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From the desk of the meeting co-ordinator:

Research in fabrication for inertial confinement fusion (ICF) comprises at least
three broad categories: targets for high energy density physics on existing
drivers, ignition capsule fabrication, and cryogenic fuel layer formation. The
latter two are being pursued primarily for the National Ignition Facility (NIF).

The Twelfth Target Fabrication Specialists’ Meeting 98 was sponsored by the
US DOE, hosted by Los Alamos National Laboratory, and held in Jackson Hole,
Wyoming on April 19-23. Scientists from over 14 laboratories, universities, and
businesses contributed over 100 papers on all aspects of ICF target fabrication.
It was an exciting meeting. The NIF is well along in construction and photos of
poured concrete and exposed steel added to the technical excitement. It was
clear from the meeting that there has been significant progress toward the
fabrication of an ignition target for NIF and that new techniques are resulting in
higher quality targets for high energy density research.

TFM "98 received financial support from General Atomics, W.J. Schafer, Inc, and
the Los Alamos ICF Program. | would like to acknowledge the tireless aid of
Robert Cook (LLNL), for liaison with our Russian participants and the work of
Jim Hoffer, Yvette Martinez, Julie Gallegos, Pam Rockage, and Ginette
Andreatta in compiling these view-graph proceedings.

i~

Larry R. Foreman
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NIF ignition target specifications and requirements

NIF ignition targets will require very tight specifications
on surface smoothness, bulk homogeneity,
laser precision, and practically every other
aspect of the experiment
“Integrated test of stockpile stewardship capability”(!)

S. W. Haan, T. R. Dittrich, M. M. Marinak
Lawrence Livermore National Laboratory
D. C. Wilson, W. S. Varnum
Los Alamos National Laboratory

Presented to
Target Fabrication Meeting 1998
April 20, 1998

SWH TFM98 Title

One of the principle goals of NIF is to get ignition

using indirect drive ICF targets like these U]
Window
4-7 mm ~1 um polyimide  Spherical capsule with low-Z ablator

mounted in gas-filled gold hohiraum

/ Laser heats hohlraum with carefully
LA tailored pulse to a carefully chosen
o peak Tg, will be in range 250-350 eV

} Au hohiraum,

filled with 2He-Ha .
mixture 1-2 mg/cc Multiple cones of laser beams to

control time-dependent asymmetry

~1 mm Ablator
radius DT solid Hohiraums gas-filled, for cryo and for
holding wall back
Cryo fuel '
layer needed DT gas

for ignition 0.3 mg/cc Ablator Be+Cu, CH+Br, CH+Ge, polyimide,...

SWH TFM98 01




The baseline hohlraum is simple (except cryogenics!)
but there could be various options requested [

4-7 mm High-Z shield? )
i We don't care what's on the

* f
!
1 Q | Au hohlraum, ! outside of the hohlraum
filled with 2He-F2 1 (cryo tubes etc.) but:
4 ; i
I

mixture 1-2 mg/cc

Experiments other than

: optimized "pure" ignition
Optimal hohlraum material could be = will require windows on
gold, U, gold-gadolinium mixture, sides of hohlraum, shields
other mixtures. Could be "thin-wall", to protect them from
high-Z coated inside low Z. High Z 2 6-10um unconverted light, ...

Low-Z ring?

Gas density may vary up to about 2.5 mg/cc : Lots of other constraints:
Optimizing inside might require bells . cryo design, target chamber
& whistles (shields & rings) . considerations (shrapnel)

LEH may vary from ~2mm to 100% !

SWH TFMS8 02

A laser that produces 1.8 MJ and 500 TW allows a factor
of two safety margin above the ignition threshold L

¥ = Target performance region

Minimum energy 600 -
for ignition Is Peak operation =

800-900 kJ Baseline operation —__ .
according to y
current modeling "
: 400 —
1-8 MJ at 500 TW Power
provides a
factor of two (Tw)
safety margin \nstabiiities
200
This margin is
enough to cover
estimated
uncertainties 0 | |
in target physics 0 ] " 2

Total energy (MJ)

SHO15/8/98



NIF capsule designs cover a range of x-ray drive
temperatures, ablator materials, and total laser

energies (L]
Capsule Type
CH+Br Be+Cu Polyimid CH+Ge
raded,
250eV g gM‘: 900kJ
g
2 280eV 1.4MJ2
2
£ thin :
% 300ev| [T3MJ]  [thick® 1.3MJ 1.3MJ
- - grade
2 0.5-1.8M3 TG,
a
350eV 700kJ*
TRD98051
) subjects of this
‘Haan, ?Bradley, 3Wilson, 4Hinkel : r—__-l presentation

We believe that beryllium works better than CH or
polyimide at low drive temperature, and also can be
made to work at higher drive temperature with doping U]

Higher drive temperature 600

requires higher opacity

At 300eV, we could
use lightly doped CH,

polyimide, or doped Be 400
At higher temperatures, Power
increase doping (TW)

At lower temperatures, 200

doped Be becomes only option;
other materials ablate too
slowly, need to be too thin

SWH TFMg8 03

=3 = Target performance region

Marginal
— laser-plasma
instabilities
Nominal —£ .
Contrained to Marginal
lower drive TR hydrodynamic
instabilities
| |
0 1 2 3

Total energy (MJ)



To obtain Tr ~ 350 eV in a NIF hohlraum, the hohlraum

size (and capsule) is scaled to ~ 64% of 3

00 eV design

——

e

=

A
71 mm l
Be + 1% Cu ablator

.49 mm

VI

3.56 mm (-

H/He @ 3 mg/cc

350 eV capsule radius =.71 mm

300 eV capsule radius = 1.1 mm

D E Hinkel 02/98

A NIF capsule with Cu graded

x-ray profile from a 900 kdJ, 275 TW laser,

<+——— 6.1 mm

350 eV Hohiraum:
Length=6.1 mm
Radius = 1.78 mm
LEH =2.67 mm

300 eV Hohlraum:
Length=9.5 mm
Radius = 2.75 mm
LEH =2.75mm

Be, driven 'by a 250 eV

can produce

5.6 MJ fusion energy (e
2 i

B U 0:09918 —
Be+1.52°/°CU/' oao_lnlolnl-I-l-I-lvlnll||l-l|l-||L.

Be+graded Cu

Absorbed Energy: 115 kJ

Yield: ] 5.6 MJ
Figure-of-Merit: 1.08
PPiuelt 1.28 glem?

RadiatiorP-20=
Temperature E
(keV) 0.15—

TRD970807

4

fﬁtegrated calculations produce 3 MU

R L R R R R A L
1

Time (sh)

-
SRR RANRN RRR AR



Higher initial density of beryllium is also an :
advantage L]

Laser pulse and hohlraum
temperature history carefully.
tailored to get implosion with
minimal entropy in DT

500FT T T X 3 300 .

E ! - 250 Higher initial ablator density
100 4 200 means shorter foot for same

' {150 shock pressure in DT, less

10 > Radiation filling of hohlraum with
Temp. 100 plasma
(V)  Js0
1L . | ! 0 Shorter higher foot also easier
0 5 10 15 20 for laser

Time (ns)
Higher initial density also
reduces coupling of DT
ice roughness to unstable
ablation surface

Material density and composition must also
be very uniform T

Initial surface roughness rhust be 10's of nm

-Perturbations can also be seeded by nonuniformities
in opacity (i.e. composition) or density

Effect of density nonumiformities can be roughly estimated

_ from equivalent column density (integral pdr): 50nm/100um
corresponds to 0.05% density umformlty (maybe can be a factor
of several looser...)
Opacity harder to estimate, will also be very tight ‘

Anisotropy of shock velocity with different grain orientation
could also seed perturbation growth

Evaluating the effects of these is a topic of current/future work

SWH TFM98 07 ’ 5




Recent Nova results with Be-ablator capsules
were disappointing

Capsule in standard Nova hohlraum, 1ns drive

246 pm

7 34 umBe + 1.5% Cu, sputtered
outer radius

2 umSiO2 mandrel

DH gas
6.7 mg/cc
(50 atm)
(nominal)

Expected good performance (close to 1D) uniess beryllium was somehow
bad; low growth factor for surface roughness, low convergence

Shot two on 3/25/98 (Jeff Koch et al.)

One gave very poor performance and tilted pancake image
Other gave poor yield (2e7, or about 10% of clean 1D)

X-ray images round overall but small (30 um across, should have
been 60 um) with interesting structure

SWH TFM98 05

We are now doing 3D simulations of RT growth on
NIF capsules . L]

e 3D code HYDRA-

o Moving mesh Eulerian hydro with interface tracker,
monotonic artificial viscosity

e Includes muiti-group radiation diffusion, multi-group

charged particle transport, neutron energy deposition
— fully detailed numerical simulation

e For 1D & 2D problems, agrees with (unclassified)
LASNEX output

e First applied to Nova experiments, with excellent

results (invited talk '95 APS; Marinak et al.,
Phys. Plasmas 3, 2070 [1 9961)

96X-067



Capsule only simulations examine the effects of
multimode perturbations (I=15-120) €

ablator outer capsile SifRGRMmR1 nm p-v

DT gas

ule surface - 27
inner ice surface

inner caps
] 1

Both the inner and outer
surfaces are perturbed with modes
235 r over the range responsible for mix

(degrees)

Perturbations shown correspond

to the best native surface roughesses
achieved to date on DT ice and on

a Nova capsule ablator respectively

2 4 & 8 1o 12 degree wedge was used for
mmm-apse7-1/21/98-2 simulations

TRD980312

azimuthal angle (degrees)

3-D simulations assessed the surface roughness
tolerances of a set of similar NIF capsule designs’ ©

* Simulations of multimode hydrodynamic instability growth were
performed over a portion of the capsule using the 3-D implosion
code HYDRA?. These were carried through ignition and burn.

* The three capsules in this study were: 1) CH+0.‘25%Br+5%O, i.e.,
the “PT”, 2) thin ablator Be+0.9%Cu, 3) Polyimid (C55H1gN,0,)

* DT ice surface multimode perturbations obtained from spanning
a range of total rms values around that of the “native” surface

* Abilator surface multimode perturbations obtained from
spanning a range of total rms values around that of the best
Nova capsule surface

TROS8127 TMarinak, et al., accepted for publication, Phys. of Plasmas.
2Marinak, et al., Phys. Plasmas, 3, 2070 (1996).

7




Modes with I ~ 10-20 assume principal importance
after peak implosion velocity is reached C

density contours on boundary planes of PT capsule 18 nm rms ablat

0.5 um rms ice
16.5 ns 17.0ns

Only the lower modes feed through the capsule shell
and grow on the pusher-hot spot interface during deceleration

L P Ly s : s, smmne R
SV LA e S SN - R R U R I

mmm-aps37-1/15/98-12
TRD980311

3-D simulations with HYDRA show the BeCu and
polyimid capsules have greater tolerance to ablator
surface roughness ©

Yield vs. ablator roughness
for best ice surfaces
- vg980130.i

20__] | 1 Py ber o b
E “Best ice surface” means:
Polyimid
Yield 1.0pm rms for BeCu capsul
(M) (native roughness)

0.5um rms for CH and polyi
(reduced from native by
RF heating)

—o‘—|'|'|'l'|'|'|'|'|'|'|'|'|‘|'|‘|‘|'|'|'|'[_

(=]

Ve
80

Ablator surface rms (nm)

TRD980131



3-D simulations with HYDRA show that for a given
ablator roughness, the Be capsule can tolerate the
roughest DT ice layers C

Yield vs. ice roughness
for best ablator surfaces
vg980130.i

20_-jlllllIlll:lIll|IlIIIIIIIllIlllIIIl'II!Il_
- ! Be+Cu :
15= = 10 nm rms ablator roughness |
Yield E z used for each capsule
(MJ) = : simulation
10-= | -
: : Polyimid =
z ! z
5 CH+Br ::
s 1 by
: I : BeCu capsule shows little
01:““1_“.;““' ........ R i yield reduction for ice roughness
o i 5 gl up to 3.0 um
|
D ice surface rms (um)
TRD980130 Native.lce
Roughness

We're still not completely sure about all the
tradeoffs and optimizations related to RT growth! C

Status 1-2 years ago:

Be better than CH at 300 eV, especially for inner surface growth

No 3D calculations
Short wavelengths just beginning to look like a problem for CH
"Polyimide won't work very well at 300 eV" -- Steve Haan

Status now:

“Differenée between Be and CH is mostly just ablator
thickness" --Doug Wilson
Short wavelengths bad for CH at old nominal ("PT") thickness;

thicker CH may be better!
3D calculations showing acceptable performance for Be and polyimide

at 300 eV, but with little margin
Polyimide looks almost as good as Be at 300 eV (Tom Dittrich)

"Oh well" - Steve Haan
("Polyimide won't work very well at 250eV" - Steve Haan)

There's still work to do, and experiments will be needed on Nova, Omega,
and NIF )

SWH TFM98 04




This double shell NIF capsule designed by Bill Varnum
(LANL) is a possible alternate ignition design

C

Does not require cryogenic fuel

Does not require pulse shaped
drive profile

Yield (1D)=2.5 MJ
E.ser=1.8 MJ in 6ns square pulse

Volume ignition rather than
hotspot ignition

TRD980407

Recent Nova double shells gave yield at very high
convergence ratio C

Capsule in standard thin-wall Nova hohlraum, 1né drive

Convergence ratio from outside 38 (same as NIF double shell)

275 um
199 um

129 um

DD gas
5.8 mg/cc
(36 atm)

CH outer shell

CH foam, density 0.03 g/cc
$i05 inner shell, 23 pm thick

Yield ~2% of clean 1D (very preliminary result; Bob Watt & Cris Barnes)
Yield similar to single-shell targets (HEP1) at same convergence
Plan to do shots on Omega with better symmetry

SWH TFM98 06 10



As many of you know all too well, we are putting
together a detailed plan on how to get ignition [

Split into wbs elements: LPI & hohlraum optimization; symmetry;
ablator optimization; igntion implosions

Includes experiments on Nova, Omega AND on partial NIF as more
and more beams on NIF become available in 2001-2004

Partial NIF experiments will involve some peculiar fabrication issues!

NIF-scale hohlraum radius

Cryogenic package

Be
Solid Deuterium
=i Window?
SWH TFMS8 09
| Summary/Conclusion |
There is a lot of work for us all to do! : ~ [l

We have designs that work according to our best modeling
with specifications similar to current "best effort"

Actually building those targets will be a challenge!

Some possible upsides:
At this point we have a variety of optlons with different
pros and cons
Further design optimization may increase margin
(350 eV, Wilson's thicker shell idea, Be+B, polyimide)

Concerns and issues:
Beryllium material properties
(shock velocity anisotropy & grains, composition nonuniformity)
Laser-plasma instabilities may constrain us to need beryllium
(won't know until 2003; meanwhile need design work on
polyimide at 250eV)

SWH TFM98 conc
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Target Requirements on the Path to Ignition

D. C. Wilson, P. A. Bradley, C. W. Bares, S E. Caldwell, R. E. Chrien, S.R. Goldman,
D. P. Smitherman, D. L. Tubbs, Los Alamos National Laboratory

The Los Alamos ICF program has made several advances
in learning what is required for ignition on NIF. Qur
work continues to focus on beryllium — understanding
why it appears less sensitive to DT ice roughness, the
feed-out/feed-in phenomena, applying that understanding
to new designs, performing experiments to confirm this
mechanistu, and studying the effects of joints in beryllium
components.

L. Calculation of Capsule Stability

The copper doped beryllium ignition capsule , the Be330,
(1) was design to be very similar to the point design
bromine doped CH capsule (2) , the PT. It had the same
DT fuel mass set on the same adiabat, and achieved the
same fuel pr, and had nearly the same outer radius (1105
vs 1110 pm), and was driven by the same laser energy
(~1.4 MJ). Butthe higher density beryllium meant a
more massive ablator, which compressed a mass of
copper doped beryllium about equal to the DT fuel. The
PT capsule was designed to allow the driving radiation
field to burn completely through the CH, while the Be330
left approximately 10 pm o f unablated beryllium to be
imploded along with the fuel. This turned out to be the
cause for the differences in sensitivity to DT ice
perturbations between the Be330 and the PT, as explained
in (1). The Be330 was about 4 times less sensitive than
the PT to perturbations of the DT ice surface (3).

Examination of the calculations showed that when the
first shock reaches the DT ice surface a rarefaction and
acoustic waves carry the knowledge of the perturbed
surface outward to the ablation surface, where it Erows
from the ablative Rayleigh-Taylor instability. This
amplified perturbation then feeds through to the DT ice
where, if large enough, it can disrupt ignition. The Be330
is less sensitive to DT ice roughness for two reasons.
First, the perturbation carried out to the ablation front is
smaller, perhaps due to the greater ablator mass. Second,
the unablated mass attenuates the feed through of the
ablation front perturbations to the ice by separating them
from the DT fuel. Because the PT capsule was designed
to burn completely through the ablator at ignition, it left
no unablated plastic as a shield.

To explore computationally this feed-out/feed-in
phenomenon, the addition payload, the unablated Be/Cu,
can be changed or replaced in new capsule designs.
Simply changing the copper dopant concentration from
0.9 am% can change the amount of unablated Be/Cu,
changing the capsule sensitivity to DT ice perturbations.
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Reducing the dopant to 0.6% Cu eliminates the extra
payload. Increasing the dopant to 1.2% Cu retains 50%
more unablated material. By studying the perturbation
amplitude at the DT ice/ Ablator interface (which initially
had no perturbation), we can compare instability
sensitivity of these design variations. DT ice perturbation
growth is reduced by increasing the dopant concentration.
The Be330 with 1.2% Cu has growth comparable to the
PT, while the Be330 with 0.6% has a factor of 2 less
growth. Perturbations starting on the capsules exterior
show the same trend, but the PT and the Be330 with 0.9%
are similar.

In addition to these dopant variations, a thick polystyrene
capsule (Pthick) was designed to use the same ablator
mass and carry the same mass of unablated material as the
Be330. The Pthick design has 3 times less perturbation
growth than the PT, and comparable to the Be330 — 1.2%.

A glass and beryllium capsule might be designed by
replacing the unablated beryllium with 10 pm at density
2.2 g/lem® . High strength glass (~200kpsi) might be able
to contain the DT gas at room temperature, and the
beryllium could be coated over it, avoiding the need for a
joint. The pulse shape, yield and convergence are
identical to the Be330 in 1-D calculations. However 2-D
calculations show it is several times more sensitive to
perturbation growth at the glass/beryllium interface. It is
also several times more sensitive to beryllium surface
perturbations. A higher density ablatar, or a lower density
glass might control growth. If perturbation growth can be
controlled, this might be a candidate for NIF ignition.

The unablated mass could be replaced by DT instead of
Be/Cu. This produces the Be330-2x design, so labeled
because it contains about twice as much DT. The capsule
yield increases from 16 MJ to 41 MJ and its pr from 1.69
10 2.13 g/cm’. Because the extra payload has a lower
average velocity than the DT fuel in the Be330, the
average fuel velocity of the Be330-2x is lower, but the
fuel velocity near the hotspot is similar. The Be330-2x
has similar sensitivity to linear perturbation growth as the
Be330, but requires a longer pulse to time the shocks to
arrive at the ice/gas interface at about the same time, and
it would require a stronger ablator shell to contain the DT
at room pressure. More work needs to be done on this
promising design. A scaled down version would decrease
the required pulse length, and create a smaller capsule in
the same hohlraum as the Be330.




Be330

Be + 0.9%Cu
(1.84 glcc) 1105 pm
950 ym
DT (0.25
(0.25 glec) 870 pm
DT(0.5mglce) -
Be-glass
Be + 0.9%Cu
o4 gle) 1105 um
Si02 (2.2 glce oy o
DT (0.25 glce) - 870 um
DT(0.5mglcc) .
RO
/
Be330-2x
Be + 0.9%Cu% 1105 ym
{1.84 gicc) 962 pum
DT (0.25 glcc) |
¢ glee) 746 pm

DT(0.5mglcc) -
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Time resolved X-ray images like those below have
11 Instability Experiments provided measurements of perturbation growth.

We need experiments as well as theory to increase our
knowledge of NIF capsule behavior. Perturbation growth
from surface shape asphericities and DT ice roughness
can be studied. Radiation driven planar and cylindrical
implosions are adding to our confidence in our
calculations of growth of surface shape perturbations.
Laser driven cylinders may be used to study inside I .
surface perturbations simulating DT ice roughness. e B
Radiation driven spherical implosions on the Omega laser -
can test models of instability growth from surface shape ' )

and finish, and possibly use DT ice. T esen 259 mean 258 een

Nova experiments on aluminum/beryllium sandwiches are
testing our understanding of the feed-out / feed-in

process. Transmission radiography of the packages has ,, LAY TR
proven quite successful in imaging the growth of R a—— o
pﬁr[ufbaﬁons placed on the Surfaces away ﬁ-om the 2.75nsec 2.81nsec 3.00 nsec 3.05nsec
radiation drive. Side and backlighting measure internal

perturbation growth as seen in this image. Richtmyer-

% e e o IR

Meshkov and Rayleigh-Taylor growth are visible. Recent (January 27-30, 1998) directly driven cylindrical
Preliminary results show agreement with Lasnex implosion experiments on Omega were highly successful
calculations. in creating higher convergence than those indirect drive
experiments. Highly symmetric implosions were obtained
_ using 50 drive beams and a ramped 2.5 ns pulse.
Aluminum g
A §. 5 ;;:wn,@wix‘?;&:g o
Beryllium < LG
NJ i

To study radiation driven instability growth in cylindrical
geometry target fabricators built the complicated layered
cylinders in hohlraums with sub-micron features show
below using layers of brominated polystyrene on plain
CH with chlorinated marker layers.

Future cylindrical targets will continue to stress
fabrication capabilities. Directly driven cylinders for
Omega will: 1) continue to study Rayleigh-Taylor growth
from perturbations modes 10-40 with initial amplitudes of
about 1 pum, 2) use perturbations on the shell inner
surface, 3) study mixing of the shell interior with the
foam, 4) study defects on the interior surface such as
grooves and bumps, 5) use interior roughness to simulate
(or actually use) DT ice, 6) and test colliding shells. New
diagnostics will require new materials. Deuterated central
foams will produce neutrons. Wires down the center lline

o
g
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will produce X-rays on shock collapse and stagnation.
Very high Z (e.g Au) layers 0.5 pm thick on the inner
surface as well as buried CD, Ti, and Cl doped tracer
Jayers will help diagnose mix. Cylindrical experiments
will not stop with the Omega laser, we envision indirectly
driven cylinders twice as large for NIF.

We are beginning spherical implosion experiments at
Omega using a tetrahedral holraum and all 60 beams.
The hohlraum is actually a sphere with beams entering
throngh 4 laser entrance holes located at the corners ofa
tetrabedron as shown below.

g

N s

The symmetry in these tetrahedral hohlraums is better
than in a NIF cylindrical hohlraum, without relying on
beam phasing. Calculations show this, but we have also
controlled the symmetry by varying the laser entrance
hole and hohlraum diameters. In one case we had the
tetrahedral shaped implosion core seen below (it appears
triangular in projection) and improved the symmetry {0
produce the smaller and more round implosion next to it.

16

Measured Yield / Unmixed Calculated Yield

Implosions in tetrahedral geometry have barely begun to
explore one of the most important problems for ICF, the
degradation of capsule neutron yield as it is converged
more. This degradation is shown in the following graph
which includes various data sets from the Nova laser
experiments carried out by LLNL and tetrahedral
implosions which to date have only tested convergences
near 10. We believe this degradation is due to time
dependent and 3-D asymmetries that have greater impact
on target performance at high convergence, but we donot
yet have experimental data to confirm this. An alternative
explanation would be that high mode instability growth
and mixing cause the degradation. The very symmetric
tetrahedral hohlraums will allow us to test these
hypotheses with very high convergence and excellent

symmetry.
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III. Experiments on Joints

Beryllium’s high yield strength (~3.3kBar) may allow it
to contain DT at room temperature without bursting. Its
high thermal conductivity simplifies cryogenic fielding.
The challenge is to place DT inside with the minimal
perturbation to the shell. Beryllium coating over mandrels
and diffusion filling is being explored. A promising
approach is brazing or autogenously bonding two
machined hemispheres in DT gas. Both theory and
experiments are required to determine just how thick a
bond joint may be and what materials are acceptable fora
NIF capsule. We have nearly completed the first set of
experiments on joints in planar slabs. Cylindrical
implosions will extend these to convergent geometries.
Even spherical implosion experiments may be possible on
the Omega laser by using %2 scale NIF capsules in twice



normal size tetrahedral hohlraums. Simulations using the
Rage computer code of a 1 pm aluminum joint in planar
beryllium driven by the NIF pulse show a lag in the
density and pressure front extending far from the joint.
Nova experiments on 15 pm thick planar aluminum joints
have begun to test our understanding. The details of
aluminum joint behavior have been compared, but the
images need better signal and resolution. Calculations
show the shock front lags in aluminum joints and leads in
CH joints out to many times the original joint thickness.

Real bonding technology is advancing faster than
calculations or experiment can follow. Once actual joints
in copper doped beryllium spheres are characterized,
theory and experiment will have to determine whether
they will be adequate. Previous experiments studied glue
(simulated with CH) and aluminum braze joints. Current
diffusion bonded Be/Cu joints use only 0.2pm Cu, which
diffuses into the beryllium, avoiding sharp boundaries.
Cylindrical experiments can test our calculations of
convergent effects using large defects. If may be possible
to use Y2 NIF scale capsules directly driven by the Omega
laser to test actual joints in hemispheres. Or it may be
possible to test these capsules using X-ray drive in large
tetrahedral hohlraums. These experiments could show
defect hydrodynamics if not overwhelmed by other
asymmetries.

