SAND--F6-27100C> 5ANMOT-2/00

, GONF - %076?—-—/7

Achieving Strategic Surety for High
Consequence Software

Guylaine M. Pollock', Ph.D.; Sandia National Laboratories; Albuquerque, NM

| RECEIVED
Abstract AUG 2 11995

A strategic surety roadmap for high consequence software systems @\ﬁoxe(! under the
High Integrity Software (HIS) Program at Sandia National Laboratories guides research
in identifying methodologies to improve software surety (Ref. 13). Selected research
tracks within this roadmap are identified and described detailing current technology and
outlining advancements to be pursued over the coming decade to reach HIS goals. The
tracks discussed herein focus on Correctness by Design, and System Immunology™.
Specific projects are discussed with greater detail given on -projects involving Correct
Specification via Visualization, Synthesis, & Analysis; Visualization of Abstract Objects;
and Correct Implementation of Components.

Introduction

The development of software for use in high-consequence systems mandates rigorous
(formal) processes, methods, and techniques to improve the safety characteristics of
those systems. To address this need, research efforts must progress in several areas
over the next few decades to allow us to reach, with greater certainty, the higher levels
of reliability required by software used in high-consequence systems (Ref. 6,12). This
paper describes a strategic surety program developed for high—consequence software
under a new initiative at Sandia National Laboratories (SNL)—to identify how we will
develop ultra-reliable software in the 2010 time frame.

This initiative, the High Integrity Software Program (HIS), is tasked with guiding strategic
investments in the development of new capabilities and technologies in the domain of
high consequence software at SNL. The program sponsors research within the strategic
surety backbone of the defense sector to establish predictive confidence that a system is
safe, secure, and under control through the exploration, extension and application of the
science of software systems (Ref. 13). The program emphasizes high-risk, high payoff
research through a correctness research track focused on a “correctness by design,"
and more immediate lower-risk, medium payoff applications research through a systems
immunology™ track. This track produces methods and techniques to render today's
systems safer, more secure and more reliable. (Other tracks have been defined but are

not currently staffed.)

' This work was supported by the United States Department of Energy under contract DE-AC04-94AL85000.

DISTRIBUTION OF THIS DOCUMENT 1S UNLIMITED %\ 6cl-1

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are

produced from the best available original
document.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed hercin do not necessarily state or
reflect those of the United States Government or any agency thereof.

The motivation behind this initiative is briefly reviewed before outlining the development
of the strategic surety roadmap guiding this program. Subsequently, a more detailed
discussion of several of the research projects will be presented. Projects within the
Correctness by Design track and the Systems Immunologyg track will be discussed.

Motivation

The High Integrity Software Program (HIS) at Sandia National Laboratories was
established to provide a crucial role in guiding internal research efforts to improve
technologies that enhance surety aspects of high-consequence systems. This program
strives to develop better technologies within the software industry enabling us to
increase our confidence in the correctness of high-consequence systems, many of which
may become life-threatening if flawed.

Examining this industry in general, we see software becoming more complex and being
relied upon more often for an ever-widening variety of applications. In fact, our
dependence on software is exploding quietly-"The amount of code in most consumer
products is doubling every two years ... televisions may contain up to 500 kilobytes of
software; an electric shaver, two kilobytes; while the power trains in new General Motors
cars run 30,000 lines of computer code." (Ref. 9)-and yet software is not reliable in most
systems. As a result, software irregularities, in some instances, have taken or degraded
people's lives in various system accidents.

Notwithstanding, new types of applications continue to appear on the technological
horizon, generating continued cause for concern regarding current abilities to evaluate
software surety. For example, Andy White, Director of Los Alamos National Laboratories
Advanced Computing Laboratory, has stated that an important goal for new software
applications is to solve large problems (such as helping the Forest Service fight fires,
helping doctors determine which flu vaccines to use, and making sure that U.S. nuclear
bombs do not go off accidentally) that, in short, require us to trust computers to predict
the future (Ref. 1).

