

NOV 06 1997
B&W

ENGINEERING DATA TRANSMITTAL

Page 1 of 1
1. EDT No. 611750

2. To: (Receiving Organization) Distribution	3. From: (Originating Organization) B&W Hanford Company	4. Related EDT No.: NA						
5. Proj./Prog./Dept./Div.: B&W Hanford Company	6. Design Authority/ Design Agent/Cog. Engr.: M. B. Enghusen	7. Purchase Order No.: NA						
8. Originator Remarks: This document was prepared to close the Unreviewed Safety Question for the 324 Facility related to HEPA Filter Failure.		9. Equip./Component No.: NA						
		10. System/Bldg./Facility: 324 Facility						
11. Receiver Remarks:	11A. Design Baseline Document? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	12. Major Assm. Dwg. No.: NA						
None		13. Permit/Permit Application No.: NA						
		14. Required Response Date: NA						
15. DATA TRANSMITTED					(F)	(G)	(H)	(I)
(A) Item No.	(B) Document/Drawing No.	(C) Sheet No.	(D) Rev. No.	(E) Title or Description of Data Transmitted	Approval Designator	Reason for Transmittal	Originator Disposition	Receiver Disposition
1	HNF-1774	-	0	Closure Of 324 Facility Potential HEPA Filter Failure Unreviewed Safety Question	N/A	2	1	1
16. KEY								
Approval Designator (F)		Reason for Transmittal (G)			Disposition (H) & (I)			
R, S, Q, D or N/A (see WHIC-CM-3-5, Sec.12.7)		1. Approval	4. Review	1. Approved	4. Reviewed no/comment			
		2. Release	5. Post-Review	2. Approved w/comment	5. Reviewed w/comment			
		3. Information	6. Dist. (Receipt Acknow. Required)	3. Disapproved w/comment	6. Receipt acknowledged			

17. SIGNATURE/DISTRIBUTION
(See Approval Designator for required signatures)

(G) Reason	(H) Disp.	(J) Name	(K) Signature	(L) Date	(M) MSIN	(G) Reason	(H) Disp.	(J) Name	(K) Signature	(L) Date	(M) MSIN
		Design Authority N/A									
		Design Agent N/A									
1	1	Cog. Eng. M. B. Enghusen <i>MBE</i> 11/6/97 LE-02									
1	1	Cog. Mgr. M. S. Wright <i>MSW</i> 11/6/97 LE-02									
		QA N/A									
1	1	Safety N/A <i>SAF</i> 11/6/97 LE-57									
		Env. N/A									

18. <i>ME</i> 11/6/97 Signature of EDT Originator	19. <i>J. M. Wright</i> 11/6/97 Authorized Representative for Receiving Organization	20. <i>M. B. Enghusen</i> 11/6/97 Design Authority/ Cognizant Manager	21. DOE APPROVAL (if required) Ctrl. No. [] Approved [] Approved w/comments [] Disapproved w/comments
---	--	---	--

Closure of 324 Facility Potential HEPA Filter Failure Unreviewed Safety Questions

M. B. Enghusen

B&W Hanford Company, Richland, WA 99352
U.S. Department of Energy Contract DE-AC06-96RL13200

EDT/ECN: 611750

UC: 610

Org Code: 19200

Charge Code: K4M11

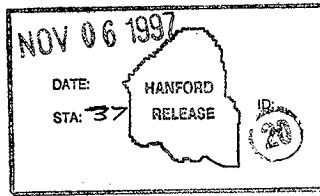
B&R Code: EW 3130020

Total Pages: ~~27~~ 28

JB

Key Words: HEPA, USQ, High Efficiency Particulate Air, Filter, 324 Building, 324 Facility

Abstract: This document summarizes the activities which occurred to resolve an Unreviewed Safety Question (USQ) for the 324 Facility involving Potential HEPA Filter Breach. The facility ventilation system had the capacity to fail the HEPA filters during accident conditions which would totally plug the filters. The ventilation system fans were modified which lowered fan operating parameters and prevented HEPA filter failures which might occur during accident conditions.



TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

Printed in the United States of America. To obtain copies of this document, contact: Document Control Services, P.O. Box 950, Mailstop H6-08, Richland WA 99352, Phone (509) 372-2420; Fax (509) 376-4989.

James Bishko
Release Approval

11-7-97
Date

Release Stamp

Approved for Public Release

HNF-1774
Rev. 0

Closure Of 324 Facility Potential HEPA Filter Failure Unreviewed Safety Question

Prepared By: M. B. Enghusen
B&W Hanford Company

November 6, 1997

Table Of Contents

1.0	Summary	3
2.0	Background	4
3.0	Unusual Occurrence And Discovery USQ Determination	5
4.0	Recovery Actions	6
5.0	Conclusions	8

List Of Appendices

Appendix A	Typical Fan Performance Curve	9
Appendix B	Work Package For 324 Building Zone I Fan Modifications	11
Appendix C	Fan Performance Data Sheets	17

1.0 Summary

The purpose of this report is to demonstrate that the modifications to the 324 Facility Zone I exhaust ventilation system placed the facility within the assumptions of the 324 Building Safety Analysis Report (SAR), PNL-SAR-324, and that a Discovery Unreviewed Safety Question (USQ) for "324 Facility Potential HEPA Filter Breach" has been resolved.