17

IV. Summary

Target designers and experimentalists will be asking
much from target fabrication specialists as we move along
the path towards ignition on NIF. In the future we will be
using increasingly complicated cylindrical targets with
small amplitude sinusoidal perturbatons on both surfaces,
as well as bumps, grooves, and high Z layers. As Los
Alamos moves its experimental program to the Omega
laser, we will need: 1) improved Nova size CH and doped
CH targets (with less target variability and more
characterization), 2) half scale NIF beryllium targets to
test joints (the burden is on theory and experiment to
determine if the present joints are adequate), 3) cyrogenic
beryllium targets to study DT ice roughness, and 4)
double shell targets to explore their failure modes. We
will continue to want spherical NIF beryllium targets to
be built and tested with yet more spherical surfaces
(reduced asymmetries in modes 4 to 100) and greater
strenght (to hold more DT). The path to ignition holds
many challenges for target fabrication science and
technology.
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Production of a NIF-sized
Be Alloy Capsule
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General Atomics for radiography and sphere mapping

Muaertab Scicnce and Techaolugy: Metallungy and Polymers & Coxtings Tarps Fabeicatwos Moctiog. ke Hul, WY Apod 1w

Two Main Ignition Capsule Designs
Have Fabrication Tradeoffs

* Polymeric ° Beryllium

~ Doped plastic ablator — Be/Cu ablator shell, 2
shell, 2 mm diam., 160 um mm diam., 155 um thick
thick — Filling by plug or joining

— Seamless permeation under high pressure
filling — Opaque

~ Transparent — Thermal conductor

— Thermal insulator #* Room temperature

~ Cryogenic handling handling "

=
Matenials Scicnce and Techaology: Matalluwgy and Polymens & Coaings Tarpe Fabrnsnas Vocmog, koo Hodt WY Apert 103 @
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LANL Be Sphere Fabrication Paths

Chemical Vapor Physical Vapor Hemisphere Joining
Deposition (CVD) Deposition (PVD)
Machine hemispheres
CVD Test Samples (Flais) PVD Test Samples (Flats)
* + Join halves in vacuum
CVD Sumples (Spheres) PVD Samples (Spheres) . Characienzaios
-~ High P bonding
Churacterize Machine outer sphere i D.T,
Driit Machine cuter
sphere
Fiill and Plug (Laser Weld)
\ P
Lap
S,
Sphere Mapper S
S 3
Matcriah Science aad Techaology  Mctallungy and Paly e & Codings Taurpua Fahen gien Mactiee, Sackwie Holo, WY Apal 190 &
e gpmg

Be Thermo-mechanical Processing Routes

CaSt BC‘6Wt.% CU. anoy Needs: Close casting porosiy

Refine gran size

Swage
/ g\ Roll 800°C Hydrostatically
Extrude 900°C \ 2:1 reduction Extude
>6:1 reduction S$200D CP Be 250°C
400°C. 550°C 2:1 reduction
2:1 reduction 2:1 reduction

To be determined

Large gran size

Large grein size Fine grain size
Creched material No crached matenal Cracked material
Materiab Science and Techology  Maatlrgy and Polymens & Coaings Tapet baben save Vavusz. facksws Kol WY Apal I
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Precision Machining of Be:
The Key to Target Fabrication

@a1ss
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As-machined Surface
Roughness ~100 nm

1098 17

. Ew :
o % % Air-bearing lathe  Quick flip fixturing
0

Computer control  Precision alignment
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o
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oo \ . . em 4!“‘
oo 200 430 600°830 1160 ur-; f‘-m“
As-polished Surface g /’F\

&
Roughness ~10 nm -
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Experimental: Bonding of Block Beryllium

® Bond large S200-D blanks Cu, Ag,
» Sputter-clean each faying surface in UHV, immediately
deposit interlayer
» 0.02 pm Agon each surface (0.04 pm total interlayer) P, RT
» 0.10 pm Agon each surface (0.20 um total interlayer)
» 0.10 um Cu on each surface (0.20 pm total interlayer)
» 900°C for 6 hours, ~10'6 - 107 torr vacuum

® Section samples for metallography, tensile tests P, HighT, 4
® Metallography time ¥

» Gaps

» Secondary phases H -V

» Recrystallization Y
¢ Tensile tests Mechanical Properties

» Bond strength exceeds design requirement

ations,
Metallography @ g m

Materah Seicace and Techanlogy: Mcallogy and Polymen & Coxtings Taras Falwn anse Mocttngs Lackwis Hobe, WY Apal 199 kw/
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Bond Strengths

350 T

- 20 2 E
o E i ;
S 2wk Cu 0.2 pm mterlayeg_
2 1s0f Required Strength 3
8 t 3
@ 100 F 3
. I 3 Silver or
0.2 interlayed
. _[sso2ymintedayed  Copper —-
Interlayer
Strain (%)
Prop. 02% Percent
Sample Limit Stress Base
{MPa} (MPa) Metal
$200-D (base) 180 240 -— {
Cu interlayer 180 240 100
Nathoug
T
Ag interlayer 70 - 40 24 ‘_’%
Materiah Screme snd Technology  Metallurgy and Polymens & Codings Tarpt Faben diva Mating. Jachwa Hob, WY Apal I8 ..
e serrie

Bonded Microstructures
Silvr Interlayer | ‘Copper Interlayer ‘

Residual Ag, voids in bond line Cu fully diffused, essentially void free

Materah Seience and Technology: Metaiargy and Polymen & Cozting Tarpes Fahrnasans Voctieg, Bk Hoke WY Aprl (9%
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Transmission Electron Microscopy of Be Joint

Evaluation of Diffusion Bond Lines

straight J}
view ﬁ
[T >
] T RogM g tilted
0G4 -
gx o view
300 l ;- l
2004
100 2

Muterals Scicnce and Techaology: Madlisgy and Polymens & Codio Tarps Fabea staon Watiep. Lackas Hobe WY Apal 1998

Laser Welding

25°C Substrate
54 mJ
$ Cracking in weld and
in base metal
ot
Micrometer Vacuum
ll&n:nf:x: ::f:;l Focusng LensS—> System
28 ool spot dumeter .
Penscopefor /7 500°C Substrate
Haght Adustmnt 7]
, ‘ 56 mJ
Remowable Kineguta:
MountRefioctor QN g Essentially no
cracking

\\{/2/.,
Energy Detector \ Mcm

SEM Micrographs
Schematic of Welding Apparatus of Laser Welds
Materuahy Serence and Technology: Metallungy and Polymers & Commps Taga Fabvaston Moctrez, Jadaos Hole WY Apnl 1992
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Sphere Fabrication by Hemisphere Joining

|
{
t

t Stainlses Stoal
lkg

3. Bond in vacuum furnace

L] >

y 4
1. Machine 4. Relocate
cylindrical male bonded cylinder
and female parts; E -} in “quick-flip”
LN 3

2. PVD 0.2 um of \\{\ s "\}'*\\\
Cu N © AR

S. Machine

outer diameter

to final sphere

Asrmachined

\ PNl ocle pars

Matenals Scaenee and Technology: Metallwgy 2nd Polymers & Costings Tuget Fatrnatio Mecting, Jackson Rute. WY April 1993

Vacuum-filled Be NIF Capsule

Overall excellent
» Wall thickness uniformity
» Joint properties
» Surface finish

Tupes Faxv.ama Meoting, I ackon Hote, WY Agal b33

24



Radiographs

Be lo
2215x2210 M OD
16121 J0pmwal

* Uniform wall thickness: excellent
+ ID machining
* registry between halves
* post-braze inner sphere
location
* Nearly imperceptible bond joint
complete (7) Cu diffusion
*no (slight?) step at joint

Nathaayy
; 4,
AN

L

Mterials Scaence and Technotogy: Metallurgy aod Polymers & Coatings

Taget Fabencatn,n Mrenvg. Fotoin Huee, WY Aped 193

Sphere Mapper Results
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O IR O

10 100 1000

Power spectra Be v. PAMS:
slightly higher modes 1-30

: : slightly lower modes 30-300

3000 — e — slightly higher modes >300

Malenals Science and | Metall and Puly
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Summary

e A vacuum-filled NIF target has been designed and
fabricated.

e Surface finish on Be is between 10 and 100 nm.

e Brazing has produced joints with the right physical
and mechanical properties.

« Methods for producing fine-grained, randomly
oriented Be have had initial, partial successes.

e Laser welding is a viable means for the perforating
and plugging of Be shells as well as possibly joining

hemispheres.
piitag N
f;/%qa
&4 )]
-t ] el
Matenabs Science and Technotogy: Metallurgy and Polymens & Coxtmgs Taget Fatnsann Macubg, Jnkoia Hue. WY Agait 143 . >
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Evaluation of boron-doped beryllium as
an ablator for NIF target capsules

Craig Alford

University of Califomia
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Why boron?

« Boron forms numerous intermetallic compounds with
Be, making it a good candidate for creating disordered
films. Fine-grained or amorphous films will generally be
smoother than those with a coarser crystalline structure

« Smaller grains should yield a more homogeneous film—
density fluctuations can seed Rayleigh-Taylor instabilities

« Because boron is a low-Z element, it can be added in
larger quantities than heavier dopants

Motivation2_TFSM 98.CV5

Experimental program to date

All films are deposited using three sputter guns: pure Be (DC),
Be/6 at.% Cu (DC), and pure B (RF)

* Flats: 5 pm thick films have been deposited on Si substrates
with B concentrations varying from 3 at.% to ~30 at.%.

« Capsules: 5 to 10 ym coatings have been deposited on CH
mandrels at concentrations of 10, 15, and 20 at.% B. At 15 at.%,
both static and normally bouncing capsules have been used.

Results1,_TFSM '98.CV5
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Outline

1) Motivation :
Why worry about high-frequency roughness? Why boron?

2) Experiments
What we've tried so far

3) Results
4) Conclusions (so far)

5) Future directions

outline_TFSM *98.CV5

Why is reducing high-frequency
roughness desirable?

* As deposited, Cu-doped Be typically has significant high-
frequency roughness (modes > 1000)

* On a random surface, roughness at high modes contributes
to roughness at all lower modes, so reducing high-frequency
roughness also reduces the power at the intermediate modes
that are probably more important for Rayleigh-Taylor stability

* Improving the as-deposited finish may reduce or eliminate the
need for post-polishing.

Motivationt_TFSM '98.CV5 29




On flats, morphology changes
abruptly at ~11 at.% B

15 at.% B, Rq=1.33 nm

13 at.% B, Rq=2.48 nm

Results2_TFSM '98.CV5

Change in morphology on flats may be associated
with the minimum in the Be-B liquidus curve |

11 at.% boron

Rosults2a_TFSM '98.CV5
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Morphology of B-doped coatings on
capsules differs greatly from flats BT

5 to 7 ym coatings on 1-mm-diam CH mandrels

300

nm

.0 um

10% B, Rq=27 nm 15% B, Rq=54 nm 20% B, Rq=28 nm

Rosulis3_TFSM '98.CV5

Cross sections are similar on
flats and capsules at 15% B =

SRl e e e s e v st

Be/15 at.% B on Si flat Be/15 at.% B on 1-mm-diam
CH mandrel

Rosults3a_TFSM '98.CV5
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Stationary capsules are also different from flats  ju

All films doped with 15% boron

bouncing capsule stationary capsule silicon flat

300 300
nm

o

o ests T sopm o0 25 5.0 pm 0 5.0 um
Rq=54 nm Rq=17.5 nm ' Rgq=1.3 nm

Results4_TFSM '98.CV5

Dissimilar results on flats and capsules
need to be understood o

Important issues to be considered:

e Substrate temperature
During deposition on capsules, the substrate temperature could
exceed 200°C. Silicon flats are probably at least 100° cooler.

« Direction of deposition
On a bouncing capsule, the flux of atoms is nearly isotropic. On
flats, more atoms come in at near-normal incidence.

Other factors could also play a role:

e Stress
Under the coating conditions used so far, the deposited films
appear to be under significant compressive stress.

e Substrate
Deposition on CH could be different than on oxidized silicon

Discusslon1_TFSM '98.CV5
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Conclusions

* Addition of boron at almost any level causes significant
grain refinement

* Films are probably nano-crystalline, rather than amorphous,
and may be highly temperature-sensitive

* Unusual morphology of capsule coatings remains to be
explained, and may preclude use as an ablator material

Concluslons_TFSM '98.CV5

Future directions

* Deposit films at different temperatures using CH-coated
planar substrates

* Investigate varying process conditions to reduce stress

* Investigate using layers of boron-doped material, rather
than continuous doping

FuturePlans_TFSM ‘98.CV5
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@ DIRECTION DES APPLICAleNS MILITAIRES /’

Forming uniform HD layer by
Infra Red heating

liquid HD solid HD

P.BACLET, G.MOLL, G.COLLINS,D.BITTNER, J.SANCHEZ, E.MAPOLES, S.LETTS, J.BURMANN
and T.BERNAT

. ~ 2 P
7 Hozmmos ! xx [ L'ATOME, DE LA RECHERCHE A L'INDUSTRIE

2Doratoire Micro-cibles

‘% DIRECTION DES APPLICATIONS MILITAIRES //
.

Thermal gradient is generated by
pumping infra-red absorption bands

0.04

HD % Absorption of IR light generates volumetric

g
ooz J 2.57 pm heating
0.01 J W,
. r‘//‘l\"\' 1 \\/‘—L _
3600 3800 4000 4200 4400
Fveq.uency (cn’i‘)
- a=8cm!

~ *IR heating is similar to g decay heating
but Qg>>Qprand Tg<<Tpr

= *[dT/dh]= Qgh/k
thus IR can be used to reduce surface

roughness
L'ATOME, DE LA RECHERCHE A L'INDUSTRIE

7/4/ oruos | X [

Laboratoire Micro-cibles
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DIRECTION DES APPLICATIONS MILITAIRES

LLNL experimental apparatus

‘ 7 Video monitor
| o

~
Cryostat

P ==
p gs& E !@ Back lighter
7

Long distance microscope

//__—_ﬁ Shell

Powermeter D !

A=2.57 ym

Krlaser

image analysis

COHUE camera

F-center laser E:l

e ——

- vivzumoes 'rxsx | i L'ATOME, DE LA RECHERCHE A L'INDUSTRIE

., 2ojre Micro-cibles

o~
{@ DIRECTION DES APPLICATIONS MILITAIRES /

Integrating sphere designed by LLNL
+ Integrating sphere generates an uniform lﬁ illumination

Backlighter CD polymer shell is used
to minimize IR absorption
1

IR E @ IR
/ 1 mm OD

- v’ ',g

A

o / —1 10pm wall
1inch diam€ter Camera 15 to 25 pm ID fill tube
V| pznenmos | st I —  L'ATOME, DE LA RECHERCHE A L'INDUSTRIE
Laboratoire Micro-cibles j
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@ DIRECTION DES APPLICATIONS MILITAIRES /

Redistribution time constant
measurements, t

* Fast freezing from liquid state and then apply IR to solid
(example with small masks on IR beams)

60 mW
15.1K

solid layer height

b

E ETer x AG T 1 ISEL At 23
4 DRVMOS | 9K . L'ATOME, DE LA RECHERCHE A L'INDUSTRIE

" wrzoire ilicro-cibles:

oy
! @ DIRECTION DES APPLICATIONS MILITAIRES /

Time constant for several IR power

h = hinf(1-exp(- t/ —L-IR)) T|R= pAHIQlR 60 mW » T|R= 1/17TDT

AH : latent heat

Qyr : power absorded per Tpr = 26.1 min a 15K
Time constants without masks volume :

100

b 180 + ‘ .
. 32160 b—m—u

190 I gm—

E
2 -
g ! ; %
fm é 1
s T3 X :
R e e I N | 8
£ 60 wht——— | 2omw : - 3
% 40 -;‘——! 10 mw ; P8
% 20 £ ; .: . 1
, @ < - : i :
! 0 o 000 2000 3000 : ; 1 10 100
Time (s) : Time constant (min)
VA ovenmos %X [ 5 L'ATOME, DE LA RECHERCHE A L'INDUSTRIE
Laboratoire Micro-ciblest— !
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@ DIRECTION DES APPLICATIONS MILITAIRES /

Surface roughness measurements

* Apply IR to liquid and cool down to freezing onset

P=18 mW

t=0 , 16K

1, / [—————\
({/Z‘ SHNHOS | MK D e U'ATOME, DE LA RECHERCHE A L'INDUSTRIE
Jra0ire .'/iicro—r:lblesl_._——-E

7 : 1
{ Q DIRECTION DES APPLICATIONS MILITAIRES /
A,

Liquid layer inside solid reduce the
RMS roughness

gas

P=47 mW P-20 mW
158K 159K
¢=1.5um c=09pm

1.00E+01 1.00E+00
1.00E+00
_ 10001 __ 1.00E-01
. < 1.008-02 g
1 plxel = 1.04pm ‘S 1.00€-03 § 100802
8 100804 £ | ooe-00
« 1 00E-05 o
1.00E-06 % 5 00E-04
1.00E-07
1 00E-08 1 00E-05
1 10 100 1000 1 1o 100
Mode number Mode numb‘er
VA oznenmos | sox [] | —— LATOME, DE LA RECHERCHE A L'INDUSTRIE
i i

Laboratoire Micro-cibles
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@ DIRECTION DES APPLICATIONS MILITAIRES /

Degradation layers after turning off IR

Thick layer

and high IR power-
( 50mW, 200um,15.7K)

Thin layer

and low IR powe
( 12mW, 100um,16K)

" Hommtnos

suratsive Hicro-cibles

L’ATOME, DE LA RECHERCHE A L'INDUSTRIE

e : ]
{ Q DIRECTION DES APPLICATIONS MILITAIRES /

Defects due to IR injection are
_ significantly reduced

10 10) "G00
Mode number
mask R
masks on one snde
VA pznenmos | sex [T | L'ATOME, DE LA RECHERCHE A L'INDUSTRIE
Laboratoire M/cro-ables'__—_.
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@ DIRECTION DES APPLICATIONS MILITAIRES //

To improve solid HD RMS inside the
shell

« Temperature must be near triple point

o Put masks on the beamn path and find out the
right mask size to limit power loss '

« Reduce asymetry from the fill tube by using a
small fill tube

., .{ ) —
siczuies | 3% [J | ———— L/ATOME, DE LA RECHERCHE A L'INDUSTRIE

- 27 eizare Micre-cibles

4.{\@ DIRECTION DES APPLICATIONS MILITAIRES /’

CONCLUSIONS

« IR heating forms and smooths HD layer in thin
plastic shell

« Experiments are needed to correlate the RMS
roughness to IR intensity in the shell

e More work is needed to better understand the
layer degradation after turning off the IR
power

« CEA planes for the next year to built an IR
experimental set up for HD, D, and DT

U p=menrmos | wox | 5 L'’ATOME, DE LA RECHERCHE A L'INDUSTRIE

Laboratoire Micro-cibles
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Thin sputtered glass permeation barrier on plasma polymer shells

Abbas Nikroo
David Steinman
David Woodhouse

1oth Target Fabrication Specialists' Meeting

April 1998
Jackson Hole, Wyoming

ozo GENERAL ATOMICS

We explored the possibility of using sputtered glass as a
permeation barrier

* Polyvinylalcohol (PVA) has been used as a permeation barrier for Nova targets
* Unfortunately, the PVA coating process has a very low yield (3 %).
* PVA coatings are in addition “lumpy” and result in undesired wall thickness variations.

* Glass shells are excellent containers for 02 at room temperature .
* D, can be permeated through glass” quickly" at >200 C.

* Can we bounce coat shells in a glass sputtering system ?
* Will the coatings have properties similar to thermally prepared glass shells ?

* How thick a glass layer is needed ?

41 o:ocsmsnm. ATOMICS




Coatings were carried out in a multi-user sputter coating machine

Electromagnetic Shaker

* 99.95 % pure quartz target was used.

« Sputtering was carried out using 13.6 MHz RF source

« Input power of 500 W was used for all runs.

« An electromagnetic shaker with an attached bouncer pan was used for shell agitation.
* Shaker was driven at 50-1000 Hz.

» Substrates were =900x 20 ym GDP shells and Si wafers.

ozo GENERAL ATOMICS

Coatings at lower pressures yielded the densest coatings on flats

Scale
bar

=3}1m

2 mtorr | 10 mtorr

+ In our system, the plasma could not be sustained reliably at pressure below 2 mtorr.

» Therefore, most coatings were performed at 2 mtorr

22
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EDAX analysis of the coatings showed a small amount of
aluminum in the coatings

SO § LTMBOSNZIEY] RIS
Courts  TOMTORR G/Q7 D654

’ ,
i ﬂ
4
i

’ .
i
3 :
4

.

Enegr jay]
* The aluminum target clamp was being sputtered as well as the quartz target.
* The problem appears to be particular to our coater.
* This contamination was lowest at the lowest background pressures. That
corrsponded to the regime we were working in ( =2 mtorr)

ozo CENERAL ATOMICS

Shells were filled at elevated temperatures with the desired gases

Shells in eggcarte
Pressure
Sensor
Temperatur;/ D He,
ves] X!: ] -— D2 s
Controlled Oven High Pressure Ar
Valve

* Shells were filled at 200 C to avoid decomposition of the inner GDP mandrel.

* Appropriate steps were taken to avoid buckling shells in the fill process.

o ozo GENERAL ATOMICS




The coating were tested by measuring the permeation half-life of
shells to various gases

» The half-lives of shells were measured in several ways:

Mass Loss:

M; = My + AM et Shell mass could be measured o better than 1 ug

Diameter shrinkage:

de = dy + A e'(th) Shell diameter could be measured to better than 1 um

Direct outgassing in a sealed volume:
Ps = Py (1- AP e'(t/”b)) +ct {ct)accounts for outgassing of chamber walls

XRF counts (Argon Only):

Cs = Cg gt Amount of Ar remaining in shells can be measured by XRF

o:o CENERAL ATOMICS

Placing GDP shells too close to the sputter gun resuited in cracking
of the glass coating

scale bar =100 um }

* =3 um glass coating ona 1 mm shell

« The glass coating developed a long crack during deposition. The GDP
mandrel was intact , but enlarged.

44 o:ocsm ATOMICS




0.2 um thick coatings developed tiny microcracks all around the shell

0.2 um of sputtered glass on a 1 mm diameter GDP shell

* The cracks were easily visible optically .

0‘0 GENERAL ATOMICS

The results from the various permeation rate measurement
techniques were consistent i

902
| \\Qﬂm ]

-2

Diameter, ym

896
\‘,qehgll #2
] 1

T
0

20 40 69 80 100 120 140
Time, hrs .

* Sample of the diameter shrinkage of two shells initially filled with 40 atm of D,

* Mass and direct outgassing measurements gave similar results.

4
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Permeation rates of various gases through sputtered glass coatings

were not as expected
Permeation halflives for glass coatings on =900 pm x 20 ym GDP shells

i ' g
T > 60 days -~
o
2 L
S | - >14 days
e r -
n < He
: 15+ a A Ar
Sof A
:-E S 2 °
Z o oy . —

0 0.5 1 1.5 2 2.5

Glass coating thickness, pm

o Coatings thinner than ~2 um did not hold D, very long

o However, He permeation rates were the same as thermal glass.
s Argon could be permeated into coatings of 2 ym or less at 200 C, whereas thermal
glass is virtually impermeable to argon even at much higher temperatures

ozo CENERAL ATOMICS

Permeation rate of argon out of the glass coated shells did not
change as the argon pressure decreased inside the shell

In(Ar counts)

>
+

4
0.0 100.0 200.0 300.0 400.0 500.0
Time, hrs

w

h

w
1

« Permeation through microcracks should decrease as the pressure inside the shell

decreases.
« Argon permeation occured with a single time constant for initial fill pressures of up to
10 atm. )

46 o:oamsmu. ATOMICS




Scanning AFM i image of the coating revealed a dense nodular
structure with apparent pinholes

SEM image; scale bar = 1um

2 um coating 5pmx 5 pm AFM scan

* The small pinholes could also be seen in SEM images of the coatings as well.
* Pinholes may be holes left by leaving nodules.

* For thicker coatings (>1 um) an underlayer of glass coating could be seen in the
AFM scans.

o:o GENERAL ATOMICS

Faster gas loss through thinner coatings may be through holes

left behind by larger nodules nocked off the coating

4
<2um ! W W
coating A L at ) 4

>2 um
coating
covered hole gas
Before dome is knocked off After dome is knocked off

* Holes left by leaving nodules may be covered for thicker coatings

47 0:0 GENERAL ATOMICS
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Permeation through the grain boundaries may be responsible for
argon permeation through the coatings

A A

Displaced grains in thicker coatings

Helium can permeate thorugh the grains and grain boundaries

Deuterium can also permeate through the grains and grain
boundaries, but permeation through the grain boundaries is faster.

Argon can permeate out through the numerous grain boundaries

Displaced grains in thicker coating may lead to a tortuous route out of
the coating for Dy and Ar

’3’ GCENERAL ATOMICS

Sputtered glass coatings are good permeation barriers at =2 um
thickness

« In our system, coatings thinner than 2 um appeared to be too permeable to Dy for

use for ICF targets.

« Coatings thicker than 2 um appear to be sufficiently impermeable to D, to be

useful for ICF targets if needed.

«The thicker (=2 um) sputtered glass coatings are permeable to argon at =200 C.
This allows using argon as a diagnostic gas.

0:0 GENERAL ATOMICS
48




Progress in the Ultrasonic Characterization
of ICF Targets

Thomas J. Asaki and Thomas C. Hale
Los Alamos National Laboratory

Target Fabrication Meeting ‘98
Jackson Hole, Wyoming

This work is supported by the U.S. Department of Energy

under contract number W7405-ENG36

Vibrational Resonant Structure of Fluid-Filled Shells

Toroidal Modes

)" (shear motion)

(no fluid motion)
(shape preserving)

Spheroidal Modes
(shear and compressional motion)
(solid and fluid motion)
(shape distorting)

Materials with large acoustic impedance mismatch
(e.g. DT vapor and Be/Cu)

Spheroidal Shell Modes
(elastic motion of free shell)

Acoustic Cavity Modes
(fluid motion within rigid cavity)

Progress in the Ultrasonic Characterization of ICF Targets
Asaki and Hale-- Los Alamos National Laboratory
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The elastic/fluid resonances of spherical shells provide
information on a wide variety of target properties:

1. Elastically-driven shell modes provide shell properties
-- material homogeneity
-- joint and bonding quality
-- concentricity and symmetry
2. Acoustic cavity modes provide gas and cavity properties
-~ fill density and pressure
-- low-mode cavity geometry

-- low-mode observation of beta-layering

Acoustic Resonances of an Irregular Cavity
(Boundary Periurbation Theory)

Geometric boundary: ¥ = al'l - 2 meem] ; b, <<1

Acoustic resonances: fm

nis the order of the wave equation solution and . _
sis the index of the zeros for a given order: J (27%:” / C) =0

Progress in the Ultrasonic Characterization of ICF Targets
Asaki and Hale-- Los Alamos National Laboratory
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Acoustic Resonances of an Irregular Cavity (cont.)
(Boundary Perturbation Theory)

r= a[l—ZbemY}”'] s

Radial {(n = 0) and nonradial (n > 0) mode shifts ~ I? = gas properties

Nonradial (7> 0) mode splitting ~ b = cavity shape

Acoustic modes of order n are affected by boundary
distortions of order £ such that £ < 2nand £ even.

Any acoustic mode [n,s] is only affected by a finite number
of even order boundary perturbations [£,m])

BE31-n Target Series
(1.05 mm inner radius; 3.00 mm outer radius)
(adhesively bonded hemispheres [Salazar])

r= a[l - 2 b,oY,O]

by

[4 Target #1 | Target #2 | Target #3 | Target #4 | Target #5 | Target #6
1 +0.002 -0.010
2 -0.011 -0.022| +0.002 -0.015

3 +0.012 -0.022
4 +0.024 -0.012

5 -0.004
6 +0.004

7 -0.022
8 +0.021

9 -0.001
10 -0.001

1 -0.016
12 +0.014

Progress in the Ultrasonic Characterization of ICF Targets
Asaki and Hale— Los Alamos National Laboratory
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Degeneracy Breaking in Nearly-Spherical Cavities

Axisymmetric Cavities
£, splits into n+1 modes out of a possible 2n+1.
This is a diagnostic of axisymmetric cavities.
Laterally Misaligned Axisymmetric Hemishells

£, splits into 2n+1 modes described by the single

additional (non-axisymmetric) coefficient b21

r= a[l - 2 blel"']

BE31-2

900

800 |

T=2988K

th
2
(=]

Low amplitude acoustic
modes are a resuit of

o
3
e

transducer response (arb)

300 b a “thick” shell
Elastic M0d85<>
200 | ~
100 |} Acoustic Modey
o A . A
800 1000 1200 1400 1600 1800 2000
frequency (kHz)

Progress in the Ultrasonic Characterization of ICF Targets
Asaki and Hale-- Los Alamos National Laboratory
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BE31-1(1,2)

700

This nominally spherical cavity shows the smallest frequency
6504 splitting, but still indicates construction anomalies:

600 -

amplitude (arb)
§ & 8 8

a
=)

Afl f=0.0022

g

1558 1559 1560 1561 1562 1563 1564 1565 1566
frequency (kHz)

BE31-1 (spherical) cavity shape analysis

(based on frequency splitting of modes /. and /)

€ =—000207 ¢y =~000310

€ =+00035 ¢y =+0.0013

Aspect ratio v/h = 1.0001
Lateral shift 6=2.7 ym v

Progress in the Ultrasonic Characterization of ICF Targets
Asaki and Hale-- Los Alamos National Laboratory
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Acoustically Determined Fili Pressure

BE3I-1 BE31-2 BE31-3 BE314 BE31-5 BE31-6
To(K) 2925 296.0 295.4 295.8 ~296 296.1
Py (psia) 4066 4084 4031 4092 ~4050 4050
P, (psia) 4407 4569 4553 4419 1996 5225
P, (psia) 7 9 545 290 3 18
N 5 7 3 3 3 5

P,and T,are the reported initial fill conditions.
P, is the acoustically measured fill pressure.
oP, is the standard deviation for the N measurements.

Target #5 leaks with a “hall-life” of 13 days.

Targets #3 and #4 were significantly off spherical yielding unreliable P,.

P, > P,due to final target assembly procedure.