While some have encouraged expansion of these types of applications, many others
have cited this proliferation as a potential powder-keg for our society: "These days we
adopt innovations in large numbers, and put them to extensive use, faster than we can
ever hope to know their consequences ... which tragically removes our ability to control
the course of events" (Ref. 11). ‘

Even more alarming, this increase in numbers and types of software applications has
increased our vulnerability as a nation to information warfare. (This is a problem for
other nations as well.) In fact, last year the Joint Security Commission stated that "The
U.S. vulnerability to infowar may be the major security challenge of this decade and
possibly the next century" (Ref. 7). Not surprisingly, Pentagon officials have reported an
attempt at such warfare was actually suggested to U.S. adversaries during the Gulf war
when a group of Dutch hackers offered to disrupt the U.S. military's deployment to the

6C1-2

Middle East for $1 Million. If current trends continue, this type of vulnerability will only
increase unless we work to ameliorate our skills in assessing software surety.

Clearly software integrity and surety (safety, security, reliability) issues are a major
concern for U.S. industries; as such, they are also a concern for Sandia National
Laboratories. Current surety technologies just are not good enough for industries’
increasing needs.

Consequently, the HIS program initiative was formulated to address high integrity and
surety software issues. Sponsors of the program include the Strategic Surety Backbone
of the Defense Programs Sector and the Vice President of Defense Programs. The HIS
objective is to establish predictive confldence that a system is safe, secure, and under
control.

Roadmap Tracks

One of the first actions taken under this program was the establishment of a steering
committee to guide research activities. After establishing the general framework of a
strategic plan identifying the strategies, technologies, and capabilities needed for
achieving goals of improved software surety and integrity, we began working to define
stronger, more specific guidelines to identify measurable milestones and produce
specific products, to meet our needs. Consequently, the steering group identified a
number of roadmap tracks for development. Six different tracks have been identified to
date. (This is an on-going process so we anticipate that additional tracks may be
identified in the future.)

Once a track was identified, appropriate staff were assigned to aid in the further
development of that track. Please note, each track was not expected to be a complete
solution in and of itself. The tracks complement one another to address a complex
problem. Numerous projects may be conducted with a particular track. Due to space
constraints, only two of the roadmap tracks are discussed in the following sections. They
are the Correctness by Design, and the System Immunologyg tracks.

These tracks are viable research directions that will enable Sandia to reach a higher
level of software integrity by allowing surety to be engineered into software systems.
Research efforts within the tracks will drive software development to be a much more
disciplined engineering activity, supported with modeling and measurement and reuse of
proven components. Several of the tracks are derived from a vision of how software will
be built, verified, and understood in the future as suggested by Dalton. (His view is
depicted in figure 1.)

“Correct” Function/ldea
Specification

“Immersive” Environment
with Rich Analysis Tool Set
Analyticaly & Cognitive
Based

Iterative
Refinement

N

Design

Surety Rules

Architectural Issues

Design “Option Tree” (History,
Legacy, Experiential)

Surety Assessment
Quantization of Risk

Figure 1 - HIS Total Software Approach

Each track encompasses a major area for selected research, and must be refined into
subtracks representing different aspects, approaches, features, or options within their
respective research areas. Some, but not all, of that breakdown has occurred and is
reflected in the roadmap track descriptions in this section.

Three projects within the first track are discussed in some detail. A brief review of the
remainder of the projects in the first track and the projects within the second track, that
are currently under development, follows the detailed discussion. The three projects
discussed in greater detail include:

1. Correct Specification via Visualization, Synthesis, & Analysis;
2. Correct Implementation of Components; and
3. Visualization of Abstract Objects.

Furthermore, as work progresses, we expect further refinement to occur, new subtracks
to be identified, and some subtracks to be abandoned. We also expect that new tracks
will be identified in the future, and old tracks may split. Each track will have a champion,
who will keep the vision for that track alive, and who will steer the "coming and going" of
subtracks to assure progress toward the vision. For now, we will review the track on
Correctness by Design before proceeding with the System Immunology™ track.