During the preparation of the 324 Facility Fire Hazard Analysis a fire accident scenario was presented in which a small fire would start in the hot cells which would plug the High Efficiency Particulate Air filters. The filters would fail and contaminated material would be released to the environment. This accident scenario did not match the accident scenarios presented in the 324 Building Safety Analysis Report. The Zone I exhaust system was reviewed by the cognizant plant forces which showed that in 1969 the 324 building hot cell Zone I exhaust system was modified by installing new charcoal filters downstream of the HEPA filters and increasing the size of the exhaust fans. The charcoal filters were installed to remove radioactive gasses and new fans were installed to overcome the charcoal filter air flow resistance. The new exhaust fans were larger and provided higher static pressure and flow capacity. The increased static pressure provided by the fans during no flow conditions was sufficient to fail the Zone I High Efficiency Particulate Air (HEPA) filters if they were to plug during the fire scenarios presented in the draft FHA and the 324 Building SAR.

The failure of the HEPA filters during a remote fire in the hot cells was not analyzed in the 324 Building SAR. The Plant Review Committee (PRC) reviewed the fan modifications and determined that a Discovery condition existed. The facility was placed in a safe condition and the Unreviewed Safety Question Evaluation (USQE) was completed and reviewed by the PRC which indicated a USQ existed. The USQE was transmitted to DOE which then declared the USQ.

In order to recover from the USQ, the fans were modified in September to reduce the capacity of the fans while maintaining sufficient flow to provide contamination control. The changes to the fans reduced the maximum possible static pressure which ensured the HEPA filters would not fail when plugged with particulates. The fan modifications returned the facility to the conditions presented in the 324 Building SAR and the USQ has been resolved.

2.0 Background

In August, 1997, a draft 324 Facility Fire Safety Analysis (FHA) document (HNF-SD-HT-FHA-002, "324 Facility Fire Hazard Analysis") was issued for review by the facility representatives. The draft FHA presented a new accident scenario in which a small localized fire in the hot cells causes an oil filled window to fail. The fire releases the window oil which adds fuel to the fire. The smoke and particulates from the postulated fire contains a sufficient quantity of particulates to plug the High Efficiency Particulate Air (HEPA) filters in the hot cell Zone I exhaust system. The fans would continue to run providing sufficient differential pressure across the plugged HEPA filters to fail the filters. The hot cells would then have an open channel for dispersion of contamination from the process cells to the environment via the main stack.

A review of the Zone I exhaust system was conducted to evaluate this new fire scenario. The review of the Zone I exhaust system showed that in 1969 charcoal filters were installed downstream of the final HEPA filters. The Zone I exhaust fans were replaced at the same time to overcome the additional pressure drop provided by the charcoal filters. According to the installation drawings the new fans were designed to provide a static pressure of 15 inches water gauge (drawing H-3-28596, Revision 1, "HVAC Adsorption System Plan and Details"). This potential static pressure was validated using available vendor information typical of the installed fans. The HEPA filters installed in Zone I exhaust system are nuclear grade and purchased per specifications QPL-51068-7 compliant with MIL-F-068 Section 3.4.4 "Resistance To Pressure". The filters are normally operated up to a maximum of 5 inches water gauge at which time they are replaced. The HEPA filters are capable of handling a maximum of 10 ± 0.2 inches of water gauge differential pressure for one hour. The failure of the plugged HEPA filters during accident conditions was therefore considered credible.

3.0 Unusual Occurrence And Discovery USQ Determination

The 324 Building Safety Analysis Report (SAR), PNL-SAR-324, analyzes two accident scenarios involving hot cell fires. In section 6.3.1 "Hot Cell Fires" a fire in the hot cells is assumed to produce sufficient smoke to plug the exhaust HEPA filters. The smoke generated by the fire would then migrate into the areas around the hot cells and be routed through the Zone II exhaust system. The HEPA filters in the Zone II exhaust system would prevent the release of material to the environment. The probability of a fire resulting from this scenario is considered high, anticipated, however the consequences are low due to filtered release of material. In section 6.3.2 "Major Fire" a large fire is initiated in Zone II building areas located outside the hot cells. The fire is large enough to cause a hot cell window to fail and the fire to spread into the hot cells. The filters then plug and possibly breach which results in release of unfiltered contamination to the environment. For this accident scenario both the filtered and unfiltered releases from the Zone II exhaust system were analyzed. The probability of a fire resulting from this scenario is considered highly unlikely with a high consequence from the unfiltered release of material to the environment.

The modifications to the Zone I exhaust fans provided the potential for a plugged filter failure which is not analyzed by section 6.3.1 "Hot Cell Fire" accident in the 324 Building SAR. A Plant Review Committee meeting was held August 22, 1997, which concluded that this represented a Discovery condition. The 324 Facility was placed in a safe condition in which all work in hot cells which could initiate a fire was suspended and an Unusual Occurrence report was issued (UO number RL-PHMC-324FAC-1997-0010 and Management Directive 324-MD-001 "Control of Hot Work in 324 Facility Stabilization Project"). An Unreviewed Safety Question Evaluation (USQE), number 324-BWHC-97-002, was completed September 1, 1997, to determine if the fan modifications represented conditions which were not analyzed in the current 324 Building SAR. The USQE was reviewed by the Plant Review Committee on September 4, 1997, and the Discovery USQ was identified. Minor comments were also made on the USQE and the USQE was revised September 4, 1997. The USQE was submitted to DOE (BWHC-9758040, G. O. Hayner to L. J. Olguin, "Unreviewed Safety Question Evaluation For 324 Facility", September 5, 1997 and FDH-9758040 R1, L. J. Olguin to J. E. Mecca, "Unreviewed Safety Question Evaluation For 324 Facility", September 8, 1997). The DOE declared the USQ on September 16, 1997 (97-TPD-177, J. D. Wagner to H. J. Hatch "Contract No. DE-AC06-96RL13200 - Unreviewed Safety Question Evaluation For The 324 Facility").

