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ABSTRACT

We apply chaotic time series analysis (CTSA) to human electroencephalogram (EEG) data.
Three epoches were examined: epileptic seizure, non-seizure, and transition from non-seizure to
seizure. The CTSA tools were applied to four forms of these data: raw EEG data (e-data), artifact
data (f-data) via application of a quadratic zero-phase filter of the raw data, artifact-filtered data
(g-data) that was the residual after subtracting f-data from e-data, and a low-pass-filtered version
(h-data) of g-data. Two different seizures were analyzed for the same patient. Several nonlinear
measures uniquely indicate an epileptic seizure in both cases, including an abrupt decrease in the
time per wave cycle in f-data, an abrupt increase in the Kolmogorov entropy and in the correlation
dimension for e - h data, and an abrupt increase in the correlation dimension for e-h data. The
transition from normal to seizure state also is characterized by distinctly different trends in the
nonlinear measures for each seizure and may be potential seizure predictors for this patient.
Surrogate analysis of e-data shows that statistically significant nonlinear structure is present
during the non-seizure, transition, and seizure epoches.

xi

'\‘M#
i






1. INTRODUCTION

The theory of nonlinear dynamics provides a basis for understanding and potentially
controlling many complex physical and engineering systems. An extensive literature exists for
nonlinear dynamics in the brain and related work [1-51]. It is well known that brain waves exhibit
seemingly random, unpredictable behavior, that is characteristic of deterministic chaos [2, 5, 8, 9,
23, 28, 35, 42, 49, 50]. Early work by Cartwright and Littlewood [6] and by Levinson [21]
showed that systems of nonlinear differential equations are representative of self-excitatory
biological processes, such as neural discharge, and have chaotic orbits. Moreover, chaotic
behavior is "normal," while nonchaotic or periodic behavior is indicative of pathophysiology in
experimental epilepsy [47], in EEG behavior of the human brain in the presence of
neurodegenerative disorders [1, 3], and in EEG changes with aging [22]. Recent work [38]
showed that chemically-induced seizures in rat-brain can be electrically controlled, leading to
speculation [7, 14, 24, 26] that human epilepsy may be controlled without drug or surgical
intervention. However, effective use of chaos control for epilepsy requires definitive seizure
prediction. Thus, the present work analyzes human EEG data via chaotic time series analysis
(CTSA) methods to predict the onset of an epileptic seizure.

Nonlinear analysis of neurological diseases via EEG data is extensive. For example, see the
1992 review by Pritchard and Duke [31]. Epilepsy can be recognized only with clear EEG
manifestations, but even these seizures are not easy to detect because there is no stereotyped
pattern characteristic of all seizures [15]. Work by Olsen and colleagues [25] used various linear
measures with autoregressive modeling, discriminant analysis, clustering, and artificial neural
networks. Valuable nonlinear tools for studying EEG data include correlation dimension [10, 27,
43], mutual information function [10, 27], Kolmogorov entropy [17], and phase-space attractors
[16]. CTSA of epileptic seizures [12] found clear evidence of chaos in the EEG data via
correlation dimension and largest Lyapunov exponent. Fractal models have been used to describe
the generation of action potentials in neurons [46]. Electrical signals from cat and rat brain
demonstrated strong determinism for potassium-induced seizure-like states, while non-seizure
states were stochastic [37]. Krystal [19] found neuronal hypersynchrony in electroconvulsively
induced seizures, as measured by EEG amplitude, coherence, and the largest Lyapunov exponent.
However, we are unaware of any work that applies several CTSA measures to EEG data for
systematic characterization of non-seizure, seizure, and transition-to-seizure.

Very recent analysis by Theiler [48] studied correlation dimension and Lyapunov exponent,
using a form of surrogate analysis on a single EEG time series during an epileptic seizure. The
surrogate analysis involved a random shuffling of blocks of time serial data, each block containing
one quasi-periodic spike-wave complex. The auto-correlation function for the original data is
nearly indistinguishable from the surrogate data. The correlation dimension for the original data is
significantly different from the surrogate data only at large scale sizes and large embedding
dimensions. The maximum Lyapunov exponent (A) was negative for both the original and
surrogate data and not substantially different, contrary to previous work which found positive A
values. Theiler concluded that his analysis suggests a nonlinear oscillator with noise on the time
scale of the spike-wave complex, but cannot indicate whether chaos exits on a shorter time scale.




Non-periodic brain waves characterize a non-seizure state which has little inter-channel
correlation, as distinct from an epileptic seizure, when the EEG data has a large periodic
component and a strong inter-channel correlation. Clearly, a transition occurs between these two
brain states. We apply various time series analysis techniques to quantify brain dynamics, and
specifically to characterize this transition and the occurrence of an epileptic seizure.

Robustness to noise and finite data precision are key issues because previous work (e.g.,
Ref. 33) found that noisy biological data are very difficult to analyze. Thus, our tools are adapted
to handle noise, finite data precision, and finite dataset length. We also used other well-known
linear statistics (data minimum and maximum, average, standard deviation, absolute average
deviation, skewedness, and kurtosis). Fourier power spectral density (a linear measure) provided
no clear indicators for this study of nonlinear brain activity and consequently was excluded from
this study. See Ref. 20 for a discussion of the Fourier analysis and related results.

This paper is organized as follows. Section 2 explains the data acquisition and filtering
techniques. Section 3 describes the features of specific nonlinear tools and their application to
EEG data. Section 4 discusses the surrogate analysis, showing that statistically significant
nonlinear structure is present during non-seizure, transition, and seizure epoches, thus justifying
further nonlinear analysis of the EEG data. Section 5 provides a discussion of our results, showing
long time-scale trends in the nonlinear features for seizure detection and prediction in this patient.
Section 6 presents the conclusions of this work.



2. DATA AND FILTERING

Sixteen channels of EEG data were analyzed in the bipolar montage, as illustrated in Fig. 2.1.
The data were retrieved in analog form from VHS tapes and converted to digital form with 12-bit
precision, giving a positive or negative, 4-digit number. The digital sampling rate (f,) was 512 Hz
over a total sample time of 10-23 minutes, corresponding to a total dataset size 0f 9.8-22.5
megabytes in binary form. Three epochs of data were examined: epileptic seizure and post-
seizure, non-seizure, and transition from non-seizure state to seizure (transition).