6C1-4

Correctness By Design

Five projects are currently funded under this track. They include projects related to:
Correct Specification via Visualization, Synthesis, & Analysis, Correct Implementation of
Components, Visualization of Abstract Objects, and Software Testing for High
Consequence Automated Systems. The last project, the Software Testing for High
Consequence Automated Systems project, investigates the use of production
supervisory control software to test large complex dynamic electromechanical systems
and is not discussed here. Efforts underway on the first three projects are described in
the following subsections. :

Correct Specification via Visualization, Synthesis. & Analysis: This track of Sandia
National Laboratories High Integrity Software (HIS) Initiative is to develop a

software/hardware system specification, design, and implementation methodology along
with tools that will guide the developer to intrinsically "sure" designs. Initial efforts by
Yakhnis and Yakhnis have identified the following goals for methodologies and tools to
be developed within this track:

1. The system specification will accurately reflect the true customer intent; also, the
methodology will help the customer to reveal and evaluate all of the information
included in his or her original idea;

2. All system analysis and design documents will have a precise semantics (e.g., as
in the Object-Oriented System Analysis(OSA) model (Ref. 8) or the Business
Object Notation (BON) model (Ref. 15)). The semantics will serve as a basis for
prototyping and visualization at every stage of system creation, from requirements
capture to design; -

3. The system will conform to the specification and design via computer generated
mathematical proofs, so that each layer of the design or code will conform to the
element of the design or specification positioned immediately above within the
specification/design hierarchy (Refs. 18, 19);

4. At each analysis of a design step, the customer will be provided with persuasive
demonstrations (e.g., via computer visualization) that the system behaves as
desired;

5. The system will maintain traceability of requirements in the sense of an automated
ability to locate the respective customer requirements for every element of the
design and/or code;

6. Maintainability will be sound in the sense that specification, design, and code will
be continuously maintained to be mutually consistent; and

7. System surety (in respect to safety, security, etc.) will be enhanced by
guaranteeing predetermined system behaviors with respect to a list of unusual

6C1-5

circumstances provided by the requirements (e.g., hardware malfunctions).
Specifically, the system will be able to either undertake a protective action or

gracefully degrade its performance while giving sufficient warnings to users
(Ref.17).

Yakhnis and Yakhnis have proposed that these goals can be achieved via seamless
(Ref. 15) integration of OOA, OOD, code generation, visualization, and automated
correctness proofs. Specifically, they suggest pursuing the following steps: 1) making
specifications transparent and easily accessible; 2) insuring that the specification
captures the original idea; and 3) enabling the specification to govern the design and
implementation.

The first step identifies how to make the specifications transparent and easily accessible.
To begin, they distinguish three ways to represent a specification:

1.

An informal specification in a natural language. This approach stems directly from
the requirements, and thus, is at least partially understood by the customer.
However, without conversion into the two other forms, this method is usually not
conducive to systematic design and implementation;

A formal specification. This approach is usually not understood by the customer;
although, this technique may be conducive to automated development of correct
systems; and

An object-oriented ahalysis model. This tactic allows the specification to closely
model the real world, possibly serving as a common ground for communication
between the customer and the developers.

Note that a non-hierarchical moderately complex specification of any of the above is
usually not understood in its entirety by either the customer or the developers. Thus, the
following six actions are suggested for improved specifications:

1.

develop hierarchical specifications limiting each observabie element to no more
than seven subordinate entities;

represent the specification as three documents consisting of: an informal
specification, a formal specification, and an object-oriented analysis model;

for the object-oriented analysis model, choose an object model (e.g., OSA or
BON) which does not include any elements of design (Ref. 8, 15, 19). Doing so
will prevent developers from distorting the requirements analysis stage by making
design decisions too early;

6C1-6

4. coordinate the hierarchical structure of the three documents (For example, each
object within the object-oriented model should correspond to its description within
the informal specification document);

5. provide hypertext-like links between corresponding elements among the three
specification documents; and finally,

6. do not use the formal specification document to communicate with the customer
as they may not have the necessary skills to fully understand the formal notation.