4.0 Recovery Actions

The hot cell Zone I exhaust system operating parameters were reviewed by management and the cognizant engineer which identified three possible recovery actions:

1. An interlock system could be installed which would monitor the filter differential pressure and shut off the exhaust fans if the filters differential pressure reaches the operating limits.
2. A vacuum breaker damper could be installed which would open when the differential pressure applied to the HEPA filters exceed operating limits thereby protecting the filters from failing.
3. The fans could be reduced in speed which would reduce the maximum differential pressure across the HEPA filters below 10 in. WG. while maintaining the current design conditions through the building and maintaining contamination control.

The fan modifications alternative was selected due to simplicity of the change and ability to meet the requirements presented in the 324 building SAR without additional OSR equipment, controls and testing.

The specific performance characteristics of the fans installed at 324 were not available from the vendor information. A typical performance curve for similar type fan operated at a specific fan revolutions per minute (RPM) is shown in Appendix A. If the fan speed is reduced, the performance curve will be lowered and the static pressure provided by the fan at the same flow rates will be reduced. This allows reduction in static pressure provided by the fan while still providing sufficient air flow capacity (at a reduced static pressure) for building contamination control. It needs to be noted that the static pressure at very low or no flow is the main concern of the USQ. This is the condition which represents the plugged filter upstream of the fans. The static pressure provided by the fans at this point is equal to the differential pressure across the HEPA filters. If the static pressure at this very low or no flow condition is greater than the capability of the HEPA filters, the filters will fail. At higher flow rates, the filters are not plugged and the static pressure provided by the fans is distributed across the entire ventilation system. Higher static pressures at the higher flow rates will therefore not cause a filter failure.

The Zone I fan modifications involved the identification of new sheaves and belts which would reduce the fan speed and corresponding performance curve. The motors used on the fans are constant speed and were not modified or changed. The existing fan speed was measured at 990 revolutions per minute (rpm). The cognizant engineer used vendor supplied tables for performance information to identify a new fan target speed of 740 rpm.

New sheaves were ordered and the fans were modified at the end of September, 1997 (work package 3I-97-00823). The operating characteristics of the new fans were tested by closing the blocking damper and measuring the static pressure and flow rates (work package 3I-97-00849, Appendix B) for the first modified fan. All the Zone I fans are identical in construction and performance and the first fan was tested to ensure that the modifications provided the required static pressures and flow rates. The static pressures and flow rates at the different damper positions was taken and recorded in the data sheets provided in Appendix C and recorded in the work package, Appendix B. The static pressure provided by the fan with the blocking damper closed was 6.67 inches water gauge (WG) at leakage rate of 1449 cubic feet per minute (CFM). As the blocking damper was opened and the flow rate through the fan increased the static pressure increased as expected by the fan operating curves. The static pressure increased from the 6.67 inches WG at 1449 CFM to 9.6 inches WG at 5,416 CFM. This represents significant flow through the ventilation system and the static pressure is still below the HEPA filter capacity. Additional data was taken up to 10,309 CFM. about $\frac{1}{2}$ fan capacity, which provided a static pressure of 10.50 inches WG. The data taken at the higher flow rates was considered conservatively high due to interferences from the operating non-modified fans on the modified fan via common inlet and outlet ductwork.

The performance data discussed above provided the information which demonstrated that the HEPA filters would not be subjected with sufficient DP to fail (i.e. static pressure at no or very low flow rates) if they were to plug. The data also showed that the fans had flow capacity, CFM, to support the building operation. The remainder of the fans were modified and the RPM of the fans were checked to ensure that all three Zone I fans were operating at the same speed.

Following all three fan modifications, the flow and differential pressure in the Zone I system was more easily controlled by the dampers. Prior to the modifications, the dampers operated in a mostly closed position and small changes in damper control made large changes in both flow and differential pressure readings in the ductwork. After the fans were modified, the control dampers operated in an open position which provided better flow and differential pressure control. The fan operation also had noticeably lower vibration resulting from both the lower fan speed and reduction in the ductwork turbulence by operating the dampers in a more open position.

