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ADVANCED SYSTEM IDENTIFICATION TECHNIQUES
FOR WIND TURBINE STRUCTURES
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Richard M. Osgood

National Renewable Energy Laboratory
National Wind Technology Center
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ABSTRACT .

The new approach to modal parameter identification,
presented in this paper, uses an asymptotically stable
observer to form a discrete state-space model for a
wind turbine structure. The identification is per-
formed using input-output time-series. A special
software package developed in this research has been
tested using the data generated by the ADAMS®
model of the Micon 65/13 wind turbine structure.
Numerical and graphical presentation of some of the
results, generated by the programs developed, illus-
trates the range of their applicability.

1 INTRODUCTION

The goal of this research was to develop advanced
system identification techniques to accurately meas-
ure the frequency response functions of a wind tur-
bine structure immersed in wind noise. To allow for
accurate identification, we developed a special test
signal called the Pseudo-Random Binary Sequence
(PRBS). The PRBS signal produces the wide-band
excitation necessary to perform system identification
in the presence of wind noise. The techniques pre-
sented here will enable researchers to obtain modal
parameters from an operating wind turbine. More
importantly, the algorithms we have developed and
tested (so far using input-output data from an ADAMS
model of a wind turbine structure) permit state-space
representation of the system under test, particularly
the modal state-space representation. This is the only
system description that reveals the internal behavior
of the system, such as the interaction between the
physical parameters, and which, in contrast to trans-
fer functions, is valid for non-zero initial conditions.

Sandia National Laboratories’ (SNL) Natural Excitation
Technique (NEXT) for modal parameter extraction from
operating wind turbines uses the measured system

! ADAMS is a registered trademark of Mechenical Dynam-
ics, Inc.

outputs obtained as a result of natural wind excitation
[2]. Generally, the cross-correlation function of such
outputs has the shape of the system's impulse re-
sponse and therefore allows one to extract modal fre-
quencies and damping ratios. SNL's researchers have
done this using one of the system realization algo-
rithms (such as the Eigensystem Realization Algo-
rithm developed at the National Aeronautical and
Space Administration’'s [NASA] Langley Research
Center). In other words, SNL researchers assume that
the cross-correlation function represents the sequence
of Markov parameters or impulse response of the sys-
tem to be identified. Such an assumption will not lead
to any input-output model of the system, such as a
transfer function or state-space representation. To
identify any of these input-output characteristics, it is
not enough to excite the system with a frequency-rich
signal (such as natural wind noise} but one must also
measure this signal. System identification requires a
frequency-rich input-output history.

Researchers have developed many system identifica-
tion techniques and applied them to state-space
models to identify modal parameters. Most tech-
niques use sampled-impulse system response histo-
ries, known as system Markov parameters. The new
approach, presented here, uses the results obtained
by researchers at NASA's Langley Research Center [3-
5]. Rather than identifying the .system Markov pa-
rameters (which may exhibit very slow decay), one can
use an asymptotically stable observer to form a stable,
discrete state-space model to identify the system.

The organization of this paper is as follows. In Section
2, we discuss how the excitation or input signal
should be chosen. Then, in Section 3, we present the
problem of making a proper selection of measure-
ments to be obtained from a modal test. In Section 4,
we introduce the Observer/Kalman Filter state-space
model whose identification is performed by the
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MATLAB® program flokuy.m, originally introduced in
[1]. Finally, in Section 5, we present general informa-
tion on the identification methodology. Additional
details are discussed in the Appendix, where a case
study is presented using input-output time-series
obtained from the ADAMS model of the wind turbine
Micon 65/13. Section 6 concludes the paper and
summarizes the results presented.

2  SELECTION OF INPUT SIGNAL

Both the simulation and the experiment provide sam-
pled input-output data. The sampling interval T has
to be properly chosen. The Nyquist frequency

1
0y = f[rad /s] or fy =E [Hz] (1)

N A

must be greater than the bandwidth of interest f,,. of

the structure. If the structure bandwidth considered
is limited by the frequency f,... then (according to
the sampling theorem) discrete-time representation of
this process requires a sampling frequency of
s > 2fmax The rule of thumb is to choose
fy =(61025)f.. Wwith f.=1/T as high as possible.
On the other hand, in order to correctly identify the
steady-state gain of the process, the duration of at
least one of the pulses in the PRBS must be greater
than the rise time tg of the process.