EEG data contains not only signals associated with brain activity, but also has artifacts (e.g.,
eye blinks, muscle twitches, chewing, etc.) that obscure the brain-wave signal. We developed a
novel zero-phase filter to remove low-frequency artifacts, based on the following criterion. We
needed a zero-phase-shift filter to prevent phase distortions when subtracting the filter output (the
"artifact" signal) from the EEG signal to yield an undistorted artifact-filtered signal, because phase
relationships are important in the subsequent nonlinear analysis. Standard high-pass filter
techniques do not meet this criterion. A computationally fast, simple, low-frequency signal
follower was necessary, so we eventually can apply the filter in real- or near-real time.
Consequently, we used quadratic regression analysis, with the same number of data samples on
either side of a central point. Other standard digital filtering methods (e.g., see Ref. 45) could not
meet this requirements.

The zero-phase filter method is as follows. Ref. 20 provides a more detailed discussion of the
method. For a specific EEG channel, the signal (e) at time (t) is sampled at regular intervals =i
At) to yield a set of time serial data & = e(t). We choose a filter-window length of 2n + 1 points
from the time series, where n is the number of points on either side of the central point (e.) as
indicated in the below sequence.

central point

e:;-na eo-n+l’ cer g ec-l’ ec: ec+1’ ces y ec+n~l> ec+n

— e — —
v v’

n points n points

We fit the data to a quadratic equation that takes the form: Fi=Ft)=a, (t;-t) +a,(t;-t) +a,
=a, T + a, T; + a,. Here, t. = c At is the time at the central point, and T;=t;-t. This
approximation is fitted to the data, by minimizing the sum of squares of the differences between
the quadratic equation, F(t), and the raw EEG data, e(t), corresponding to the minimum in the
following function:

cin

L=2[F(t) - e(t)P= 2 [(a, TP +3, T, +a,) - e, T @.1)

i=cn i=-n

R



Fig. 2.1. EEG electrode positions on the patient's scalp for the bipolar montage,
looking from above. C13 labels the position of the channel 13 electrode, used in this work.
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The minimum in L is found from the condition 9L/da, = 0, for k = {1, 2, 3}, forming three
simultaneous linear equations in three unknowns. The window-averaged artifact (F,) is given by
the fitted value of the central point, F, = F(0) = a;. We note that the sums over odd powers of T;
are zero and that symmetric sums over even powers of T; (overifrom -n to +n) can be converted
to sums from 1 to n with T; =i At, yielding a window-averaged solution for the artifact signal:

3(3n*+3n-1)(Ze,) - 15 (T, %e,) . (2.2)

F,

c

(4n*+4n-3) (2n+1)

Here, Z; indicates the sum over i from -n to +n. Sums over even powers of "i" were explicitly
evaluated with standard formulae (e.g., see Ref, 36). The effort to evaluate F, can be reduced
substantially by computing the sums initially from Eq. 2.2 (at c=n+ 1), and then using the
following recursions thereafter:

n n
Circt1 = Counsr = € F Z}ei«rc (23)

i=-n i=-n

n n n
2 i Cires1 = N €oypey + (n + 1) €en + Z i Cisc '2 Circ (2-4)
i=- i=-n i=-n

n n n n
2P ey = 1% oy -+ 1 e, + D2 D € +24 €,y . (2.5)
i=-n i=-n i=-n i=-n

The right-hand sides of Eqs. 2.3-2.5 only involve the sums previously computed. Application
of Eqgs. 2.2-2.5 to the N-point set of original time serial EEG data (e;) yields an artifact dataset (£
or f-data) with (N-2n) points that contains the low frequency artifact signal. The residual signal (g
or g-data) is the difference, g,=¢,-f, and isa signal that as free of low-frequency artifacts.
Subsequently, we apply a standard fourth-order low-pass filter at 50 Hz (e.g., see Ref. 32) to the
g-data, to yield artifact-filtered, low-pass-filtered data (h; or h -data) that is free of both low- and
high-frequency artifacts. We note that spike-wave phenomena at 100 Hz in h-data are attenuated
by 28 db (a factor of 25), while the g-data retain the full spike-wave signals.

The filter-window length (n=128) corresponds to a frequency of 2.0 Hz [=512 Hz/(2n +1)].
Figure 2.2a shows an example of the application of this method, with (raw) e-data in light gray
and a superimposed (dark line) artifact signal (f-data), which clearly follows the low-frequency
trends. Figure 2.2b shows the residual signal (g-data) for this example, as having little low-
frequency component while retaining the higher frequency information.

For a specific EEG channel, we obtained a time history of the nonlinear measures by applying
the CTSA tools to a series of 20-second analysis-windows of the four data types (e, f, g, h).
These data are designated in Section 3 as X;. The length of the analysis window (w) was 10,240
points. Each analysis-window had a 5, 120-point overlap with the previous (or next) analysis-
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Fig. 2.2. Sample plots of non-seizure EEG data. In the upper plot (a), a short sample of
raw EEG (e-) data from the non-seizure part of dataset #73317 (rapidly varying, gray
points) and corresponding artifact (f-) data (dark solid line) from the zero-phase quadratic
filter. The lower plot (b) shows the artifact-filtered (g-) data, by subtracting the f-data from
the e-data for this sample data segment,
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window of data. This 50% overlap provides an optimal mix of new and old data for smooth time-
history trend generation [11], as illustrated below.

[<---0 to 20 seconds--->]|
[<---10 to 30 seconds--->]|
[<---20 to 40 seconds--->|

[<--100 to 120 seconds-->]|
[<--110 to 130 seconds-->]|

The zero-phase quadratic filter provides artifact-filtered data with frequencies of >2 Hz. A
heuristic for (linear) Fourier analysis is that >10 periods of data are required to faithfully recover
cyclic information at a specific frequency. Thus, >5 seconds of data are needed to obtain Fourier
amplitude and phase information at a signal frequency of 2 Hz. However, this heuristic does not
apply to nonlinear analysis. For example, 20 seconds of data are necessary to obtain consistent
results for the Kolmogorov entropy. This need for longer dataset lengths (~10,000 points) for
consistent nonlinear measures conflicts with the need for shorter dataset lengths (<5,000 points)
to provide adequate resolution for the time history generation of trends. Consequently, we used a
20-second analysis window, as described above, with a 50% overlap for an effective time history
resolution of 10 seconds. The nonlinear measures for each 20-second analysis window were
associated with the time at the center of the analysis window, i.e., every ten seconds.




