological change that eliminates the model entirely.

After faces are modified, it is necessary to recompute the faceted representation of the
model, both for rendering and for creating appropriate de-reps. These computations must
be performed both for moved faces and for faces adjacent to the moving faces, since the
boundaries between the faces can change shape. Discretization of shared edges is not a
parallel activity (although it is quick). Facetization of each face is a parallel activity, and
behaves as a nearly linear-time algorithm. De-rep computation from scratch (with current
CSTk algorithms) is significantly slower than facetization. We are investigating
approaches to updating de-rep hierarchies without complete recomputation.

Computing Geometry for Invariant Topology
For invariant topology, it is necessary to compute the geometry of the changed model.
Topology invariance requires the recomputation of the surfaces of moved faces, followed
by recomputation of the curves and points of intersections between the surfaces of the
moved faces.

We initially developed a set of algorithms for moving surfaces and computing curve and
point geometry for moved surfaces, but found that a robust capability was available for
ACIS in the form of the Local Operations Husk [3].

Computing Topology Changes
Topology change requires a well-formed set of semantics. It is necessary for the nature of
the interactions between modified faces (both moving and stationary) to be understandable
if appropriate behavior is to occur. In the simplest example, a through hole moves off the
edge of a part completely. The hole has no bottom. Now the hole is separate from the
part. If the hole’s geometry impinges on the face of the part and the hole had no bottom,
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any solid modeling operation between the disjoint hole and the part wiIl result in an
incomplete solid. While it is possible that the semantics of topology change can be inferred
for certain special cases, it is possible to guarantee model semantics by requiring a feature
based model to be available; by deftition, the feature-based model describes the semantics
of feature-part interaction.

The simplest implementation of topology change involves traditional regeneration to resolve
topology-changing operations. While regeneration is slow, by definition, it should not be
overlooked. The frequency of topology changing operations during editing is small
compared with topology invariant operations. Even if regeneration is slow, it is
comparatively rare during editing. Regeneration will result in a pause during editing, while
the new topology is computed.

Caching geometry at various points during regeneration can be used to exploit feature-
based invariance. Regeneration proceeds from the last cache before the feature in question.

Taking advantage of invariance after the feature being modified is more difficult. For small
edits, the bulk of the geome~ and topology after the edited feature is invariant. Each
feature after the modified feature that can be shown to be invariant with respect to the
changed geometry is invariant. If the feature is not invariant, it must be repiayed, and
added to the list of modified features,

Replaying invariant features rapidly requires a mechanism for adding them to the model
with minimal cost. Two approaches have been considered. In the first, the geometric
results of each feature are cached; these results include both the geometry of the feature and
where that geometry stitches to the model. Replay requires copying the cached feature
geometry and mapping the stitching references to the new model after regeneration.
Constructing the mapping could require nonlinear time.

An alternative mechanism for rapidly replaying features involves the use of persistent data
structures [9]. This approach requires modification to the geometry engine. Each pointer
in the model has associated “time” information associated with it; the state of the model
after each feature operation can be queried by providing the appropriate “time” information
in the query. Construction and maintenance of the “time” information is reasonably well-
formed, with predictable cost in time and space. The current state of research in persistent
data structures is limited to tree-based data structures, however, The graph-based data
structures required in boundary representation are not currently supported.

We developed the simple regeneration-based approach. Work on replaying invariant
features has begun, but remains unfinished due to time constraints.

Assembly Modeling
Assembly modeling operations involve changing the relative spatial relationships between
collections of otherwise rigid objects (parts). Since shape of individual objects is invariant
in assembly modeling, the operations on objects are limited to modification of
transformation matrices (or other part placement representations) that position parts within
the assembly. From a geometry standpoint, assembly modeling is significantly less
challenging than part modeling. Since assemblies consist of any number of pats and
assemblies, which individually can be rather large, assembly modeIing is still quite
challenging.
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Previous Work

Current feature-based CAD systems approach assembly modeling in the same manner as
part modeling: with a feature tree that is evaluated monolithically. Each feature represents
positional relationships between parts. A part can be placed in an assembly when enough
relationships (dimensions) have been provided to constrain 6 degrees of freedom.

Previous work in virtual reality has concentrated on facet reduction to maintain frame rates
in large models. Such VR techniques, coupled with appropriate part simplification, would
seem to address the problem of rendering speed adequately, so we defer its consideration
here.