The value of the input PRBS signal can switch be-
tween two levels every Ty, seconds. In other words,
Tprbs is the switching period. As explained in [8], the

spectrum of the pseudo-random binary signal ap-
proximates the broad-band noise, provided its clock
frequency is fast enough and its sequence length is
large enough. The PRBSs are generated by shift regis-
ters with feedback (implemented in hardware or soft-
ware). The maximum length L of a sequence is

=21 @)

where N is the number of stages of the shift register.
As mentioned earlier, the maximum duration of at

least one pulse, NTp,.bS, must exceed the rise time of

the process:

NT prbs >t R (3)
The clock frequency fprbs for the PRBS must accord-
ingly be chosen as a submultiple of the sampling fre-
quency fo. If f,p5=fs/p (p=1.2...), then Tops =T P

MATLAB is a registered trademark of The Math Works,
Inc. '

and, combining this with the inequality (3}, we obtain
the following condition that must be fulfilled:

t t
N2 _ R

Tp Typs
Because lowering the clock frequency of the PRBS will
reduce the frequency range in which its spectral
'density can be considered constant, choosing p <4 is
recommended [7].

4)

Suppose that the process to be identified has the
bandwidth of 5 Hz but at the same time the band-
width of interest is much higher. The time constant of
such a process is approximately equal to 0.2 s and the
rise time is approximately 0.4 s. If we set N=10, then
in view of equation (3) we should have Tprbs

=pT > 004. Because we want the sampling interval to
be as small as practical, we shall choose p=4 and
T=0.01. This results in Nyquist frequency f, =50 He,
and we can expect accurate identification of the mo-
dal frequencies lower than 10 Hz. Higher modal fre-
quencies will be identified with some distortions. If the
required bandwidth of interest is 30 Hz, then, for ac-
curate identification, the sampling frequency should
at least be 180 Hz or the sampling period should be
approximately 0.005 s that gives f;=100 Hz. On the
other hand, assuming that the PRBS input sequence
is generated with N=10 and p=4 (4092 samples long),
the maximum duration of a pulse in the input signal
is pNT=0.2 s. Such an input sequence will not prop-
erly excite low frequency modes, resulting in consider-
able distortions in the low-frequency range of the
identified frequency response. A practical solution is
to run several experiments with different sampling
intervals and to obtain for each of them the fre-
quency response accurate in a particular frequency
range.

3 SELECTION OF MEASUREMENTS

The problem of the proper selection of measurements
has been studied using simulation data for the
ADAMS analytical model of the Micon 65/13 wind
turbine structure. There were 32 measurement points
along the structure but at each of them we had two
virtual accelerometers measuring in two directions: Y
and Z, according to the local coordinate systems, dif-
ferent for each blade and the tower.

To excite all the modes, the simulation was performed
for three out-of-plane excitations and one in-plane
excitation, all of the same PRBS type. The out-of-plane
excitations were two near the blade tips and one at
2/3 of the tower height. For each of the three inputs
we generated a measurement matrix. For identifica-
tion purposes, and as a result of sensitivity analysis,
we reduced the set of 64 measurement variables. We
selected five variables, i.e., five outputs or five col-
umns of the measurement matrix. We did this for




each of the three driving points. We also applied one
in-plane excitation at 2/3 of the tower height. To see
the difference in the frequency response, i.e., to estab-
lish that the excitation and consequently the identifi-
cation of different modes depends on both the driving
point and the set of measurement points, we per-
formed the identification twice. We used the set of
out-of-plane measurement points the first time and
the properly selected set of in-plane measurement
points the second time. Corresponding pairs of meas-
urement points, related to measuring acceleration in
two different directions, have the same locations on
the wind turbine structure.

The important conclusion for modal testing on a real
wind turbine structure is that the number of meas-
urement points can be substantially reduced without
loss of the modal information. Such a properly se-
lected driving point-measurement set leads to accu-
rate identification. This statement is supported by
comparing frequency responses for a given excitation
point and different outputs. It can be seen from fre-
quency responses for any driving point that the fre-
quency response for a collocated excitation-
measurement pair gives the best resolution of the sys-
tem's resonance modes.