3. NONLINEAR ANALYSIS TOOLS FOR EEG DATA

Many characterization tools exist for chaotic data analysis. Due to very limited resources, we
used a subset of the tools that were found by previous work to be good measures for EEG data,
as discussed in Section 1. These tools include the following:

e standard statistical measures (minimum, maximum, average, absolute average deviation,
standard deviation, skewedness, kurtosis, time per cycle);

e Kolmogorov entropy and entropy spectrum;

o mutual information function;

e maximum likelihood correlation dimension and correlation dimension spectrum;

e surrogate generation and nonlinearity tests;

e nonlinear digital filters (as discussed in Section 2).

We justify the choice of these nonlinear analysis tools as follows. Weigend and Gershenfeld
[51] report a relationship [10, 27, 43] between epileptic seizures and the correlation dimension of
EEG data. As discussed in Section 1, two other measures, entropy and mutual information, also
show a relationship [10, 17, 27] to a seizure. The first minimum in the mutual information defines
the time scale for generating the return map for EEG dynarnics. The return map underlies the
correlation dimension (measure of dynamic complexity) and entropy (measure of dynamic
predictability). Moreover, we have had good success with these same measures in analyzing other
systems. Consequently, entropy, correlation dimension, and mutual information were used in the
present study as nonlinear measures for seizure analysis.

The statistical measures for the present study are obtained by standard methods (e. g., Ref. 18).
The maximum and minimum are obtained as maximum and minimum (respectively) over the x;
values in a time-serial window of w points. The average (x) is given by:

x=(1w) )% (3.1)

The r-th order moment (m,) of the x-data is:

m,=<1/w);(xi-x)f. 3.2)

The absolute average deviation (a) provides a robust indicator of the x; variability [29, 40] and is
defined as:

a=(1/w) le.zl (3.3)

An unbiased estimate of the standard deviation (o) is:



0 =[wm,/(w-1)]"2 (3.4)
An estimate for the skewedness (s) is:

s= m,/m,"> (3.5)
An estimate for the kurtosis (k) is:

k= m,/m,*-3. (3.6)
The average cycle time (T) is important as a characteristic time of the nonlinear system:

T, = (window length in timesteps)/[(number of mean crossings)/2] = 2w/c. 3.7

The mutual information function (MIF) is a nonlinear version of the (linear) auto-correlation
and cross-correlation functions, and was originally developed by Shannon and Weaver [41] with
subsequent application to time series analysis by Fraser and Swinney [13]. Mutual information
measures the certainty with which a measurement can be predicted, given the outcome of another
related measurement. Examples of the later include the same EEG channel at a different time, and
another EEG channel at the same (or different) time. The MIF indicates the average information
(in bits) that can be inferred from one measurement about a second measurement, and is a
function of the time delay (number of time steps) between the measurements. The mutual
information function also measures the nonlinear time dependent correlation in the same signal.
For EEG data, the MIF is useful for three reasons. First, information decay in an individual
channel (univariate MIF) indicates local time scale, as the average time lag (t; - ) that makes x(t,)
independent of X(t;), and corresponds to the first (local) minimum (M, in timesteps) in the MIF
[13]. We defined a minimum as two successive decreases in the signal value, followed by two
successive increases in signal value. Other definitions were tested and found to yield less
consistent results. Second, the MIF between channels (bivariate MIF) can reveal dynamic
coupling of different spatial regions of the brain and the propagation time between them. Third,
the uni- and bi-variate MIF measures timescale changes in local/global dynamics from non-seizure
state, through transition, to a seizure. The scope of the present work did not permit a study of the
second and third aspects, which are reported elsewhere [20]. The MIF, 1(Q,S), and system
entropy (H) for two measurements (Q and S) are defined by:

1(Q.8) =X(5,Q) = H(Q) +H(S) - H(S,Q), (3.9
H(S) = -2iP(s) log [Py(s)] | (3.9)
H(S,Q) = -ZiPy(s; ) log[Psqfs, ) (3.10)

S denotes the whole system that consists of a set of possible messages (measurements for the
value of s), s, s,, . . ., s, with associated probabilities P(s,), Ps(s,), - . . , Pg(s,). Q denotes a
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second system that consists of a set of possible messages (measured values with a time delay
relative to the s; values), q;, q,, . . . , q, with associated probabilities Py(q,), Po(q), - - -, Py(ay).
The function Pyqs, q;) denotes the joint probability of both states occurring simultaneously. If the
logarithm is taken to the base two, then H is in units of bits. Fraser and Swinney [13] describe the
details for evaluating 1(Q,S), including a sequence of recursive partitions in (s, q;) space to
achieve adequate accuracy with tailoring to the local data structure.

The maximum-likelihood correlation dimension (D) is based on the early work by Takens [44]
with modifications for noise [40]:

D=[ (-1M) Zin [ - )1 - 11, (.11)

where M is the number of randomly sampled point pairs, r;; is the normalized maximum-norm
distance between the (randomly chosen) i-j point pairs as defined in Eq. 3.12 (below), and I, is the
normalized distance (scale length) associated with noise as measured from the time serial data.
The distances are normalized with respect to some nominal scale length (L), i.e. ;=L/L, andrr,
= L,/L, with L, as a representative scale length (typically a multiple of the absolute average
deviation). The choice of scale length is a balance between a small scale for sensitivity to local
dynamics (typically at L, < Sa) and avoidance of excessive noise (typically at L, > a). The
distances (L;) are defined by:

Lij=max Ixi-)-k-xji»-kl: (3‘1.2)

Osk<m-1

where m is the average number of points per cycle from Eq. 3.7 (i.e, m= T,). Schouten et al. [40]
describe the details for evaluating Eqs 3.11-3.12 to measure of the number of degrees of freedom
in a system (e.g., the number of coupled first-order differential equations to depict the dynamics).