The second step in the Yakhnis methodology focuses on insuring that the specification
captures the original ideas expressed by the requirements. A "simultaneous iterative
refinement” procedure should be used to capture the specification from the original
customer requirements (SIRC). The customer should have control over the
capture/extraction process at all times since the feedback from the developers will be
provided in several transparent forms, including visualization.

Finally, the third step is to enable the specification to govern the design and
implementation. The "simultaneous iterative refinement" procedure should be extended
via the object-oriented stepwise refinement process to obtain a "simultaneous iterative
refinement" procedure of design (SIRD). Under this SIRD procedure, each object is
treated as a new system to be analyzed and specified. Thus, the design is viewed as a
continuing application of methods for analyzing requirements, albeit wnth smaller
granularity of objects.

The hardware and software should be developed jointly, with their separation only
occurring for appropriate granularity of objects when needed. Further, at each step of the
design process, a mathematical proof verifying that the internal design of each object
(i.e., subsystem) conforms to its external specification, will be computer-generated (Ref.
19). Finally, a target code that has been proven correct mathematically will be generated
automatically (Ref. 16).

Correct Implementation of Components: This track focuses on achieving advancements
in program transformations to ensure correct implementation of components. Several
goals have been identified for this research area and initial investigations are focusing
on the "task scheduling" problem using algorithms developed in the WALS and APP pit
handling projects at Pantex.

Program transformation can be a means to formally and correctly bridge the gap that
exists between the specification of a problem in some domain specific language, and a
realization of the specification in some programming language. Exactly what constitutes
a domain specific language and what constitutes a programming language is more or
less irrelevant from a theoretical point of view.

6C1-7

Given ‘a specification, s, that is expressed in some domain specific language, a
transformation sequence T can be constructed that will transform s into s’, where s’is an
executable program belonging to some previously selected target language.
Furthermore, if T has been shown (through formal proofs) to be "correctness preserving,"
then one can conclude that the program s’is correct with respect to the specification s.

Ideally, a correct formal specification, S, of the problem would be produced by research
efforts under the correct specification via visualization, synthesis and analysis track
described in the previous section. This formal specification would be in a domain specific
language whose formal semantics would also be defined.

It should be noted that the specification, S, might be in a language that is not directly
executable by a computer, or S might be inefficiently executable. At this stage,
transformations can be applied to S with the goal of producing a program, satisfying S,
that can be efficiently executed by a computer.

In order to accomplish this, one needs to: 1) define the source and target language in a
common semantic framework; 2) write a transformation sequence, T, that is capable of
transforming S into a program P; and 3) prove the correctness of the transformation
sequence, T. TAMPR, a transformation system created by James Boyle at Argonne
National Laboratory, provides suitable functionality needed for this effort. TAMPR views
specifications, programs, and transformations in terms of syntax derivation trees (SDT’s).
In this paradigm, a transformation consists of a rewrite rule stating that one SDT should
be rewritten into another.

Typically, syntax derivation trees associated with transformations tend to be quite
massive; consequently, researchers at Sandia continue to investigate environments and
tools that will facilitate manipulating, constructing, and reasoning about transformations.
Because Pad++ allows syntax derivation trees to be presented in a form more amenable
to human understanding, it is under review for this program.

Once a series of transformations have been developed and applied, the correctness of
that transformation sequence can be proven with the assistance of an automated
reasoning system. Winter has developed an approach that uses the automated
reasoning system OTTER; however, an extension to this system is necessary in order to
make the transformation proofs more manageable.

With current technology, transformation proofs require several passes, each providing a
portion of the overall proof. Search strategies and inference rules may vary from one
pass to the next. Ideally, the overall strategy of a complex proof would be defined within
the automated reasoning system itself, eliminating the need for these separate passes.