BES1-5 Leak Analysis

48

47

Ln(P (atm)]

46

45 |

4.4 . t -
16 18

March 1998 Date

26

Progress in the Ultrasonic Characterization of ICF Targets
Asaki and Hale-- Los Alamos National Laboratory
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Low Pressure Measurements in BE43

700
o
600 | Deviations at highest pressures due to
uncertainties in sound speed calculation

= for this region of D, phase space.
% 500 |
&
o o
2 400 |
[d
o [¢]
B 300 |
=
2
3 200 r

100 | Calculated sound speed varies by only 2.7%

over the entire range of measurements.
0 1 1] 1 1 1 1

0 100 200 300 400 500 600 700
Measured Pressure (psia)

amplitude (arb)

S

.06 F L s . : L s
07 , 1960 1970 1980 1990 2000 2010
1500 2000 2500 3000 3500

frequency (kHz)

Acoustic analysis of the FBE-1 Beryllium NIF shell indicates that:

1. The elastic mode signature of individual hemispheres is absent.

2. The observed degeneracy splitting indicates the presence of geometric
or material composition defects.

3. Shells of better quality (by a factor of ~50) can be characterized.

Progress in the Ultrasonic Characterization of ICF Targets
Asaki and Hale-- Los Alamos National Laboratory
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Interferometrically-based non-contact vibration analysis

@ 8BS E, = A, exp[-ié, sin(@y! + @,)) M

EOM
electro-optic modulator

PRC
photorefractive crystal
M BS /]
E, = Aexpl—ig sin{ayr + @)} 7 \// e
Target Y.
= M
photodetector

S/N = 100 at 1A displacement amplitude (specular flat surface)
non-contact excitation and detection

Summary

1. Initial fill pressure and density are calculable to within 0.5% through the frequencies
of the cavity resonances.

2. Low-mode cavity shape information is obtainable through the observed resonance
mode splitting. The BE31-n series appears to be highly non-axisymmetric
and complete analysis is pending.

3. Initial acoustic examination of FBE-1 indicates that the bond quality is excellent, and
that geometric and/or material composition defects are observable.

4. Enhanced vibrational mode detection sensitivity is being pursued through an
interferometric photorefractive technique.
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Cryogenic D-T fuel layers formed in 1mm spheres by B layering
Lg Schafer
J. Sater, J. Pipes, G.W. Collins,
B. Kozioziemski, D. Bittner, E.R. Mapoles

¢ We have consistently produced
layers of 1.2 um RMS roughness
near the triple point of DT

¢ Freezing rate and final
temperature effect the
roughness of the beta layer

1Tmm diameter CD shell with
10 pm wall and 30 pm fill tube

Coverd_9_98

B-layering is a promising technique to provide uniform
free-standing cryogenic layers for ICF targets
Schofer L

isothermal

® Seif-heating of DT causes thicker layers to be
hotter and sublime in favor of thinner layers

e Rate: 1= Hs - Heatofvaporization g4 chiiee
Q Decay heat

57 Beta_Cartoon.al




Layering occurs in a spherically Symmetric geometry

lg Srkhr=

Srbhazifcr

e  Our sample cell is a 1mm plastic shell on a fill tube.
o  The surrounding cavity is a 25.4 mm diameter, OFHC hollow sphere.

»  Layers are made at slightly below the triple point of DT (19.7K).
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Temperature{Kelvin)

Results from a typical experiment.

@ _ w51 =
10 T
19.901" 110 - '
L b N
I 1 @ A Surface roughness 2 pm rms
r i £ 1 at time 1000 minutes. 1
[ Cool at 0.5 mK/min. 18 o
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: 0001 t  gurface roughness ¥ ’,fig
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* We cool slowly through the triple point and then hold the
temperature steady.

* The surface then becomes rougher over time.

standard_experiment].ai

We observe large crystals when panhing through the shell.

(] Schaier

Generic B layer after aging over a weekend.
Layer thickness is 97 microns.
Temperature is 19.62 K.

pan.ai




Cooling layers below Tt - 0.3K. Layers show sign
of strain on mulitcrystalline boundaries. &

TP ¢

19.732 K 19.691 K 19.598 K

~

18.900 K

L

19.179 K 18.967 K

Slowar_Coolod_BolaLayer.a

Results from a typical experiment.

-
(C Schalfer
20 100
‘\\\ Surface roughness 7 pm rms
s 10 hY at time 700 minutes.
£
= T N 14 1
£ § &
@ S ©
E! 10g &
[ — o
g g g
g g 2 ot 4
<
[ ] Al !
s gt
E 0.01 wjj
Surface roughness
1 1.7 pm rms at time 200 minutes.
18.5! ' 1 ] 1 0 0.001 -
) 200 600 800 1000 1 Mode Mumber 100

400
Time(minutes)

« From Souers we find that AV = 0.094 cc/mole from 19.7 to 18.9K. Our 100
um ice layer would shrink on the order of a few parts per thousand if layed
out in an unconstrained plane.

standard_experiment.ai
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Freezing rates have a dramatic effect on layer smoothness
[ Srhaier

4.0

] Rapid Freeze

3.5—; 3

3.0 -— I

253

2.0

Mintimum Surface Roughness (um)

3 mK/min

0.0-] S — e
0.1 1 10

Cooling Rate (mK/min)
RMS is for modes 2 through 128.

RMS_vs_Rate.ai
Surface roughness is also reduced
by increasing layer thickness.
(L= Schafer
Sr 100 p .
\\‘
" 10k
41
1
3r 0.1
" 0.01
2 B =
= 1 0.001
1 1 1 E__1 0.0001 :
1(5) 125 150 175 10 100
?g Layer Thickness (um)
B
g & i
253Eling rates are between 1 and 2 mK/min.
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CHARACTERIZATION OF THE SURFACE ROUGHNESS
OF PARTS FABRICATED IN SINGLE-POINT
DIAMOND TURNING MACHINES

J. L. KAAE and J. N. SMITH, Jr.

General Atomics, San Diego, California U.S.A. _

: sshéfer <} canmvaL nrosmcs

® The diamond tools generally used for the micromachining of ICF components
have circular-shaped tips

Diamond tool with a 25 um fadius tip

Srhzfoi ozomanaromcs
63




A SURFACE CUT WITH A ROUND TIP TOOL
HAS A SCALLOPED APPEARANCE

y ' :
Hmax WW
¥ |

'e— E —4
] ]
t

— Y -

where r = radius

F = feed rate
s = spindle speed
then
2
_ s (F
Vmax — 7 — r — EE
Schazfar o:ot:snmuu. ATOMICS
QUALITATIVE EFFECTS OF -g- AND r ON THE SURFACE SMOOTHNESS
Decreasing
F
W — S —_— P — P —
Increasing
Smoothness
Increasing r

Increasing Smoothness

A\

& ozo GENERAL ATOMICS



Where
1 N F 2 rS . -1 F
= -1__,f1-- ——)? = Zsin™ (=
Yang ‘r[ G T FS (2rS))]
and )

1 = tool tip radius

F =tool feed rate

S = spindle rotational speed

Srhafor 0:0 GENERAL ATOMICS
THEORETICAL RMS SURFACE ROUGHNESS
1000
£ Tool Radius 30 um _,—’-— -
G 100 e e
= =" o
=
: —= - {Tool Radius 75 pm)
£ .
'3 -’
a 10 —
E —= /II
y 4
P4
.l
p
!
1 +
0 2 4 6 8 10 12 14 16 18
FIS, micrometers (um)
Schafor ’3‘ CENERAL ATOMICS

RMS ROUGHNESS

* Machined Surfaces are Generally Characterized by the RMS of the Roughness:

* For the Scalloped Surface,

1 F rS F
RMS = .|— —_n? 2 —. 10— (—)? +—sin (—
5 \/ (2 aal = Yo + _?"”3’[2\}( G TFE G
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AFM TRACE OF A DIAMOND TURNED SURFACE

g — —
N
LIS S & e
THEORETICAL PEAK TO VALLEY ~ 179 nm
ACTUAL PEAK TO VALLEY — 374 nm
o
[=]
Ng - 25 50 75 100
pM
Spectrum
L]
i
|
|
i
i
J
DC Hin
Disk #2 Track #4
Srh=fop ozocsnsnm. ATOMICS
PRECITECH: 2400 LATHE;
TOOL WITH 25 pm RADIUS
1000
£ 100 = =
< JIAc(umﬁ e
§ —— = —— —_—
) 7:‘ I — =
n:g 10 ’,/ —— = gﬂeoreﬁcall
2 o —
&3 P -
g . P
o of P
[} >
E _
1 £
= -
0.1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
F/2rS
Srhzfar ozocsmm.armms
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PROFILE OF SURFACE CUT WITH GRADUAL
MOVEMENT OF THE TOOL POSITION

M

2,00

0

AN /\ N\ \!/J \ \__f/ y\ }\' f'\'\.
L/ = T ~

S——

o
S
Yo 20.0 40.0 80.0 80.0
M
Srhaz oy ’3‘ GENERAL ATOMICS
PRECITECH 2000 LATHE;
TOOL WITH 25 um RADIUS
1000
& 100 j::—;-:—;;
;?' > ————
I = — =
E 10 = e Qf;e—oreﬁmlt
£ ——
a oz
E . y
0.1
0 0.0t 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13
F/2rS
Schafor ozocsmm. Aromics
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PROFILE OF SURFACE CUT WHERE SUDDEN
'SHIFTS IN TOOL POSITION OCCUR

nM

100

© AR m;!! o AN

o
2 T T T T
10 2.9 5.0 7.5 10.0
P
SrhzFar '2° GENERAL ATOMICS
ROCKY FLATS ‘NO. 3 LATHE;
TOOL WITH 30 um RADIUS
100
Ectual I.\ R — e -
E. N\l \/ ,/\ ey P - ’;__—-—--—"
: / \\‘/’ =
g 10 s
==
@ 7
E
/"  Theoretical
, heoretca
/
1 /
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
FiI2rS
Srhazfor «> GENERAL ATOMICS
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PROFILE OF SURFACE CUT WITH A WORN TOOL

nM
o
=" Y Y
ih.. EN . ) e R
o L ; }
1y _,-«' &. B \ _
% - > \\!.__,-— - ;
o .
S
-f
P
0 2.00 4.00 8.00 8.00
M
rb=Far o:o GENERAL ATOMICS

FACTORS CAUSING DEVIATION OF ACTUAL SMOOTHNESS
FROM THEORETICAL SMOOTHNESS

®  Peak-to valley distance is larger than the theoretical distance
®  Pass-to-pass variations in tool position

®  Occasional large variations in tool position

e  Tool tip not perfectly round

Srhzfar - o . - c}mm
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Properties and Processing of Beryllium and Beryllium
Alloys for Inertial Confinement Fusion Apphcatlons

.,'!. oma, F. Chu, L Dauelsberg
T. Darling, and L.A. Jacobson
Los Alamos National Laboratory
Materials Science and Technology Division

Target Fabrication Meeting
Jackson Hole, April 20, 1998

This work is supported by the U.S. Department of Energy
under contract number W7405-ENG36

O P
Alloy Design_ Sclh A\
& Develupmens

Outline and Goal of Study
QOutline
I. Introduction and Procedures

II. Properties
II1. Implications

Goal: Develop usable procedures and properties of Be and Be
alloys that will aid in target fabrication and shock physics
PN OueP
i W Allov Design ?}?‘g
& Developmen: ¢ f
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Ojectives

« Feasiblity of beryllium for NIF capsules
— fabrication of metal
— performance
 Detailed understanding of properties to
optimize efforts (single Be crystals and

polycrystalline alloys)
— elastic properties
- plastic behavior
X N >
4 v/\ N thennophySI(:al propemes Alfoy Design %
3_ A & Deveinpment ¢

Experimental Procedure:
Arc-Melting
Cleaning is performed for beryllium used in elemental or alloy form
e Brush-Wellman vacuum cast lump (99.8%)
o Evacuated and argon purged chamber

— Ti pieces melted to “getter” oxygen

* Impurities “slagged” out during non-consumable arc-
melting

e Chemically cleaned samples
o Re-melted until slagging eliminated

BeO impurities are not desired owing to the
density gradients (inclusions) in the final capsules

05%7
Alloy Design
& Developmens k

~atlonay,

EPEBEN
7/ %
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Experimental Procedure:

Heat-Treatment
Double ampoule conf' guratmn
«—> €vacuated quartz
quartz handle l

* invar clamp assembly

High-purity flowing argon tube furnace high purity Ar gas flow

past Ti getters

L 5T
Allov Design %
& Developmens  fX-G°

Experimental Procedure:
Property Determlnatlon

» Elastic Propertles

— Resonant Ultrasound Spectroscopy (RUS)
* Plastic Behavior

— Vickers Microindentation
* Coefficient of thermal expansion

— RF dilatometry

Samples: Single crystal Be (99.999%), cast Be, cast Be alloys
[alloying: Cu, Pd, Au]

- ©,
Allow Design
& Developmen: o 9 R
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Experimental Procedure: Samples

44
3 ] Au Pd 4
43 t -
n 43 /
m I \
2 :
< 42 :
=
>
<

4.1

1 1
1] '

1
L4

0.5 1 15 2 O
ATOMIC PERCENT ALLOY ADDITION ,,, pesin %

& Developmens g%

Elastic Properties: RUS

R t Ul 4 Sp py (RUS) Technigue

pre gy

Example Spectra

Transducers

Transmitting Recelving

£
Allov Design
& Development
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Single Crystal Beryllium

§ s e it (o e et vy o e = e — 22 %,

s RxNA ke v

Laue Back Reflection

- streaking
- very short exposure
times

<0001> orientation °59%‘.’
Allov Design
& Developmens

Single Crystal Properties

Compliance (GPa)

208 Isotropic Elastic Moduli
2905 . _

359 Shear Modulus = 152 GPa

Young’s Modulus = 319 GPa

g Bulk Modulus =118 GPa
Poisson’s Ratio = 0.047

28

164 .

164 All values at

134 room temperature

PP
Allov Design
& Development T
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Other Values from RUS Data

Vigoon = 1.40 X 10° m/s A ,
Voo = 0.07 X 10* m/s ,

-
¥ Vi

Vipoo = 1.27 x 10° m/s
Voo = 0.39 x 10° m/s

Debve Temperature

@ = 1496 K Vi

atloazs,
e N

i E "
. Allov Design %
oo & Development &

Polycrystalline RUS Data

S200D values at room temperature

Isotropic Elastic Moduli (Single Crystal)

Shear Modulus = 149 GPa (152 GPa)
Young’s Modulus = 313 GPa (319 GPa)
Bulk Modulus = 116 GPa (118 GPa)
Poisson’s Ratio = 0.05 (0.047)

Natlaay,
N
5.

k- . B Alloy Design %{%
i?/-\ & Development
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Polycrystalline RUS Data as a
Function Qf Temperature

Be Polycrystal R

T N Pl R ke e

HE SRS I A S O S I SRS SE RS B
®l i iitiiiiiiiiiii:iis:as| -Theelastic constants

Wl iiroiiiiiiiiiiiii | have virtmally no

g4y tiriiriziziiiiisciiic:il temperature dependence
Eafiiiiiiiiiiiiiic | in the regions

o] 13831338 - | explored

osd LoLIlIIvIIIIUILIiL :

TK
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slagged sample &

Alloy Design A
& Development m
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Indentation of Be-0.9at.% Cu

slagged sample 0RO
Alloy Design 8%% d
& Development oé'S%o

Pd-5wt.%Au Pd-Swt. % Pd
Allov Design

& Development
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Hardness vs. Z

. T ———
HARDNESS OF BERYLLIUM ALLOYS AS A
FUNCTION OF AVERAGE ATOMIC NUMRBER
& s

- . 7 .
g 1o :
S .
; oo A i RS

rod 5 .
g oi Lt 1
g 4 B % .
’ 42 -~
- fa ot ‘
B o200 !
ﬁ “""’o = | T
5 : o cds B
S - & Copar(BrudWetomBe)
X A Copa(CPAEPB) "
10077 T 1 7 ‘o o
40 42 44 46 48 50,
- AVERAGE ATOMIC NUMBER -~ '~ Alloy Desian
& Development oG

‘Uniqueness of Be

o x-ray back-scattering behavior - strongest
¢ highest Debye temperature

» Lowest Poisson’s ratio

o easiest oxidation

* highest sound velocity

o highest elastic anisotropy

» highest specific Young’s modulus

» B < G (only graphite like this)

* largest V, to V, difference

o
Allov Design
& Developmens .o 63
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Thermal Expansion of Be
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Be vs. Be-Cu CTE
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Alloy Design
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Grain Growth in Be

Initial: Pure Be with an extrusion from 3/4” to 1/4” at 850°C

transverse -’
sections

osP
Alloy Desipn h
& Developmenr g3

Grain Growth in Be-0.9at.% Cu

Initial: Be-6wt% Cu with an extrusion from 3/4” to 1/4” at 850°C

transverse
sections

Allov Design
& Devetopment

Final: 1 cycles, 1 hr./cycle, to 1000°C %‘g

T S p—— e, re gy T e W o o~ e o
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Summary of Results

P s E ety e e o o

. Elastlc constants have been defined to better
precision and accuracy

e Sound velocity values have been deterrmned

« The indentation of alloys show that Pd and Au
strengthen greater than Cu, and increased alloy
contents yield more uniform plasticity

 The a and c directions of CTE are significantly
anisotropic, but polycrystalline Be-6wt% Cu
. hasless linear expansion to 1273 K than Be

. O,
Allov Design
& Development -

Imphcatmns of Rec;ults

+ Elastic constants and calculated values can be used for
accurate performance predictions

 Coupling CTE data to elastic properties, a maximum
stress of 600 MPa can be generated at a bond line when
cooled from 1273 K to 17K

« Plastic deformation is more uniform and yield strengths
are higher with increased alloy content, thus preducing
potentially smoother machining surfaces

 Impurity control is essential for better machined surfaces

« Grain growth at 1273 K is too large for grain size control

Srawin more pure material during bonding

% ()
5‘/ ?;a P
) Allov Design
4 & Development E

“&.s,,, _f
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Grain Refinement in Be (R.D. Field):
Future Work

grain refinement 0,
Allov Design %

& Development c
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MST-6/Apr 99/RF-12

Characterization of Be Solid State
Bonds for ICF Applications

R. D. Field and D. J. Thoma (MST-6)

Materials Science and Technology Division
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Los Alamos
Summary of Bonds Investigated
Spec. | Surface Prep. Atmos. Temp. | Time | Comments
I Lathe Vacuum | 1000°C| 6 h 15 nm Cu
Layer on
Bond
Surfaces
II 3um Ar-6%H,| 1000°C | 80 h -
Diamond
I 3 um Vacuum | 1000°C | 63 h | Be - 0.9 at%
Diamond i Cu Alloy

Los Alamos

Matenials Science and Technology
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MST-6/Mar 98/RF-1

Optical Micrographs of Bond Joints
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TEM of Bond I

BeO
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(pure Be, 1000°C/80h, Ar 6% H,)

TEM of Bond 11
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TEM of Bond II1
(Be 0.9 at% Cu, 1000°C/63 h, vacuum)

Los Alamos __
achnology

Materials Science and T

MST-6/Mar $8/RF-11

Conclusions

@ Metallurgical bond is achieved - but no grain growth
across the interface

® The bond line grain boundary contains numerous
intermetallic and oxide precipitates

@ Proper surface preparation can reduce the amount of
oxide in the interface

® Careful control of the atmosphere during bonding is
also required to reduce the amount of oxide in the
interface '

Materias Science and

Los Alamos
Technology
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Production of high strength large glass shells by sputter coating
glass onto thin-walled mandrels

Abbas Nikroo

12t Target Fabrication Specialists' Meeting
April 1998
Jackson Hole, Wyoming

0:0 GENERAL ATOMICS

Large shells capable of holding over 100 atm of gas pressure are
needed for cryogenic layering experiments

* Cryogenic layering experiments require gas pressures of >100 atm (J. Sanchez ,LLNL)
* Largest glass shells (=1500 um ) that can be currently made are thin walled.
* Typical wall thickness for these shells is =3-4 um

* Therefore, these shells can only hold 20-70 atm of gas pressure depending on their
quality.

* We pursued strengthening these shells by overcoating them with sputtered glass.

* Deposition process was similar to techniques used for depositing thin layers of glass
for permeation barrier purposes.

0:0 GENERAL ATOMICS
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Several options for making strong shells were pursued

Glass coated GDP shells:
» Good starting mandrels
« Mandrel can be large (=2000 pum) \\@

Glass coated glass shells:
» Many mandrels have wrinkles >
* Mandrels limited to <1500 pum

0:0 GCENERAL ATOMICS

Coating parameters were further tested by measuring film stress
and etch rates on flat samples.

1.6 45 —
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-60 -40 <20 [} 20 0.0 5.0 10.0 15.0
Substrate DC Bias, V Pressure, mtorr

« Film characteristics were examined on flat Si wafers and SiO2 slides.

« The residual stress in the glass was lowest when the substrates were floating .

« Etching coatings in Hydrofluoric Acid (HF) confirmed that the densest coatings
were deposited at the lowest pressures.

*3‘ GENERAL ATOMICS
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The glass coated glass shells also had a rough dome-filled surface

scale bar =1 pm

* The glass coated GDP shells had a very rough surface as expected (from
permeation work).

* The glass coated glass shells had a similar finish, confirming that the coating
process was responsible for the rough surface.

# CENERAL ATOMICS

Shells were burst tested at elevated temperatures using helium

Shells in eggcrate
Pressure

Sensor
Temperaturti/ D

[ Tewe] M__| -+—— He

Controlled Oven High Pressure
Valve

* Glass shells were filled at 400 C to expedite the fill process.

* GDP shells had to be filled at 200 C or lower.

* Appropriate steps were taken to avoid buckling shells in the fill process.

* Helium was used for the tests because D, fills would have taken too long.

ozo CENERAL ATOMICS




The survivors were tested by measuring the permeation half-life of
shells to helium

* The half-lives of shells were measured in several ways:
Mass Loss:

M = Mg + AM e'(ﬂ'c) Shell mass could be measured to better than 1 pg

Direct outgassing in a sealed volume:

Py = Py (1- 2P &)y 4ct  (ct)accounts for outgassing of chamber walls

0:0 CENERAL ATOMICS

Slow outgassing of helium out of shells confirmed the absence of
microcracks and gas holding capability of shells

1 1 1 ] .
3500 | 3 Z "'78"\ | -
3000-: : / 276 \

2500 A0 T Lwom

. : . E
200! L ; 272- ; -
| X Shell # | Shell #2
: 270 !

1500 7 : ;
H 4 H i H
'= A L !\
1000, / z ; LT 268 ':
L ; ! : |
5004~ : 2 : !
L/ e Background | 266 ; B

/
1 T
! 0 50 100 150

Pressure , mtorr
Shell mass, 1g

{ 1
0 500 1000 1500 2000 2500 Time. b
Time, minutes Tme, s
Mass loss

Direct outgassing

=1450 x 18 um shells

Shell #1 had a half-life of 35.8 hrs

Shell # 2 had a half-life of 40.9 hrs

This indicated the absence of cracks unseen by optical inspection
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Overcoating with sputtered glass did increase the burst strength of

glass shells
180
160 o e Oe
140 a * a
E2o0 ¢ oo
1]
g 100 + oo ee ® survivors
'5 80 + o o 0 non-survivors
o | +]
[%1]
E 60
40 +
20 -
0 ¥ O : T T
0 S 10 15 20 25
Glass overcoating thickness, ym

* Glass shells with diameters between 1200-1500 yum and thicknesses of 3-4 pm were
coated and tested.

* 18-20 um of overcoating was needed to strengthen some shells to above 100 atm
burst presure

ozo GENERAL ATOMICS

Bounce coating one single shell by itself produced a better surface
finish than coating several shells together

* Shells make frequent collisions with each other during deposition.

* These collisions may be responsible for producing seeds for the observed domes on
the coatings.

* We await the results of LLNL optical edge detection tests on shells with these poor
surfaces.

0:0 GENERAL ATOMICS
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Using a spinning pan arrangement to agitate shells improved
the surface finish

Bounce coated shells Rolled shells
scale bar =3 um

+ Roll coating shells in a spinning pan reduced the density of large nodules on the
surface

0:0 CENERAL ATOMICS

GDP inner mandrel melts at temperatures of >300 C

The GDP inner mandrel has SEM image of the same shell
melted to the bottom of =10 um after it was broken to examine
of glass overcoating. the inside.

» GDP only "melts" in the absence of oxygen at >=300C.
« A GDP shell continually shrinks in presence of oxygen at >=~300C.

‘3‘ CENERAL ATOMICS
9%




GDP inner mandrel could be pyrolyzed away by heating composite
shells to 360 C in air

= 900 x 16 pum glass shell from GDP

* Glass coatings deposited at 30 mtorr background pressure were porous enough to
allow extraction of the GDP inner mandrel.
* A small residue was visible inside the shell.

0:0 GENERAL ATOMICS

Pyrolysis of the inner GDP mandrel left behind a small “fluffy"
residue on the inside of the shell

scale bar =30 um

* The residue did not disappear when the shell was heated to 1000 C !

* EDAX measurements did not reveal any carbon in the residue.

* Only elements present were Si and O.

* Residue may be parts of the inside of the coating torn away by the melting GDP.
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Sputter overcoating of thin-walled glass shells increased their burst
strength to over 100 atm

« Overcoating of thin-walled glass shells allows survival of shells at > 100 atm gas
fills.

« The surface finish is very poor due to the large number of dome/nodules in the
coating.

» Coatings without these features may provide even more strength to the starting
mandrels.

« The effect of the poor surface finish on the optical layering experiments has not
been determined.

« Overcoating GDP shells with glass increases the strength of GDP shells also.
« The GDP inner mandrel melts during the gas fill, if the fill is carried out at >=300 C.