The Kolmogorov entropy (K-entropy or simply entropy) measures the rate of information loss
per unit time, or (alternatively) the degree of predictability. A positive, finite entropy generally is
considered to be a clear demonstration that the time series and its underlying dynamics are
chaotic. An infinite entropy indicates a stochastic, non-deterministic (totally unpredictable)
phenomenon. For entropy determination, one begins with two orbits on a chaotic attractor that
are initially very close together. The entropy then is estimated from the average divergence time
for pairs of initially-close orbits. More precisely, the entropy is obtained from the average time
for two points on an attractor to go from an initial separation (L <L), to become separated by
more than a specific distance (L > L,). The maximum-likelihood entropy is obtained from the
method by Schouten, Takens, and van den Bleek [39]:

K =-f log (1 - 1/b), and (3.13)

M
b=(1/M) Z b, - (3.14)
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with b; as the number of timesteps for two points, initially within L<L,, to diverge to L> L. The
work by Schouten et al. [39], and references therein, provide details of the method. We note that
the entropy used here is the order-2 Kolmogorov entropy which hereafter we call simply entropy.

The entropy (K) and correlation dimension (D) usually are reported in the limit of zero scale
length. However, EEG data (and all biomedical data) have substantial noise. Consequently, we
report the nonlinear measures of K and D for a finite scale length (L,) that is slightly larger than
the noise. Thus, the values of K and D, that we report here, do not capture the full complexity of
brain dynamics, i.e., their values are smaller than expected for the zero-scale-length limit. We
interpret K and D as nonlinear statistical indices of finite-scale dynamic structure.

We used surrogate analysis to show that significant nonlinear structure is present in the data.
Previous work [34] showed that random-phase surrogate analysis can give a dramatically, and
totally spurious, identification of non-random structure in dynamical data. Thus, we follow the
recent examples of surrogate analysis [30, 34], which use both phase randomization and data
shuffling. The methodology begins by applying a discrete Fourier transform (%) to the e-data:

N-1

Z() = I{e(®)} = ) e(t,) 29 (3.15)

where e; = e(t;) is the raw EEG data as discussed previously, and Z(f) is a set of complex Fourier
amplitudes, {X, +jY,}, for the discrete frequencies f=-NAf/2, ..., -Af, 0, Af, ..., NAf/2, with
Af = 1/NAt. We note that "j" in this context indicates the square root of -1. Then, a phase-
randomized Fourier transform, W(f), results from rotating the phase at each frequency by an
independent random variable (), in the range 0< ¢ < 27

W =Z(f) €* = (X, +jY,) (cos § +jsinp) = X, cos § - Y, sin b + (3.16)
j(Y; cos ¢ + X, sin ).

We note that proper reconstruction of the phase-randomized time series requires that the
Fourier component for the negative frequency be the complement of that for the positive
frequency, i.e., W(-f) = W'(f). A phase-randomized time series, p; = p(t), next is constructed by
applying the inverse discrete Fourier transform (T to W(D):

N-1
p() =9 [W(f)1=;W(f,,> g2t (3.17)

By construction, p(t) has the same power spectrum as the original data. Moreover, p(t) and the
original data have the same circular autocorrelation function, A(t):

N-t N
A(t) = Z,l (XKL X KIN + D[ %(0)%] [ X(Cpeea)XIN. (3.18)

n = Net+l
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Subsequently, both the original data and the p(t) data are rank-ordered from smallest to largest
value, i.e. pg; < Pgy < ... < ppy and X, < Xpa < ... < Xgy, While retaining the correspondence
between the time serial index and the rank order. We obtain the surrogate data (q;) by replacing
the phase-randomized data (p;) of rank (R) with original data (e,) of equal rank (R). This
procedure is called data shuffling. Both ¢; and the surrogate dataset have the same Fourier
spectrum, the same autocorrelation function, and the same probability density function. Finally,
we applied the nonlinear analysis tools to g, with the same cutoff scale length (L,) as described

earlier in this Section.
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4. SURROGATE ANALYSIS

We used the surrogate methodology on an EEG dataset to obtain 20 surrogate datasets for a
200-second analysis window (102,400 points) in the middle of the non-seizure epoch ( 100-300s).
The difference (A) between the real and surrogate measures (denoted by superscripts "r and "s,"
respectively) indicates the degree of nonlinearity, Ay = (V' - V*)/a,, with "V" refering generically
to each nonlinear measure. The surrogate averages and standard deviations (denoted by V* and
Oy, respectively) were computed from the 20 surrogate estimates of the nonlinear measures, using
Eqs. 3.1 and 3.4. We repeated the surrogate analysis for a 200-second analysis window (102,400
points) in the middle of the transition epoch (700-900s) and for the 180-second seizure epoch
(1200-1380s). Long datasets provide a strong statistical basis for the comparisons, but use of a
10,240-point analysis window shows much variability (e.g., Sect. 5). Table 4.1 shows the results. .

Table 4.1 Surrogate results for dataset #73305

Measure T, K M, D
Non-seizure
\'A 20.7 0.0145 91 1.68
V* 13.4 0.0530 4 2.54
Oy 0.13 0.0059 0 0.12
Ay 56 -6.5 o -7.2
Transition
\'%4 21.9 0.0059 99 1.23
\'A 26.5 0.0128 114 1.42
Oy 0.39 0.0019 12 0.10
Ay -11.8 -3.6 -1.3 -1.9
Seizure
\'% 20.9 0.0273 52 2.23
\'%A 13.2 0.1701 4 3.91
oy 0.11 0.0082 .0 0.22
Ay 70 -17.4 © 1.6

A large value of |A,| indicates that the original data is nonlinear, but the choice of "large" is
arbitrary for [A,|> 3 (i.e., >3 SDs), because the probability for such outliers is small. For example,
the Gaussian probabilities are 1.4 x 10%, 9.9 x 10", and 7.6 x 10 for random differences (Ay) of
23, 26, and 210 SDs, respectively. The non-seizure and seizure periods show |A,| > 6 for all four
nonlinear measures; the transition period shows |Av] > 6 for one nonlinear measure (T,). These
results indicate that the EEG data contain significant nonlinear structure.
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S. RESULTS AND DISCUSSION

