
Association for Computing Machinery
Special Interest Group on Computer Graphics (SIGGRAPH) '97 Conference

Los Angeles, CA
August 3-8, 1997

Law
re

nce

Liver
m

ore

Nati
onal

Lab
ora

to
ry

UCRL-JC-127331

Color Spaces in Digital Video

R. Gaunt

May 1997

This is a preprint of a paper intended for publication in a journal or proceedings.
Since changes may be made before publication, this preprint is made available with
the understanding that it will not be cited or reproduced without the permission of the
author.

PREPRINT

This paper was prepared for submittal to the

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

Color Spaces in Digital Video
Ross Gaunt

Lawrence Livermore National Laboratory

Whether it’s photography, computer graphics, publishing, or video; each medium has a
defined color space, or gamut, which defines the extent that a given set of RGB colors can be
mixed. When converting from one medium to another, an image must go through some form of
conversion which maps colors into the destination color space. The conversion process isn’t
always straight forward, easy, or reversible.

In video, two common analog composite color spaces are Y’UV (used in PAL) and Y’IQ (used in
NTSC). These two color spaces have been around since the beginning of color television, and are
primarily used in video transmission. Another analog scheme used in broadcast studios is Y’,
R’-Y’, B’-Y’ (used in Betacam and MII) which is a component format. Y’, R’-Y’,B’-Y’ maintains
the color information of RGB but in less space. From this, the digital component video
specification, ITU-Rec. 601-4 (formerly CCIR Rec. 601) was based. The color space for Rec. 601
is symbolized as Y’CbCr. Digital video formats such as DV, D1, Digital–S, etc., use Rec. 601 to
define their color gamut. Digital composite video (for D2 tape) is digitized analog Y’UV and is
seeing decreased use.

Because so much information is contained in video, segments of any significant length usually
require some form of data compression. All of the above mentioned analog video formats are a
means of reducing the bandwidth of RGB video. Video bulk storage devices, such as digital
disk recorders, usually store frames in Y’CbCr format, even if no other compression method is
used. Computer graphics and computer animations originate in RGB format because RGB must
be used to calculate lighting and shadows. But storage of long animations in RGB format is
usually cost prohibitive and a 30 frame-per-second data rate of uncompressed RGB is beyond
most computers.

By taking advantage of certain aspects of the human visual system, true color 24-bit RGB video
images can be compressed with minimal loss of visual information. For example, humans ‘see’
more white-to-black (luminance) detail then red, green, or blue color detail. Also, the eye is
most sensitive to green colors. Taking advantage of this, both composite and component video
allocates more bandwidth for the luma (Y’) signal than the chroma signals. Y’601 is composed of
59% green’, 30% red’, and 11% blue’ (prime symbol denotes gamma corrected colors). This luma
signal also maintains compatibility with black and white television receivers. Component
digital video converts R’G’B’ signals (either from a camera or a computer) to a monochromatic
brightness signal Y’ (referred here as luma to distinguish it from the CIE luminance linear-
light quantity), and two color difference signals Cb and Cr. These last two are the blue and red
signals with the luma component subtracted out.

GAMMA: As you know, computer graphic images are composed of red, green, and blue elements
defined in a linear color space. Color monitors do not display RGB linearly. A linear RGB color
space image must be gamma corrected to be displayed properly on a CRT. Gamma correction,
which is approximately a 0.45 power function, must also be employed before converting an RGB
image to video color space. Gamma correction is defined for video in the international
standard: ITU-Rec. BT.709-4. The gamma correction transform is the same for red, green, and
blue. The formula for the red signal is shown below. Note, the below formulas and graph are
from Poynton.

R’ 709 = { 4.5R, R <= 0.018

{ 1.099 R0.45 - 0.099, 0.018 < R

In order to minimize noise in the dark regions of a picture, from a camera for example, the slope
of the function is limited near black.

Slope 4.5 Gamma 0.45

Video Signal

0.099

0.018 Light Intensity

High definition television uses a gamma correction transform defined in SMPTE Rec. 240M,
which is very similar to Rec. 709. For images, the difference between these two transfer
functions is negligible.

R’ 240M = { 4.0R, R <= 0.0228

{ 1.1115 R0.45 - 0.1115, 0.0228 < R

Y’CbCr: The color coding standard for component digital video and high definition video
symbolizes gamma corrected luma by Y’, the blue difference signal by Cb (Cb = B’ -Y’), and the
red color difference signal by Cr (Cr = R’ - Y’). Component analog HDTV uses Y’PbPr. The
document “Digital Signal Coding” contains a more complete definition on Rec. 601.