« Lower temperature fills take too long and are not practical.

ozo CENERAL ATOMICS
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CALIBRATION OF X-RAY FLUORESCENCE ANALYSES WITH
STANDARDS AND COMPUTER MODELING

Presented by: Martin Hoppe (GA)
Richard Stephens (GA)
Annette Greenwood (GA)

Twelth Target Fabrication Specialists'
Meeting

Jackson Hole, Wyoming

April 20-23, 1998

«{> cenERAL AYOMICS

XRFer Created to Model XRF Measurements

. Calculates fluorescence signal given dopant concentration, and structure
. Use multiple calculations to create fluorescence/signal equation
. Use equation to determine dopant concentration in deliverables

X-ray source (w/
50 um Mo filter)

Y

Beisisrenee

GENERAL ATOMICS
<

99

T N Y T I Y TN T TR piT T, N R s o e swyy o e e ey e —




XRFer Includes Shape and Absorption Effects

Spectrum
- Calculates emission spectrum as function of tube voltage
- Includes filters
- Experimental coefficient for detector response
Absorption
— Contains analytic description of absorption strength for each element
- Each layer can be a mixture of elements - in g/cc
Shape
— Up to five layers (and an inner volume for spheres)
— Any or all layers and volume can be doped
Calculations
- Can do batches varying any combination of parameters
— Calculations output as tab-delimited table vs varying parameters
— For each doped layer shell is divided into 10° segments
— Doped inner volume can be subdivided into cubes <1% of inner diameter

0‘0 CENERAL ATOMICS

XRFer Interface is Easy to Use

case ®1 0203 0405 ok )
w——Proposed shell structere-——— . Delete
Mokybdk Tube 340,000 ke¥ [d Thick doped layers
Source filters: [Jvery thick doped laygers
!hlz:ﬁﬂonbd«un) =50.0 pm,1.022¢1 g/cc
e sty Shell Inner Rad (um}
Count multipher = 8.850004¢5 . initial final step#
O 3 o g ot EEX[ 4500 |1 |Obreph
hner volume comp: .
A(Argor) = 0.178¢-2 g/ce outside inside
layer(1 uter) thickness = 4.0 im lager @1 02030405 (Add ]
ACarbon) = 0.9300 g/oc Thickness {pm)
Tayer(2) thickness = 20.0 m initial _ final  step #
Carbon) = 0.930¢0 g/cc Q6reph
A0y gen) = 0.300e~t glec
Tayer(3) thickness = 5.0 m Element# @1 0203 0405
ACarbor) = 0.850¢0 g/co Element Carbon
AT rtanarm) = 032060 g/cc

(O gen) = 0.200¢0 g/c

Concentration (g/cc)

nitial finat #
0.930e0 1 O Graph

B3 Fill interior

Element# ®1 02030405

Element Argon
Concentration {g/cc)

pitial final #
0.178e-2 1 O Graph

'3’ GENERAL ATOMICS
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XRFer Shows and Saves Batch Results

—==-Calculated shell structure———
Molybdenum Tube @40.000 keV Silicon signal =7.189850e1 (CPS)

Source filters:

th/den(Molybdenum) = 50.0 im,1.022e1 g/cc
Tube/Detector Angle = 120.0 degrees
Fluor(Silicon) = 1.740keV
Count multiplier = 133000065 ez T T T T
Note: count underestimate if doped layer th > 20 pum
Shell: InnerRadius =450.0 {im to 650.0 tm in 3 steps

Inner volume comp:
vacuum

cet®et0 g0,

> lager(1 :outer) thickness = 2.0 um to 40.0 tm in 20
steps .*
compaosition: Silicon L4
:((Carbonn))=0,750e091,cc Intensity | - ...0”°"°”'°o .
Oxygen) = 0.200¢0 g/cc {CPs)
d(Silicon) = 02800 g/cc e o
. .....o'oooooo...
. ¢ * *
- ®
*
eeg 1 ' L 2
2e0 Set

layer (1) thickness (zm)

0:0 CENERAL ATOMICS

XRFer Properly Models the Excitation Spectrum

Mo x-ray tube emission — XRFer vs Experimental

10
0
z ! I
-a o 3
| =4
o
ﬁ 1 —— Xpti Mo&Be filters
=2 A - XRFer Mo&Be filters
[5+1
o
(o
0. -
1 TiE
0.0
1 1 1 10
Enefgy, keV 0
ozocemsm ATOMICS
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XRFer Successfully Calculates Resulting Fluorescence Changes

Mo Filter Mylar (CHO) Filter

7 Chlorin * 200 Chlorin
)
L
g i
(=]
=

3 60 T

3 7 50 200
100 1000
Silico Silico
z " n
L
3 10} 1001
2 e
v
1 + 10 ¥
1 10 100 10 100 1000
Experiment (c/s) Experiment (c/s)
+}s cENERAL ATOMICS

Modifications to XRFer Program Allow for Modeling of Muiti-
Layered Flat Films

improves ability to measure doped, multi-layered, flat-film ICF components

Significantly improves ease in calibration of the XRF spectrometer
— many elements are available as pure, thin-film foils

Resulted in the ability to determine the approximate (10%) XRFer Count
Multiplier factor (CM) for all elements from Si to Sn (At # 14-50)

— CM is a constant utilzed by XRFer to set the measured cps equal
to the calculated cps - each element has a unique CM factor

o:o CENERAL ATOMICS
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XRFer Agrees with Experimental Foil Data

10000 — T T

Mo Ko x-rays (cps)

000 LS

8000 St

7000 =t
6000 -
5000
4000
3000
2000
1000

0 += S
0 5 10 15 20 25 30 35 40

Mo Foil (um)

.|+ Experiment:-:-
Z|® XRFer :

0‘0 GENERAL ATOMICS

XRFer Count Multiplier Factor for All Elements from Silicon to Tin

XRFer Count Multiptier (/{E5)

Atomic # Vs Count Multiplier Factor

10 20 30 40 5o 60
Atomic Number

020 GENERAL ATOMICS
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XRF Generally Compares Well to Other Techniques

% Difference Relative to XRF

Doped GDP Capsule *RBS *Combustion
Si <10% <10%
Ti <30% **NSM
Ge <20% <10%
Cl ~100% <10%
* Dr. David Harding (LLE)
b Desert Analytics (Tucson AZ)
e Not successfully measured
+{> cEnERAL ATOMICS

XRF Calibration with Standards and XRFer

XRFer models the tube spectrum, absorption phenomena, and geometry
- for both multi-layered Spherical and Flat Film geometries
- and is suited for gas filled capsules as well

XRFer is written for Power Mac and is relatively easy to use

Addition of Flat Film capabilities allowed calibration by interpolation for
all elements from Sito Sn

XRF results via XRFer compare favorably with other analytical
techniques

ozo CENERAL ATOMICS
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Target Fabrication

A REVIEW OF CURRENT TARGET FABRICATION
ACTIVITIES AT AW.E AS RELATED TO THE CURRENT
EXPERIMENTAL PROGRAMME ON THE HELEN LASER

F B Lewis
Plasma Experimental division
Radiation Physics Department
Atomic Weapons Establishment
UK

Presented at the Twelfth Target fabrication Specialists meeting
Jackson Hole Wyoming April 20 - 24th 1998

UK Attendees
Barrie Lewis AWE
Tony Tyrrell AWE
Colin Horsfield AWE
Wigen Nazarov Dundee University

Bob Keatch Dundee University
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EXPERIMENTAL PROGRAMME AREAS @lﬂ
I NVO LV' N G TARG ET FA\B RI CATI O N Targat Fabrlcatla

EQUATION of STATE.

MIX INSTABILITY _

SPALL

RADIATION FLOW

HOMLRAUM DESIGN / CHARACTERISATION
IDIAGNO'Q'I_'IQ DEVELOPMENT

CAFSULE / CYLINDER  INPLOSION

Non LTE STUDIES

() .
134

Equation Of State :

Equation of State

Dimensional accuracy
Density

Range of Materials
Aluminium
Copper
Gold
Polymers

* Alloys
Programme SpPCIf ¢ materials and simulants
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SERAWE

Mix / Instability

Mix / Instability

* R M mix in low density foams
* Ablation Front Instability
Foam characterisation

Density / Uniformity - radiography

* ' Composition - EDX analysis
3
POLYMER EDX ANALYSIS
Carbon " Chlorine Fluoring Oxygen Sulphur
Presumed | Measured | Presumed | Measured | P d | Measured | Presumed | Measured | Presumed | Measured
Parylene C 73 80.72 27 19.28
73 80.22 27 19.78
Parylene C 73 80.15 27 10.85
dimer 73 ] 78.94 27 21.08
- Parylene D 575 74.76. 425 25.24
i ' 51.5 74.37 425 25.63
. Saran 317 81.25 68.3 18.75
b 317 80.89 8.3 19.11
o L PVC . 40 - 66.82 60 33.18
s L 40 81.42 60 38.58 :
Lexan 80 80.31 ) 20 19.69
30 80.22 : 20 19.78
Poly(phenylene 69.2 7745 - 308 2255
sulphide) 69.2 76.79 30.8 23.21
PTFE 24 22.76 76 . 77.04
24 22.12 76 77.88
: 107 '
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POLYMER EDX ANALYSIS

{)
m.r

Target Fabrication

! Presumed element percent / measured element percent

. 100 - T - g e A N
; .
[ o} S R
. 801 - N . S " - :
f' : v :
P e et , , , o
LB 1 : / : I ot
} 860 |- - - ’ H : & Chioane :
2 -~ | : [ o ongen
: _§5° U SR e | I )
: % i .. Fluonne :i
15420 ~i-— - s eee m —— - |1 @ Polystyrenei;
DB ! 1 . ' I yx
‘ 2 - . 3 Ll 1
o= + = b Rendai
p-o] “"":‘ ‘_"_'Z'ET‘_ e A I - .
10 e e -
o
o} 10 20 0 L) 50 &0 70 80 0 100
Presumed element percent
P ME .
oLY R EDX ANALYSIS Tarqget Fabrication
Carbon Chlorine Oxygen Sulphur
Predicted Measured Predicted M d | -Predicted Measured Predicted Measured
TMPTA + 3% 63.24 68.95 3.54 2.98 33.22 30.08
chlorine 63.24 67.8 3.54 3.41 33.22 28.79
TMPTA + 6% 61.3 68.68 7.02 8.17 3168 2515
chlorine 61.3 £6.88 7.02 7.48 31.68 25.66
TMPTA + 9% 59.39 65.15 10.44 9.72 30.03 25.13
chiorine 59.39 85.76 10.44 9.89 30.03 24.35
Poly(4- 73 75.88 27 24.14
chlorostyrene) 73 73.35 27 26.65
Mylar 85.2 85.88 348 34.12
65.2 85.82 34.8 34.18
TMPTA 85.2 68.56 348 33.44
85.2 66.84 34.8 33.36
Polysulphone. 77.14 78.19 15.24 14.99 7.62 6.81
77.14 78.05 15.24 15.79 7.62 6.15
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POLYMER EDX ANALYSIS

e

Target Fabrication
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207 g

Capsule / Cylinder Implosion

Capsule / Cylinder Implosion

Capsule Manufacture

Coatings

Hohiraum Interface

Characterisation
Density / Uniformity - radiography
Composition . EDXanalysis

*  Joints/Defects

, o . "’0\ Y St
Huming-z712  HELEN groove experiments L “~

-

e Code predictions of perturbed radiation-hydrodynamics can vary significantly

- fundamental tests required.
- link to cylinder experiments.

vicw :

vary 8x

X-rays

Sx=5um

100um
——
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Typical dimensional requirements for the micromachined groove

50p

o ranges from 0 to 20pm
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UNCILASSIFIED . SIM/L6Y/ 4

UNCLASSIFIED

& Laser Scanning Microscope Profiles

=4

:Bk—A:E

UNCLASSIFIED SIM/160/3
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UNCLAMSIFIED

A

2\374!"5 HELEN Replacement Laser

UNCLASSIFIED
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SchaFar

Techniques for Making Patterned
Flat Film Targets

Tom Walsh, Thom Bahrs, Sue Carter,
Scott Faulk, Charles Hendricks,
Brian Motta, Katie Strube

‘Schafer Corporation

Specifications

Square Wave

e Step-Ramp

Randomly Roughened
 Sine Wave |
Sin(x) Sin(y)

A sin(k;x) + A, sin(¢p+k,x)

41798 3.03 PM Pantemed Flat Film Targets
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Specifications
* Amplitude is Wavelength
measured between the 7 /3 D aealve
lowest and highest g
points on the pattern. |

* Wavelength is the
length of the repeating
part of the pattern.

* Thickness is measured
at the thinnest point.

4/¥798 3 03 PM Pattemned Flat Film Targets 5

Casting Techniques

e Early patterned
molds were '
machined in copper. |

 Surface degrades
with use and over
time.

e Unusable after a
few castings.

4/17/98 3:03 PM Panterned Flat Film Targets 6
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* Gold coating on
copper keeps surface
chemically clean.

* Surface degrades
physically with use.

/17198 3.03 PM . Pattened Flat Film Targets 7

* Best results with fused
silica molds.

e Surface does not
degrade.

* Polystyrene lifts
easily.

« Expensive (~$4K-$5K
each)

Patterned Flat Film Targets 10
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Specitying New Patterns

* Double Pass Etching s
is not straightforward.

e Cannot add material i a, W

urface Height (mkrons)
|4

back onto substrate. e T T
— Usually phase shiftsin ; YA AS
etching functions can £ ~f / /
result in proper target  ° k/ . \J
pattern. —— " e T
&chater

Specifying New Patterns

o Two-pass etching for e Speitvorpuen
‘complex pattern
presents problems: _ |
— Etching start point e e T

Actual Mold Pattern with 10 micron Error

Paticrn Mcight (microns)

~05}

(Phase) T
1 ot
— Angle between etching £ M/
directions £t 1
= Acutal e
— Speaified
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Los Alamos, New Mexico, U.S.A LA-UR-98-1325
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ABSTRACT

Hollow spherical targets are frequently fabricated by the joining of two adhesive bonded hemispheres.
Other items used in the ICF arena are also bonded using adhesives, these items are made of aluminum,
stainless steel, sapphire, and various plastics.

This paper presents the physical testing results of Dexter-Hysol EA9330. The base metals were either an
aluminum 6061-T6 or beryllium S200D. The uniaxial tensile (from room to liquid helium temperatures),
lap shear, and creep properties of the adhesive under consideration were evaluated. We found that the
highest lap shear strength was obtained when the test panel was assembled with fresh adhesive (time =
0 min.) and degraded to about 77% of that value in 120 minutes. Butt tensile strength increased from
about 8 kpsi (kpsi=1000lbs/in?) at room temperature to about 19 kpsi at -269°C for both the aluminum and
beryllium base metals. The lap shear strength decreased from about 5 kpsi at room temperature to about
3 kpsi at cryogenic temperatures. Creep tests in both butt tensile and lap shear configurations
demonstrated a very narrow stress level for which the time to failure decreased from over 720 hours to
less than 20.

Finally, the surface treatment is critical to achieving the highest strength adhesive bonds. Some
inconclusive but interesting test data is presented opening the way for further investigation.

INTRODUCTION

ICF experiments require spherical targets that are frequently fabricated by the joining of two
hemispheres. One method for the joining of these hemispheres is adhesive bonding. Cryogenic
experimental capsules and various associated apparatus have used adhesive in their construction.

We selected several adhesives for preliminary testing and based on these results choose the epoxy
adhesive Dexter-Hysol EA9330 for further testing.

The physical testing consisted of butt tensile tests, lap shear tests, creep tests, and time assembly tests

on lap shear samples. The substrate materials involved in the reported tests are Aluminum 6061-T6 and

Beryllium $200. Fill tubes, Be hemi-shells, Al hemi-shells, plastic hemi-shells, and other assembled parts
have successfully used this adhesive at various temperatures.

A small study of degreasing solvents is also covered. The results of stress relieving Be and its effect on
adhesive strength is also addressed.
MATERIALS AND METHODS

Aluminum alloy 6061 in the T-6 condition was obtained from a commercial vendor. The lap shear panels'
were bonded in a lap shear bonding fixture. The panels are 0.62” thick 4” wide and 77 long. This fixture
controls overlap to 0.5” and maintains a uniform fillet. This fixture also controls panel alignment. The
applied pressure is controlled with calibrated springs. The lap shear samples were cut from single panels.
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Wire electron discharge machining, was used to insure that no damage was created on the cut edges of
the 1”7 wide samples.

Beryllium grade S200D was obtained from Brush Wellman. Butt tensile samples were made from both
beryllium and aluminum having a configuration of right cylinders 2” long and a 1.128 “ diameter. They
were bonded in a fixture having a Teflon lined bore of 1.30° diameter and a 3" depth. This fixture
minimizes the effects of a non-uniform fillet and maximizes the sample-to-bond orthogonality. A
Gravitationally Controlled Pressure Application Device (GCPAD) applies pressure. Lap shear and butt
tensile tests were conducted on an physical testing machine (Instron Corp. Canton Mass.) at a
displacement rate of approximately 0.003 in./min.

In addition to studying the role of the substrate and testing configuration, the influence of various other
parameters was also examined. Lap shear and butt tensile specimens were tested at three
temperatures: room temperature (21°C), liquid nitrogen (-196°C) and liquid helium (-269°C). The effect of
lag time between preparation of the adhesive and joining of the assembly was also examined. Adhesive
was prepared, and 0, 15, 60, 90, or 120 minutes was allowed to lapse before the test panel was
assembled. Creep tests were performed on Al 6061 in both the lap shear and the butt tensile
configurations. Butt tensile samples were tested at the stress levels (as a percent of the ultimate stress
attained at room temperature with no lag time) ranging from ~45% to 51.5%, while the lap shear
specimens were tested at levels of 65% and below. These tests were conducted to a time at which either
the sample failed or 720 hours had passed whichever came first. Finally, the effect of surface
preparation for both the Al 6061 and the Be S200D was examined and is detailed below. Briefly, three
degreasing solvents, Borothene (contains halogenated hydrocarbon, Chemical Design Inc. Cleveland
Ohio), trichloroethylene, and methylene chloride, were tried; additionally, the Be surface was adhesively
joined in either the as-machined or stress-relieved condition.

MATERIALS PREPARATION

The aluminum test samples were prepared by a chromic acid etch? as follows.

1. Vapor degrease in trichloroethylene (except as noted).

2. Immerse in Mitchel-Bradford MI-20 cleaner for 15 min. at 60 degrees Centigrade.

3. Rinse in demineralized water.

4. Dry at 60°C or less.

5. Immerse in an etchant (22-28% sulfuric acid, 2.2-2.8% sodium dichromate, balance water) for 10 to

15 minutes between 65° and 71°C.
6. Rinse in demineralized water until pH is neutral.
7. Dry no higher than 60°C.
The beryllium test samples were prepared as follows
1. Machine surface.

2. Stress relieve at 800°C/1 hours in high vacuum (>1x107 torr) followed by a very slow cool
(~1°C/min.).

Vapor degrease in trichloroethylene (except as noted).
Immerse in Mitchel-Bradford Mi-20 cleaner (detergent) for 15 min. at 60°C.

Rinse in demineralized water.

o 0 s w

Dried in a vacuum oven at 22" Hg and 50°degrees C.
The adhesive was prepared as follows:
1. Weigh to 0.01 of a gram at a ratio of 33 parts B to 100 parts A.
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Mix by hand vigorously for five minutes.
3. Degas in a vacuum at 22" Hg for five minutes.

4. Apply adhesive to the substrates with a metal spatula and assemble the components as quickly as
possible. (The exception is the time iap study).

5. Cure the samples with a pressure of approximately 14 psi. applied by spring or weight at 23°C for 16
hours followed by 82°C for 2 hours.
RESULTS and DISCUSSION

LAP SHEAR and BUTT TENSILE

The tests reported below are the base-line samples for this evaluation. The lap shear and butt tensile
samples had average fracture stresses of 4.57+0.41 and 8.22+0.89 kpsi, respectively.

Substrate: Al 6061-T6, Room Lap Shear Butt Tensile
temperature

ASTM Standard D1002 D897

No. of Samples 14 10

Average Fracture Stress (kpsi) 4.57 8.22

Standard Deviation (kpsi) 0.41 0.89

LAP SHEAR TIME STUDY

The effects of lag time between the adhesive preparation and the test panel assembly are shown in
Figure 1. The fracture stress (right axis) and the normalized strength (as a percent of the strength
measured at time=0 minutes, left axis) are plotted against the elapsed time. The fracture strength had a
maximum of about 4.57 kpsi at 0 minutes and decreased approximately linearly with time to 3.55 kpsi at
120 minutes; this represents degradation to about 77% of the strength at 120 minutes.

BERYLLIUM BUTT TENSILE TESTS

Adhesive bonded butt tensile strength in beryllium was tested at room temperature according to ASTM
D897°. Ten tests returned average fracture strength of 8.77 +0.50 kpsi. Some samples failed in the
beryllium rather than in the adhesive. The difference between the fracture stresses for the Be failure and
the adhesive failure was very small, so both values are lumped together and used as a minimum
strength. The fracture in the Be can be attributed to its very brittle nature, some sharp edges acting as
stress concentration points, and poor design of the holding fixture for such a brittle material.

Although tests were attempted, lap shear data is not reported, as the samples all broke prematurely
because of the severe bending* of the single overlap sample design and the very stiff, brittle nature of Be.
A double overlap shear sample would be more appropriate for this test, but was not accomplished during
these experiments.

CREEP TESTS OF ALUMINUM 6061 AT ROOM TEMPERATURE

For both the butt tensile and lap shear tests, the stress level required to cause fracture in less than 720
hours was very narrow, Figure 2. The butt tensile samples did not fail at stress levels less than 61%
ultimate strength, but at 62% and above, the time for failure decreased precipitously. The same trend is
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true for the lap shear specimens, but the stress levels to achieve failure times of less than 720 hours was
in the range greater than 49%.

CRYOGENIC TENSILE TESTS ON BERYLLIUM AND ALUMINUM

As shown in Figure 3, butt tensile strength (left axis) increases with decreasing temperature, from about 8
kpsi at room temperature to about 19 kpsi at -269°C, for both Be S200 and Al 6061. Five beryllium
samples failed at the grips and are not included in the data. Only Al 6061 was tested in lap shear (right
axis, Figure 3); unlike butt tensile strength, lap shear strength decreases with decreasing temperature. A
maximum lap shear strength of about 5 kpsi occurs at room temperature, and it decreases to about 3

kpsi at -269°C. The design of the lap shear sample introduces a transverse peel stress. This design flaw
in the sample probably exacerbates the increased stiffness induced by cold temperature.

SURFACE PREPARATION

The goal for the adhesive is to join Be hemispheres. The components were Be S200 with an inside radius
of 1 mm and an outside radius of 3 mm. It was found, however, that in the course of qualifying joint
strength of actual targets with pressurized fill tubes, spheres were splitting at the joint at pressures of
approximately 12% of those previously attained. In examining the process variables, it was found that the
degreasing solvent was different than the one previously used. A series of Al 6061 butt tensile samples
were tested to examine these variables.

The results for the surface preparation of the aluminum samples are given in Figure 4. The results of butt
tensile test on Al 6061 whose surfaces were degreased using Borothene, trichloroethylene, or methylene
chloride. Samples prepared with Borothene are slightly lower strength than the samples prepared with
chiorinated solvents, but no statistical difference exists among the data. However, it is important to note
that the samples using Borothene as a degreaser has a significant amount of adhesive failure whereas
the other samples fail strictly in a cohesive manner.

Figure 5 shows tests performed with joined beryllium hemispheres. The hemispheres were joined with
the adhesive, a fill tube was attached, and the center was pressurized. Notably, the combination of an as-
machined surface and that using Borothene solvent yielded a very low burst strength, while the
combination of stress-relief and methylene chloride give a very high adhesive strength. In fact, the
capacity of the pressure generating device (25kpsi) was achieved for these samples and the spheres did
not burst. :

Two possible explanations exist for the dramatic increase in burst strength for the Be in Figure 5: either
the methylene chloride is a much more effective degreasing agent, or the heat treatment is somehow
altering the surface of the Be. Based on the tests done on Al (Figure 4), it appears that degreasing agent
does not appreciably affect the burst strength. What is eminently more likely is that the heat treatment is
changing the surface. Experimentally, it was observe that before the heat treatment at 800°C/1 hr. in
high vacuum, the Be parts had a dull, silver metallic luster. After heat treatment, the parts had a slight
gold tint to them, indicating the presence of beryllium oxide. Although a high vacuum was used in the
heat treatment, the extremely high affinity of beryllium for oxygen causes a thin layer of adherent oxide to
form. Evidently, this oxide surface is chemically much better suited for adhesive bonding than the
metallic beryllium surface.

CONCLUSIONS

1. The adhesive has its highest strength when the test panel is assembled as quickly as possible.

2. The time to failure for the creep tests decreases suddenly and dramatically with stress level, the
decrease happening on the order of 1% percent in the stress level for both the butt tensile and lap
shear specimens.

3. Butt tensile strength increases with decreasing temperature for both the Al 6061 and Be S200D, while
the lap shear decreases with decreasing temperature.
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4. Surface preparation is vital to joint strength; it is very likely that an oxide layer on the surface of the
beryllium after stress-relief dramatically improved the adhesion of the adhesive to the beryllium.
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Metal Thickness Distribution for Gold and Copper
Electroplated Mandrels

F.H. Elsner and J.L. Kaae
General Atomics, San Diego, California, U.S.A.

Why is plating uniformity important?

Until recently no one had investigated the thickness uniformity of the Au and Cu
electroforms produced at General Atomics for the ICF program. Upon
inspection of the metal distribution it was observed that large thickness
variations (as much as ~25% for copper and ~10% for gold) were observed along
the length of the cylinder. These variations complicate the modeling and
interpretation of the ICF experiments for which they are required, and will also
have an impact on the temperature distribution and uniformity during cryogenic
operations.

This presentation is directed at making experimentalists aware of the thickness

variations of electroformed hohlraums and to promote discussions regarding the
relative importance of metal uniformity for ICF hohlraums.
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Methods for influencing uniformity.

A number of techniques are provided in the literature and from suppliers which
can be used to influence the uniformity of the metal distribution. Some of the
commonly suggested methods include:

Selection and control of plating bath composition Plating cell geometry

Modify current density Shields

Rapid and uniform agitation Augxiliary anodes

Careful control of anode properties Robbers
Relative anode:cathode surface area Periodic reverse current
Position relative to cathode Modify mandrel geometry

Experimental observations

We have examined several techniques to determine their effect on uniformity.

In the case of copper electroforming, it was observed that a plating bath with a
lower copper sulfate concentration and higher acid concentration greatly
mmproved the thickness uniformity of the deposit.

In the case of gold electroforming, we attempted to influence the plating
distribution by modifying the geometry of the mandrel. By extending the front
LEH of the mandrel some slight improvement was obtained. We also found that
increasing the radii on the edges of the mandrel caused the distribution to
worsen considerably - a result which was the opposite of that predicted by
conventional wisdom.
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Au distribution with various LEH lengths
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Conventional wisdom is that increasing the radii of sharp edges will improve the
metal distribution. Our results demonstrated the opposite effect.
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Conclusion

Electroformed hohlraums have a nonuniform wall thickness along the cylinder
length. Experimentalists and designers should be conscious of this when
planning and interpreting experiments. I more uniform distributions are
required, some significant developmental efforts will be necessary to optimize
the plating operation.

There are a number of various techniques for controlling metal distribution
during electroplating. However, these methods are for guidance only and do not
guarantee a positive result. The optimum process conditions must be verified
empirically, and any changes in mandrel geometry will require reevaluation of
the plating procedure.
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LARGE, THICK GLASS SHELLS AS PREFORMS FOR THE
RE-BLOWING PROCESS

Wayne Miller
Fusion Group, General Atomics
P.O. Box 85608
San Diego CA  92186-5608

Recently, Nikroo' discovered that glass shells could be filled with gas and
re-passed through the vertical “tower furnace” tube and blow into even larger shells.
Larger and stronger shells are desirable for use in studying the layering of condensed D,
and DT fuel and for use in experiments in SNL’s Z driver. Ideal shells for the re-blowing
process are about 1500 pm in diameter, have wall thicknesses greater than 6 pm, and
have good concentricity. When re-blown these shells would become about 2 mm in
diameter with about a 4 pm wall thickness.

Several years ago we discovered that adding helium and water vapor to the tower - -
furnace during the gel particle to glass shell transformation would result in glass shells as
large as 1600 pm diameter but with glass walls of only several microméters thick. We
have continued this study with the objective of making shells suitable for the re-blowing
process. We will report on the relationships between the key Pprocessing parameters of
tower fumace profile, gel particle size, tower furnace atmosphere, etc., and the resulting
glass shell characteristics. -

Smaller shells can be enlarged by filling them with gas and

re-dropping them through a hot tower

P=P, —Shell filled with gas (He)

Annette Greenwood

"Enlargement of Glass and Plastic Shells to
2 mm in size"

I
I

I

!

I

ro. Tt Abbas Nikroo, David Steinman, and
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I

I

I
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\ :
O a——Enlarged shell

P=P;=1atm
f 113
rfer(PoTtl300)

neglecting surface
tension
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Goal: Shells for re-blowing, = 1500 x 6 .m, with good concentricity

Constant Glass Volume Curves
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g ®  current fimit for target-quality shells
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=
E
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3 1500

1400

1300
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We pursued several production parameters to make the shells

e Pyrolyzing the feed gel

e The temperature of the drop tower

furnace

e Water and helium partial pressures in the

drop tower furnace

e Feedgelswitha highér silicon

concentration
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Initial conclusions: move on to other parameters

® Pyrolysis is not an effective gel treatment
® The flat tower profile at 1650°C made the largest shells

® Alarger gel size was needed
m 1100 x 5 um shells were not massive enough to blow into 2 mm shells

® He and H,0 flow in the drop tower tube should be explored

0:0 GENERAL ATOMICS

Optimizing the parameters did not produce acceptable shells

Run GT980217-04 Ge!961210; 600-710pum  ProfieC 1.0 Umin. H,0; 0.06 Um He
- y e vy A
: k. Wt Ly

Run GT320217-02 G‘|961210;600-71_0um ProfileC 2.0 Umin. H,0; 0.06 Um He

Floaters (Very good ylekt) _ Floaters (Good yield)

e These shells will not re-blow into excellent shells
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I's not time to punt, but new gel compositions are worth trying

The gel used so far has the equivalent of 20% (molar) alkali oxide
m this gel has been our best all around gel for other sizes
m the “goopy-like” appearance of the large shells suggests that viscosity is low

m  at other sizes significant alkali is lost during passage through the drop tower,
increasing the viscosity

m  the more massive amount of glass as well as a shorter drop time probably
keep the alkali content high and therefore the viscosity low

Other gels in stock have equivalent alkali oxide contents 5% and 30%
m the gels with < 20% alkali oxide show make glass with lower viscosity

ozo GENERAL ATOMICS

What’s next?