We analyzed two datasets, both of which are from a single patient who is 20 years of age with
a lifelong history of seizures, beginning at 4 months of age. The cause of the seizures is not
established, although neuro-imaging studies (including computerized tomography and magnetic
resonance) are normal. The seizures are poorly controlled despite treatment with various
combinations of anti-epileptic drugs, which at the time of the recordings were Phenytoin,
Phenobarbital, and Felbamate. The seizures are partial complex with some occasions of secondary
generalization. During the first seizure (dataset #73305), the patient is lying in bed, awake with
her right upper extremity in a flexed posture. The EEG shows spike-wave discharges in the left
hemisphere, after which the brain waves become very sharp, dominated by high frequency activity
and artifacts. The patient showed eye deviation to the right and some head turning to the right,
with head jerking also to the right, but without any usual posturing of the right upper extremity.
The eye/head turning is preceded by a high-frequency vocalization. After the clinical seizure
spontaneously terminated, the EEG shows high amplitude wave slowing and subsequent
amplitude suppression. The subject remained awake during the seizure but was poorly responsive.
During the second seizure (dataset #733 17), the patient was sitting up in bed, doing some
neurophysiologic testing. Her EEG shows an activated pattern. She then showed automatisms
with picking movements and staring, followed by vocalizations (several seconds of screams).
Hyper-extended head and neck posturing followed. Her upper extremities became flexed, and
then she showed clonic activity, involving abduction/adduction at the shoulders and hips. There
was tonic posturing and clonic activity of all extremities. The convulsive movements were
associated with high-amplitude EEG waves, involving spikes, polyspikes, and much artifact
activity. As the clinical seizure spontaneously terminated, the subject was unresponsive and made
loud snoring sounds. Then, the brain wave amplitudes became quite suppressed. The automatisms
were associated with polyspike discharges from the left frontal region. After seizure termination,
spike discharges occurred from this same region, followed by suppressed background waves.

The results from dataset #73317 involved four analyses (e-, f-, g-, and h-data) on the three
epochs of channel 13 data (epileptic seizure and post-seizure, non-seizure, and transition from
non-seizure to seizure). These three epochs of data were provided and analyzed as three separate,
non-contiguous ten-minute data segments. The non-seizure data segment ended several hours
before the transition data, which in turn ended ~10 seconds before the start of the seizure data
segment. The results are combined as one thirty-minute set of plots for the e-data (Fig. 5.1), £
data (Fig. 5.2), g-data (Fig. 5.3), and h-data (Fig. 5.4), with gaps in the analysis to indicate where
one dataset ends and the next dataset begins. In particular, the data from 10-590s is the non-
seizure epoch with large amplitude signals at 520-600s from chewing and drinking. The data from
610-1190s is the (transition) period immediately before seizure. The data from 1210-1790s
includes the seizure and post-ictal phases. The various measures were obtained for every analysis-
window, and the resulting values were plotted at the center of the 20-second analysis-window.

Each plot in Figs. 5.1 - 5.4 for dataset #73317 displays the analysis-window-centered measure
as a solid line. The dashed line (- - -) in each figure is the average value of the measure (from



15

1500 =
E

1000 —

MIN and MAX
o

|
(32
o
(o)

non-seizure

transition

(@)

1l
llll'lll‘llllllIllllll]lllllll

STAHDARD DEVIATION

(b)

arstlaenebisnbonn g

150

100

50

ABSOLUTE AVERAGE DEVIATION

et nnne .

(©)

ll]lll'lllll]ll

SKEWEDNESS

@ J

KURTOSIS

(e)

<\

500

1000
TIME (SECONDS)

N

o llllllllllllllllll
o

o

1500

Fig. 5.1. Results for raw EEG (e-) data for dataset #73317. The solid line is the specific
measure, with the 11-point average (- - -) and standard deviation (. . .) of the measure.




16

_____________.___—

v

N’

1500

LI I § _ﬂ__ __—_; I __~_:.__:v._;___1
m
‘D
7]
=
2
=
g
s
m
‘D
e
=]
@]
=]

................ oA

NN RN L1 ] _TJN%f[L.._:.___:

8 8 ¢ g o T

(Sd31S 3nIL) awiL 31040

1000
TIME (SECONDS)

!
(aMov3s/sug) (1)01907

0000000
N O ® © <

(Sd3aLs IniL) 4n NI NI

500

(a)o1901

2000

inued)

. (cont

ig. 5.1



17

2000

._:__:__________________:_ :___::___::_:__:_::-_::::._Ezaq L [T T 71 T T 1 [T T 1 _____.______:_.:
o~ ~~~ ~~ o) a
< L < Z <
o
] . {10
& 2
oty
7 >
i 3 o
5 L . |2
¢= :
.S Ill
S
- i ;
S
A NE m
m w.
‘S =
= Ry
o A
=] - -
i B
I"n-’.l'. R :yl‘
llllll o ::____::____ »:-..:...:—:_:_:. 1 1 ] 1 ] o
288°8888¢%2% 8 8 2 o ¢ ™ ° ¥
U MNOILVIAIQ QuvaNvLS NOILVIAIQ 39vd3AY 3LN10Sav SSIANGIMINS SISOLMNM
XYN puo Ny :

is the

ine
t average (- - -) and standard deviation (. . .) of the

TIME (SECONDS)
fact EEG (f-) data for dataset #73317. The solid |

n

th the 11-po

Wi

fic measure,

measure,

Fig. 5.2. Results for art
speci



18

___‘_.____—____—_

seizure

_____~_:_-.:_.—“.:_4_1_._4.
~

&0

Teaemesanccscnsen

transition

s
S .

e

non-seizure

&00

LRI I I O

_._._____________

o

rrw»...._____

o 1o 9
T

1500

1000 )
TIME (SECONDS)

500

n (@] N
c & n_v.
(@)oto0

Q
]

o

2000

S.2. (continued)

Fig.