5.0 Conclusions

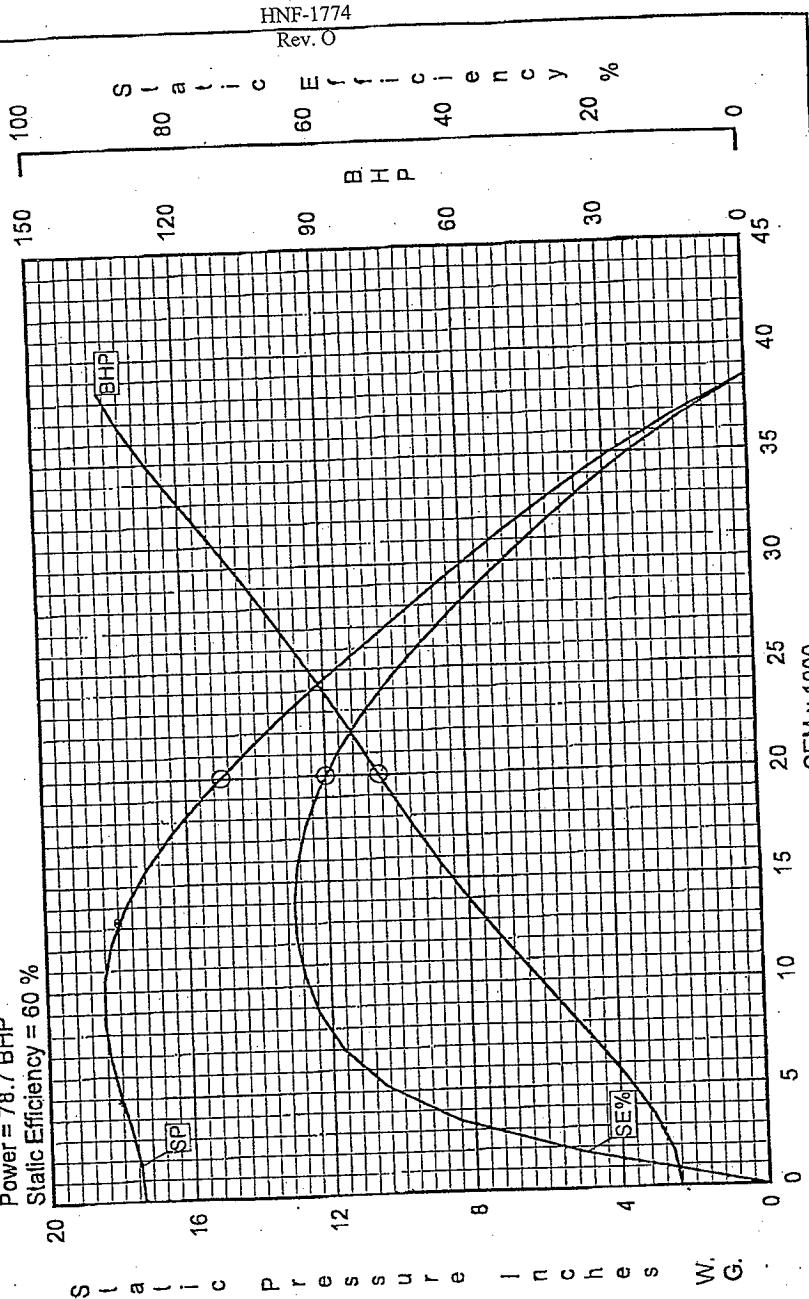
The maximum static pressure which can be provided by the Zone I exhaust fans is well below the limits for the HEPA filter operation. The Zone I HEPA filters will not fail due to particulate loading and the Zone I exhaust system is operating per the conditions presented in the 324 Building SAR. The Discovery USQ has been resolved. An Administrative change to the 324 Building SAR will be prepared which will enhance the Zone I and Zone II exhaust systems description sufficient to prevent similar changes in ventilation design.

HNF-1774
Rev. 0

Appendix A Typical Fan Performance Curve

Fan Equipment Co.,

Example Curve


Model M-33 I.E.

Impeller Diameter = 57.5 Inches
RPM = 985 Capacity = 0.59

Inlet Density = 0.075 lb./cu. ft.
Volume = 20000 Cu Ft./Min.

Static Pressure = 15 in. W.G.
Power = 78.7 BHP

Static Efficiency = 60 %
SP

HNF-1774
Rev. 0

Appendix B Work Package For 324 Building Zone I Fan Modifications

*** RECORD COPY ***

*** RECORD COPY ***

WORK DOCUMENT (W110)

13:21:03 24 SEP 1997

Page: 1

1. Document Number 3I-97-00849/W GENERIC WORK ITEM.
 2. Work Item Title ZONE I EXH.FAN PERFORMANCE VERIFICATION

3. Components
 Component Number Name
 3I-041060 324 * EXHAUST FAN # 973
 Temporary Number Name

4. System FAN SUPPLY/EXHAUST FANS

5. Location
 Facility 3I 324 BUILDING
 Bldg/Rm 324 Other EAST SIDE Other

6. Symptom, Problem, or Condition
 NEED PERFORMANCE DATA TO VERIFY THAT EXHAUST FAN #973 AS
 REQUIRED AND MAINTAIN A STATIC SHUT OFF HEAD OF LESS THAT 10
 IN.WG.

WORK WITH JCS PKG. 3I-97-00823.

Date
09/11/97

7. Originator Name GREGONIS, RA
 Telephone No. 373-3851 MSIN 11-05

8. Charge Code K4A11

9. Priority 2
 10. Phase Designator N/A

Phone
373-3851

11. Cognizant Engineer GREGONIS, RA

12. Planning Required Y

13. Screener/Ops Review

Signature *J. L. Jackson* Date 9-25-97

14. Resolution By

Signature *J. L. Jackson* Date 9-25-97

15. Approvals

Code	Description
OP	OPERATIONS
CE	COGNIZANT ENGINEER
HP	HEALTH PHYSICS

Signature *S. J. Ayman* Date 9/25/97
J. L. Gregon 9/25/97
J. L. Jackson 9/25/97

16. Resources Required

Res Code	Description
V&B	VENT AND BALANCE
HCT	HOT CELL TECHNICIAN

No. 2-Act Hrs

A 20
J

WORK DOCUMENT (W110)

*** RECORD COPY ***

*** RECORD COPY ***
 LOCKOUT REQUIRED

*** RECORD COPY ***

*** RECORD COPY ***

WORK DOCUMENT (W110)