4 WIND TURBINE STATE-SPACE MODEL
IDENTIFICATION

The state-space model is generated using a proper
input-output sequence, generated as discussed in
Section 2 and Section 3. The discrete-time state-
space model (A,B,C,D) to be identified, defines the fol-
lowing relation between the scalar driving excitation
uf} and the measurement m-vector (or cutput) y(k):

x{k + 1) = Ax{k} + Bu(k)

)
Yyl = Cx{kg) + Dulk)
Note that this state space model depends on the
choice of the state vector x{1) and the sampling interval
T. Assuming that x(0)= O and solving for the system
output, we obtain

k .
yld = 2, ca™ ! Bufk - ) + Dum) ©)

Equation (6] represents the convolution of the sys-
tem's input sequence u(k) and the sequence Y(k) with
the following elements:

k-1
Yg=D.Y;=CB, Y, =CAB, ..., Y;, =CA"'B ()

Therefore, these elements represent consecutive sam-
ples of the system’s pulse response and are known as
Markov parameters. Assuming that our input-output
sequence has a length of |, we can write | equations of
the type of (6] with the number of terms on the right

side increasing as the new input-output pairs become
available. This set of [ equations can be represented
by the following equation:

[y©ory): ... iya-1p] =

u(0) u(l) uf2) ... Uﬂ—lﬂ
woj u(lj... ult-2)

[picBicaB: ... :cal?5] wo)... ut-3) | ®
L u©) |

The wind turbine structure is a flexible structure with
lightly damped low-frequency modes. For such a
system and a sufficiently large p,
k
A =0 for kz2p
This signifies that to solve for the Markov parameters

as an adequate system representation, a sufficiently
large lis required.

As alternative possible approach is to artificially in-
crease system damping to solve for Markov parame-
ters. The observer model of the system is used in this
approach. The state equation (5) can be manipulated
as follows:

x{k + 1) = Ax{l) + Buk) + Gy(k) ~ Gy(k)

9
= (A + GCJx(k] + (B + GDJufl - Gy(k) ©)

where G is an nxm matrix chosen to make A+GC as
stable as desired. Equation (8) can be rewritten in a
standard compact form:

stk +1) = Ax{id) + Bo(ld (10)

where
urk)]

A=A+GC, B=[B+GD -aG], v(k):[y(k)

Now, we can write an equation, similar to (8), - but one....

which involves observer Markov parameters:

LT L TplT L 2=
Y=[D:CB:CAB:... :CA B: ... :CA B] (11)

For an observable system, we can assign the eigenval-

ues of A arbitrarily through a proper choice of G. In

the case of the dea_d beat observer, i.e., when all the
eigenvalues of A are placed at the origin,

—k-_
CA B =0 for k2 p where p is a sufficiently large in-




teger. We then solve for the observer Markov parame-
ters

—_— —_ — —p-1—
Y= [DECBECABE... :ca’ B] (12)
using a least-squares algorithm.

The observer Markov parameters in equation (12) in-
clude the system Markov parameters and the observer
gain Markov parameters. The system Markov parame-
ters are used to compute the system matrices A, B, C,
and D, whereas the observer gain Markov parameters
are used to determine the observer gain matrix G. The
proper algorithm for obtaining these Markov parame-
ters has been introduced by Phan et al. [6] and is also
discussed by Juang [3]. Software implementation of
this identification algorithm was developed at NASA
Langley and is known as the Matlab function OKID.
Finally, the state-space representation (A, B, C, D} of
the system is obtained using the Eigensystem Reali-
zation Algorithm (ERA}, based on system realization
theory [3].

It can be proven that the truncated observer model
(12), obtained as a result of the dead beat approxima-
tion of equation (10), produces the same input-output
map as a Kalman filter if the data length is sufficient
so that the truncation error is negligible. In this case,
G, when computed from the combined Markov pa-
rameters of equation (12}, gives the steady-state Kal-
man filter gain K = -G.

5 IDENTIFICATION PROCEDURE

The identification of the Observer/Kalman Filter
model of a wind turbine is performed by the MATLAB
program fiokuy.m which uses the MATLAB function
okid. The initial estimate of the number of observer
Markov parameters is specified considering that the
maximum system order that can be identified equals
the product pom where p is the number of Markov
parameters considered and m is the number of meas-
urements (or outputs). Using the measurement ma-
trix, the Hankel matrix is formed and a plot of its sin-
gular values is displayed to aid in selecting the correct
system order. After selecting system order, the per-
centage of data realized by the model is computed. It
is recommended to choose the lowest system order
resulting in 100% realization of the measurement
data. The corresponding modal parameters are also
displayed on the screen in a tabular form showing the
mode singular values (SV) and modal amplitude co-
herence (MAC) factors. This provides additional
evaluation of the quality of the identified model. Exam-
ining this table, the user can determine the modes
whose contribution to the system dynamics is insig-
nificant. Such modes can be classified as the noise

modes.