Complete experiments with in-stock gel
m determine if lower alkali oxide gels will make the desired shells
m  also use duplicate gels — are gel-to-gel variations significant

Make and test “water glass” gels

m  Ebner at KMSF used water glass shells containing Na, K, and Rb (?) making
large glass shells (~1400 p.n) with very good concentricity

m if water glass gel is successful, find work-around for rapid weathering of the

glass (water glass is high in alkali; glass with high alkali concentrations
weather rapidly)

ozo GENERAL ATOMICS
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GAS HOHLRAUMS

Because NIF will require gas-filled hohiraums for several purposes, experiments are
now being done on LLNL’s Nova laser.

Gas is used for conductive cooling of sphere in the hohlraum.

Gas is used to mitigate wall motion (slow plasma blowoff).

Different gasses used in hohlraums cause a different electron density of plasma. Gas
simulates different conditions inside NIF target. .

Mixed gas or seeded gas is used because seed gasses produce X-rays of particular
energy ratios to determine plasma temperature.

The purity of the gasses are determined with a Quadrapole Mass Spectrometer.

The procedure for ensuring the pressure of the gasses at the time of shots is
accomplished with the use of the transducer/manifold assembly.

The transducer produces a voltage reading that has been calibrated to a Torr meter.
When installed in the Nova target chamber, the transducer voltage is monitored until
seconds before the shot to ensure gas pressure has remained stable.

0‘0 CENERAL ATOMICS

FILLING GAS CYLINDER

When a request for gas is received, if a cylinder of the requested gas is not in inventory
or the pressure of the cylinder is low, the cylinder is taken to the mixing/fill station
where the cylinder is connected to the gas fill manifold and filled with the requested
composition of gas.

Evacuation and purging of the manifold is necessary prior to filling cylinder to ensure
purity of gas composition.

The procedure for filling the cylinder with mixed gas is the same as for 100% pure gas
except the manifold is purged between gasses.

When using mixed gasses, the cylinder is filled by partial pressures.

Example:

If there is a request for 80% of one type of gas, 15% of another, and 5% of a third the
cylinder will be filled using the gas of the lowest percentage pressure first, then the next
highest pressure, and so forth.

The simple way to calculate the percentages of gas to mix in the cylinder is to fill the
cylinder to 1000 Torr. The calculation would be; 5% equals 50 Torr, 15% equals 150
Torr, and 80% equals 800 Torr for a total of 1000 Torr.

160 ozo GENERAL ATOMICS



FILLING THE HOHLRAUM WITH GAS

The gas cylinder is installed on the hohlraum test#ill station.

The hohlraum has been pre-tested at vacuum to ensure a sealed environment for containment of
the gas.

Itis installed on a reservoir/transducer assembly and inserted into a small vacuum chamber in the
fill system. The hohlraum is isolated from vacuum by an isolation valve. When the chamber is
pumped down and the hohlraum has been verified to be leak-tight a final time, the isolation valve
is opened slowly and the hohlraum is pumped down {equalized with vacuum chamber pressure).
When chamber and hohlraum pressures have equalized, the isolation valve is closed and gas is
applied to the manifold, then the metering valve is opened slowly to pressurize the hohlraum to
one atmosphere of pressure.

When target pressure is attained, all manifold valves are closed.

When it is assured the pressure is stable, the vacuum chamber, which has been isolated from the
hohiraum, is brought to atmosphere.

The chamber cover is removed and the valve on the hohlraumftransducer assembly is closed.

The vacuum fill line is removed from hohliraum/manifold and the hohlraum is removed
from the system.

0‘0 CENERAL ATOMICS
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Hohlraum Test Apparatus Modifications
to Accommodate High Resolution
Measurements on Thermally Shimmed
Hohlraums

J. Pipes, J. J. Sanchez and W.G. Unites

Lawrence Livermore National Laboratory
7000 East Avenue, L-481, Livermore, CA 94550

Work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore
National Laboratory under Contract W-7405-Eng-48.

High Resolution Temperature Measurements
require excellent Temperature Stability

Cryostat modifications to
improve stability

Thermal variation isolator reduces
temperature perturbations of flow cryostat

Gas lines, thermometer and heater lead
wires and are thermally anchored to shield

Active shield temperature control to
minimize radiation heat transfer

Liquid helium dewar pressure is controlled
to reduce flow variations

Metering of helium gas exhaust from
cryostat to improve temperature stability
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Thermal Variation Isolator

To achieve high resolution temperature measurements, temperature variations
inherent to flow cryostat designs must be minimized. We have developed a thermal
Isolator that will reduce the heat fluctuations to the Hohlraum. The following
pictures show the design of the isolator. The isolator consists of two finned radiator
flanges and a thin wall stainless tube connecting the two. The finned flanges do not
touch each other. Thermal transport is achieved by filling the assembly with a partial
pressure of helium. By varying the helium pressure we can control the heat
conductance. The helium gas also acts as temperature damper, effectively filtering
out small temperature variations from the cryostat.

Thermal Variation Isolator

To achieve high resolution temperature measurements, temperature variations
inherent to flow cryostat designs must be minimized. We have developed a thermal
Isolator that will reduce the heat fluctuations to the Hohlraum. The following
pictures show the design of the isolator. The isolator consists of two finned radiator
flanges and a thin wall stainless tube connecting the two. The finned flanges do not
touch each other. Thermal transport is achieved by filling the assembly with a partial
pressure of helium. By varying the helium pressure we can control the heat
conductance. The helium gas also acts as temperature damper, effectively filtering
out small temperature variations from the cryostat.
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Heat Sinking of Thermometer
and Heater Wires

To reduce external heat loading to the Cryostat and Hohlraum assembly, we have
heat sunk the thermometer and heater wires to the second stage shield which operates
at nominally 20 degrees Kelvin. The wires are sandwiched between two .005 sheets
of indium and clamped to the shield. A small lip on the clamp ensures that over
torqueing does not occur. By securing the wires in this fashion we minimize the
amount of heat that is transferred from room temperature to the cryostat first stage
and Hohlraum

Controlling Liquid Helium flow

To further maximize temperature stability we have taken the following steps:

*  Control of the pressure of the liquid helium dewar to ~1/2 PSI by means of
high accuracy bleed regulator

*  Control of the helium exults gas from the cryostat by means of a mass flow

controller
Bleed
Transfer Regulator
Line (8 PSD
' Pl

Cryostat

ﬁiﬁaﬂs}

:|

|___. l_.'.
Helium gas E
from cryostat =81_B===J

Mass flow controller . , ;
o

Hehum
Gas

I SO T
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DEPOSITS IN PAMS MANDRELS
AL GREENWOOD, B.w, MCOUILLAN, and BB, STEPHENS
General Atomics, Sap Diego, California, U.S.A.

Deposits in PAMS Mandrels

* The production of acceptable poly (o-methylstyrene) (PAMS)
mandrels has been hindered by the appearance of deposits of an
unknown material on the interior of the mandrels.

» The deposits were first discovered at the time that the number
and size of vacuoles was greatly reduced in the PAMS by the
addition of calcium chloride to the polyvinyl alcohol (PVA) solution.

® The amount and shape of the deposits have changed in the
course of many alterations in the production method which were
made to improve non-concentricity and out of round ,» and to
eliminate the deposits.

® The presence of the deposits is important because the deposits
I?ave atrace in the subsequent GDP shell which affects the optical
clarity.

* The chemical nature of the deposits has been investigated by
micro-IR. SEM analysis indicates the presence of oxygen, caicium,
and chlorine.
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2 a. Poor PAMS = Poor GDP Shells
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e Deposits are non-crystalline liquid-like forms on the interior of the shell

e Do not evaporate like water or ethanol, dissolve in water or ethanol

e EDXS analysis of PAMS shells with deposits shows Ca, Cl, 0

o PAMS deposits are not substantially affected by prolonged heating at 60°C in
vacuum or heating at 90°C in vacuum.

o Deposits in PAMS shells cause defects in GDP shells

¢ Affects optical clarity
» Caand Cl have been detected in GDP shells made from PAMS with deposits

2b. SEM of Deposits




3 a. Improved PAMS = Improved GDP

The improvement in the PAMS shells can be attributed to:
1. Use of PTFE filters rather than PVDF filters

2. Removal of the fluorobenzene from the 01

Future work will clarify the role each of these plays

3b. Other Improvements to the PAMS Mandrels

Reprecipitation of PAMS:

Removes impurities from the poly (a-methylstyrene) which may have
contaminated the resulting GDP shell and decreases vacuoles

Distillation of fluorobenzene:

Removes impurities from the fluorobenzene which may affect the
mandrel formation and later pyrolysis and contaminate the GDP shell

Replacement of calcium chloride with ammonium chloride:

Assures the complete removal of the salt upon pyrolysis
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Possible Sources of Deposits

W1 >>
01 >> ———

O1 Impurities in PAMS

Impurities in fluorobenzene
Filtration of PAMS/fluorobenzene
solution

W2 PVA or impurities in the PVA

Plasticisers from the tubing
CaCls added to the curing solution

W2 Impurities in the deionized water

<< W2

W1 . Deionized water 01: 11 Wt% (PAMS) W2: 02 Wt%: PVA in
in fluorobenzene deionized water

Does Purification of PAMS Prevent Deposits?

Purification of Poly (o—Methylstyrene):

As-received PAMS is dissolved in toluene (reagent grade)
Filtered through 10 uum filter followed by 0.8 um filter
Reprecipitated with ethanol (reagent grade)

Rinsed with ethanol

Vacuum dried at40°C

This procedure should remove compounds such as lithium methoxide and

lithium hydroxide associated with the original PAMS production.
The presence of lithium in the final GDP shell may result in inaccurate
information when the shell is used.
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6.  Are Impurities in the Fluorobenzene the Cause of Deposits?

Distillation of Fluorobenzene:

o Fluorobenzene as available from the manufacturer js 99% pure »

U Evaporation of fluorobenzene leaves a residue, even after 300°C exposure
e EDX analysis of residue shows Ca,Cl,K

. When fluorobenzene was distilled a dark liquid remained

Use of distilled fluorobenzene did not eliminate the deposits

7. Does the Filtration of 01 Influence Deposits?

Filtration of PAMS/Fluorobenzene solution:

After dissolving the reprecipated PAMS in the fluorobenzene the solution
is filtered through a 0.2 pm filter to remove particulate matter

When a PVDF filter was replaced by a PTFE filter the incidence of deposits was
greatly reduced !

A wetting agent in the PVDF filters may have been one of the causes of the deposit%
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8. Could Deposits Be PVA that Had Somehow Gotten into the Interior?

The outer water solution is typically 0.2 wi% PVA in water

* Micro IR analysis of water extract from PAMS shell interior and GDP
shell interior showed no PVA

101.0+

1628

T T T 4 L v ¥
3998 2939 2000 1500 1000

e Variation of the PVA concentration over a range of 0.01 to 0.2 wt% had no
effect on the occurance of deposits in the PAMS shells -

9. Is the Salt Addition to the Curing Solution Causing Deposits?

® Calcium chloride was added to the droplet generator collection beaker
to eliminate vacuoles in the PAMS shells
® SEM analysis indicates the presence of Ca,Cl, Si, and O

Job : Charsctertzaton Studies
Court 970812-1-8 IDQ70682807 (M28/97 042)
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1000~
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® Variation of the time of addition of the salt had no effect on the deposits
®Variation of the concentration of the salt had no effect on the deposits
*Replacement of CaCly with NH4ClI had no effect on deposits




10. Does Fluorobenzene in W2 Cause Deposits?

Fluorobenzene:

Typically the W2 solution was saturated with fluorobenzene to affect the curing

rate of the shells
The W2 is pumped into the droplet generater through tygon tubing Fluorobenzene in

the W2 may extract plasticizers from the tubing
When fluorobenzene was eliminated from the W1 solution there was a decrease in

the occurance of deposits

Target-Quality PAMS Batches
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PYROLYSIS IMPROVEMENTS TO THE GDP/PAMS PROCESS

David Husband, David Steinman, Abbas Nikroo, Annette Greenwood
General Atomics, San Diego

Glow discharge polymer (GDP) coating of microencapsulated poly-alpha methyl
styrene (PAMS) shells followed by pyrolysis of the PAMS leaves a uniform GDP
shell with the desired wall thickness. Additives can be more easily added to the
GDP layer. Improvements were made on the pyrolysis procedure.

The improvements include determination of:
*  GDP shrinkage to produce shells of required thickness and size
*  ‘burn time’ needed for a desired target

*  purge gas needed (depending on GDP thickness)

i * the desired temperature within the furnace

*  substrate needed to hold shells during pyrolysis

PROCESS FOR MAKING GDP SHELLS

GDP COATING PYROLYSIS
— —

PAMS shell GDP-coat PAMS shell GDP shell

Note: shrinkage of GDP
shell walls and diameter




PYROLYSIS OVEN

HEAT
000000000 N,
Shells on tray in Nitrogen flow
center of oven ~5 ml/ sec

Shells must not touch each other
or else they will stick together

Faster ramp allows overnight pyrolysis of shells
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It was found that a more aggressive temperature profile for pyrolysis did
not degrade shell quality while reducing overali pyrolysis time

This increased our efficiency tremendously




A metal grid with = 600 pm holes was used to pyrolyze
Nova shells

Metal grid containing
Nova shells

The PVA coating process for Nova shells requires thousands of GDP mandrels

The 3" diameter pyrolysis tube allows pyrolysis of over a thousand shells at a time in a
metal grid

Increasing the distance between the heat baffles produces a more uniform
temperature distribution in the pyrolysis tube

320 - - - - - v " -
: . g8 : N . . |
S S S T Sl R
L B A ‘a . :
300 -"Qaﬁ Distance
< . : ’ v between
290 : . o baffles
3 M —— 12"
5 ——
E 280
8
5 270
260
250 o
6 5 4 3 2 41 0 1 2 3 4 5 &
Distance from center, inches

Tube temperature drops more sharply away from the center as the baffles are
moved closer to the center.

A flatter temperature profile in the tube reduces the effects of errors in
positioning of shells within the tube




Shrinkage

8 %

6%

GDP Wall
Thickness

4%

2%

Shell

% Diameter

2 4

8 10
Hours at temperature (300°C)

12

Shrinkage of GDP coated PAMS shells is dependent on the

dopant in the coating

GDP type Wall Shrinkage Diameter Shrinkage
Undoped 10 % 6 %
Deuterated 10 % 6 %
Ge- Doped 4% 2%
Si-doped 0% 0%
Ti-Doped 20 % 4%

Above values are for a typical 16 hour at 300 °C pyrolysis




Using argon as the flow through gas in the pyrolysis process
results in buckling thin walled shells

Buckled
Shell

Argon permeates out of GDP shells faster than nitrogen or oxygen

y This leads to enough buckle pressure on thin walled shells to cause them to
collapse

Deformation at
contact point
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USING A CERAMIC BASE PREVENTS SHELL DEFORMATION

Ceramic base
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Physical Properties of Films Used in ICF Targets

Steve Letts, Mike Saculla, Chad Roberts, John Burman,
Evelyn Fearon, and Steve Buckley

Target Fabrication Meeting 1998 *This work was performed under the
auspices of the U.S. Department of
April 19-23, 1998 Energy by Lawrence Livermore
s National Laboratory under contract
Jackson Hole, Wyoming 0. W-7405-Eng-48.
U oty of Cald comcs
Lawrenco Livermore
National Laboratory

Physical properties of laser capsule polymers C

We have measured physical properties of target materials relevant to
target function. Changes in transmittance affect the ability to characterize
the interior of the shell and may alter radiant energy absorption of
cryogenic targets. Permeation of gas through the shell determines fill and
hold time of the capsule.

Piasma polymer is one possible coating in the depolymerizing mandrel
approach for shell preparation. Transmission changes were followed in
plasma polymer materials as a function of time to determine the rate of
free-radical oxidation. The plasma polymer is subjected to heating during
the mandrel removal step. We have measured the transmission changes
in the coating caused by heating at 310 C for 1000 minutes (16.7 h).

Methods:

— UV-Visible spectroscopy (185 to 3200 mn) to follow transmission
changes caused by heating.

— FTIR spectroscopy (7800 to 370 cm-1/ 1.3 to 27 ym) to follow free-
radical oxidation.

— Microscope photometry to follow transmission changes with time

— Helium leak detector with special temperature controlled permeation
cell to measure permeation

Helium permeation allows us to evaluate target materials for gas retention
in laser targets

PrysPrepelCFFms 041656
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Deuterated plasma polymer has high
visible transmission. (L]

17
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Heating plasma polymer reduces visible
transmission and increases IR transmission. |5
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Dy fuel layers can be laser heated through
deuterated plasma polymer shells. C]

4000 3500 3000 2500 2000 1500 1000 500 ]
Wavenumber (cm-1)

PrysPrepsiCHMS 041699

Free radicals trapped in the plasma polymer coating

react with oxygen over a several month period. L]
o0
80 1
70 ¢4
601
OH
504
o c=0
40+
— W
30+ —1day N CcD2
——5days
201 ——5 months|
101 Deuterated para-xylene
(] + + cD + + +
4000 3500 3000 2500 2000 1500 1000 500 0
Wavenumber (cm-1)
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Surface roughness RMS (nm)

The scaling of surface roughness fo CH plasma
polymer changes with precursor monomer flow. L]
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The scaling of surface roughness for CD plasma

polymer changes with organic flow rate. ]
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Oxidation of free radicals in plasma polymer causes

optical transmission in increase with time (L]
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A helium leak detector was used to measure
gas permeability through polymer films [

Helium Leak Detector ;

/Polymer film DMM DMM

RN Temperature ¢

— Sensor
Computer

I

X

Helium
Thermally Controlled lon Curren
T=300t0o 80K

T

PriysPropetCFRima 041698
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Helium permeation was measured as a function of

temperature for target polymer filrns

L
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Helium permeation is thermally activated

PhysPropsICFFims 041698
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Conclusions L
¢ Visible transmission decreases for heated
plasma polymer

* IR transmission increases with heating due
to loss of OH

e CD plasma polymers are more transmitting
than CH

¢ Visible transmission increases with time due
to the oxidation of free-radicals

IR absorbances (OH and C=0 ) increase with
time due to free-radical oxidation

PhysPropsICFFims 041693
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Polyimide coatings from AB monomers page 1

Target Fabrication Meeting 1998 Chad Roberts, Mike Saculla
April 19-23, 1998 and Steve Letts
Jackson Hole, Wyoming

*This work was performed under the auspices of
the U.S. Department of Energy by Lawrence

Unvorsy of Catdomes w Livermore National Laboratory under contract
Lawrence Livermore 2
National L aboratory no. W-7405-Eng-48.

Polyimides are traditionally synthesized from the
two step, condensation reaction of two monomers.

ﬁ A high strength capsule is kev for room temperature transport of NIF targets. &
¥ L

The chain length, n, controls the
tensile strength of polymer films
and is determined by the diamine /
dianhydride ratio. o °

Hence, the vapor pressure or o
deposition rate of the two
monomers must be perfectly

matched to allow for the formation o o
of high molecular polymer via
vapor deposition.
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Polyimide coatings from AB monomers page 2

Vapor deposition of a single monomer eliminates the

stoichiometry problem. ©C
{  +inherent Stoichiometric balance
N N OO D - Low Reactivity (Endothermic rxn)
Hy O NH,O Hy O - Few documented monomers and
4APA 3APA 4ANA polymers and VDP

Both single monomer (A-B) and clual monomer sources (A-A/
B-B) involve the same chemistry to form polyimides.

O
O - Stoichiometric balance and
mixing are critical

o O BPDA O
PMDA +More reactive {Exothermic rxn)

H2N-©- O-@-NHz HZN—Q—NHZ +Relatively large database

4,4'-ODA pPDA

A single monomer deposition system was designed and
constructed.

C]

Schematic of single monomer source
(to 10-3 torr)

heat
source

substrate
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Polyimide coatings from AB monomers page 3

Thick 3APA coatings were formed, but sublimation is a
problem during curing.

=

35 microns

AFM, 0.6 nm RMS

VDP results correlate with 3APA thermal analysis data.

100
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<] 120 2
o=}

T10 ™

——t + f £ v 0
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TEMPERATURE ('C)

M DSC: no reaction exotherm as expected
reaction appears to be endothermic

M TGA: 10-20 % residue after heating to 200-3000C
sublimation competes with polymerization process
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Polyimide coatings from AB monomers page 4

VDP & processing of 4APA & 4ANA was difficult.

TGA OF 4APA TGA OF 4ANA
100 100

5 SN~——— | &
w80+ ] 80 4
2 Q
w 604 o eo+
a o
':E 404 E 404
o (0]
w20l o 2071
= =

0 ¥ 1 L3 ) ¥ ¥ L3 : T ; T 0 L L] b ¥ Ld 3 T ] T 3 T

0 100 200 300 400 500 600 0 100 200 300 400 500 600

TEMPERATURE (oC) TEMPERATURE (cC)

DSC: broad endotherm, 178-201°C DSC: broad plateau, 175-340°C

exotherm, 382-383.C
Microscopy: no visible phase transition
up to 250.C
FTIR: Imide peaks appear

mixed transition, 347-380°C
Microscopy: no visible phase transition
up to 250.C

Powdery (frosty) coatings formed during deposition.

Novel processing was utilized to try to overcome the
problems with 3APA. ©

3APA coatings were heated

Gas phase thermal reactor was tested. in confined space.

Initial 3APA (@ (77

coating
50 °C

non-volatile

oligomers
Results: Polyimide
1. Polymerization and deposition in
heated transfer tube.
2. No coating or coating on the Results:
substrate was unreacted 3APA. 3APA coating beaded on Si substrate,flowed

to form a pool of polyimide and redeposited
on other surfaces.
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Polyimide coatings from AB monomers page S

These problems may be circumvented by using a
properly designed AB monomer.

&

New AB rnonomsr can be cyaihesi'/ed

d DMF
Toom temp
Ph~N O 120°C, KOH O
water/ 1,4-dioxane > H

This rnonornar will utilize a

novel vapor deposiiion ring closure mechanism.

H, as phase NH
LI0T —— 2
HO. o
0 ring closure
inactive monomer actlvated monomer

deposited on substrate

Summary and Future Work =

1. A single monomer solves the problem of stoichiometry or ratio matching,
2, Mixed results were observed in examining 3APA, 4APA and 4ANA.

a) A smooth, 2 micron polyimide thick film was formed from a
35 micron 3APA coating.

b) 4APA and 4ANA were difficult to vapor deposit due to premature

reaction in the source, and films could not be formed by heating
deposited coatings.

5. Attempts to engineer a solution to these problems were unsuccessful or
inconclusive.

6. New AB monomers are proposed which should alleviate these problems.
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“Controlled Testing of Thin-Walled
Capsules to Failure”

Alan Jankowski

Lawrence Livermore National Laboratory
Chemistry and Materials Science
P.O. Box 808, L-352
Livermore, CA 94551-9900

l!L- .

Target Fabrication Meeting 1998
Poster Session

19-23 April 1998
Jackson Hole, Wyoming

aff TFM'98

Objective (=

*+ A testing technique is developed to load thin-walled
spherical capsules under uniaxial tension.

*+ The load is applied under constant strain which
allows for determination of the elastic properties of
the capsule material.

~ *+ Application of load to failure produces yielding and
fracture equivalent to the loading conditions induced
by internal pressurization.

*+ The testing of several types of capsule materials are
examined including polymer and metal-composite
systems. '

aff TFI4’98
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Experimentals

L

*+ An Instron Universal
tester equipped with a
5 N (1.1Ib) cell applies

a load P in tension.

*+ The spherical sample
is bonded to pull rods

that are held-within

pin-mounted clamps.

** The stress o normal to
the shell cross-section
is P/A where the area

A=1t-(r02-ri2).

Results

* An equivalent rupture

pressure p=2c¢t/ro
can be computed at
the fracture stress os.

sample =

aff TFM’98

L

o+ A beryllium-coated polymer mandrel constitutes the
capsule which is shown in the following image(s).

1- The sample is loaded in tension under constant
strain 1o fracture in the micro-tensile test fixture.

2- The fractured capsule breaks into halves.

3- One of the capsule halves is imaged along its pole
to reveal the full cross-section area in failure.

4- A high magnification view of the coating/mandrel
indicates initial fracture at the coating surface which
then propagates uninterrupted through the mandrel.

196
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3- full cross-section
4- coating/mandrel

aff TFM'98

Summary (=

*+ A detailed materials property assessment is now
available using this testing technique which facilitates
the pressure vessel design of spherical capsules.

*+ The approach is novel in several ways.
1- complex loading is reduced to uniaxial tension
. 2-yield and fracture stresses are measureable .
3- unique contribution of substrate and coating to the
capsule behavior are quantifiable
4- post-fracture sample is accessible to analysis
ofthe failure mode
5- the test method is routine and inexpensive

*+ This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract No. W-7405-ENG-48.

afj TFM'98
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Controlling the Permeability of Shinethrough
Barriers on Inertial Fusion Targets

S. Scarantino, M. D. Wittman, and D. R. Harding

University of Rochester

Laboratory for Laser Energetics UR

LLE

Direct-drive inertial fusion targets require a metallic shinethrough barrier to prevent the laser pulse
from preheating the capsule and fuel. Typically, 1000-A-thick Al layers used at LLE serve the additional function
of retaining gas in the capsule. Cryogenic targets, however, will require highly-permeable shinethrough barriers
to allow the capsule to be pressurized prior to being cooled. This study describes coating experiments designed
to control the permeability of the shinethrough barrier for room-temperature and cryogenic capsules.

Aluminum layers were deposited onto polystyrene and glow-discharge polymer (GDP) capsules.
(Unsupported capsules were coated using a partitioned shaker pan. Following coating, they were filled with
deuterium, and the exponential time constant for gas permeating out of the capsules was measured.) The
effect of different coating conditions on the measured permeation time constants was investigated: etching
the capsules with an oxygen and/or argon plasma prior to deposition; biasing the shaker pan during the
predeposition etch and deposition; varying the sputter-source-to-substrate distance (this has a second-order
effect on the coating rate and ion-bombardment energy), using either a dc or rf (13.56-MHz) sputter discharge;
adding air to the sputter gas, and varying the power delivered to the sputter source. Additionally, time constants
were measured as a function of coating thickness.

The variables that had the most significant effect on time constants were the capsule (substrate)
material and the coating rate. Time constants for 1000-A-thick Al layers deposited simultaneously on polystyrene
and GDP capsules differed greatly: the time constants of polystyrene capsules increased marginally above
their ~3-min uncoated values, whereas GDP capsules increased to ~6h. We hypothesize that the surface energy
of the substrate and the density of the aluminum film determine the grain size and intergranular porosity of
the coating such that (Knudsen) diffusion through nanometer-scale interconnected pores is the dominant
(fast) transport mechanism. In contrast, transport through dense, small-grained metallic films is by the classical
Sievert’s (slow) permeation mechanism. The morphology of the coating on each substrate was examined using
scanning electron microscopy. These results are presented.

Silicon films were also evaluated since they may be a better shinethrough material for cryogenic
targets. A 2000-A-thick layer has an optical density of ~3 at 351 nm and is transparent in the near IR, which
will allow IR layering and optical characterization. We have demonstrated that 2000-A-thick silicon layers can
be deposited on GDP capsules with a minimal increase 25%) of the time constant compared to that of the
uncoated substrate.




Outline

Shinethrough barriers on targets serve muitiple purposes:
- Prevent preheat of the capsule and fuel
- Retain gas in the capsule for room-temperature experiments
- Remain totally permeable when filling targets for cryogenic
experiments

A sputter coater has been constructed purposely for coating targets—
both mounted and unsupported.

The coater was designed to control a large number of coating parameters
during the coating process.

Experiments have been performed to determine the coating conditions
that produce both fong and short time constants.

Preliminary results indicate that the surface energy of the substrate
and the coating rate have a major effect on the permeation time constant.