19

non-seizure transition seizure

(a)

MIN and MAX
Q

-500

-1000
-1500

vl il b,

250

(b)

200
150

100

STANDARD DEVIATION

50

I I RN R ATITI IO

LEE TP

150

(©)

100

1111]1311'1111

ABSOLUTE AVERAGE DEVIATION

Tercmnnaan,

(d)

SKEWEDMESS

Jllllllll'lllllllll

400

200— —

KURTOSIS

¥ e

I . i .
OV i et Ao A A o L A
) 500 1000 1500 2000
TIME (SECONDS)

Fig. 5.3. Results for artifact-filtered EEG (g-) data for dataset #73317. The solid line is
the specific measure, with the 11-point average (- - -) and standard deviation (. . .) of the
measure,




20

:_:_:_T_:_:_;_:_T.: I [ | ;. [ S Bt T T T T T T __:____;_____:

)

transition

QN ¥ O v o o
%) L

(Sd3ls 3niL) aw 31010 (an023s/sua) (101901 (Sd3Ls 3miL) 4 NI NI

(@)o1901

1500 2000

1000
TIME (SECONDS)

ig. 5.3. (continued)

500




21

1000

non-seizure transition

500

lllllllll

MIN and MAX
o

l.l.lll_.l_lllllllllllll

-500 -

"1000 1 i

150 ‘
(®)

100

50

STANDARD DEVIATION

lll!llll'lll

Lovaa vy

100 '

©

80
60

40

I'lll'lll'llllll
llnlll'nlnllln

20

ABSOLUTE AVERAGE DEVIATION

1.0
0.5

d

0.0

-0.5

SKEWEDNESS

-1.0

-1.5
-2.0

llllIllll'llllllllllll]lll]l]

llllllllllllllll

40 :
G

20

IIIIIII

KURTOSIS

!lllllllll

0 500 1000 1500 2000
TIME (SECONDS)
Fig. 5.4. Results for artifact- and low-pass-filtered EEG (h-) data for dataset #73317.
The solid line is the specific measure, with the 11-point average (- - -) and standard
deviation (. . .) of the measure.




22

______-__-_____.

seizure

transition

non-seizure

r____

[@]

o

______________—__

o -

1500

(%]

(Te] < ~N
(Sd31S INIL) 3L 37040

(anov3as/sug) (101907

40

(Sd31s 3nIL) v N -

2000

500

Q
-

"
o

Q
S

(@)o1901

n
[
]

Q
-
!

o

1000 .
TIME (SECONDS)

muedj

5.4. (cont

ig.

N . i



23

Eq. 3.1) over an 11-point averaging-window, plotted at the central (sixth) point of the averaging
window. The dotted line (. . .) in each figure is the corresponding sample standard deviation over
this 11-point averaging-window (from Eq. 3.4), also plotted at the central point of the averaging-
window. The scale length (L,) was fixed at ~1.4 times the absolute average deviation, as obtained
by averaging over the complete non-seizure e-data, and was used in all the analyses as the
reference scale length for all three data epochs. Smaller values for this scale length caused
numerical problems in the determinations of the correlation dimension and the K-entropy; larger
values limited the resolution of the nonlinear measures,

The clinical seizure in dataset #73317 occurred from 53 to 95s in the (third) seizure epoch
(1253 to 1295s in Figs. 5.1-5.4). Rhythmic convulsions began at 1295s, and post-ictal features
appeared at 1314s. Table 5.1 shows features in the nonlinear measures that uniquely indicate the
seizure; starred entries (*) denote no clear indicators. Two measures (the peak in K of g-data and
the peak in D of h-data) show epilepsy onset beginning ~30 seconds before the clinical seizure.

Table 5.1 Summary of seizure indicators in dataset #73317

Specific measure e-data f-data g-data h-data
Time per cycle (T,) * valley * *
(timesteps per cycle) T, <200
1255-1300s
Entropy (K) peak 3 peaks peak peak
(bits/second) K>0.063 K>0.008 K=>0056 K=>0016
1230-1350s  1230-1240s  1220-1340s  1230-1320s
1270-1275s
1280-1300s
1*Min. in MIF (M,) * valley * valley
(timesteps) M, <85 M, <20
1290-1310s 1270-1280s
Correlation dimension (D)  peak peak peak peak
D>5 D>56 D>32 D>2

1270-1305s  1340-1345s  1235-1340s  1220-1325s

Other trends in the average and standard deviation (SD) of each measure for dataset #73317
are very different during the transition dataset (610-1190s) as compared to the non-seizure
dataset (10-590s). We use the following notation for the subsequent discussion. The average of
each measure is denoted by an under-barred symbol (e.g., the average entropy as K: and the
average correlation dimension as D). The SD of each measure (x) is denoted by o, (e.g., the SD
of the entropy as oy; and the SD of the correlation dimension as Op).

P NCN
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The linear and nonlinear measures for dataset #73317 have much variability, but clear
distinctions exist between the non-seizure and transition results, as possible longer term predictors
of seizure for this patient. For example, the SD in the skewedness (0,) of f-data is>0.5 for 440s
during transition (690-1130s), but remains at this level for only 200s during the non-seizure
period (60-260s). This same trend occurs in the e-data for 380s during transition (750-1130s),
compared to 165s during the non-seizure period (80-245s). Thus, the continuous occurrence of
0,20.5 for >200s may be an indicator of an impending seizure for this patient.

A second trend in the transition data of dataset #73317 (but not in the non-seizure data) is a
regular sequence of quasi-periodic maximum and minima in K and D of e-data at 710s (max),
805s (min), 900s (max), 980s (min), and 1070s (max).The first four times are coincident with
minima and maxima in T, of e-data at 710s (min), 805s (max), 900s (min), and 980s (max). This
trend also occurs in K and D of g-data at 690s (max), 790s (min), 880s (max), 965s (min), and
1060s (max), with corresponding minima and maxima in T, for the first four times. This trend
occurs again in K and D of h-data at 695s (max), 790s (min), 870s (max), 960s (min), and 1060s
(max), with corresponding minima and maxima in T, that approximate the first four times. The
times at which the extrema occur is within +10s among to e-/g-/h-data, and is consistent with
uncertainty that is inherent in the 10s overlap of successive analysis windows.