Proximity-Based Approach to Constraint Definition
A number of our production designers have expressed frustration at modeling assemblies
using the 6130F constraint-based feature modeling approach. They have requested a
modeling approach in which the pats of the assembly can be treated like toy blocks:
stacked and unstacked, rotated and moved until the assembly meets their needs.

We investigated an approach to assembly modeling in which the proximity between moving
and stationary parts is monitored. Whenever faces are in reasonably close proximity, it is
possible for a mating constraint to occur between them. Once a mating constraint is defined
(at user option), it is maintained until broken (at user option). Any further motion of the
part is constrained to keep contact faces together.

The same fast distance function used for topology invariance determination is used to
compute distance. Once close pairs of faces are found, it is necessary to query the user
about desired constraint. If a constraint is required, it is created. If not, it is necessary to
remember that the constraint was not made (until the proximity condition is not met), so as
to avoid querying about constraint at every frame. The constraint is simple to implement;
any portion of a motion that has a component in the direction normal to the surfaces in
contact is subtracted from the input motion. The remaining components can be applied.
Thus, if two planes are in contact, the part can still be rotated about an axis in the normal
direction of the planes, and translated in the planes.

The Prototype
A prototype immersive CAD system was developed to test the ideas developed here.
The prototype implemented in ACIS [1], Sandia’s C-Space Toolkit [22], the MuSE [13]
immersive environment, and OpenGL. The ACIS representation is an exact boundary
representation; no modifications were made nor operations performed that would
compromise the accuracy of ACLS. MuSE supplied the irnmersive environment: navigation
capabilities, positioning, head tracking, plus interfaces to virtual reality hardware, including
Crystal Eyes [7], Fake Space Pinch Gloves [10], Polhemus FASTRAK trackers [23],
Spaceball [18] and mouse. ACIS provided the representation for exact boundary-
representation geometry and the ability to facet that geometry. OpenGL provided the
interface to draw ACIS-provided facets in the MuSE environment. The C-Space Toolkit
provided distance calculations to enable decisions about topological invariance in modeling
operations.

For prototype development, the hardware devices were used as follows: the mouse was
used by the right hand for navigation through MuSE’s existing interface. Crystal Eyes
were available selectively for stereo viewing. A Pinch Glove was worn on the left hand
and used for choosing what modeling operations to perform. A Polhemus tracker was
worn on the back of the glove to permit motion tracking of the hand for input of translation
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and rotation. A tracker was avaiIable for head tracking. A 195 MHz singIe processor SGI
Octane with 384 MB of memory performed all of the computation. Sufficient memory was
available to prevent any paging activity from slowing down the process.
The basic algorithm is as follows: for each frame, the pinch glove is queried to determine
whether a command has been given. Valid commands include selection, translation,
sutiace offset, and scaling functions for motion sensitivity. If a translation or scaling
operation is selected, the position of a motion tracker is noted, compared to position in the
prior frame, and scaled to determine how faces are moving. Then motion is applied to the
CSTk representations of the moving faces and their distances to each other and to
nonmoving faces are computed. If no topology change occurs, ACIS local operations are
used to compute the new geometry. If a topology change has occurred, the feature tree, if
present, is replayed. For models lacking a feature-based representation, topology changes
are only permitted to the degree that the ACIS Iocal operations fimctionality permits (i.e. a
face may cease to exist if it can be simply removed by either loop removaI or extension of
adjacent faces). After the geometry for the current frame has been produced, any new or
modified geometry is faceted. Then all the facets are presented to GL for rendering.

Speed tests were performed for four models of increasing complexity. For each test, frame
rate (in frames per second) was measured for simple flythrough, then for moving a single
face. The number of faces adjacent to the moved face was noted, as the price of the edit is
proportional to the number of modified faces. Since frame rate can vary with the size of the
image on the screen, each object was rendered using roughly ha.If of the screen width. For
one test case, the block with holes, a feature-based model was present and complete
regeneration was performed whenever topology change occurred.

Moving faces

Figure 3: Tetrahedron and 13iock with Holes test cases.
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Second moving face

First moving

Figure 4: Simplified Casting test cases.
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Figure 5: Casting test case.
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Figure 6: Editing speeds for various objects.