Finally, a significant amount of research needs to be done in order to expand the class
of transformations about which current methodologies are capable of reasoning. These

6C1-8

areas of research are mostly near teer (3-5 years) gdals. A list of the general areas with
a brief description of what is needed is given below: -

1. Automatic deduction of delta-functions. Delta functions are essentially the
semantic manifestation of syntactic variables that can occur within transformation
schemas. It is because of these variables that transformations obtain a general
applicability. Reasoning about such variables requires knowledge of their
semantics. A delta-function captures the semantics of such variables; currently,
these delta-functions are constructed by the user, a situation that is unacceptable
if one desires to produce high integrity software.

2. Reasoning about subtransformations. A subtransformation is a transformation
within the body of another transformation. Research needs to be conducted on
how such information can be adequately expressed and exploited in a correctness
proof. '

3. Formally deducing and incorporating preconditions (canonical form properties).
Research in this area centers around the development of a theory enabling one to
reason about properties other than correctness that are established by
transformations and transformation sequences.

There are many areas that need to be researched and developed further as long term
goals in order to produce a usable production strength methodology. With the present
technology, it is quite difficult to prove the correctness of transformations that introduce
significant algorithmic implementation decisions. Dramatic improvements can (and need
to) be made in this area.

Currently, Winter suggests further investigation of refinement calculus. In addition, he
believes efforts to make algorithmic implementation decisions (o some extent)
automatically deducible by computer through observation of human solutions to
"example" problem instances would be likely to improve current technology.

Development of a methodology that is capable of quantitatively computing the reliability
of arbitrary analysis techniques (e.g., risk analysis, formal verification, etc.) will follow
earlier efforts. This idea is based on measuring the resiliency of an analysis technique to
typos and other errors. Essentially, we will measure the chaotic nature of the analysis
technique, relating this work to the predictive measurement track discussed in Ref. 13.
There are several critical issues or show stoppers for this track. In order for this
technology to succeed, a specification language and a specification must be produced in
the parallel track on correct specification via visualization, synthesis, & analysis that is
amenable to the transformation process. This requires a frequent exchange of ideas
between these two tracks.

Further, it is extremely desirable, at some future point, to be able to extend reasoning
about transformations to properties other than correctness (e.g., safety); of course, those

6C1-9

properties need to be defined first. Currently, some preliminary theoretical research has
been done with respect to reasoning about general properties that are established by
transformations and transformation sequences. We envision that properties other than
correctness (e.g., safety) can be handled within this theoretical framework.

Visualization of Abstract Objects: The previous two tracks deal with earlier phases of the
software life cycle and progress to code development. However, once a software system
has been developed, the problem still remains of assessing software surety status--
rigorous processes and methods applied to early phases of the software life cycle alone
cannot assure software integrity, safety, security, and reliability in the final end product.
The implementation itself must be verified, with particular focus on surety aspects for
high-consequence systems. In that regard, several key issues include whether or not the
executing software properly incorporates specified constraints, and whether or not all
necessary constraints and their interactions have been considered, understood, and
correctly implemented to avoid loss of life or other undesirable effects. How do we verify
the surety attributes of a system implementation?

Traditionally, there have been three areas of research for verification of system
implementations: logical verification, mathematical verification, and statistical
verification. However, Berztiss (Ref. 3) has advocated that every possible technique and
method should be utilized to address safety concerns, as current methods to address
this problem are inadequate. While testing the actual system code does provide
substantial information regarding the correctness of the system, generally this is an
incomplete method for assessing surety aspects as economic and scheduling restraints
prohibit the level of testing required to achieve the necessary confidence in the surety of
real-world systems. Further, tested programs may correctly execute their specifications,
but with current textual and limited graphical documentation, it is difficult to ascertain
whether a code does what is needed.

Mathematical models can be considered for this task. However although rigorous, they
can only prove that the implementation meets the specific requirements. They do not
allow support for identifying any cases that have not been considered within the
requirements and specifications--a drawback of mathematical techniques, they only work
if the right cases are proven. Reliability models are also useful, but again, they can only
provide statistical confidence at levels that are clearly beneath those required for these
high-consequence systems, and they, generally, are making predictions about future
failures of the systems without addressing the types of errors or their significance.
Finally, none of these existing methods of research address the difficulty of assessing
whether all necessary constraints have been specified. This is an area visualization can
address.