What is the mechanism for hydrogen
permeating from a coated capsule?

g

If the permeability of hydrogen through bulk Al is extrapolated
to thin Al films, the time constant for a 50-A-thick coating at 25 C
is >> 108 yr.
From Sievert’s Law, permeation of H, through the walls
of a metal capsule is

dP

T —-P; P(t) is non-exponential.

For permeation through the walis of a polymer capsule:

g «-P; P=pPyet/t

The permeation through coated capsules observed
to date has been exponential.

Tie
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The permeation rate through the shinethrough barrie
must be reproducible and controlled by way of the
coating process

i |

« OMEGA-size GDP capsules have time constants (1) for D, (DT)
diffusion of ~ 3 min.

» Room-temperature implosion experiments require6 h<t <10 h.
This is achieved by coating the capsule with 500 to 1000 A of Al

« For multiple-gas targets (i.e., D2 + He, Ne, Ar, Kr, Xe, etc.), T must
be tailored to allow each gas to be permeated within several days.
- This may requre multiple coatings and sequential fillings.

- Therefore, the permeability of sequential layers must also
be controlled.

« Cryogenic implosion experiments require T <5 min for the shinethroug
barrier—close to that of the bare shell.

e

For short time constants, the gas is leaking
through pinholes or large interconnected pores
in the aluminum

2
» Assumption: The leakage rate is proportional to the exposed area:

Tbare capsule _ 2 Areapinholes

Tcoated capsule  Ar€a capsule

* For a coated shell with
Thare capsule =3 MiN, T coated capsule= 6 h, diam=1mm:

S Areapinholes = 3x10%um?

« Therefore, there would be 150,000 0.25-pm-sized pinholes
in the capsule’s coating, or one pinhole every 5 pm2,

- This is unlikely since pinholes are not evident in SEM
and AFM images.

TS



For long time constants, gas transport through the
coating is dominated by Knudsen diffusion
ek

¢ In the absence of discrete pinholes, gas transport through
the coating is dominated by it's structure (pore size, granularity),
which affects the Knudsen diffusion of gas through pores
and surface migration of adsorbed gases on the pores’ surface.

* Asthe pore size becomes smaller than the mean free path
of a molecule, gas/surface interactions predominate.

* The mean free path is ~5 nm for hydrogen at 10 atm.

A large number of coating parameters can be controlled
using the new sputter coater
iz 3

* Vacuum conditions: deposition pressure using real-time pressure
control, gas flow rate (Ar and 0,), gas composition

* Geometry: distance between sputter head and substrate, sputter head
position (particulate cleanliness), deposition rate

Electrical conditions: rf and dc power, substrate bias, predeposition
plasma exposure

Substrate properties: substrate temperature, ion bombardment, mounted
and unmounted (bounced) shells

Coating material: conductors, dielectrics, oxides, nitrides

For long time constants, gas transport through the
coating is dominated by Knudsen diffusion
=

* The Knudsen diffusion coefficient is given by
Dk = 5700 r‘/;‘; and %‘-=-—Dxi§i )

dx
where r = poreradius, T=gas temperature,
M = gas’molecular weight,
dT"ti = rate of molecules of species i passing through

surface with concentration gradient Qd%l

* Dy is independent of pressure.

* The morphology (how grains are connected, i.e., grain
boundaries) affects the Knudsen diffusion and introduces
a correction for tortuosity 6:

=Dk
Detf = )

Multiple deposition parameters
are changed simultaneously

* Large excursions in variables are made to rapidly
span the multivariable parameter space.

Deposition Parameter Trial #1 Trial #2
Background pressure 10 mTorr 50 mTorr
Power 50w 100w
Source/pan distance 20cm S5cm

* Other variables are randomized, e.g., pump-down time,
capsule batch, coating thickness (measured), etc.

Tiee



The surface energy of the substrate determines Coatings with greatly differing permeabilities
display no difference in morphology using SEM

the permeability of the coating
i 3 o

Polystyrene substrate

« GDP and polystyrene capsules were coated simultaneously.

Time Constant GDP Capsule PS Capsule
Uncoated 4.8 min ~3 min
Coated with 1000 A
of Al at 185 A/min 475h 3.3 min

2um

The more-textured film grown at a faster rate

The coating rate and number of gas-phase collisions
is less permeable than the smoother film

prior to surface adsorption determine the permeability
of the coating o
=iz 3

13 A/min
k oo

+ GDP capsules were coated with Al at two different
sputter-head positions at 100-W rf power.

Source/Pan
Separation Coating Rate Time Constant
20cm 13 A/min 24 min
5cm 185 A/min 47h

Tee

202



Silicon may be the shinethrough barrier of choice Slicon coatings exhibit a very fine grain structure
for cryogenic targets
—E

* Silicon is only one atomic number higher than aluminum.
* Optical density of ~3 at 351 nm for a 2000-A-thick layer.

* Transparent in the IR and near IR
- This will allow IR heating around 4 pm.

- Possible interferometric characterization using diode lasers
(1300 or 1550 nm) with some loss in thickness resolution.

* Low electrical conductivity at low temperatures
- This may allow joule heating.

* We have measured no reduction in permeability for GDP capsules
coated with 2000-A-thick silicon layers — 1~ 3 min.

2pm

Conclusions

First demonstration of unsupported aluminum coatings
on GDP capsules that have long time constants for
hydrogen permeation.

* First demonstration of short time constants with thick
layers (1000 A on PS) suitable for cryogenic targets.

Permeability of the shinethrough barrier depends on
the surface energy of the substrate and the coating
rate (ion energy).

* Demonstration of silicon shinethrough barriers that
do not impede gas flow.

T

203

ISP LN TN PN AT, T e ey g5 Yy



204



Helium Bubble Dynamics in D-T Layers

Bernard Kozioziemski, Gilbert Collins, James Sater, Thomas Bernat

Abstract

Beta Layering experiments show the surface roughness of D-T ice decays
with time to a minimum shortly after freezing as a result of bulk heating. As
the ice ages the surface roughness increases, coming to a steady state value
larger than the initial minimum. Helium bubbles formed within the ice from
tritium decays may be responsible for the increase in surface roughness. A
light scattering experiment is underway to measure the diffusion of helium
bubbles through the D-T ice layer and determine their contribution to the
layer roughness. :

Helium Formation And Migration €

* Atomic helium is produced in D-T at a rate of 0.015 mol % per (day . mol T)

* Atomic helium will diffuse through the ice layer to the ice surface and ,
escape into the vapor region. The concentration of atomic He in the layer
depends on the layer thickness and the He diffusion coefficient

¢ ~ G(L-x?)/D

Concentration

Fraction Of Layer Thickness

* Helium is insoluble in the D-T ice. When the concentration is high enough -
the helium precipitates as bubbles :

* Bubbles have been observed moving through the D-T ice layer

205
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Studying Bubble Formation

* We want to know the bubble growth rate ancl the speed at which they travel through the layer

* « We expect the nucleation time and diffusion constant of the bubbles depend on temperature and
atomic He concentration. The concentration can be varied by changing the layer thickess. The
concentration at the wall in steady state is given by GL%D, where G is the helium generation rate, L
is the ice thickness, and D is the atomic diffusion coefficient

» Past experiments have noted that bubbles move through the layer in a time on the order of hours
for a thickness of order several hundered microns. The bubble diffusion constant is then on the
order of 10%cm?/s. The autocorrelator device ¢can measure 107to 10°cm?/s

* Measuring the bubble diffusion coefficient allows us to see if the increase in surface roughness is
due to the bubbles breaking through the surface

» A model to connection the atomic diffusion coefficient with the nucleation time of the bubbles
needs to be investigated

« Considerable work has been done studying helium bubble formation in metals. Nucleation models
exist and serve as a starting point for application to helium in D-T

Experimental Setup.

Collection Optics

3 ; DT sample
Photomuitiplier "3 §\\
- I BN
‘\\\ ' } y 1 \ .
S~y -3 Sapphire

N Cell

Scattered Light

incident Laser

- The target cell is in a cryostat
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The bubble Brownian motion results in intensity

fluctuations of scattered light (&
Intensity
/| e
Hell —
/ .\ .//O /“;»-
° .\ ‘\\\ \\\ﬁ

Time-

* The intensity of the scattered light varies as a bubble moves through the
laser beam

* The diffusion constant set the time scale for intensity fluctuations

Detection Of Bubbles =

He bubbles in the size range of tens to hundreds of nanometers can be detected through light
scattering as they diffuse through the layer.

Rayleigh scattering is applicable for bubbles less than the wavelength of light, about 500 nm.

A laser is focused down to a small region, the scattering volume. As the bubbles move through this
volume the intensity of the light falling on the detector fluctuates in time, due to the Brownian
motion of the bubbles. The correlation time, the characteristic time it takes for the intensity to
change, depends on the diffusion constant and is given by . )
_a q is the scattering vector, set by the
T.= 2D .
q scattering geometry

A hardware correlator is able to measure the correlation time from which the diffusion constant can
be found.
G(7) ~ exp(-t/7)) is the intensity auto-correlation function

Correlation

Time

TRV VR -k P e



He Bubbles
He atoms

* Bubbles grow when He atoms diffuse into the bubble and also by sweeping
out He atoms as the bubbles move through the layer

* Bubbles will coalesce when they collide
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ULTRA DISPERSED (NANOSTRUCTURED) BERYLLIUM
V.V.Gorlevskiy, Yu.E Markushkin, V.F.Petrunin

A.A. Bochvar All-Russia Science and Research Institute for Non-Organic Materials (Russian
abbreviation VNIINM), State Scientific Center of Russian Federation, Moscow, Russia

Moscow State Engineering-Physical Institute (Technical University), (Russian abbreviation MIF),
Moscow, Russia T

Using hydride technique we worked out a production methéd for ultra-dispersed beryllium powder.
The product is so active that exothermic oxidation occurs even in the atmosphere of technical argon, whereas in
the air the temperature of its self-heating achieves white heat.

Highly porous and non-porous beryllium were made from the powders, their properties being
different from that of traditional beryllium materials [1].

The structure investigations were done by the neutron diffractometry. For subsequent structure study
the unoxidized powders and highly porous beryllium were produced at once (2 - 3 g) and then sealed in the
vanadium capsules designed for neutron diffraction analysis. A sample of melted beryllinm having hexagonal
lattice with parameters a=2.29A, c=3.58A [2] served as a standard. The measured results for domains of
coherent scattering are shown in the table 1.

1t is necessary to note that the diffraction maxima are displaced to larger angles (in comparison with
the standard). They are indicated on the basis of hexagonal elementary cell of less parameters a=2.27A;
¢=3.56A. The relative intensity of diffraction maxima changed. The coherent part (discrete maxima) of
diffraction pattern dropped essentially (1.7-fold) relative to the non-coherent background of the neutron
diffraction pattern. Simultaneous widening of Bregg’s maxima is due to the diminished domains of coherent
scattering and larger defects of the structure. .

Table 1
The results of neutron diffractometry investigation of beryllium powder [3].
Annealing temperature, C Size of coherent scattering domain, nm
unannealed sample . 17
500 22
600 23
900 25
1 1
' ot -
. - ‘1z2
_ 0092 - 7
i o1t L b
' 02 120 0183
- .
o111t
" s \.
2 1 1.t [] 1 1 1 1 -l 13 1
20° .- uge 60° 28°

Fig. 1. Neutron diffraction pattern of the porous beryllium sample ( ©=0.25 g/cm3 )

A comparison of experimental diffraction maxima intensity for high-porous beryllium with the one calculated
for standard (table 2) gave the factor of unauthenticity R=7.9%. Considering of thermal atomic oscillations
allowed for an unauthenticity factor as low as 3.6%. Provided that atoms perform isotropic harmonic
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oscillations in the points of crystalline lattice the parameters of these oscillations are defined. They are Debye-

,— 2
Waller factor B=0.79A% and mean-root-square displacements from the equilibrium state 4y~ =0. 17A.

The diffraction peaks widening gave the average size of coherent scattering domains according to the
known formula by Selyakov - Sherer [5]: L=0.94A/A cos @ (L is the average size of coherent-scattering
domains, A is physical widening of peaks in comparison with the standard, 0 is an angle of scattering). The
size of a coherent-scattering domain for highly porous beryllium was found to be (13004350)A (for powders -
170-250A), which points out the similarity of the samples with the ultra-dispersed materials. After oxidation in
the air of the same porous specimen until the oxide content reached ~6% by mass, the coherent-domain size
became 550+£95A. Thus for beryllium produced of hydride the crystalline structure was shown to differ a lot
from that of conventional polycrystalline beryllium produced by melting. The parameters of crystalline lattice
become less, whereas the mean-root-square atom displacements grew larger. Besides, the essential amount of
atoms are so far displaced from their ideal positions that they do not take part in the coherent scattering. The
investigated beryllium samples consisting of particles of 1000A sizes and less do have large specific inner
surface.

Table 2

Diffraction maxuma intensities on the neutron difractometry pattern for the highly porous beryllium and highly
porous oxidized beryllium. Experimental and calculated/  ( without thermal oscillations considered)
e b4

and]  (with account of thermal oscillations)

hkil I I - I
e 7 p
pOIous porous oxidized (standard) porous porous oxidized
0110 0.0766 0.0676 0.0649 0.0762 0.0690
0002 0.0802 0.0688 0.0716 0.0822 0.0754
0111 0.3301 0.3529 0.3021 0.3438 0.3174
0112 0.0689 0.0666 0.0616 0.0638 0.0625
1120 0.0895 ) 0.0884 0.0944 0.0944 0.0932
0113 0.1080 0.1038 0.1177 0.1045 0.1130
0220 0.0147 0.0191 0.0186 0.0161 0.0177
1122 0.1428
0.2157 0.2168 0.2064 0.2326
0221 ot 0.1055
0004 0.0162 -0.0208 0.0209 0.0166 0.0193

Tt is known that amorphous and fine-grained metals and alloys were always of special interest to
scientists and technologists. Their physical and mechanical properties may be very different from such of the
metals having “ordinary’ structure.

Up to now the minimum grain size for beryllium is 3-5 mem. This can be achieved in two ways. The
first option is in use of traditional methods of powder metallurgy, precisely in thin grinding of beryllium in the
atmosphere of argon with further hot pressing of the product {2].

The resulted metal is highly strong (70 - 80 kg/mm2 ) at zero specific elongation and contains essential
amount of oxide inclusions along the boundary of the grains.

The second option supposes using a highly pure metal of casting origin. It should undergo a complex
multi-step mechanothermal treatment, including several cycles of “extrusion-sedimentation” procedures with
intermediate annealing [4]. In this case the isotropic properties are not achieved, however, metal produced by
this technique is moldable due to the absence of oxide inclusions on the boundary of the grains [5].

Novel opportunities of producing porous and solid nanostructured beryllium are demonstrated by
“hydride technique™.

In this connection there emerged a need to study the mechanical properties of porous and non-porous
beryllium as well as to compare them with the properties of hot-pressed powders of commercial beryllium.

The strength characteristics of highly porous material were investigated [6] (Table 3).

As shown on the plots of “deformation (§ ) - stress (0 )” (Fig. 2) the material undergoes the fragile
destruction being deformed no more than 0.9%. With regard to fragile destruction the strength characteristics
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were measured in series of 3 - 8 constant-density specimens in each. Compression tests were performed on the
samples of 10-mm diameter and 15-mm height. The size of the samples for bending tests were 70x15x10 mm.
The deviations of samples density in a series were no more than 2%,

Table 3
Results of compression and bending tests for hi y porous beryllium
pyen’ | N [ oMa | 6% | ¥ | oWm] o
compression bending

0.16 3 0.6 8.8 - - -
0.18 3 1.9 7.2 - - -
0.20 5 43 5.1 - - -
0.21 4 7.1 5.5 3 1.7 14.5
0.23 4 7.6 7.8 - - -
0.25 5 16.8 7.9 3 3.7 11.8
0.27 5 22.8 9.4 - - -
0.30 8 31.0 6.3 3 54 17.6
0.32 - - - 6 9.0 11.1
0.35 5 44.3 8.1 3 11.3 5.2
0.37 8 45.4 7.2 - - -
0.40 8 47.9 7.8 4 12.3 13.6
0.45 8 48.4 11.9 - - -
0.50 5 45.2 5.8 - - -
0.53 5 46.1 10.8 - - -

Note. N is the quantity of samples in a series, & is the variation coefficient.

Fig. 2
The curves “deformation - stress” for the samples of highly porous beryllium under uniaxial

compression. Plot 1 corresponds to density 0.2 g/cm3 ,plot2-0.4 g/cm3 .

stress, MPa

60
50 e
40 Ve
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20 _ //
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/ .
o
Q0.0 0.2 0.4 0.6 0.8 1.0
" deformation,%
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The results for O ,comp are several times more than such of porous beryllium, produced by the
sintering method with powders of comparable density. For example, in materials having density of 0.26
g/cm3 the values of O, are 19.8 and 2.2 MPa comrespondingly, which means about ten-fold relation. Besides,

sintering of the ultra dispersed (UD) powder takes place at temperatures about 250 - 350 C unlike commercial

powders that are sintered at temperatures 1000 - 1100 C. The cellular-structure material is then formed, the cell
sizes ranging from 0.1 till 40 mem in dependence on density. The walls between cells are no more than 1 mem
[6}. -

Fig. 3
Microstructure of porous beryllium ( £ =0.26 g/cm3 )
x5000

The structural elements of cell walls are not seen because of nanocrystal beryllium structure, which
proves the neutron diffractometry results.” ~

We produced also the samples having porosity of 5, 10, 30%.

By means of hydrostatic weighing in decane the porosity was shown to be completely open.

For the sample of 30% porosity the dependence of argon permeability was measured via its pressure
both on the dry sample and on the sample wetted in decane (sample square being 1.71cm? )-
The results of visual observation of gas penetrating through the wetted specimen are presented in the table 4.

Table 4
Observation of argon penetration through the wetted sample

Pressure, MPa 0.21 0.23 0.25 0.40
Bubble quantity 2 5 15 Bubbles 2 mm

apart
Calculated pore 0.47 0.44 0.40 0.25
diameter, mem
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Fig. 4.
Argon permeability in dependence on gas pressure.

permeability
0.30 5
E /r
0.25 E 1/
0.20 ] /
-0.15 3 //
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‘0.10 3 7
3 b.
0.05 3 T /
0.00 Hrrrrtrerrer T .

pressure, MPa

It can be seen from Fig. 4 that at 0.8 MPa pressure with corresponding pore diameter of 0.13 mem,
the flow through the wetted sample is about 50% of that through the dry sample. This means that about half of
the flow passes through the pores of diameters no more that 0.13 mem. Permeability of the material grows with
pressure from 1.47-107' at 0.2 MPa t0 2.35- 107 at 0.8 MPa,

Through the wetted samples having porosity of 5 and 10 % at 0.8 MPa gas is not allowed.
Consequently the maximum pore size can be estimated less than 0.13 mem.

The primary results on solid beryllium are measured.

The samples were done by the iso-static pressing of ultra-dispersed powder at 350-600 C.

The thermal microstresses measured by X-ray technique indicate the value of ~25 kg/mm 2 forall the samples

studied. At the same time the microhardness lies within the range 470 up to 710 kg/mm2 depending on
temperature-temporal conditions of compacfification.

The dependence of microhardness of samples via annealing temperature is studied. Annealing was
carried out during four hours. The results are shown in table 5 and F ig. 5.

Table 5
Microhardness of beryllium samples after four-hour annealing

T.C Microhardness, kg/mm2
300 622
500 620
600 585
650 552
700 504
800 398
900 335
1000 243
1200 198
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Fig. 5
Nanoberyllium microhardness via annealing temperature
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temperature, C

So the drop of microhardness begins at the temperatures higher than 500 C, in the same region a
slight crystal growth occurs. The samples after annealing at 1000 C had crystal sizes less than 1 mem.

Thus the preliminary investigations of nanoberyllium properties demonstrate their difference from the
properties of traditional beryllium materials. The data obtained encourage to use micro-crystalline, and
especially low-porous beryllium for microcapsule fabrication.

. -
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Abstract

We are currently investigating novel approaches of filling Be shells for the ICF
and HEDP programs. One method involves placing a small Pd plug in the shell.
Pd transports hydrogen very well at elevated temperatures but does not transport
it at low temperatures. Therefore, a Be shell with Pd could be filled at high
temperatures and the load would not leak out once the temperature is reduced.
The first step of this approach is to determine the permeation properties of Be
with a Pd plug. Be discs 240 um thick were fabricated with a 1 mm hole. These
holes were then filled with Pd metal. The discs had no leaks at room temperature
or at 300°C. The testing was conducted at 300°C and at a maxim pressure of 40
psig of H,. The disc was placed in front of a mass spectrometer to obtain a flow
rate. The spectrometer response was standardized with a calibrated leak. The
estimated flow rate through this Pd plug was 0.15 sccm @300°C and 40 psig.
This rate should double if a Pd/Ag plug is used. It will also increase as the
thickness of the plug decreases. Higher flows can also be obtained at higher
temperatures and pressures. To find the rate under other pressure conditions we
canuse Q = J(Pf* -Pp S)/1. Other transport studies were conducted on layered
Pd/Be systems. These results will also be presented.
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important in h dlrogen transport.

% There are at least two processes that are
i 3
-

(1) Hydrogen adsorption and dissociation
H, 2H,,

(2) Diffusion into and through the bulk
HAd HMetal

If (1) dominates, flow is a linear function of the
pressure differential.

If (2) dominates, flow is a linear function of the
differential of the square root of pressure.

Manerials Science and Technology

membrane is governed by Sievert’s Law.

% For the Pd plugs, the H, flow rate through the
Ao

0 =(5)- (7 - TP}

Qy,: Flow rate (cm3/min)

J: Permeability (cm?/(min torr%-)
I: Membrane Thickness (cm)

P;: Feed Pressure (torr)

P,: Permeate Pressure  (torr)
A: Membrane Area (cm?)

Matertats Scicitee 2 fechnotogy
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"4 Under most pressures, H, transport through

3 3 . s
>, Pd follows Seivert’s Law

o S0sccmMAd |
® 50 scom MFM

Muaterials Science and echnolomn

\u“""u%

, The membrane seal is made by a VCR
; fitting.

1/8” O.D. Stainless Steel Tubing with VCR Glands

L o]

" L — \
1/8” VCR-Female l —  1/8” VCR-Male
Be/Pd Disc Sealed with Ni washers

Materials Saence and Fedhnolo gy
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%g Medium magnification of uncoated Be surface
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T, o
3@3 High magnification of uncoated Be surface
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%g High magnification of Pd coated Be surface
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5{%“ Hydrogen Flow Through Be
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We calculated fill times for NIF capsules
based on our data

fw“*u%
@
o

* For aPdplug 10 ym in ?ie;l llz)re:ms}li;edv;;j;s time
diameter with a 1000 atm - ‘
exterior pressure of DT, -
the fill times are about e b Al
80 h for a NIF ignition | o
capsule (see graph) § ® o
» ForaBeshell coated with 2 [ .-~
Pd inside and out, the fill I .
times are much quicker, ~ "7 teepam
3h (T=200C)
Fill conditions:
P~ 1000 Atm; T=300C
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1. Be discs with Pd plugs follow Sievert’s Law for flow rates.

2. Be with the top layer coated with Pd shows no measurable
flows.

3. Be coated on both sides showed a flow rate of 0.069 sccm/cm’
@ 20 psig and 200° C.

4. Further work is needed on temperature and pressure parameters.

5. Studies are needed on flow rates through polymer layers.

Materials Science and Technology
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FABRICATION AND TRITIUM ANALYSIS OF
TRITIUM SUBSTITUTED GDP TARGETS*

Target Fabrication Specialists Meeting
April, 1998

A. Nobile and J.W. Hughes
Tritium Science and Engineering Group
Los Alamos National Laboratory, Los Alamos, N.M.

Los Alamos

Capability is being developed to synthesize and
analyze tritium-substituted plastic targets to serve
as surrogate cryogenic targets for OMEGA

* Tritium in plastic can be substituted for deuterium by UV
irradiation in the presence of tritium gas:

CDD + T2h—> CDT + DT
\

* Capabijlities for synthesizing tritium substituted targets has
been installed, and initial testing started

* Goal is to produce targets with close to 50/50 DT in the
polymer molecule

Los Alamos
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Experimental details

Target tritium exposure:

— Targets are contained in a quariz cell capable of safely containing
tritium at pressures of 200 psia or lower

— Quartz cell is positioned within a coiled mercury vapor lamp that
surrounds the quartz cell in a cylindrical manner

— Purified high pressure tritium is supplied to and held in the quartz cell
during UV irradiation of targets

Analysis of tritium in targets

— Individual targets are placed on a platinum foil and burned in flowing air

— Air flowing over target is bubbled through ethylene glycol to dissolve
water vapor from target combustion

— Ethylene glycol is scintillation counted to determine tritium
concentration

— Tritium concentration in the glycol is used to calculate tritium content of
the target

Los Alamos

Arrangement of the target loading apparatus

200 psi
~ Rupture
Disk
T Quart
. PRt S B toading Cell
High Pressure - b;{ b-::«tinb-'v
T2 Supply - TR ll _Cooling
Fan

Pressure |
Transducer

% _ Aluminum

Enclosure

Los Alamos
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Arrangement of quartz loading cell

Los Alamos

Apparatus internal components
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Apparatus in the glovebox

Los Alamos

Targets are analyzed by combustion in air followed
by scintillation counting of collected water

PRESSURE , HIGH VOLTAGE LEADS
TRANSDUCER oy

- 3
FEMTO
TECH

ER

FUBAE HOOD
TA-21BLOG 209

VACUUM PUMP

Los Alamos
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Combustion Cell

LLos Alamos

Results from preliminary experiments

*Initial experiments were performed where targets were UV
irradiated in the presence of 1% tritium in deuterium

*Target exposure conditions:
1% T, in D,
—Pressure = 40 psia
—-UV intensity = 8-10 mW/cm? at 254 nm
—Exposure time =48 h

*Resulting tritium uptake in the targets only reached 0.5% of
theoretical equilibrium

*Lamp intensity was decreasing as a function of time during the
run

*Discoloration of targets was noticed after UV irradiation

Los Alamos
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Targets before and after UV irradiation

After lrradiation

Before lrradiation

Los Alamos
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DIRECT DRIVE LASER FUSION:

TARGET DESIGNS AND TARGET REQUIREMENTS

Presented by
J.D. Sethian
Naval Research Laboratory, Washington, DC.

People who did the work:

S.E. Bodner, D.G. Colombant, R.H. Lehmberg, S.P. Obenschain, and A.J. Schmitt
Plasma Physics Division, Naval Research Laboratory, Washington, DC.

J.H. Gardner and L.S. Phillips
Laboratory for Computational Physics, Naval Research Laboratory, Washington DG

“Direct-drive” laser fusion uses a very
simple geometry and laser pulse shape.

—@D

PELLET LASER PULSE

log (Power) )

time
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c:xampie of a pellet design with excessive
nydrodynamic instabilities.

o= | ASER

0.11
col

Experiments with optically-smoothed laser beams on
Nike & OMEGA have evaluated RT growth.

1 D
mass
modulation
plastic (CH) 0.1
~ 40 um thick
-> <-- ,
gJ. Knauer
‘et al
0.01 . L 1 4
A 0.0 1.0 2.0
750 um ! Time (ns)
Y 10 ;1111117
Nike
mass
modulation 1
60 um surface modulation 0.1
0.5 um amplitude
B P g C. Pawley
0'01 1 1 1 -1 ] 1 [ letal
-4 0 4
time (ns)
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There are now three direct-drive target concepts
that may produce ignition & high gain.

— @D
NEW ! NEW !
W coating
‘CH foam . DC‘I?foam
¥DT DT W’“””M (Ablator)
[Ablator] (Fuel) DT
£ (Fuel)
Fuel
DT DT DT
vapor vapor vapor
A. Schmitt
C. Verdon S. Bodner
URLLE & J. Gardner & J.Gardner
NRL NRL
1. DT ablator; shock preheating
(C. Verdon, URLLE, 1994)
@D

pulse shape
1 1 1 1

1000

I l DY Laser 100

Ablftor power i ]
Fuel (Tw) 10

DT
vapor

Raising laser intensity in foot of laser pulse increases strength of
first shock, raising DT isentrope.