13:21:03 24 SEP 1997

Page: 2

1. Document Number 3I-97-00849/W GENERIC WORK ITEM
2. Work Item Title ZONE I EXH.FAN PERFORMANCE VERIFICATION

54

Radiation Protection Technicia 1

*** RECORD COPY ***

*** RECORD COPY ***

*** RECORD COPY ***

13:21:03 24 SEP 1997

Page: 3

1. Document Number 3I-97-00849/W GENERIC WORK ITEM
 2. Work Item Title ZONE I EXH.FAN PERFORMANCE VERIFICATION

17. Pre-Work Review Signature B. Journe Date 9/27/97
 18. Tagout Number 324-97-N/A num 905/97

19. Work Release Type Signature B. Journe Date 9/27/97

20. Work Suspension (See Work Suspension Sheet)
 PIC _____

21. PIC PIC Org.

Resolution/Retest

NOTE

THIS WORK WILL VERIFY THE PERFORMANCE OF THE MODIFIED ZONE I EXHAUST FANS. JCS PACKAGE 3I-97-823 INSTALLED NEW BELTS AND SHEAVES TO REDUCE THE SPEED OF THE FANS IN ORDER TO DROP THE MAXIMUM SHUT OFF HEAD TO LESS THAN 10 IN.WG. THE DAMPER LINKAGE ON THE DOWNSTREAM BLOCKING DAMPER WILL BE DISCONNECTED AND A VICE GRIP WILL BE INSTALLED TO ALLOW THE MANUAL OPERATION OF THE DAMPER DURING THE TEST. EXHAUST FAN #973 WILL BE TESTED AT SEVERAL AIR FLOW RATES AND FAN STATIC PRESSURES WILL BE MEASURED. THE RESULTS OF THIS WORK PKG. WILL VERIFY WHETHER OR NOT THE FAN SHUT OFF HEAD HAS BEEN REDUCED BELOW THE MAXIMUM ALLOWABLE STATIC OF 10 IN.WG.

1] PRE-JOB SAFETY MEETING.

INITIAL/DATE M. K. 9/27/97

***NOTE: PERFORM WORK PER HVAC COG. ENGR. DIRECTION. USE PROCEDURE 7-GN-056 AS REFERENCE. RECORD MEASUREMENTS ON DATA SHEETS PROVIDED. TESTING MAY BE TERMINATED AND THE SYSTEM RETURNED TO STABLE NORMAL CONFIGURATION AT ANYTIME AT THE DISCRETION OF THE COG. ENGINEER.

***NOTE: FAN OPERATIONAL STATUS SHALL BE REDUCED VENTILATION PER PROCEDURE 324-PWR-001 WITH EXHAUST FANS 974 AND 975 OPERATING AND 973 ON STANDBY.

2] INSTALL VICE GRIP PLIARS ON DAMPER SHAFT OF THE BLOCKING DAMPER DOWN STREAM OF THE FAN AND WHILE MAINTAINING THE DAMPER IN A CLOSED POSITION DISCONNECT THE DAMPER LINKAGE FROM THE DAMPER MOTOR ON EXHAUST FAN #973. WITH ANOTHER PAIR OF VICE GRIP PLIARS LOCK THE DAMPER IN THE CLOSED POSITION.

WORK DOCUMENT (W110)

*** RECORD COPY ***

*** RECORD COPY ***

*** RECORD COPY ***

*** RECORD COPY ***

WORK DOCUMENT (W110)

13:21:03 24 SEP 1997

Page: 4

1. Document Number 3I-97-00849/W GENERIC WORK ITEM
 2. Work Item Title ZONE I EXH.FAN PERFORMANCE VERIFICATION

INITIAL/DATE RAE 9/27/97

- 3] START EXHAUST FAN #973. MANUAL OVERRIDE MAYBE REQUIRED TO
 KEEP ALL THREE ZONE I EXHAUST FANS RUNNING AT THE SAME
 TIME.

INITIAL/DATE RAE 9/27/97

***NOTE: USING BOTH PAIRS OF VICE GRIP PLIARS, ONE AS A MANUAL
 DAMPER CONTROL HANDLE AND THE OTHER AS A LOCKING DEVICE
 ADJUST DAMPER TO VARIOUS OPEN POSITIONS AS REQUIRED
 BELOW. MEASURE AND RECORD DATA ON DATA SHEETS PROVIDED
 AND IN SPACES PROVIDED BELOW. ADDITIONAL TESTING MAY BE
 REQUIRED AT THE DISCRETION OF THE HVAC COG. ENGINEER.

- 4] TESTING

***NOTE: ALLOW THE HVAC SYSTEM TO COME TO EQUILIBRIUM AFTER
 DAMPER HAS BEEN MOVED AND VERIFICATION FROM POWER
 OPERATOR THAT THE HVAC SYSTEM IS OPERATING IN A NORMAL
 STABLE MODE.

	DAMPER POSITION	FAN STATIC PRESSURE	EXHAUST AIR FLOW RATE
TEST 1	CLOSED	6.705	IN.WG. 4449 CFM
TEST 2	1/8 OPEN	7.047	IN.WG. 1778 CFM
TEST 3	1/4 OPEN	7.481	IN.WG. 3840 CFM
TEST 4	3/8 OPEN	8.158	IN.WG. 4460 CFM
TEST 5	1/2 OPEN	8.826	IN.WG. 5281 CFM

***NOTE: HVAC COG. ENGINEER TO VERIFY SUFFICIENT DATA HAS BEEN
 TAKEN BEFORE PROCEEDING TO THE NEXT STEP.

- 5] RETURN EF-973 TO OPERATIONAL STATUS PRIOR TO TEST.

INITIAL/DATE RAE 9/27/97

- 6] RECONNECT DAMPER LINKAGE TO DAMPER OPERATOR AND REMOVE VICE
 GRIP PLIARS.