A third trend in the g-data of dataset #73317 involves a valley in M, that is coincident with a
peak in 6y The rise in oy, begins at 785s, peaking at 885s, with the subsequent decrease ending
at 990s. The corresponding times for M, (i.e., beginning of the fall, minimum, and end of the rise)
are coincident with the corresponding time values for Oy This trend in M, and 6, corresponds to
oscillations in M, that increase in amplitude from 785-885s and subsequently decay from 885-
990s. Note that the extrema in M, and 6, occur at 885s, which is approximately coincident with
one of the extrema times in (K , D, T.) as discussed in the previous paragraph.

We infer other trends in dataset #73317 from the total variation in the average and in the
standard deviation of each measure during the non-seizure period relative to that during the
transition period. For example, the average skewedness in e-data (see Fig. 5.1)is -0.52 < 5 < 0.25
(during the non-seizure period) and -0.51 < s < 0.24 (during transition). The resulting total
variations (A) in average are A, = 0.77 (with the subscript "n" denoting non-seizure) and A, =
0.75 (with the subscript "t" denoting transition). The ratio of these variations is AJ/A, = 0.97.
Likewise, the total variation in the SD of the skewedness of e-data is Ac,= 0.9 (non-seizure) and
Ao, = 0.6 (transition). Then, the ratio of the total variation in standard deviation is Ac/Ac, =
0.67. Table 5.2 summarizes these comparisons between non-seizure and transition data, taken
from Figs. 5.1-5.4. Most of these variations are not significant because noise in the EEG data (and
biological data in general) makes comparisons tenuous for ratios near unity. However, starred
values (*) in Table 5.2 are probably significant, corresponding to substantial ratios (e.g.>2 0r
<0.5). We note that some small ratios (<0. 1) exist only for the linear measures of g-data (e.g.,
AJA,=0.016 and Ac/Ac, =0.082 for kurtosis, and Ao /Ao, =0.11 for skewedness). In this
patient, these variations mean that the non-seizure EEG is much more variable than the transition
EEG for g-data for this type of seizure, and the transition is detectable with linear statistics.
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Table 5.2 Ratios of averages and standard deviations for dataset #73317

Specific measure e-data f-data g-data h-data

skewedness (s)

AJA, 0.97 1.1 0.29* . 0.77

Ac/Ac, 0.67 0.48* 0.11* 0.73
kurtosis (k)

AJA, 0.37* 0.90 0.016* 0.44*

Ac/Ac, 0.28* 0.58 0.082* 0.42*
Time per cycle (T,)

AJ/A, 0.51 0.67 0.35*% 0.63

Ac/Ac, 0.67 0.62 0.35* 0.46*
Entropy (K)

AJA, 0.71 0.50 - 0.70 0.53

Ac/Ac, 0.93 0.33* 0.82 0.42*
1*Min. in MIF (M,) i

AJA, 1.3 0.40* 052 0.67

Ao/Ac, 0.51 0.40% -~ 0.91 0.50
Correlation dimension (D) , ;

AJA, 0.56 0.73 0.39* 0.97

Ac/Ac, 0.64 0.57 ~0.50 0.78

We also analyzed portions of dataset #73317 via the linear techniques described by Barlow
[4]. Let y; be the sampled EEG signal with zero mean, so y;= ¢, - e, with e determined from
Eq. 3.1 The first parameter is the absolute mean value of the sampled signal (A):

i=1

A=(1/w) ), LP(y]). G.1)

Here, LP is a low-pass filter function with a time constant of 0.1s. The average value is
determined over a window length of At = 0.5s (256 data points). The second parameter is the
absolute mean derivative of the sampled signal (A'):

Nmm;mmwmy (5.2)
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The running mean curvature (A") is obtained from an estimate of the absolute second derivative:

A" = (1) )" LP( 3z - 2551 + ylALY). (53)
i=1
The running mean frequency (F) is:

F=A'A. \ 5.4
The spectral purity index (P) is:
P=FA/A" = A'/A". (5.5)

We applied these linear measures to e-data for portions of the non-seizure, transition, and seizure
data segments. The results were unable to indicate the seizure period, nor even distinguish among
the three segments (non-seizure, transition, and seizure). Details of the results are available from
the authors on request. We devoted no further effort to this line of analysis.

The results from dataset #73305 for channel 13 involved four analyses (e-, f-, g-, and h-data)
on one 23-minute dataset that included all three epochs of channel 13 data (epileptic seizure, non-
seizure, and transition from non-seizure to seizure). The non-seizure period spanned 10-400s. The
transition period occurred over 410-1200s. The seizure began at 1245s and ended at 1290s. The
patient was aphasic at 1300s, with head movements and verbalization at 1315s. The scale length
(Lo) was fixed at ~1.0 times the absolute average deviation, as obtained by averaging over the
non-seizure e-data, and was used in all the analyses as the reference scale length for all three data
epochs. The results were obtained as before, and are plotted for e-data (Fig. 5.5), f-data
(Fig. 5.6), g-data (Fig. 5.7), and h-data (Fig. 5.8). The seizure is indicated clearly by several
unique features in the nonlinear measures, as shown in Table 5.3; starred entries (*) denote no
clear indicators. None of these measures show the epilepsy onset before the clinical seizure.

A predictive trend in dataset #73305 involves the sample standard deviation of the correlation
dimension (op,) for e-h data. In particular, Op, has a small variation during the non-seizure period,
but undergoes large rises and falls during transition. Moreover, o, has minimal variation (op <
0.1) for 30-150s intervals during transition. This trend is unique to the transition period.