TvDical rxactice in virtual realitv dictates that frame rates be at least 15 frames r)er second.
T& req~irement stems from th~ need to have the environment respond as qui&ly as a user
is providing input. In use, the 6 frames per second rate was sufficiently fast to support
editing, while 2 was noticeably jerky. For edits with distance checking enabled, only the
simplest of edits (tetrahedron and block with holes) qualifies as being sufficiently fast to
support the traditionally required frame rate. With distance checking disabled, the frame
rates for more complex models became more tolerable. Recall that distance computation is
required to ensure that topology changes are not occurring unchecked – they should not be
disabled in normal editing operations.

The prototype represents our f~st attempt to create an immersive environment. Our intent
was to produce a geometrical y correct implementation with no compromises in
fimctionality so that the practicality of the approach could be measured. For sufficiently
small models, the irnmersive behavior is precisely what is desired – the model changes at
the nudge of a hand, in a very responsive way. For larger models, more speed is
necessary to move this from resezuch to a production tool.

Despite any disappointment in the speed of the prototype, it must be noted that current CAD
systems tend to require seconds, minutes, or hours to perform editing tasks. For all of the
cases shown, the imrnersive frame rate is one or more orders of magnitude faster that the
edit rate of traditional CAD systems. The feedback provided during a given editing
operation is signiilcant – rather than waiting to see whether an edit worked, the model
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changes dynamically, providing real-time feedback on what is happening in the model.
Despite any current limitations, Immersive CAD is fun to use.



Future Directions

Faster Response
There ~eavtie~of approaches to fiproving thespeed of&edgotiths presented. The
most obvious is to buy a faster machine. In every case presented here, CPU speed, not
graphics pipeline speed, was the limiting factor. With no improvements in the basic
algorithm, sufficiently fast machines should be available in roughly five yem.

Related to simple speed improvements is the possibility of parallelizing the algorithms.
Parallelizing the faceting and distance-representation computations wilI provide large
returns, as they represent much more than half the computation effort, and are inherently
parallel. Except for data storage concerns, the algorithms are completely independent, and
tens or hundreds of processors can be applied easily to the problem.

Computation of de-reps is likely much slower than necessay. The current algorithms
being used are optimized for off-line computation of the de-reps, They produce very fast
distance computation at runtime, but perform the de-rep computation offline. Our
application requires de-reps to be updated for small changes, which will require further
development of the C-Space Toolkit.

Further investigation of different choices of de-reps is warranted. Skeletal representations
of certain features, e.g. holes, can profoundly reduce the geometry being searched during
distance calculations. Additionally, features can be defined in partial terms (e.g. the
through-next hole feature, whose limit is the f~st face touched). Such partial feature
definitions are likely to require semi-infinite (partially unbounded) de-representations.

Incremental Faceter
As shown by the test case of a block with 40 holes, it is possible for a single face to be
very complex, and to be involved in any edit involving any other face. In such a case, the
geometric operations can be trivial, while refaceting is very expensive. The faceted model
is likely to change very little, except in the geometric neighborhood of the change, so an
incremental faceting algorithm is necessary.

An incremental faceter would require knowledge of which facets are adjacent to moving
geometry. For a given edit, only the facets adjacent to moving geometry would be
modified. Their geometry might be locally changed, or in extreme cases, deleted and the
faceter directed to filI in the missing facets. The faceting algorithm would be analogous to
the topolo=~-invariant and topology-changing algorithms used for maintaining the exact
solid.

Incremental Topology-Changing Algorithms
Due to time limitations, we were unable to complete work in prototyping fast topology-
changing algorithms. Development had begun on algorithms that would propagate
topology changes through a feature tree using fast distance computation and persistent data
structures to localize the cost of feature modification. This effort should be completed to
enable effective study of improved feature-based modeling speed, independent of whether
the modeler is traditional or immersive.
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Expanded Feature-Based Model
Our prototype was limited to block and hole features to enable the study of immersive
editing. The domain of discourse of the feature-based model needs to be significantly
expanded to enable more complete evaluation of this technology in production CAD terms.

Incremental Analysis and Planning Algorithms
The immediate feedback provided by incremental geometry evaluation suggests the
possibility of expanding beyond geometry into analysis and planning algorithms. Many
downstream algorithms (e.g. kinematic and dynamic simulation, finite element analysis,
etc), while computationally expensive, might lend themselves to incremental update. As
such, they provide an opportunity to observe the effect of a design change in new terms:
not as a monolithically computed answer representing a discrete point in design space, but
as a continuum of answers showing downstream effects of every nudge of a design
feature.
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