Therefore, it is time to consider a fourth category, the use of visualization, in addressing
the issue of verification. Accordingly, several such efforts are underway in various
laboratories and universities (Ref. 2, 14, 10), including an investigation of software

6C1-10

attributes visualization within the High Integrity Software program at Sandia National
Laboratories. -

Visualization techniques have been used quite successfully within the scientific
community for some time; and not surprisingly, many researchers feel the utility of
visualization as a means of illustrating the properties of muitiple objects, or as a means
of demonstrating properties of supersets of discrete items, may be considered a given
(Ref. 4). Fortunately, this benefit of improved comprehension through visualization can
be achieved in other application areas as long as the appropriate visual model is
selected. Correspondingly, although system verification is a new context, visualization
provides the capability of increased system comprehension, thereby facilitating
discoveries that are not otherwise possible. This is a major benefit of using visualization
in a formal method to investigate surety aspects of a system implementation. However,
little work currently has been undertaken to apply multi-dimensional visualization
techniques to software analysis (Ref. 5), while a number of projects have focused on
algorithm animation, at least in two dimensional formats (Ref. 20). (It is only fairly
recently that hardware support has been sufficient to allow work on information
visualization for analysis of software.)

Projects are just beginning to investigate the use of this methodology for enhancing
understanding of system software. Initial successes have resulted in recommendations
of investigating the use of virtual reality technology to map multiple-layer software
systems onto expansive 3-dimensional terrains and providing more direct means for
traversal as a more effective facility for software visualization (Ref. 10). We are
investigating such a use of visualization and virtual reality techniques, with our efforts
going further in utilizing these technologies in assessing surety factors for high-
consequence software through the verification of system software (Ref. 13), as current
visualization models do not evaluate or portray surety issues. A multi-dimensional
abstract model is used to reduce system complexities associated with the conceptual
mapping of a problem domain into a software solution space.

The goal of this track is to improve cognition of software systems behavior and improve
software surety confidence by providing an environment that allows visualization of
abstract objects and animation of program behavior incorporating requirement
constraints. The project focuses on a multi-dimensional visualization of software
abstractions that incorporates a technique for assessing the correct implementation of
select requirement constraints during the execution phase of the life-cycle process.

The prototype software attribute visualization tool is developed on Eigen/VR, a multi-
dimensional user-oriented synthetic environment developed at Sandia National
Laboratories. The tool incorporates the use of requirement constraints, expressed in a
requirements constraint language, in the visualization of an executing program. As the
program executes, selected requirement constraints are monitored and if violated, the
abstract visual model indicates those errors have occurred.

6C1-11

Systems Immunology™ Track

Projects in this track use current technology to provide lower-risk, medium payoff
research addressing surety issues for high integrity software. The projects and their
goals will be briefly addressed. Currently, there are three projects underway: Digital
Isolation and Incompatibility; Path Expressions; and System Fault Analysis.

The Path Expressions project extends capabilities of existing path expression
methodologies to include event sequence and timing concerns in high consequence
software. The Digital Isolation and Incompatibility project uses software path expressions
and hardware state machine monitoring to provide highly reliable software solutions.
And, the System Fault Analysis project extends a top-down fault analysis methodology,
based on Fault Tree Analysis to identify high consequence hardware failures in
software-controlled systems using microprocessors. '

Conclusion

We have presented the beginnings of a strategic plan for high integrity software. We
have identified necessary attributes, strategies and supporting technologies and
capabilities needed to achieve our goal of improved software surety. Further, we have
specified and described several research tracks to accomplish our stated goals.
Improvements will need to be achieved within several different tracks to attain success.

Our next step is to continue development of the research tracks, expanding into a more
complete strategic plan containing specific goals, strategies objectives and tasks. In
addition, we need to continue assessing the research tracks to determine project
priorities and their expected impact and contributions towards HIS goals.