INITIAL/DATE RAE 9/27/97

- 14] HOUSEKEEP WORK AREA AND DISPOSE OF ALL WASTE IN PROPER

WORK DOCUMENT (W110)

*** RECORD COPY ***

*** RECORD COPY ***

*** RECORD COPY ***

*** RECORD COPY ***

=====WORK DOCUMENT (W110)=====

13:21:03 24 SEP 1997

Page: 5

1. Document Number 3I-97-00849/W GENERIC WORK ITEM
2. Work Item Title ZONE I EXH.FAN PERFORMANCE VERIFICATION

RECEPTACLES.

INITIAL/DATE

PLW 9/27/97

22. Reference Documents

- CRAFT LOG
- OTHR
- PRE-JOB SAFETY
- OTHR
- HJHA
- OTHR
- 7-GN-56
- OTHR
- 324-PWR-001
- OTHR
- 324-97-007, REV. 2
- RWP

23. Field Work Complete

Signature	Date
<u>PLW</u>	<u>10/15/97</u>

24. Ops_Acceptance

Signature	Date
<u>PLW</u>	<u>11-5-97</u>

25. Post Review

Signature	Date
<u>PLW</u>	<u>10/15/97</u>

=====WORK DOCUMENT (W110)=====

*** RECORD COPY ***

*** RECORD COPY ***

HNF-1774
Rev. 0

Appendix C Fan Performance Data Sheets

DATA SHEET

JCS 3I-324-849 ATTACHMENT

TEST NO. I

ZONE I EXHAUST FAN #973/BUILDING 324

DATE 9-27-97AIR FLOW INSTRUMENT USED MICROWHSL CODE # 902-28-09-019LAST WHSL CALIBRATION DATE 8-19-97DUCT SIZE 37 IN. DIA.DUCT AREA 7.47 FT²

DATA POINT NO.	PITOT TRAVERSE POINTS	VELOCITY PRESSURE IN. WG.	VELOCITY FPM	FAN STATIC PRESSURE	
				FAN INLET SP	IN. WG.
1	1"	0	0	<u>6.67</u>	IN. WG.
2	3"	0	0	<u>+0.37</u>	IN. WG.
3	5 7/16"	.012	439	<u>002</u>	IN. WG.
4	8 3/8"	.020	566	<u>6.705</u>	IN. WG.
5	12 5/8"	.026	645		
6	24 3/8"	.004	253		
7	28 5/8"	0	0		
8	31 9/16"	0	0		
9	34"	0	0		
10	36"	.014	474		

AVERAGE VELOCITY 194 FPMTOTAL AIR FLOW RATE 1449 CFM

COMMENTS: _____

AIR BALANCE TECH. 19-27-97

INITIAL/DATE

DATA SHEET

JCS 31-324-849 ATACHMENT

TEST NO. 77

ZONE I EXHAUST FAN #973/BUILDING 324

DATE 9-27-97AIR FLOW INSTRUMENT USED MIC. A.O.WHSI CODE # 702-28-09-019LAST WHSI CALIBRATION DATE 8-19-97DUCT SIZE 37 IN. DIA.DUCT AREA 7.47 FT²

DATA POINT NO.	PITOT TRAVERSE POINTS	VELOCITY PRESSURE IN. WG.		FAN STATIC PRESSURE
		VELOCITY FPM		
1	1"	0	0	FAN INLET SP - 7.05 IN. WG.
2	3"	.002	179	FAN OUTLET SP +.001 IN. WG.
3	5 7/16"	.005	283	FAN INLET VP .004 IN. WG.
4	8 3/8"	.006	310	FAN SP 7.047 IN. WG.
5	12 5/8"	.005	28.3	
6	24 3/8"	.013	457	
7	28 5/8"	.003	219	
8	31 9/16"	.017	522	
9	34"	.001	127	
10	36"	0	0	

NOTE:

*FAN SP = SP_{OUTLET} - SP_{INLET} - VP_{INLET}

SP (static pressure)

VP (velocity pressure)

*Industrial Ventilation Handbook 18th Edition

AVERAGE VELOCITY 238 FPMTOTAL AIR FLOW RATE 4778 CFM

COMMENTS:

AIR BALANCE TECH PK 19-27-97

INITIAL/DATE

DATA SHEET

JCS 31-324-849 ATACHMENT

TEST NO. III

ZONE I EXHAUST FAN #973/BUILDING 324

DATE 9-27-97

AIR FLOW INSTRUMENT USED MICRO

WHS CODE # 702-28-09-019

LAST WHSL CALIBRATION DATE 8-14-97

DUCT AREA 7.47 FT²

DUCT SIZE 37 IN. DIA.

DATA POINT NO.	PITOT TRAVERSE POINTS	VELOCITY PRESSURE IN. WG.	VELOCITY FPM	FAN STATIC PRESSURE
1	1"	.015	491	FAN INLET SP - 7.44 IN. WG.
2	3"	.018	537	FAN OUTLET SP - .057 IN. WG.
3	5 7/16"	.016	507	FAN INLET VP .016 IN. WG.
4	8 3/8"	.017	522	FAN SP 7.481 IN. WG.
5	12 5/8"	.016	507	
6	24 3/8"	.018	537	
7	28 5/8"	.015	491	
8	31 9/16"	.007	335	
9	34"	.020	566	
10	36"	.026	645	

AVERAGE VELOCITY 514 FPM

TOTAL AIR FLOW RATE 3,840 CFM

COMMENTS:

AIR BALANCE TECH. DK 19-27-97

INITIAL/DATE

DATA SHEET

JCS 31-324-849 ATTACHMENT

TEST NO. 72

ZONE I EXHAUST FAN #973/BUILDING 324

DATE 9-27-97

AIR FLOW INSTRUMENT USED MICRO

702-28-09-019

LAST WHSL CALIBRATION DATE 8-19-97

DUCT SIZE 37 IN. DIA.