The identified system matrices A, B, C, D, generated
by the program for the structure model of a selected
order, are available as MATLAB variables Af, Bf, Cf,
Df. The identification error is displayed in the Figure
Window.

The next step is to run other identification programs
for all input-output data files. They return the list of
identified eigenvalues and corresponding modal fre-
quencies in [rad/s] and [Hz], as well as system zeros
related to the selected output. The frequency re-
sponse plot is also displayed in the Figure Window. A
special program can be used to enlarge a selected
portion of this plot.

All the outlined steps of the above procedure are iflus-
trated in the Appendix, where a case study is pre-
sented using simulation data obtained from the
ADAMS model of the Micon 65/13 wind turbine.

6 concLusioN

The input-output time-series obtained from the virtual
wind turbine were used to develop and to validate the
identification procedure presented above. It was
found that to identify all vibration modes, we have to
process, repeating the same procedure, the in-
put/output time-series for both in-plane and out-of-
plane excitations applied at various points of the
wind-turbine structure. This has been done for three
data files generated by out-of-plane excitations, collo-
cated with the measurements near the tips of two
blades and at 2/3 of the height of the tower, and for
one data file generated by the in-plane excitation col-
located with the measurement at 2/3 of the height of
the tower.

For each of the four above listed data files, each con-
taining five measurements, the Observer/Kalman Fil-
ter state-space model was identified interactively in
order to determine the model order providing the best
fit for the measurement data. The corresponding set
of modal parameters was generated. Then, for each of
the five input-output pairs, the frequency response
was plotted and the corresponding set of system zeros
and their frequencies determined.

The Appendix presents the scope of the tests . per-
formed. It also gives the numerical results of modal
parameter identification, graphically illustrated by
frequency response plots. This graphical illustration
is most distinct on the frequency response plot for the
systemn output (measurement) collocated with the exci-
tation used to obtain the analyzed data file.

Examining all the capabilities of the developed identi-
fication software tools, it seems that the scope of ap-
plied research this software could support is very
broad.
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APPENDIX: A CASE STUDY

This appendix illustrates system identification proce-
dure with special emphasis on identification of modal
parameters., ADAMS simulation data for the Micon
65/13 wind turbine is used to illustrate the system
identification procedure.

As outlined in Section 3, the excitation of all modes
requires obtaining input-output time series for both

in-plane and out-of-plane excitations applied at vari-
ous points of a wind turbine structure. For out-of-
plane excitations, collocated with three of the meas-
urements, flve measurements listed in Table A-1 have
been selected and the corresponding reduced meas-
urement data files have been formed. In addition, one
in-plane excitation, collocated with the measurement
TOWER4_Y, has been applied. The measurements
included in the reduced data file, formed for this exci-
tation, are listed in Table A-2. The measurements
included in all these data files are referred in this ap-
pendix as outputs with a proper number assigned as
shown in Table A-1 and Table A-2.

For all these data files, the same identification proce-
dure was repeated. First, after loading a particular
data file into the MATLAB work area, the program that
determines the state-space model is executed. The
user is asked for the number of outputs (or number of
measurements) and the number of Markov parameters
to be considered and then decides what the order of
the system model to be generated should be. After
selecting a particular order, the percentage of data
realized by the model is computed. Using a trial and
error procedure, the user can find the lowest system
order resulting in the 100% realization of the meas-
urement data. The program identifies a state-space
representation of a system (in the form of an Ob-
server/Kalman Filter model) and returns the identified
system’s modal parameters (modal frequencies and
damping values) with the corresponding mode singu-
lar values and modal amplitude coherence factors.
This provides additional evaluation of the quality of
the identified model. The identification error is dis-
played in the Figure Window. Then, the other identi-
fication programs are usually repeated a number of
times equal to the number of measurement points in
the processed data file (five times in the identification
process presented below). This is justified by the fact
that for each input-output relation in a given file we
have the same poles or modal frequencies but different
zeros. Therefore, each input-output pair has a differ-
ent frequency response. As we can see from the iden-
tification results presented below, the visibility of the
modal frequencies on the frequency response plots is
different for different input-output pairs and of course
much sharper for those pairs that are collocated.
Also, we can observe that for the excitation inputs,
applied at any point on the turbine axis of symmetry,
the frequency responses for symmetrical outputs are
identical. Considering the possible wide range of re-
search avenues which can be pursued using this soft-
ware, one of the identification programs returns the
following list of the identified system parameters: sys-
tem eigenvalues, modal frequencies, and system zeros
and their frequencies.