A second predictive trend in dataset #73305 involves the entropy (K) for f- and h-data. In
these cases, K has a large, aperiodic variations during transition, and substantially less variation
during the non-seizure period. Also during transition, the entropy becomes very small (K <
0.00005) for several intervals that have a duration of 10-100s,

A third trend in dataset #73305 occurs in the first minimum of the MIF (M;). From 700-1100s,
M, in the e-data gradually decreases to a minimum of 21 just before the seizure. A similar
decrease occurs in M, from 400-1100s in g-data, to a minimum of 17. Two cycles of a quasi-
periodic variation of M, in f-data appear from 400-800s, with a valley-to-valley period of 200s.
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Table 5.3 Summary of seizure indicators in dataset #73305

Specific measure f-data g-data h-data
Time per cycle (T,) * 2 peaks 2 peaks
(timesteps/cycle) T.>24 = T.>62
1255-1275s  1250-1275s
1290-1300s  1290-1300s
Entropy (K) peak peak peak
(bits/second) K >0.089 K>0006 K>0.1 K>0.014
1255-1290s  1270-1330s  1255-1290s  1250-1320s
1" Min. in MIF (M,) valley * *
(timesteps) M, <80
1250-1300s
Correlation dimension (D)  peak peak peak peak
. D>4 D>45 D>3 D>25

1250-1300s  1280-1300s  1240-1310s  1240-1315s

A fourth trend in dataset #73305 involves the entropy (K) for e-data. From 600-730s, the .
average entropy (K) increases monotonically, while K undergoes oscillations of decreasing
amplitude about K. The entropy then decreases abruptly (K=0.045 = K=0.0004) during 760-
820s. Then, K again increases monotonically over 850-920s, while K undergoes oscillations of
increasing amplitude about this average. The entropy then decreases abruptly (K=0.018 =
K=0.001) during 930-970s. The previous cycle is repeated over 1000-1100s (increasing K with K
undergoing oscillations of increasing amplitude), followed by a smaller decrease in (K=0.009 —
K=0.003). This last decrease is hard to distinguish from the imbedded oscillations, which
subsequently rise again as part of the seizure.

A fifth trend in dataset #73305 entails the variability in skewedness and kurtosis of f-data.
Figure 5.6 shows that from 0-350s, skewedness and kurtosis have moderate variability (with small
sample standard deviations), which increases markedly during 350-550s (with large values for the
sample standard deviations). Subsequently, the skewedness returns to moderate values, while the
sample standard deviation of the kurtosis remains at 2-3 times the non-seizure value.

Other trends in the average and standard deviation of each measure for dataset #73305 are
very different during the transition period (410-1200s) as compared to the non-seizure period (10-
400s). Table 5.4 shows the ratios of the variations in the average and in the standard deviation of
each measure during the non-seizure period with that during the transition period. As before, most
of these variations are not significant because noise in the EEG data makes comparisons tenuous
for ratios near unity. However, starred values (*) in Table 5.4 are probably significant,
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corresponding to substantial ratios (e.g. >2 or <0.5). We note that some large ratios (>10) occur

for the linear measures in Table 5.4. These large ratios mean that the transition data is much more
variable for this seizure than for the non-seizure data.

Table 5.4 Ratios of averages and standard deviations for dataset #73305

Specific measure e-data f-data - g-data h-data

std. deviation (0)

AJA, 3.9% 4.8* 2.1* 3.3*%

Ac/Ac, 15.7* 25.9* 1.2 6.5%
abs. avg. dev. (a)

AJA, 2.5% 2.9*% 2.3* 3.0*

Ao/Ac, 10.6* 12.7* 1.1 3.6*
skewedness (s)

AJA, 4.3* 4.1* -8.6*: 5.5%

Ao/Ac, 3.1% 3.8* 44.5% 23.9*
kurtosis (k) |

AJA, 6.9* 8.6* 10.8* 17.5*

Ac/Aa, 11.7* 6.9% 36.1* 54.2%
Time per cycle (T,)

AJA, 14 1.3 1.8 1.0

Ac/Aa, 1.2 1.8 1.0 0.67
Entropy (K)

AJA, . 1.5 1.9 1.00 2.0

Ad/Ac, 0.99 1.5 0.49* 1.6
1"Min. in MIF (M,) ‘

AJA, : 1.5 3.0* 2.6* 3.5%

Ac/Ag, 1.4 1.1 1.7 2.0

Correlation dimension (D) -
AJA, 1.8 1.8 1.7 3.3*
Aco/Ac, 4.3* 1.9 . W 2.2%
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6. CONCLUSIONS

We analyzed two sets of channel-13 EEG data from one patient. Both sets of data included
non-seizure, transition-to-seizure, and epileptic seizure data. The analysis included various linear
measures (standard deviation, absolute average deviation, skewedness, kurtosis), plus nonlinear
measures (time steps per cycle, Kolmogorov entropy, first minimum in the mutual information
function, and correlation dimension). We analyzed four forms of the data: raw EEG (e) data,
artifact (f) data via application of a zero-phase quadratic filter, artifact-filtered (g) data that was
the residual after subtracting f-data from g-data, and a low-pass-filtered version (h) of the g-data.
The nonlinear measures clearly discerned the epileptic seizures in this patient, but none of the
linear measures provided a definitive seizure indication. Both linear and nonlinear measures
provide trends that may predict seizure onset in this patient, but the trends are different for each
seizure. Our nonlinear tools found seizure indicators and predictive trends with and without
artifact removal, with and without low-pass filtering, demonstrating the robustness of these tools
to noise and artifacts. Surrogate analysis of e-data from dataset #73305 showed that this data has
significant nonlinear structure.

For this patient, peaks in both the Kolmogorov entropy and correlation dimension indicate
both epileptic seizures, although the seizures are clinically very different, as described at the
beginning of Section 4. Valleys in (T.) number of timesteps per cycle (for f-data) and in (M) the
first minimum in the mutual information function (for £~ and h-data) also indicate the first seizure
(dataset #73317). A valley in M, (f-data) and peaks in T, (g- and h-data) mark the second seizure
(dataset #73305). These indicators of seizure are summarized in Tables 5.1 and 5.3. The
difference in seizure indication (T.) for the two seizures implies that care is needed in cataloging
such features.

Our analysis for this patient also reveals trends in linear and nonlinear measures that precede
the seizure by 500-800 seconds, as shown in Figs. 5.1-5.8, and as discussed in the text. These
trends are easily computable and may permit seizure prediction in this patient. Transition
indicators are very different for the two seizures, so predictive trends must be chosen with care,

We emphasize that these results are based on the analysis of one channel of EEG data for two
separate seizures in a single patient. Generalization of these results to other seizure types or to
other patients is inappropriate. Consequently, much additional work is needed to establish a
statistical basis for epilepsy prediction, e.g., by examining > 10 datasets from each of 10-15
patients. However, the positive indications of seizure detection and prediction is the present work
provide a hypothesis upon which such a generalization may be possible.

e e e = - ——————
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