DUCT AREA 7.47 FT²

DATA POINT NO.	PITOT TRAVERSE POINTS	VELOCITY PRESSURE IN. WG.	VELOCITY FPM	FAN STATIC PRESSURE
1	1"	.020	566	FAN INLET SP - 8.12 IN. WG.
2	3"	.026	645	FAN OUTLET SP - .060 IN. WG.
3	5 7/16"	.027	658	FAN INLET VP .022 IN. WG.
4	8 3/8"	.030	694	FAN SP 8.158 IN. WG.
5	12 5/8"	.022	594	
6	24 3/8"	.024	620	
7	28 5/8"	.027	658	
8	31 9/16"	.026	645	
9	34"	.016	507	
10	36"	.009	380	

AVERAGE VELOCITY 597 FPM

TOTAL AIR FLOW RATE 4,460 CFM

COMMENTS:

AIR BALANCE TECH. 19-27-97

INITIAL/DATE

DATA SHEET

JCS 3I-324-849 ATACHMENT

TEST NO. 11

ZONE I EXHAUST FAN #973/BUILDING 324

DATE 9-27-97AIR FLOW INSTRUMENT USED MICROWHSI CODE # 702-28-09-019LAST WHSI CALIBRATION DATE 8-19-97DUCT SIZE 37 IN. DIA.DUCT AREA 7.47 FT²

DATA POINT NO.	PITOT TRAVERSE POINTS	VELOCITY PRESSURE IN. WG.	VELOCITY FPM	FAN STATIC PRESSURE
				FAN INLET SP
1	1"	.024	620	8.78
2	3"	.033	728	.077
3	5 7/16"	.034	738	.031
4	8 3/8"	.035	749	8.826
5	12 5/8"	.030	694	
6	24 3/8"	.030	694	
7	28 5/8"	.035	749	
8	31 9/16"	.034	738	
9	34"	.020	566	
10	36"	.039	791	

NOTE:

*FAN SP = SP_{OUTLET} - SP_{INLET} - VP_{INLET}

SP (static pressure)

VP (velocity pressure)

*Industrial Ventilation Handbook 18th Edition

AVERAGE VELOCITY 707 FPMTOTAL AIR FLOW RATE 5,281 CFM

COMMENTS: _____

AIR BALANCE TECH 19-27-97

INITIAL/DATE

DATA SHEET

JCS 3I-324-849 ATACHMENT

TEST NO. VI

ZONE I EXHAUST FAN #973/BUILDING 324

DATE 9-27-97AIR FLOW INSTRUMENT USED MICRKOWHSI CODE # 902-28-09-019LAST WHSL CALIBRATION DATE 8-19-97DUCT SIZE 37 IN. DIA.DUCT AREA 7.47 FT²

DATA POINT NO.	PITOT TRAVERSE POINTS	VELOCITY PRESSURE IN. WG.	VELOCITY FPM	FAN STATIC PRESSURE
				FAN INLET SP
1	1"	.032	716	- 9.60 IN. WG.
2	3"	.037	770	FAN OUTLET SP - .009 IN. WG.
3	5 7/16"	.044	840	FAN INLET VP - .032 IN. WG.
4	8 3/8"	.044	840	FAN SP 9.577 IN. WG.
5	12 5/8"	.040	801	
6	24 3/8"	.048	877	
7	28 5/8"	.030	694	NOTE:
8	31 9/16"	.035	749	*FAN SP = SP _{OUTLET} - SP _{INLET} - VP _{INLET}
9	34"	.020	566	SP (static pressure)
10	36"	.010	401	VP (velocity pressure)

*Industrial Ventilation Handbook 18th Edition

AVERAGE VELOCITY 725 FPMTOTAL AIR FLOW RATE 5416 CFM

COMMENTS: _____

AIR BALANCE TECH PK 9-27-97

INITIAL/DATE

DATA SHEET

JCS 31-324-849 ATTACHMENT

TEST NO. VII 3/4 ZONE I EXHAUST FAN #973/BUILDING 324.DATE 9-27-97AIR FLOW INSTRUMENT USED MICROWHSI CODE # 502-28-09-019LAST WHSI CALIBRATION DATE 8-19-97DUCT SIZE 37 IN. DIA. DUCT AREA 7.47 FT²

DATA POINT NO.	PITOT TRAVERSE POINTS	VELOCITY PRESSURE IN. WG.	VELOCITY FPM	FAN STATIC PRESSURE
				FAN INLET SP
1	1"	.035	749	-10.07 IN. WG.
2	3"	.041	811	+.045 IN. WG.
3	5 7/16"	.044	840	.042 IN. WG.
4	8 3/8"	.049	887	-10.073 IN. WG.
5	12 5/8"	.044	840	
6	24 3/8"	.044	840	
7	28 5/8"	.052	913	
8	31 9/16"	.043	830	
9	34"	.020	566	
10	36"	.059	973	

NOTE:

*FAN SP = SP_{OUTLET} - SP_{INLET} - VP_{INLET}

SP (static pressure)

VP (velocity pressure)

*Industrial Ventilation Handbook 18th Edition

AVERAGE VELOCITY 825 FPMTOTAL AIR FLOW RATE 6,163 CFM

COMMENTS: _____

AIR BALANCE TECH.