The numerical and graphical illustration of the identi-
fication results is given below using one of the reduced
data files and plotting the frequency response for a




collocated input-output pair. The 34th order model Identification Eror
has been identified The identification error is shown 25 ‘ ' "
in Fig. A-1. The identified system eigenvalues are 21
listed in Table A-3 with the corresponding modal fre-
quencies listed in Table A-4. The identified system
zeros, associated with the collocated input-output
pair, are listed in Table A-5 with the corresponding
frequencies listed in Table A-6. Finally, the frequency
response is shown in Fig. A-2 on a logarithmic scale
and for the full frequency range, and in Fig. A-3 on a
linear scale, obtained for a frequency range of interest
using a zooming program.

Table A-1 Out-of-plane measurements

2t
TOWER4_Z or column 12 OUTPUT 1 25 , . N .
SLRING_Z or column 15 OUTPUT 2 ] 1000 2000 3000 4000 5000
B1S13_Y or column 24 OUTPUT 3
B2S13_Y or column 32 OUTPUT 4
B3S13_Y or column 40 OUTPUT 5 Fig. A-1 Identification error as function of the
number of measurement points
Table A-2 In-plane measurements
Table A-4 Identified modal frequencies
TOWER4_Y or column 4 OUTPUT 1
SLRING_Y or column 7 OUTPUT 2 rad/s Hz
B1S13_Z or column 48 OUTPUT 3 fr =
B28S13_2Z or column 56 OUTPUT 4 2.7266e+002 4.3395e+001
B3S13_2Z or column 64 OUTPUT 5 2.7266e+002 4.3395e+001
2.5978e+002 4.1346e+001
_ 2.5978e+002 4.1346e+001
Table A-3 Identified system eigenvalues 2 18650+002 3.47996+001
rl = 2.1865e+002 3.4799%e+001
-1.3346e+001+ 2.7233e+002i 2.0630e+002  3.2834e+001
P 2.0630e+002 3.2834e+001
-1.3346e+001- 2.7233e+0021
N 1.8841e+002 2.9987e+001
-1.8295e+001+ 2.5914e+0021
N 1.8841e+002 2.9987e+001
-1.8295e+001~- 2.5914e+0021
. 1.5566e+002 2.4774e+001
-9.6893e+000+ 2.1843e+0021
R 1.2789%9e+002 2.0354e+001
-9.6893e+000~- 2.1843e+0021
N 1.2789e+002 2.0354e+001
-1.1474e+001+ 2.0598e+0021
. 1.1412e+002 1.8163e+001
-1.1474e+001- 2.0598e+0021
N 1.1412e+002 1.8163e+001
-1.0435e+001+ 1.8812e+0021i
s 9.9722e+001 1.5871e+001
~1.0435e+001- 1.8812e+0021
9.9722e+001 1.5871e+001
~1.5566e+002 5.9147e+001 9.4135e+000
-7.5905e+000+ 1.2766e+002i : & : €
A 7.7520e+001 1.2338e+001
~7.5905e+000- 1.2766e+002i
s 7.7520e+001 1.2338e+001
-1.2341e+001+ 1.1345e+0021
. 7.4015e+001 1.1780e+001
-1.2341e+001- 1.1345e+0021
. 7.4015e+001 1.1780e+001
~5.8522e+000+ 9.9550e+0011i
_ s 6.8010e+001 1.0824e+001
5.8522e+000- 9.9550e+0014i
6.8010e+001 1.0824e+001
—3-9147e+001 5.4494e+001 8.6730e+000
-5.4268e+000+ 7.7330e+0014% . € . €
. 5.4494e+001 8.6730e+000
-5.4268e+000~ 7.7330e+0011
N 4.4645e+001 7.1055e+000
-1.3009e+001+ 7.2863e+0011
y 4.4645e+001 7.1055e+000
-1.3009e+001- 7.2863e+0011
R 2.2031e+001 3.5064e+000
-3.6530e+000+ 6.7912e+0011
s 2.2031e+001 3.5064e+000
-3.6530e+000- 6.7912e+0011
. 2.0086e+001 3.1968e+000
~-3.4150e+000+ 5.4387e+0011
. 2.0086e+001 3.1968e+000
-3.4150e+000- 5.4387e+0011
-1.0776e+001+ 4.3325e+0011 1.1075e+001 1.7626e+000
) ) 1.1075e+001 1.7626e+000