Advantages: DT ablétor has highest rdcket effiéiency. No RT
interface instability between fuel & ablator.

Disadvantage: Fuel isentrope also raised, limiting potential gain
to below 100.
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Higher gains may be possible if the ablator can be heated while keeping the fuel cold

Lower gain due to lower density

Basic ICF physics: -
asic ILF physics: : e —_—
Preheat target (Higher Isentrope) - - —

Less susceptible to R-T growth,but... Laser- -
——-

—

Keep Target Cold (Lower Isentrope)
- In attempt to get higher gain, but target is
more susceptible to Rayleigh-Taylor Growth

Solution:
._,
. s =
Preheat the Ablator (stabilize R-T Growth) - -
Keep fuel cold (high gain) - Bz
—>

2. Low-density CH foam ablator; shock preheating
(A. Schmitt & J. Gardner, NRL, 1997)
@RD

pulse shape

1015
DCTH foam (Abiator) Lasel‘1 o't
(Fuel) ?gme)'
10'° -
DT
vapor 102 L1y
0 i0 20 30
time

Low density foam has higher isentrope than DT fuel. Double shock in
CH foam minimizes density jump at ablator-fuel interface.

Advantages: ¢ Higher yields may be applicable to fusion reactor.
Design now has gain ~ 80. Gains above 100 possible with optimization.

Disadvantages: Possible classical RT instability at ablator-fuel
interface. Foam fabrication does not currently meet requirements.
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Multi-mode implosion simulations show
acceptable laser imprinting & RT growth with ISI.

—@ED
=
nmoon 001 00z 003 s oo ok ohy . RE? - | ASER
Minimum areal mass of
shell is ~ 80% of
average areal mass. 107"
2 ] | ¥ ¥
1.5E mg/ster
mass [ ; 3 107
(mgister) "f — e R
0.5¢ :
of 1 1 t 1 10° F) )
0 0.05 0.1 0.15 0.2 0

radius (cm) time (ns)

figs. from J. Gardner

Direct-drive integrated calculations indicate that empty
foam ablator leads to successful implosion.

ISI-driven modes 1=12-96 1= 4-64

1=32-256
HEE

outer roughness

0.05 um RMS
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Foam ablator target requires smooth

foam outer surface

Inner roughness variations (DT)

2 e
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Outer roughness variations (foam)
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The foam target design is more sensitive
to outer than inner surface perturbations

Dimensions and Requirements for Shock-heated Ablator Target

CH Foam
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Membrane
<1.5um

SIRIATATSTEN

FOAM
1) < 0.1 um pore size
2) Cryogenic compatible
3) Surface ~ 0.05 um RMS
4) < 2 % sphericity (P-2 mode)
5) < 2% At
6) may not have to be CH

MEMBRANE: -,
1) < 1.5 um thick
2) LowZ ’
.- 3) Permeable to DT

DT .
1192 K
2) Inner surface < 0.5 um RMS




3. CH+DT ablator, W coating; radiation preheat
(S. Bodner, J. Gardner, NRL, 1997)
W coating D

DT+ ] (Ablator)

AN: CH foam
DT (Fuel) g

DT Tungsten recommended as near-optimum
vapor by A. Bar Shalom & M. Kiapisch
(Gold specified by J. Sethian as it is much
easier to fabricate and works just as well)
CH(DT),; provides low opacity ablator for radiative preheat. -
During foot of pulse, tungsten radiates below K-edge of carbon.

Tungsten ablates during foot of pulse, leaving mostly DT for efficient

acceleration.
No density jump between ablator and fuel. ttest designs give gain of
Very low adiabat possible for DT fuel. \108 @ 2.8 My

r
Advantages: Potential of gains in excess of 100 needed for fusion reactor

Disadvantages: ? (design still in early stage)

Calculations show Tungsten radiation penetration into CH Foam

Snapshot of target at t = 3 nsec

' ~ =0C0
H £ !I\" 2N
%r ?f"' L 500
ik sce
- 700
o 3
o ; 4~ 600
L i ; i
: - 500 2
3 st
) 9
3 §— 400
> : £ 300 .
= L 200
> £
RSN X : s, I
1T T v 1 1T > T 17 * 1
3.2 2.3 24 2.0 1.6.3 1.2 0.8 24 2.
Mass, x10 ™ g
<= |ntegrated Mass
—
= EEE§ T T T T T T T
5 -3 3 2 - 0 - 2 3 4 s
20
x107 ergs
235

" — e = gy YT ey i peosanndl
LTRSS TR T LT GULTIVNATE T YR AL T T PCRIP R A i s’ - S



Dimensions and Requirements for Radiation-heated Ablator Target

Membrane
<1.5um -

CH Foam (.03g/cc). || FOAM

+ DT (.25 g/cce) - 1) < 0.1 um pore size

2) Cryogenic compatible

3) < 2 % sphericity (P-2 mode)
4) < 2% At

5) must be CH

MEMBRANE:
1) < 1.5 um thick
- 2) LowZ -
.3) Permeable to DT
4) 5% W (or Au) by weight
either doped or in layer

DT
1) 192 K
2) Inner surface < 0.5 um RMS

SUMMARY:
We have two promising designs to achieve high gain with direct drive

Both based on principle of heating the ablator while keeping fuel cold

1) Shock heated ablator: Gains up to 110,
a) Design looks good
b) Target fabrication requires smooth foam
c) Possibility to go to existing foams (l.e. Aerogels)
d) Internal membrane may be an issue

2) Radiation Heated Ablator: Gains over 100
a) Still have problems with design
b) Seems easier to fabricate
¢) Need pure CH foams
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Direct-Drive Capsule Requirements for the
National Ignition Facility and OMEGA Laser Systems

LLEN

Direct-drive
requirements

The flexibility of solid-state glass lasers allows
transfer of information from OMEGA to the NIF.

P.W. McKenty Target Fabrication Meeting
University of Rochester Jackson Hole, WY
Laboratory for Laser Energetics ) 19-23 April 1998

Direct drive is an important requirement for NIF success

Strategy

_ Direct-drive cryogenic experiments on OMEGA are necessary

- to determine the /evel of beam smoothing
required on NIF for ignitions,

- to obtain quantitative mix data for cryogenic fuel
imploded on a convergent geometry

* Direct-drive implosions potentially have higher gain on the NIF
than indirect-drive (2.5 times).

« Direct-drive provides a second path to demonstrate ignition
on the NIF.
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The LLE direct-drive program will determine the
laser and capsule requirements for achieving
ignition and gain using direct drive on the NIF

e Rayleigh-Taylor instability _
. — control/reduction of linear growth rates
— understanding of saturation and weakly nonlinear regime

o Laser-irradiation smoothing techniques
— reduction of “laser imprinting”
— reduction of laser-plasma instabilities

o Power/energy balance < few % rms
« High-precision, moderate-contrast-ratio puise shaping

e Cryogenic DT capsuies
— finish requirements for all surfaces
- layer uniformity
— layer homogeneity

TC39792

Direct drive offers the potential of higher gains
(~2-3 times) on the NIF than indirect drive

UR/LLE 351-nm
direct-drive gain curves

103 ¢

Hydrodynamic and laser-plasma instability
constraints will determine the performance
102k of NIF ICF capsule implosions.

Instabilities

Target gain

101§

Direct drive Hydrodynamic Laser-plasma
Indirect drive Hydrodynamic Laser-plasma

0 _;.|‘:~: i
1090 12 14 16 18 20

Incident laser energy (MJ)
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|Sources of Implosion Nonuniformities |

Heuristically, there are four sources of perturbations a
direct-drive capsule must tolerate to ignite and burn

UR A\
LLEZ

2 2
Orm . m . -
™MSPHT ice Or Soutside capsule finish

Max allowed | © Max allowed
valuept jce

<1

valueg yisige capsule finish

= Laser-irradiation-related issues
[ Target-fabrication-related issues

Detailed numerical simulations show that these sources are not truly
independent and, therefore, must be carefully balanced/controlled.

TC4a113d

| Drive Symmetry|

A sufficient number of beams provide adequate
long-wavelength uniformity throughout the implosion

Nonuniformity
on beam profile
- 24 20 beams (f/7.9)
€ 20}
8 I
Ba b £/10.0
¢§:°\° 1.6 32 beams (f/10.0)
2 g 12|
o b‘- |
ol
5 0.8 - 60 beams (f/13.7)
35 ]
Imploding o 0.4 - 96 beams (f/17.3)
= X Focus at peak
target
oL 1 .1 1L of laser pulse
06 1.0 14 18 22

Focus ratio
(fraction of tangential focus)
ro — initial radius
re —radius at end of laser puise
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| Laser Imprint]|

Improvements in irradiation uniformity can be broken into
two steps: 1. improved individual beam profile
2. reduction in individual beam nonuniformity

UR
IIE'r‘

) Improved individual Reduction in
Original UV beam profile nonuniformity

F— 650 pm — 650 pm —
Frequency-tripled Continuous DPP
beam

E7846¢

[Advanced Capsule Design|

DT/CH foam targets have improved laser
absorption efficiency resulting in higher
capsule performance at a given laser energy

UR .

R
NIF
NIF DT & DT/CH
“all-DT design” foam design
1700 um 1670 um
<3 pn\ CH ' CH p
/133 um
345
a m\ DT DT f78um
1.5 MJ designs
D&T D&T Gain
gas gas a=~25]0=~3
All DT design ~26 | ~11
DT and

DT/CH foam ~64 | ~38

» Hydrodynamic stability is similar for both designs however
issues related to foam “perturbations” need to be addressed.
sz The OMEGA cryogenig program will examine this issue.



For relevant direct-drive ablator materials DT shows
the highest growth-rate mitigation

of v= alkg-KBV]

7 _
. 6
2 I} =50 TW/cm?
£ 5L A =351 nm
3
2 g =35 um/ns2
2 4L t >2ns

3 |-

2 Be

TC4408

For the 1.5-MJ (DT o = 3) capsule design the rms
perturbation on the inside surface of the fuel at the
time of deceleration must be below ~ 1.5 um

ULEEE\%AE
Initial NIF
;SSD concept
8 1.0 T T T T E 101 = T T T 11T T— T T1TT1Y  |aeide-
% 5 - pu surface_
£ 08| 4 = _ 7 cryogenic
= U layer
L ‘3; B 7 finish (A)
2 0.6 4 8 L 10
=] 3 0 500
: - ERL
204 1 2 F e 750-Ainitial |
Q <] = surface i
N B B perturbation |
g 0.2 - £ i — wEf-A initial
H Gain =1 g ;grtgcr:ation
20.0 : { ) { 1 | : ~ 101 Lot vrinl [N ET)
00 05 1.0 15 20 102 103 104
rms perturbation - Laser imprinting amplitude (A)

time of deceleration (um)
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| Target Physics Program|

The development of hydrodynamic instabilities
during a direct-drive capsule implosion can be

broken into four stages
UB*
LLE7N
1. Laser-plasma interaction
and imprinting
103 g 1 T 2 T 3 4 2500
2. Rayleigh-Taylor, -
Richtmyer-Meshkov, [
and Secular (t2) 102 b f ~{ 2000
3. Raylefgh-Taylor g - 1500 g
4. Rayleigh-Taylor g 101 - S
S - 1000 5
100 & igh-
=/ Fantan v -| 500
imprinting |Meshkov Rayleigh-Taylor
./ Secular
10-1 — 0
0 5 10 15 20 25 30 35
TC33760 Time (ns)
Single-beam nonuniformities are reduced
by smoothing by spectral dispersion (SSD) |
. ::'EE : 't
A (um)
- 100 30 10 5 2.5
= T 1 T T
g 110x i
S \No DPP
5 4 B
c |
] L1 h
< . 1 DPP only
g s 3 ! 98% .
= X [ J
5 ax —
s L 2+ 1-D SSD
8 ~25% Film
= | sa noise |
o 1+
S A -
: l_ .
g 0 e ey e e L T L e T ;
0.0 0.5 1.0 1.5 2.0 25

EBOC8a

24%vave number (um™1)



Experimentally measured RT amplitudes are in agreement
with results from 2-D hydrodynamic simulations

UR \&
g 3
60-um 31-um 20-um
1.00 T T T E T T T 3 T T T

E ORCHID .

= F simulation ™ ¢ +4 &

- . *e ]

2 ] 1 ]

ko]

s 0.10F iF .

L ; it :

s Experimental |

O data 1
0-0 1 ] 1
10.0 0.5 1.0 1

I H 1 | 1 1
S 00 05 1.0 15 2000 05 1.0 15 2.0
Time (ns) Time (ns) Time (ns)

EB736

We are probing the hot-spot and main-fuel-layer regions
using a series of Ar and Ti-doped targets

EEE*
“Standard” - Cl-doped Ablator
CH 6-um Cl-doped CH

‘ Ti-doped CH B
20 um (1%~4%) 20 um

Variable CH
(0~5 um)

440 um 20 atm D,
0.25% Ar

¢ 30 kJ, 60 beams, 1-ns square, and 1-ns Gaussian

* Both targets have a 1000-A overcoat as a shinethrough
barrier/gas retention layer. :
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JL.OS ALAMOS OMEGA TARGETS: Direct
{Drive Cylinders and Tetrahedral Hohlraums

P.L. Gobby, H. Bush, Jr., J. E. Moore, V. G.
Gomez, S. Dropinski, K. Gifford, R.
Manzanares, G. Rivera, N. E. Elliott, C.W.
Barnes, D. Tubbs, T. J. Murphy, and K. Klare.

Los Alamos National Laboratory

e o~ “n el o e,

§ Twonew targets takeadvantageof “
~ Omega’s special properties.

B m Tetrahedral - m Direct drive

2  hohlraums use all 60 cylinders use

H Omega beams, where - Omega’s smooth

— Nova style cylindrical beams for

= hohlraums cannot. A  hydrodynamic

m more symmetrical - instability studies.

. radiation drive is Cylinders are

; expected. - - - inherently easier to

R w Work supported by the - diagnosethan are .
U.S. Department of spheres.. =~ 7

1Bnergsnmder contract

number W7405-ENG36.
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B . hedral hohlraums™ are spherical hohlraums®= =~ “ -
atetrahedral arrangement of Iaser entrance holes ‘

BE -

ldeally, Yz? is the lowest-order mode in the flux
. .asymmetry, and a hohiraum smooths higher

réis no P; in this geometry Ph;‘::;n & Pf'gggg’(sgg:)‘
mas 1, 3

1 tetrahedral hohlraum:
B00 um diameter; same surface area as
B-ale-1 Nova hohiraum

trahedral hohlraum campaign has already motwated'
3-D v:suahzatlon tools and simulation methods

Beam pointing dictated
by geometry:

¢ Don't hit the LEH

W ¢ Don’tpass through
¥ - another LEH

» Don't hit the capsule

« Keep the intensity
near desired levels
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Mountmg of the capsule requlres the
hohlraum to be split at the. equator. |
| We considered two ways of doing this.
i M

o arren

Equator is in the i)léne of the slide. \

Los Alamos Our Choice

Guaranteemg that all 60 Omega l:j'
beams are “‘on target” isa challenge. /

‘m LEH’s are not an inherent part
. | y

o "~ of the mandrel.

= " m Hohlraum halves distort when

H * removed from the mandrel. EEEE
= ® Assembly station precision 1s !

n about 20 microns. :

= Tetrahedral hohlraum is not -
H mounted “square” in the
Omega target chamber.
Resulting final LEH positions
were in error by as much as 50 ‘ o
“microns. - S




E efnrst campaxgn tetrahedrenl hohlraums ylelded ‘
gular lmplosmn lmages B N

30 kd
» Standard capsule
« Scale-1 tetrahedral
hohiraum

. ller LEHs, and a dlfferent pulse ylelded round
osions. ‘ S

March 1997 ° ' August 1997

Scale-1.2
700 um diam LEHs
PS 22
‘éAnalys:s of data implies 3.6% Analysis of data implies 1%
2as flux asymmetry in Yz rms flux asymmetry in Y22
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Precision Machining =

AL y

0 B . " L

~ ® Turning operations were conducted ona
Moore M-18 with 1 mlcro-mch
resolution.

= A fast tool servo - made for us by PEC at
NC State - was used to produce all the
azimuthal perturbations on the direct
drive cylinder. It served as a “third axis”
on the M18.

I 8 T O O O O O I 4
IR e h
> ot ;. B
o) ¥ -

Los Alamos

Fabncatmn of the cyhnders reqmres 3
machining and 3 coating steps. ’

"

o

- # Turn aluminum
mandrel.

m Dip coat with CI-PS,
anneal and machine to 4
micron thickness.

m Parylene coat to 1.5
- microns.
-1 m Dip coat with PS, anneal,
i machine final
‘dimensions and anneal
- again.

Los Alamos




The fabrlcatmn pr«ocedure resulted m
round cylmders Wlth umform walls. E

‘i-"'ll oy g

»—,.,i.. . L
l » PR u I

] -

® 900 micron diameter
= 20 micron wall .

m Wall uniformity is
determined by
precision of
re-centering, = 0.25
micron.

Los Alamos

Direct Drive Cylinders

=

- m 60 mg/cc Polystyrene
] .

= m 2-3 micron cells

= m Backfilled with Brij,
= machined and

= leached with

u methanol.

Los Alamos
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m Titanium/Be
" Backlighter

m 0.05 mici‘on Al
m XYZ Fidu

m Pb-CH Shield\‘

n Azimuthal Fidu

Los Alamos

Outstandmg radxograpmc 1mages obtamed of symmetnc cyhndncal

. Qsmg)m sipns ysing direct drive on OMEGA

gml' cation using Jeaded-

ic aperture of 750um ID

) (:md 15004tm OD) and “-sene
. XR!-C4 (FXI-like camera).
Both perturbed (m=28, 1.5um
initial sinusoidal amplitude)
and unperturbed targets shot.
Axial implosion spike seen at
2.8-3.0nsce.
2.5nsce linear ramp pulse

" provides ~1.5ns of suitablc

backlighter intensity.

: mes” caused by

Y rbauons along entire

Ao o

‘"l“h.l,lnlnn-l‘l\ji,

Axal implosion Spike
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_ Both tetrahedrals and dlrect drlve
wcyhnders are. scheduled for thls summer at; ,
e " Omega’ : e

| Tetrahedrals will focus on high drive
' symmetry, with the larger 2800 micron
hohlraums and 700 micron LEH’s. Capsules
will include some double shells.

perturbations, internal perturbations and
deuterated foam. Perturbations will only cover

l

u

n

n

||

]

=‘, - @ The direct drive cylinders will smaller
-

:=

% the chlorinated marker layer.

Los Alamos
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Enlargement of Glass and Plastic Shells to 2 mm in Size

Abbas Nikroo
David Steinman
Annette Greenwood

1oth Target Fabrication Specialists' Meeting
April 1998
Jackson Hole, Wyoming

0:0 CENERAL ATOMICS

=1500 pm glass shells are needed for NIF cryogenic layering
experiments

Most 1300-1500 um drop tower glass shells are puckered or wrinkled

* Large (>1300 um) glass shells produced by the traditional drop tower are mostly
puckered or wrinkled. Currently, shells larger than 1500 um cannot be made by this
technique.

* These features are undesirable for layering experiments.

*Therefore, substantial culling of glass shell batches needs to be done to choose
acceptable shells in the 1300-1500 range.
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Drop tower glass shells soften at <1200 C !!

scale bar = 30 um

SEM image of the cross-section of a quartz coated gl hell. The

coating did not soften, but the inner glass mandrel did

« Drop tower glass shells should have >95 % silica content and therefore high
softening temperature (>=1500C)

* Redropping quartz overcoated drop tower glass shells down the tower at 1100 C
revealed that the inner glass shells soften at lower temperatures.

« In fact we found that drop tower glass shells soften at as low as 900 C.

0‘0 GENERAL ATOMICS

Smaller shells can be enlarged by filling them with gas and
redropping them through a hot tower

P=P, e Y Shell filled with gas (He)

Y
Enlarged shell
P=P;~1am Q " s
neglecting surface ry=rg (Po Ty/300)
tension
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The 18 foot drop tower was too long for redropping shells

Before drop

After Drop

* Helium leaked out after the shell had enlarged while dropping down the tower.

* A shorter tower was needed or less permeable gas.

* Deuterium still exited the shell faster than tl_1e shell could exit the tower.

0:0 GENERAL ATOMICS

A short hot zone allows rapid freezing of the expanded shell

* A 3 zone furnace stood up on end was used as the short tower.
* Only the center zone (about 1 foot long) was used at 950 C

* Shells were collected in a Petri dish.

255 ozocenmz ATOMICS
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Expanding shells are susceptible to bursting and buckling

« Filling the shell with gas places a tensile stress on the shell given by:

c=Pr/2t P =Pressure
r = radius of shell
t = thickness of shel
* As the shell expands, the stress remains the same!

Since: P— P 8'3 i r—rBand t—t 8'2 with B= expansion factor
sTherefore, if the shell does not burst immediately, it will never burst as it falls
through the tower.

« As the shell cools, however, it will experience as high as 1 atm buckle pressure.
» The aspect ratio of the shell decreases by 83, and its buckle strength by 8.

» Only shells with a buckle strength of 6% can survive expansion by 8.

» Therefore, thick walled shells are neecled for this technique.

'3‘ CENERAL ATOMICS

Good > 1500 um glass shells were made using the redropping
technique

Optical image of a1740 Interferometric image of a
um diameter shell 2002 pm shell showing
smooth fringe patterns

» The surviving expanded shells were typically >3 um thick and very fragile.
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Glass shells that were originally dimpled could be repaired with
this technique as well

e

1600 pum diameter shell 1200 um diameter shell
After drop Before drop

* The outward gas pressure could undimple and unwrinkle shells while enlarging them

ozo GENERAL ATOMICS

The observed expansion of shells correlated closely with the

expected values
5 %] 7
[3] ,/
ﬁ i PR |
| =4 - P [ ]
K= 7
2 1 i
s 1.5 1 //{ - ]
é [ - /’. =
d
® Y
= 1 + t -+ t T t $ 1 +—i
1 1.5 2
Calculated Expansion Factor

sSurface tension was neglected when calculating the expected expansion of

shells.
* At higher expansions (> 1.5 ) most shells buckied and broke lowering the

average diameter of the final group of shells,
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Plastic shells could also be expanded by dropping through a
heated tower

o 2 mm PAMS shells that survived could not be made by microencapsulation at the
time.

o Smaller (1-1.6 mm) PAMS could be made.

o We used the redropping technique to expand these shells to 2 mm.

A tower heated to 150 to 220 C had to be used depending on the starting PAMS batch
» Nitrogen was used as the fill gas, since He permeates out of plastic too fast.

o For small enlargements, no gas fill was necessary.

» This also allowed us to quickly determine the effect of wall non-uniformity of the
starting shells on the roundness of the final shells.

0:0 GENERAL ATOMICS

2 mm PAMS shells were made using 1.6 mm shells

df - 1960 um
OOR =5 um (radius)

Expanded shells

« The starting shells had very good wall uniformity
* The out-of-roundness (OOR) of the final shells was similar to that of the
starting shells.

058 onGENERAL ATOMICS




Non-uniform wall thickness of starting shells led to oblate final shelis

Final oblate shells

1450 um shells expanded to 2025 um diameter
The out-of-round increased from 1.7 um to 46.9 pm

ozo GENERAL ATOMICS

Uniform shells with gross non-sphericity could be made more spherical

Before After

* 1 mm shells were intentionally deformed by a soldering iron.

* They were then expanded to 1.2 mm by the redropping technique.

* The gross non-sphericity was repaired, but optically visible "stretch marks™ were
left behind

259 ozo CENERAL ATOMICS
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Gas filled glass and plastic shells can be enlarged by dropping
them through a heated tower

* We were able to make glass shell larger than 1.5 mm by filling them with
helium and redropping them down a short zone (1 foot) heated to only 950 C.

» A longer heated zone will resuit in the collapse of the shells because of loss of
gas pressure in the shells by permeation.

» The expanded shells are very much susceptible to buckling because of their
lowered aspect ratios.

» Thick, uniform starting shells are needed for this technique.

» This technique can be used on PAMS or GDP shells as well at lower
temperatures.

0:0 CENERAL ATOMICS
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Subsurface Damage in Metals Induced
by the Ploughing Component of
Precision Machining Processes

Robert D. Day, Rob Dickerson, Carl Maggiore, Paul Brooks,
Robert Springer, Barry Carter, Douglas Hatch

Los Alamos National Laboratory, Los Alamos, NM 87545 °
Phillip E. Russell

North Carolina State University, Raleigh, NC 27606

Tracy Woodward, Terry Stark '

Materials Analytical Services, Raleigh, NC 27606

MOTIVATION

* Ploughing Dominates Energy Partition in Ultraprecision
Material Removal Process

* Fabrication Induced Damage may be Significant Fraction of
Wall Thickness :

* Gain Better Understanding of Ploughing Process and how it
Affects Surfaces of Precision Components
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SINGLE CRYSTALS OF GOLD AND
IRIDIUM USED AS SAMPLES

* Noble Metals Eliminate Effects Caused by Surface Oxides

* These Two Elements Represent Extremes in Mechanical
Properties for FCC Metals

* Known Crystallographic Orientation Enables
Crystallographic Effects to be Analyzed

* Insight Gained at Specific Orientations Allows
Basic Understanding of Ploughing Process

EXPERIMENTAL ARRANGEMENT

* Single Crystal Diamond STM Tip used as Indentor
« Stand-alone STM Controlled Depth and Length of Plough

. Sample Mounted on Microbalance so Vertical Ploughing
'Force Could be Recorded as the Plough was Generated

 Force Uncertainty was =1 uN
* Ploughs were 13 ym in Length
* Depth of Ploughs were Measured with SFM
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YIELD STRESS VS DEPTH OF GOLD
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SUMMARY OF YIELD STRESS
RESULTS

* 20x to 30x Increase in Yield Stress with Increasing Depth for
both Materials

* Implication that Average Strain is Increasing as Depth
Increases

* Yield Stress Rises Much More Sharply for Iridium than Gold

» Constant Yield Stress Closer to Estimated Maximum Value
for Iridium than Gold

© Appears that Iridium Reached a Strain Hardening Limit

» Appears that Gold Reached an Average Strain Limit

CONCLUSIONS

e Strain Hardening in Plougﬁing Even for Small Volumes
e Strain Hardening Theory Helps Explain Results
 Severe Strain Gradients are Present

* Yield Stress and TEM Data are in Good Agreement

« Appears that Iridium Reached a Strain Hardening Limit

» Appears that Gold Reached an Average Strain Limit
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@ DIRECTION DES APPLICATIONS MILITAIRES /

Thermal description of a cryogenic shell

Application to
the "Liquid layer" concept and
thermal specifications for cryogenic targets

Ph. BACLET

TFM, 18-23 April 1998 Jackson Hole

A ozmnmmos | yox T]

Lacoratoire Micro-cibles

L'ATOME, DE LA RECHERCHE A L'INDUSTRIE

coulyach ppt 1

@] DIRECTION DES APPLICATIONS MILITAIRES /

SUMMARY

1/ Thermal description of a cryogenic p-sﬁell

-1D model

2/ Liquid layer concept
- description
- evaluation

3 / Thermal specifications for cryogenic targets.

- 3D model
- evaluation

4 | Concluding remarks.

VA ormenmmos | sax [1 |

Laboratoire Micro-cibles
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@ DIRECTION DES APPLICATIONS MILITAIRES /

“Liquid layer” Concept

* Reduction of the inner DT surface roughness by creating a liquid layer
maintained by cappilarity.

* Liquid layer thickness must be :

- higher than 1 um (value of the residual solid surface roughness)
- less than 10pm to be maintained by capillarity

couche de DT liquide CH

A /
) /x\ ‘ 1’(‘))’2 - ];)}’1

Depends on internal heating source

(x2,72)
co;xche de DT solide
T ¢ T ey
i f/ czninos , X [ L'ATOME, DE LA RECHERCHE A L'INDUSTRIE

1 272tcive Micro-cibles

coulyach ppt 3

] Q ‘ DIRECTION DES APPLICATIONS MILITAIRES /

Liquid layer : [--layering redistribution

Thermal gradient of 10pK
to obtan a liquid layer thickness between 1um and 11pm

19,790075 — e
19,79007 4
19,790065 + ;
19,79006 i
19,790055 | LTI
19,79005 |
19,790045 1
19,79004 |
19,790035
19,79003 +— .