19-27-97

INITIAL/DATE

DATA SHEET

JCS 31-324-849 ATACHMENT

TEST NO. 7/3

ZONE I EXHAUST FAN #973/BUILDING 324

DATE 9-27-97AIR FLOW INSTRUMENT USED MICROWHSL CODE # 502-28-09-019LAST WHSL CALIBRATION DATE 8-19-97DUCT SIZE 37 IN. DIA.DUCT AREA 7.47 FT²

DATA POINT NO.	PITOT TRAVERSE POINTS	VELOCITY PRESSURE IN. WG.	VELOCITY FPM	FAN STATIC PRESSURE
1	1"	.022	594	FAN INLET SP <u>-10.02</u> IN. WG.
2	3"	.044	840	FAN OUTLET SP <u>+.070</u> IN. WG.
3	5 7/16"	.047	868	FAN INLET VP <u>.035</u> IN. WG.
4	8 3/8"	.050	896	FAN SP <u>-10.055</u> IN. WG.
5	12 5/8"	.048	877	
6	24 3/8"	.043	830	
7	28 5/8"	.050	896	
8	31 9/16"	.044	840	
9	34"	.030	694	
10	36"	.002	179	

NOTE:

*FAN SP = SP_{OUTLET} - SP_{INLET} - VP_{INLET}

SP (static pressure)

VP (velocity pressure)

*Industrial Ventilation Handbook 18th Edition

AVERAGE VELOCITY 751 FPMTOTAL AIR FLOW RATE 5,610 CFM

COMMENTS: _____

AIR BALANCE TECH BS 11-9-27-97

INITIAL/DATE

DATA SHEET

JCS 31-324-849 ATACHMENT

TEST NO. 1009 ZONE I EXHAUST FAN #973/BUILDING 324DATE 9-27-97AIR FLOW INSTRUMENT USED MICROWHSI CODE # 702-28-09-019LAST WHSI CALIBRATION DATE 8-19-97DUCT SIZE 37 IN. DIA.DUCT AREA 7.47 FT²

DATA POINT NO.	PITOT TRAVERSE POINTS	VELOCITY PRESSURE IN. WG.	VELOCITY FPM	FAN STATIC PRESSURE
				FAN INLET SP <u>-9.96</u> IN. WG.
1	1"	.080	1133	FAN OUTLET SP <u>+0.70</u> IN. WG.
2	3"	.087	1181	FAN INLET VP <u>-0.84</u> IN. WG.
3	5 7/16"	.092	1215	FAN SP <u>9.946</u> IN. WG.
4	8 3/8"	.099	1260	
5	12 5/8"	.090	1202	
6	24 3/8"	.090	1202	
7	28 5/8"	.096	1241	
8	31 9/16"	.092	1215	
9	34"	.069	1052	
10	36"	.053	922	

NOTE:

*FAN SP = SP_{OUTLET} - SP_{INLET} - VP_{INLET}

SP (static pressure)

VP (velocity pressure)

*Industrial Ventilation Handbook 18th Edition

AVERAGE VELOCITY 1162 FPMTOTAL AIR FLOW RATE 8680 CFM

COMMENTS: _____

AIR BALANCE TECH. JK 19-27-97

INITIAL/DATE

DATA SHEET

JCS 31-324-849 ATACHMENT

TEST NO. X FAN IN SERVICE ZONE I EXHAUST FAN #973/BUILDING 324. DATE 9-27-97

AIR FLOW INSTRUMENT USED MICHAO WHSL CODE # 702-28-09-019

LAST WHSL CALIBRATION DATE 8-19-97

DUCT SIZE 37 IN. DIA. DUCT AREA 7.47 FT²

DATA POINT NO.	PITOT TRAVERSE POINTS	VELOCITY PRESSURE IN. WG.	VELOCITY FPM	FAN STATIC PRESSURE
1	1"	.090	1202	FAN INLET SP = <u>10.50</u> IN. WG.
2	3"	.116	1364	FAN OUTLET SP = <u>.040</u> IN. WG.
3	5 7/16"	.109	1322	FAN INLET VP = <u>.118</u> IN. WG.
4	8 3/8"	.130	1444	FAN SP = <u>10.422</u> IN. WG.
5	12 5/8"	.112	1340	
6	24 3/8"	.104	1292	
7	28 5/8"	.130	1444	
8	31 9/16"	.161	1607	
9	34"	.140	1499	
10	36"	.107	1310	

NOTE:

*FAN SP = SP_{OUTLET} - SP_{INLET} - VP_{INLET}

SP (static pressure)

VP (velocity pressure)

*Industrial Ventilation Handbook 18th Edition

AVERAGE VELOCITY 1380 FPMTOTAL AIR FLOW RATE 10,309 CFM

COMMENTS:

AIR BALANCE TECH 19-27-97

INITIAL/DATE

DISTRIBUTION SHEET

To Distribution	From M. B. Enghusen	Page 1 of 1 Date November 6, 1997			
Project Title/Work Order		EDT No. 611750			
324 Facility Stabilization Project		ECN No. N/A			
Name	MSIN	Text With All Attach.	Text Only	Attach./ Appendix Only	EDT/ECN Only

Central Files (2) (Orig + 1) B1-07 X
Docket Files (2) B1-17 X

B&W Hanford Company

M. B. Enghusen (5) L1-02 X
G. O. Hayner L5-65 X
A. M. Horner L6-57 X
J. M. Steffen N1-47 X
M. S. Wright L1-02 X

Fluor Daniel Hanford

C. B. Evans B1-19 X
H. Z. Dokuzoguz N1-26 X

U.S. Department of Energy-Richland Operations Office

B. L. Charboneau L1-02 X
D. W. Templeton L1-02 X
D. C. Langstaff R3-79 X