-1.0776e+001- 4.3325e+0011
-1.3177e+000+ 2.1992e+0011i
~1.3177e+000- 2.1992e+0011
-5.0585e-001+ 2.0080e+0011i
-5.0585e~001~ 2.0080e+0011
-1.0685e+000+ 1.1023e+0011
-1.0685e+000~- 1.1023e+0014




Table A-5 Identified system zeros

related to the OUTPUT 1

ZER =
3.1139%e+002+
3.113%e+002-

-2.1704e+001+

-2.1704e+001-

-1.0073e+001+

-1.0073e+001~

-1.5076e+001+

-1.5076e+001-

-2.4163e+001+

-2.4163e+001-

-1.9364e+001+

-1.9364e+001-

-4.8435e+000+

-4 .8435e+000~
3.3462e+001+
3.3462e+001-

-8.0594e+001

~9.1650e+000+

-9.1650e+000~

~-4.3114e+000+

-4.3114e+000-

-8.1020e+000+

-8.1020e+000-

-1.7053e+001+

-1.7053e+001~

-3.4549e+000+

~3.4549e+000-

-9.2851e+000+

-9.2851e+000-

-3.1281e+000+

-3.1281e+000~

-3.7882e-001+

~-3.7882e-001-
4.0870e+000
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.6853e+0021
.6853e+0021
.5902e+0021
.5902e+0021
.3527e+0021
.3527e+0021
.1052e+0021
.1052e+0021
.9487e+0024
.9487e+0021
.3254e+0021
.3254e+0021
.0962e+0021
.0962e+0021
.5703e+0011
.5703e+0011

.4268e+0011
.4268e+0011
.0832e+0011
.0832e+0011
.5483e+0011
.5483e+0011
.8927e+0011
.8927e+00141
.0486e+0011
.0486e+0011
.6901e+0011
.6901e+0011
.0829%e+0011
.0829%9e+0011
.9711e+0011
.89711e+0011

Table A-6 Identified zero frequencies

rad/s
zfr =
4.8247e+002
4.8247e+002
2.5992e+002
2.5992e+002
2.3548e+002
2.3548e+002
2.1106e+002
2.1106e+002
1.9636e+002
1.9636e+002
1.3395e+002
1.3395e+002
1.0972e+002
1.0972e+002
1.0138e+002
1.0138e+002
8.0594e+001
8.4765e+001
8.4765e+001
7.0963e+001
7.0963e+001
6.5982e+001
6.5982e+001
5.1813e+001
5.1813e+001
5.0604e+001
5.0604e+001
1.9283e+001
1.9283e+001
2.1063e+001

Hz

7.6788e+001
7.6788e+001
4.1368e+001
4.1368e+001
3.7478e+001
3.7478e+001
3.3591e+001
3.3591e+001
3.1252e+001
3.1252e+001
2.1318e+001
2.1318e+001
1.7463e+001
1.7463e+001
1.6136e+001
1.6136e+001
1.2827e+001
1.3491e+001
1.3491e+001
1.1294e+001
1.1294e+001
1.0501e+001
1.0501e+001
8.2464e+000
8.2464e+000
8.0539e+000
8.0539e+000
3.0690e+000
3.0690e+000
3.3522e+000

2.1063e+001
1.9715e+001
1.9715e+001
4.0870e+000

3.3522e+000
3.1377e+000
3.1377e+000
6.5047e-001
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Fig. A-2 Frequency response for a collocated input-

output pair.
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Fig. A-3 Frequency response of Fig. A-2 shown on a

linear scale in the frequency range of interest.