R’G’B’ to Y’CbCr: To convert gamma corrected RGB (range 0 to 1), use the below transform:

Y’601
 16 65.481 128.553 24.966 R’

Cb = 128 + -37.797 -74.203 112. • G’
Cr 128 112. -93.786 -18.214 B’

The inverse is:

R’ 0.00456621 0. 0.00625893 Y’601 16
G’ = 0.00456621 -0.00153632 -0.00318811 • Cb + 128
B’ 0.00456621 0.00791071 0. Cr 128

To convert gamma correct RGB (range 0 to 255, 8-bits per color) use:

Y’601
 16 65.738 129.057 25.064 R’255

Cb = 128 + 1 -37.945 -74.494 112.439 • G’255

Cr 128 256 112.439 -94.154 -18.285 B’255

The inverse is:

R’255
 298.082 0. 408.583 y’601 16

G’255 = 1 • 298.082 -100.291 -208.120 • Cb – 128
B’255 256 298.082 516.411 0. Cr 128

Use 9-bit or larger multipliers.

Problems with converting Y’CbCr: The figure below shows the R’G’B’ color cube converted to
Y’CbCr space. The inner cube is the converted maximum range of R’G’B’ (0-255) and the outer
wire frame is the legal gamut of Y’CbCr space (16-240). The values above and below this range
provide headroom for analog filter overshoot.

Most noticeably, the R’G’B’ cube is rotated and scaled inside the Y’CbCr space. The black to white
axis of the R’G’B’ cube is rotated from the black to white axes of the Y’CbCr cube. Also, the R’G’B’
cube is completely contained inside the outer cube. This leaves a large region between the
boundaries of the inner cube and the wireframe. So, while every value of R’G’B’, when converted to
Y’CbCr space, is represented, not every value in Y’CbCr space can be directly converted to R’G’B’
space.

So how do Y’CbCr values outside the R’G’B’ cube occur? After all, R’G’B’ form a camera or
computer image will not produced out of range values. But adding or multiplying the values of an
image can produce out of range values. Changes in hue or luma can be produced by image filtering or
digital effects processing.

Image processing and conversion adds some amount of error, and with each generation the degree of
error increases. After several generations, values may go out of range. An RGB image written to a
video disk will be stored in Y’CbCr format. If the image is read back into the computer it will most
likely be converted back to RGB, and it will be two generations away from the original image.

Converting from R’G’B’ to Y’CbCr will not produce out of range values, but when a conversion is
performed from Y’CbCr to R’G’B’, out of range colors must be somehow mapped back to colors that
are representable. Predicting the results is difficult, due to the rotation and scaling operations. The
most common mapping method is to clamp each value to the available range in the destination space.
This is the method hardware converters use. Two other methods are the constant hue and constant
luma algorithms, which can achieve more accurate results.

 white
 a
 b

 c a = clamp method
 b = constant luma method
 c = constant hue method

 black

In these three approaches, the values are projected back to the destination color space, and are given
colors at the boundary along the projection. Of these two schemes, a more accurate image results
when the constant hue method is used. Constant luma produces color shifts, but constant hue allows
luma to vary. Refer to chapter 5 of Roy Hall’s book for detailed information on these algorithms.

RGB is 4:4:4, i.e. there is an 8-bit red, green, and blue value for every pixel. Y’CbCr usually is 4:2:2,
meaning there is a luma value for each pixel but only every alternate pixel has a chroma value.
Converting RGB to 4:2:2 Y’CbCr and the back to RGB produces soft edges. The problem is how to
reconstruct the missing chroma values. Since it is unknown what the original value was, you could
guess the value by interpolating between the previous and the next known chroma values. Clearly this
produces more problems than it solves, but it is impossible to exactly reconstruct a 4:4:4 image from a
4:2:2 image.

To reduce conversion errors, clip in R’G’B’, not in Y’CbCr space. View video on a video monitor,
computer monitor phosphors are wrong. Use a large word size (double precision) to avoid warp
around, then round the results to values between 0 and 255. And finally, recall that multiplying two 8-
bit numbers results in a 16-bit number, so values need to be clipped to 8-bits.

References:

Hall, Roy, Illumination and Color in Computer Generated Imagery , Springer-Verlag.

Jack, Keith, Video Demystified , Brooktree Corp., Hightext Publishers, Solana Beach
Calif., 1993.

National Association of Broadcasters Conference 1996 panel, “CCIR 601: How it Should
Apply to Computer Platforms?”.

Poynton, Charles A., A Technical Introduction to Digital Video , John Wiley & Sons, Inc.,
New York, 1996.

www.hooked.net/users/rld/color_faq.html.

This work was performed under the auspices of the U.S. Dept. of Energy at LLNL under contract no. W-7405-Eng-48.

T
echnical Inform

ation D
epartm

ent • Law
rence Liverm

ore N
ational Laboratory

U
niversity of C

alifornia • Liverm
ore, C

alifornia 94551