References and Notes

1. Albuquerque Journal, Sunday, November 12, 1995.

2. Ball, T., S.G. Eick, "Software Visualization in the Large," Computer, April 1996, pp.
33-43.

3. Berztiss, A.T., "Safety-Critical Software: a research agenda," International Journal of
Software Engineering and Knowledge Engineering, Vol. 4 No. 2, 1994, pp. 165-181.

4. Braham, R., "Math & Visualization: new tools, new frontiers," IEEE Spectrum,.
November 1995, pp. 19-37.

5. Clifford, C., Huff, M. Klein, S. Stevens, "The State of the Art in Scientific

Visualization," Technical Report, CMU/SEI-95-SR-Visualization, Software
Engineering Institute Carnegie Mellon University, September 1995.

6C1-12

6. Collins, E., L. Dalton, D. Peercy, G. Pollock, and C. Sicking, "A Review of Research
and Methods for Producing High-Consequence Software," 1995 IEEE Aerospace
Applications Conference, Vol. 1, January 1995, pp. 197-245.

7. "Cyberware," Time, August 21, 1995.

8. Embley, D., Kurtz, B., Woodfield, S., Object-Oriented Systems Analysis (A Model-
Driven Approach), Yourdon Press, 1992.

9. Gibbs, W., "Software’s Chronic Crisis", Scientific American, September 1994. |

10.Kimelman, D., B. Rosenburg, T. Roth, "Strata-Various: Multi-Layer Visualization of
Dynamics in Software System Behavuor " IBM Thomas J. Watson Research Center,
June 1994,

11.Lagedec, P., "Major Technological Risk", Quoted in Safeware, System Safety and
Computers, Nancy Leveson, University of Washington, Addison-Wesley, 1995.

12.Musa, J.D., A. lannino, K. Okumoto, Software Reliability: Measurement, Prediction,
Application, McGraw-Hill, Inc., 1987

13.Pollock, G.M., L.J. Dalton, "A Strategic Surety Roadmap for High Consequence
Software," 1996 Aerospace Applications Conference, Snowmass CO, Vol. 4,
February 1996, pp. 351-370

14.Steven P. Reiss, "An Engine for the 3D Visualization of Program information," Dept.
of Computer Science, Brown University, May 1995.

15.Walden, K., J. Nerson, Seamless Object-Oriented Software Architecture, Prentice
Hall, 1995.

16.Winter, V., A. Yakhnis, V. Yakhnis, High Integrity Software: Automated Software
Design via Refinement Transformations, submitted to 8th Annual STC’96.

17.Yakhnis, A., V. Yakhnis, High Integrity Software: Capture and Analysis of
Requirements on Safety via Strategic Multiagent Approach, submitted to the 8th
Annual STC’96.

18.Yakhnis, V., J. Farrell, S. Shultz, "Deriving Programs Using Generic Algorithms," /BM
Systems Journal, Vol. 33, no. 1, pp. 158-181, 1994

19.Yakhnis, V., A. Yakhnis, "A Model of Object-Oriented Analysis and Design Tailored
Toward Stepwise Refinement," to appear as a technical report, Mathematical
Sciences Institute, Cornell University.

20.Zeus, DEC Systems Research Center.

6Cl1-13

Biography

- Guylaine M. Pollock, Ph.D.
Sandia National Laboratories
Computer Sciences Dept. 9224
MS 1109

PO Box 5800

Albuquerque, NM 87185-1109

Guylaine M. Pollock, a Senior Member of the Technical Staff at Sandia National
Laboratories, received a Ph.D. in Computer Science from Texas A & M University and a
BS in Computer Science and Mathematics from East Texas State University, graduating
with Academic Distinction and Highest Honors. She has served on Software Capability
Evaluation Teams for the Battle Management Defense Organization of the Department of
Defense. She has investigated software reliability for massively parallel codes and is a
member of the Sandia Reliability Working Group. Dr. Pollock is a member of the Board
of Governors of the IEEE Computer Society currently serving as Treasurer, and has
previously lectured with the Distinguished Visitors Program for the society. She has
received several awards including the Richard E. Merwin Scholarship and Notable
Women of Texas.

6C1-14