380 390 400

—a— T2(x)

température (K)

distance par rapport a la surface du p-ballon
(sm)

10uK : Impossible to obtain with classical cryostat

W;?/ pzuenimos | WX 1 L'ATOME, DE LA RECHERCHE A L'INDUSTRIE
Laboratoire Micro-cibles____————l coutiaco.ppt 4
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@ DIRECTION DES APPLICATIONS MILITAIRES /
Liquid layer : Infrared redistribution

IR absorption of 5SmW/cm?3 _
Thermal gradient of 1 1mK

to obtain a liquid layer thickness between 1um and 11pm

19,79803 —— —
= -

19,79703 //
19,79603

19.79503

—o—Ti(x)
19,79403 T2(x)

19793034

température (K)

19,79203

19,79103

19.79003 !
380 3%0 400

distance par rapport & la surface du y-ballon (pm)
i . H

IR heating stabilizes the "liquid layer"

Possible to obtain with classical cryostat

2 Zlozimes sex 1 L'ATOME, DE LA RECHERCHE A L'INDUSTRIE
.22ratoire Micro-cibles coulyacoppt &

@ DIRECTION DES APPLICATIONS MILITAIRES /

Thermal specifications for cryogenic targets

Assumptions :
- equilibrium T, (side a) =T (Side b)
- mass conservation 5,=-0,

Difference of thickness depends on :

- geometrical factor
- heating source
- Uniformity of temperature outside the shell

W%/DEWM/%OS p 4 D ] L’ATOME, DE LA RECHERCHE A L'INDUSTRIE

coulyach ppt 6

Laboratoire Micro-cibles




@ DIRECTION DES APPLICATIONS MILITAIRES /

LMJ cryogenic targets

Indirect drived-target :
- polymer thickness : 200um
- DT layer thickness : 200um

- B-layering redistribution : 180uK (Very hard to acheive)
- IR heating : 1.95mK

IR heating improves the thermal stability of the cryogenic shell

Direct drived-target :
- polymer thickness : 30pm
- DT layer thickness : 130um

- B-layering redistribution : 80uK
- IR heating : 865pK

geometric factor is unfavourable for direct drived -targets

. “lozuonmos | sex [] | ——— L/ATOME, DE LA RECHERCHE A L'INDUSTRIE

- =r0ir2 Jicro-cibles coutyacb ppt - F

!\S:J DIRECTION DES APPLICATIONS MILITAIRES /

3 D model : influence of the surface of the non uniform temperature zone

z
A
T 1 1 2 (1 - cos(CD)) AT
o,=—— 2
i e e /4
q (_f_ + _QT_)
k., kpr
T2 @ p 14 P
L/ ©
9 is integrated between 0-2n
' 1 1 (1 - cos(CD)) AT
X o 2 == 5
e e
q (_P_ + _DT_)
k, ko
Z, ‘ | L'ATOME, DE LA RECHERCHE A L'INDUSTRIE
W%/D mos i &‘X D ‘l coulyach ppt 8

Laboratoire Micro-cibles
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@ DIRECTION DES APPLICATIONS MILITAIRES /
3 D model :

influence of the surface of the non uniform temperature zone
AT 1

AS=6,-5, =

e, e
thickness diffrerence (um) / \ ! (}L-F kDT )
\ P DIp
T

i
Y .

2 ¥

151 :
1

051 "y
0 Lo l—atem

05 | ——d1+d2 (um)
1

LSt * The difference of thickness does not

24 i depend on the surface

25 | i of the non uniform temperature zone

]
* Equal to 1D value
B zmnrnos | Sox Inil | — L'ATOME, DE LA RECHERCHE A L'INDUSTRIE
oratoire Micro-cibles ;

coulijachb.ppt 9

@ DIRECTION DES APPLICATIONS MILITAIRES /
1 D model : :

influence of the concentricity of the polymer shell

side a side b
TO T1 T2 T2 T1 T0
9 R o i
; : : |

a : :
To |iepta Q Q ’ To

: €oT+ & 'em'o& |
: <> i
eor | eor ;

i ep

ep < ,! S

x0 x1 x2 x2x x1 x0

. e
AT=T'~T} =24 aa(-P—+
P
—_ ‘
Ut oznentmos | > I L'ATOME, DE LA RECHERCHE A L'INDUSTRIE

Laboratoire Micro-cibles

coulyach.ppt 1 o
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DIRECTION DES APPLICATIONS MILITAIRES

1em
180K

0% excentricity

DY = Ta-Tb (mK)

influence of the concentricity of the polymer shell

.
P,
| i—e—DTO% |

|—a—DT(1%) |

-0,6 4

08

surépaisseur de la couche de glace en pm

LMJ indirect drived target

Mose T1 |

DT -T%) 1
P DTER) |
| OT(2%)]

1um
73uK

1% excentricity,

4

The worst must be taken into account

L1y -7
-Fozmnmnos

¢+ waraioire Micro-cibles

X [

=0

DIRECTION DES APPLICATIONS MILITAIRES

Conclusions

caulyach ppt

the polymer shell needed to obtain a concentric DT layer

* Application to :
- "Liquid layer”

- Thermal specifications for cryogenic targets :

- stabilized by infrared heating, almost zero rugosity.

B-layering | B-layering | B-layering B-layering
+ +
IR IR
concentricity defect 0 0 1% 1%’
Indirect drived target 180pK 1.95mK 73uK 0.8mK
Direct drived target 79uK 863uK B3pK 686uK

+ No influence of the surface of the non uniform temperature zone.

+ Great influence of concentricity of the polymer p-sheli

+ IR stabilization of the thermal behaviour of the cryogenic p-shell
+ Give specification for 3D simulations.

U pzvenmos | wox T1

Laboratoire Micro-cibles!
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coulijach.ppt

L'ATOME, DE LA RECHERCHE A L'INDUSTRIE
11

4

* 1D, 2D and 3D model to specify the homogeneity of temperature outside

L'ATOME, DE LA RECHERCHE A L'INDUSTRIE
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STRENGTHENING LARGE THIN GLASS SHELLS
BY OVERCOATING WITH GDP

Plus: An idea for filling beryllium NIF capsules with DT

Presented by: Dave Steinman (GA)

Co-authors: Abbas Nikroo and
David Woodhouse (GA)

Twelfth Target Fabrication Specialists' Meeting
Jackson Hole

April 20-23, 1998

WHY STRENGTHEN LARGE GLASS SHELLS?

Because........ Beta-layering experiments on NIF-size capsules
need to be done without fill-tubes

Transparent
GDP/ glass shell Frozen
\ DT layer

A fill-tube disrupts the Beta-layering process
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WE STRENGTHENED GLASS SHELLS BY COATING THEM
WITH GLOW DISCHARGE POLYMER (GDP)

. The best glass shells were ~1200 x 3 um in size
. see Abbas Nikroo's talk on how to make glass shells bigger

. We coated these glass shells with ~100 pm of GDP

~100 um

GDP Iayr ~1200 x 3 pm

glass shell

THEN WE TESTED SHELL STRENGTH WITH
HIGH PRESSURE HELIUM FILLS

J Helium fills were fast, each was done in a day

J We filled the shells @ 280°C (hotter degrades the GDP; colder makes DT-
filling impractically long)

. We used 20 atm fill steps (versus ~2 atm steps for bare large glass shells)
with a 30 minute hold time at each step

. Weighing and interferometry techniques confirmed that the surviving
shells were gas filled

. Weighing was the simplest technique but it was tricky

- GDP decomposed during the fill and lost mass
- GDP picked up oxygen after the fill and gained mass

. So, we weighed the shells immediately after the fill; stored them in vacuum
between weighings; and re-weighed them periodically to determine leak
rates and the initial fill pressure
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MODELING SAYS THAT A THICK GDP LAYER CA N
SIGNIFICANTLY STRENGTHEN A GLASS SHELL

P
Pressure felt by glass: P = GDP/glass
glass 1+ 0
. (tGDP/ tglass)
where: Q = E = )
( glass/ GDP

for 21200 x 3 um glass shell coated with100 m GDP:

Strength of GDP/ glass shell = 2.5 x Strength of glass shell

GDP/GLASS SHELL FAILURE WAS PREDICTED BY OUR MODEL

250
E Upper
Limit
200 N ﬂl+
Pressure A R
(atm) I R
- Predicted . - |
~‘Survival Regime | | ELower
100 f— Ot Limit
50
A Survived
= Failed : e
. , e ,
50 75 100 125

GDP Thickness (1m) on 1200 x 3 xm glass shell
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WE CONFIRMED THAT THE SHELLS
COULD BE FILLED WITH DEUTERIUM

It took a week to fill the shells with 90 atm of deuterium
. filled @ 280°C

. 20 atm "driving" pressure
. 6 atm steps
. 2 hour hold time at each step with overnight soaks

THE SHELLS SURVIVED THE DEUTERIUM FILL
BUT HAD DARKENED CONSIDERABLY

lmmedlly after
GDP coating

After 5 hrs in
280°C He fill

) After 85 hours in

280°C DD fill

320°C He fill
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SOME OF THE HELIUM-TESTED GDP/GLASS
SHELLS WILL SOON BE FILLED WITH DT

. Art Nobile will fill the shells at LANL

. We'll learn if DT adversely affects shell strength

. Jorge Sanchez will see if the shells can be Beta-layered at LLNL

WE ARE NOW TESTING LARGER GDP-COATED GLASS SHELLS
MADE USING THE NIKROO "RE-BLOWING" TECHNIQUE

. 1500 to 2000 um glass shells are being used

. Shells were coated with up to 200 um of GDP

. Initial helium testing @ 50 atm showed a lower survival rate than
expected (1 of 6 shells tested held gas)

. Defects in the glass walls may have caused the failure rather than
the high shell aspect ratio.....more testing needs to be done




UNFORTUNATELY, GDP-STRENGTHENED GLASS SHELLS
ARE NOT SUITABLE NIF FUEL CAPSULES

. Beryllium is the leading NIF capsule material candidate

. Filling a beryllium capsule with high pressure DT is a challenge
- Drill, fill and plug techniques are not trivial
- afill tube is not an option

- a permeable beryllium shell is in the development stage

. How will we fill beryllium capsules with DT?

Here's an idea......

TAKE A GDP SHELL MADE FROM A PAMS MANDREL
AND COAT ONE SIDE WITH BERYLLIUM

~100 um beryllium
(for holding high pressure DT)

2000 x 10 pum GDP shell

Note: Coating a stationary shell gives excellent surface finish
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NEXT, BOUNCE-COAT THE SHELL WITH ~2000 A OF GDP

BERYLLIUM-COAT THE "THIN-WALLED" SIDE OF THE SHELL

~100 pm Be

=i

g

o

R

PR

g ¥

T T hads

PR o
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FILL THE SHELL WITH DT AT A "LOW" TEMPERATURE

Diagnostic gases can
also be loaded

Imbedded GDP layer provides a

o

>

GDP is unaffected if fill temperature is < 150°C

A LITTLE MORE BERYLLIUM ENTRAPS THE DT

TRV
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FABRICATION STUDIES OF LARGE PAMS TARGET
MANDRELS USING MICROENCAPSULATION

Don Czechowicz
Richard Stephens

General Atomics
San Diego, CA

GOAL: DEVELOP A PROCESS TO PRODUCE
LARGE 2.0mm PAMS TARGET MANDRELS
THAT CAN MEET NIF REQUIREMENTS

APPROACH:

[Large 2.0 mm Shells]

Conditions:
- Oil-1/Water-1 =~ 2:1
- Working Towards
Density Matching
- Enhanced Tumbling
During Curing
-> Aggressive Stirring

0:’ GENERAL ATOMICS

USE OF GA DROPLET GENERATOR

|Large 2.0 mm Beads]

Conditions:

- Water-1=0

- Density Matching
- Gentle Stirring




FABRICATION ISSUES:

ISSUE SHELLS BEADS
1) Size X
2) Survivability (cracks) X
3) Agglomeration X X
4) Nonconcentricity X
(centering of W-1)
5) Out-of-Round (OOR) X X
6) Difficulty working w/ X
15-20 wt% 404k PAMS
7) Time to get to dry X
PAMS Target Mandrel
8) Unknown Performance X
of Bead as GDP Mandrel
0:0 GENERAL ATOMICS

SHELL CURING

TEMP = 45°C

PHy0-2 ~ 1.000 PH,0-2 ~ 1.015

Psheli ~ 1.015 Pshelt ~ 1015

CaCly = 0-0.5 Wt % CaCl, = 1.0-2.0 wt %

With Shell/Water-2 With Shell/Water-2
Densities Mismatched Densities Matched
0:9 CENERAL ATOMICS
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SHELL STIR CONDITIONS AND RESULTS

OOR vs. rpm

Shells Produced using Density Matching Conditions were 1850-1950 Mm

0:0 CENERAL ATOMICS

BEAD CURING CONDITIONS AND RESULTS

Density vs. PAMS Concentration

Density Stir Size OOR ;
Batch Match (rpm) (um) Ar(um) 1050 %
No 62 13

213-1 2053 1.080
21322 No 52 2010 3.0
213-3 No 71 2002 2.0 1.070

3272 Yes 61 2052 14

Danslty (kg/mA3)
5 &
-~ v
o o

-
y

o
W
o

0 10 20 30 40 50 60 70 80 80 100

PAMS Conz. (wit%)
0} GENERAL ATOMICS




2114 tm PAMS bead

1855 jum PAMS shell
37 pm wall thickness Density Match Conditions
Near Density Match Conditions (6.0 wt% CaCl,)
(1.0 wt% CaCly)
107
. \---1 [Frsiec1s ] 10° 3 e ‘ ——
10 10 \\ |1nasnmzumsdmsm«um|
10 \
Domree ]
104 \\ 10° \ Vi 275 (51-100)- 3 sm]
1003 S am. 3 [RMS (»100): 7 am
o \\\\ _ . A ey
€ 102 I 1 ] “
G 5 E 10 E
10' ] \V\A
10° A\
10°
107 % 1ot »
3
102 102 3
10° + 1073 i T
1 10 100 1000 1 10 " 100 1000
mode number mode number
ozo CGENERAL ATOMICS

« Have a Process to Fabricate Near 2.0) mm PAMS Shells and Beads
with OORAR <3 pum

« Production of Highly Spherical 2.0 mm Shells a Challenge

« Stirring Conditions are Important for Shell Survival and Centering of
Water Droplet in Shell Preforms

« Density Matching is Critical for Producing Spherical Shells, and may
be Less Critical for Producing Spherical Beads

FUTURE EFFORTS:

» Optimization of Stirring Schemes while at Density Match Conditions

o Use of Oil-1/Water-1 System with Higher Interfacial Surface Tension

% GENERAL ATOMICS
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The Use of CaCl, and Other Salts to Remove Vacuoles and
Improve Surface Finish in PAMS Omega Shells

Barry McQuillan
Fred Elsner
Rich Stephens
Lioyd Brown

General Atomics

The Problem:Vacuoles in Shell Wall Lead to Surface Roughness
The Solution: Add Salt to the PVA W2 Solution!

B Presumed model for vacuole formation:

WATER MOVES INTO THE POLYMER/SOLVENT WALL
DURING CURING, and eventually nucleates a small water ball. The
shell wall cures and solidifies around the water ball, the water leaves, -
and a vacuole remains.

B To eliminate the vacuolés, PREVENT THE FLOW OF WATER
INTO THE POLYMER/SOLVENT WALL DURING CURING.

The simple solution: ADD SOME SALT TO THE WATER, so the
water wants to remain with the water, and not go into the oil phase.

Salt shouldn’t dissolve into the oﬂ phase.
Salt should be compatible with PVA solution.

The complex understanding: adding salt decreases the water
ACTIVITY. Activity can be understood in terms of relative vapor
pressure, chemical potential, salt concentrations, etc.
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Adding Salt Improves AFM Surface Roughness Modes 50-100

Start Adding CaCl, | early May

modes 2-10
500 R R B e

200

100 1 i Boeded i el it

8 g
<
R
£ s s
E e ':‘ R
T S0

roughness, nm
N
(=]

1-Feb 23Mar 12-May 1~Jul 20-Aug 9-Oct

nun date

0:0 GENERAL ATOMICS
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A Chemical Change Results from a Material
Moving From a State of Hi gh Activil;o Low Activity

-
J4 Q
ice cubes water
ICE WATER'

Vapor Activity Activity Vapor

Pressure - Pressure

mm Hg mm Hg
-1C 4.217 1.000 @¢—-ovoo 1.010 4258
oC 4.579 1.000 g 1.000 4.579

1C 4.941 1003 o 1.000 4.926

A Polymer Phase Diagram Implies
Activities of the Components

Temp Water Water
activity activity
of vacuole - inO1
/ =0.9500 =0.9500 \ :
X — o
100% .. o
water Composition 3,2°°’
) )
1.0000 < Water Activity = 0.0000

® Toformvacuole, the wateractivity of 01 must reach the
necessarv laval.

T em—— T — o — —— . .




To Prevept Formation of Vacuoles, Use Water (W2) With
Activity Lower Than Activity of Water Vacuole

Water activity Water activity
inW2 = inW2 =
1.00000 . 0.900
Water flows in Wat 0 :I;Ia‘l)tngg‘»:zrout
Water activity o form Vacuole ac?ivenl;/ removeVacuole
in vacuole =

in vacuole =

0.8500 0.9500

B Key Point-I don’t know a priori the water activity of the vacuole
state!

How Much Salt Should I Add To Lower Activity?

* I don’t know the activity of the water in the vacuole, so I don’t
- know how much salt to add.

¥ By definition, pure water has an activity = 1.00000000...
*  For the water activity of 0.1 wt% PVA,

Use Flory-Huggins equation, ) = 0.5, X = volume fraction water:

InX + (1-X) + x(1-X)? = In(P/P,) + (P,-P)V/RT

Temperature 20 C 60 C
Water activity 0.9999999567 0.9999999995

Water activity of 0.1 wt% PVA solution is virtnally the activity of
pure water! PVA does not decrease water activity sufficiently.
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How Much Salt Should I Add To Lower Activi‘th?

* - R.A. Robinson and R.H. Stokes, Electrolyte Solutions, (1959)
has tables of water vapor pressures over salt solutions at 25 C. One can
plot their data for CaCl,, and interpolate to the following values: -

wt% CaCl, *2H,0 water activity P/P, Vacuoles?

0.5 0.9972 yes
1.0 0.9944 _ maybe
1.5 0.9915 no

2.0 0.9885 no

2.5 0.9855 no

3. 0.9822 no

*  These values are at 25 C. The shells are made at 60 C.
The activity values at higher temperatures are nearly the same.

When Should I Add Salt?

Vacuolas vs Time of Addition
of 1.5% NHACI Omega Shell

b,

Many Vacuoles

Wepe

Few Vacuoles

.

0 30 60 ] L I T
time{min) NHAC! added

after shells put into bath

-

No Vacuoles

Add salt before the 90 minute mark !

- oo cENERAL AYORTICS
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Wi bBvery Good Idea (Adding Salt) Comes
A Rec%gition of Other Issues/Problems

1) QaCl_z is found on_the inside of PAMS shells.

Apparently it diffuses through the O1 shéll wall. We cannot remove
the CaCl, from the final GDP shell!!

The Solution: REPLACE CACL, WITH NH,CL SOLUTION,

1.5 wt% is sufficient). NH,C1 decomposes to gases under the pyrolysis
conditions, :

2) Any impun;gx in_the O1 solution, which wili want to_attract water,
will grow a vacuole in spite of adding salt.

The Solution: ONE MUST REPRECIPITATE THE PAMS, TO
REMOVE THE LITHIUM METHOXIDE/HYDROXIDE.'

With Every Good Idea (Adding Salt) Comes
A Recognition of Other Issues/Problems-2

3) Sphericity (OOR) Goes Nuts!

Before using salt, we could get OOR below 1 micron for Omega o
shells. Once we used CaCl,, the OOR went to 2-4 microns, out of
specification!

Ultimately, we found that by adding CaCl,, we were changing the
W2 solution density by about 0.01 g/ce. This change resulted in a worse
OOR.

Bob Cook has estimated:
max OOR = (Ap)r’ly

With a y ~ 10 dyne/cm, we could explain most of this increase in
OOR. -

The Solution: = CHANGE THE CURING BATH TEMPERATURE
- FROM 60 C, DOWN TO ABOUT 43 C FOR CaCL,, AND TO 48 C

FOR NH,Cl SOLUTIONS, The densit} match between O1 and W2 is
closer to zero at these new temperatures.

S p— pe—

-



Summary: Add Salt (NH,CI) To W2 PVA Solution

*

Adding salt to W2 eliminates vacuoles in PAMS shells

1.5 wt% NH,Cl in W2 is sufficient.

Beware of ofher effects on shell specifications:

Water soluble impurities in PAMS polymer and O1 solvent
Density mismatch and OOR

Potential for diffusion of salt into shell

o> GENERAL ATOMICS
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Characterization of low density RF foams
using optical (visible-UV) imaging

O.J. Glembocki, S.M. Prokes, J.D. Sethian,
M.L. Rebbert, and C.R.K. Marrian
Naval Research Laboratory, Washington, DC

T. Lehecka and Y. Chan
Science Applications International, Inc, McLean, VA

D.Schroen-Carey and C. Hendricks
Schafer Corporation, Livermore, CA

e-mail: glembocki @bloch.nrl.navy.mil

Introduction

* Key Issues:
— Direct drive target designs require low density foams in
the ablator
— NRL using RF foams for targets.
— Require high degree of uniformity in
* mass density and thickness

* impossible to attain from simple inspection

* because the foams are delicate, contact probes such as AFM
and stylus thickness tools are destructive

— Can optics probe target uniformities?
* Optics are nondestructive
* And can give rapid feedback
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Methodology

» Optical absorption is directly proportional to:
— density of electronic states
— density of vibrational states
— both are directly related to the mass density
e Light passing through absorbing medium is exponentially
attenuated:
= L[=le™
» I, =incident intensity
* o = absorption coefficient
¢ x = distance into absorbing medium
e Therefore measuring optical transmission through the
target should give us a measure of the variation in the
product of mass density with thickness

Methodology continued

» Sensitivity to thickness increases with absorption
coefficient: Al /Ad=-a e

Transmission in the Visible I

1.0 T e

08|

< 06
o
17
@
£ -
§ 04 - Sensitivity to thickness increases
= with absorption !
02k At, < A, < At
1 X ] A i i 1 2 1 i 1
500 600 700 800 900 1000

Wavelength (nm)
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Methodology continued

* CCD camera technology allows us to image transmission
over a large area. ‘

* By combining the CCD with a microscope and
monochromator, we can perform spatial maps of the
optical absorption. This should give us a measure of the
target uniformity.

Issues

* What is the spatial resolution?

* What is the sensitivity to:
— mass density variations?
— thickness?

B ]

Transmission spectrometer

) ! <
] = 7\‘
Q (Monochromator)

. . Rotation
Si Photodiode stage

- Signal | tI; + noise

Reference,

=
v

Computer

v Output: tI

rnmt
| I -\

N 303

Lockin Amplifier

A




Imaging system for visible light

CCD camera < l

1

4,
=\ K 7\, it
.(Monochromator)

Y

Effective spatial resolution:
(# pixels * mag)!

Computer

2D transmission profile

» For UV imaging we must use quartz optics and UV
sensitive detectors

Experimental details
* Optical absorption:

— Spex 1/4m double spectrometer ‘
— Si UV-énhanced photodiode
— Halogen lamp
* Visible imaging
— Bausch and Lomb 1/10m spectrometer set to 510nm
— Halogen lamp
— Olympus microscope

~ Quick Cam-2 CCD camiera with adjustable gain and exposure
" time. 640x480 active area with 8bit intensity resolution.

e UV-imaging:
— Hg lamp with pass band filter set to 351nm
— Triple lens imaging optics
— Star-1 CCD camera: 1024x1024 active area with 12 bit resolution
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Foam thickness

foam

|

<= mold

¢ Microscopy

*Nikon microscope equipped
with eyepiece micrometer
*Peal away mold

*Compare mold thickness to

sample

Mold

Foam
Microscope 230pm 60um
Micrometer 200um na
. Mold Foam
Microscope 300um 275pm
Micrometer 355um na
* White light

interferometry was also
used as a check.

Calibrate sensitivity to thickness variations

o U

3 RAEEIS
ST

I,=1,(1-R)*e%d/ (1-R2 e2x)

R= (n-1)¥(n+1)?

For our foams:
n=1.3 & R~0.02

I=1 e

n sin9’= sin®
= d/[1 - (sinB/n)?]1/2

—_ -od’

PRI 7 =~ Ak



transmission as a function of angle

» Let’s vary angle of incidence to increase thickness

020 | The angular ordering of 10°,

50, 20°, 0° indicates a 10°
angular offset.

300 pm RF foam

Transmission decreases
with angle indicating
increased optical path

Transmission, ¢

1 A 1 L 1
420 440 460 480 500
Wavelength (nm)

* We can easily discern 5° angular variations.

 This corresponds to a 2.2% change in thickness or 6.6pm for a 300 pm thick.

Thickness variations from transmission data
*Varying angle has 3 effects.

45k ' M L§ v T

The optical path increases:

20

d(6-6,)=d/[1 - sin?(6—6,)/n?]1?2 2sf

2= 510 nm 1(6) = cos(6 ~ 8)e ™"

30fF

Area sampled by probe beam changes:

% '3'5;- O data
A(e—eo) = A/ COS(Q—GO) = <0 1 it 1o tn(t)
8,=7.805.86 oy
Area of absorbers changes (?) 45kl n=1242025 (6) = cos’(8 - 8,)e“*" ¥
| 0d=1.6820.08
50 |-
A(6-6,) = A/cos(8—6,) n e PR

0 (degrees)
*Transmission as a function of

*Data agrees well with calculated
angle becomes:

behavior using reasonable values for

_ —od (00 . ..

t(@ )= cos ™ (6 -6, ) e~ (6-6) index of refraction 12f we assume that
area changes as cos®.

m=12
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Thickness ® mass density variations

*General case where o and d vary

tl _e‘(ad)l ——

Sensitivity governed by the absorpti(;n
coefficient because In ) ~o

Lateral spatial resolution
@ 16X magnification

Spatiai resolution is : 3.28 um
307
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Quick Cam intensity calibration

*Take images through microscope
*Use neutral density filters to reduce incident intensity

Quick Cam calibration I

200 -

150
b RGB value from
Quick Cam

1001 ~+——— RGB = (184.330 + 1.623)"1,

RGB (au)

50
, Monochromator intensity as reduced by

neutral density filters

|

. v v : v
0.0 0.2 0.4 0.6 0.8 10 1.2
Intensity (au), |

*RGB values are linear over 2 decades in incident intensity.

Transmitted light image using Quick Cam

 Wavelength = 510nm
+ Intensity range of QC(RGB value) = 1 to 255

1 =black gnd 255=white

reference light (no foam)
attenuated by 100

300 pwm foam
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transmission profile

pe meweg :
LTI e
S e PE RN

* square is 90pm on a side

Average intensity is:
218, with a spread of 14.
t=0.2

e

1 LA .-
AR %
Y N

[ ]

3 SRS .

u variation:
Au/u =0.038

*Resolution as determined by camera:

) mm * for Au/u: 0.0064
tear 1n foam 1 oraw

Transmission Through Foam

STAR-1 CCD Camera DSC sample “1/28/98 : 2 day cure, F/R =2
1
g N
E—4
s
H /
E 05
: //
o
- p y
L/
-
0
‘/APERTURE 200 300 400 500 600 700 800 500
Wavelength (nm)

. | SAMPLE (Foaw) |
GRGREREEE -

—— OBJECT APERTURE

351 nm FILTER

27 7 X - P e I M M i g 0 coabanccey o oanment s SHE S s rind



UV transmission through foams

Nice foam
Open aperture Ugly foam F/R=2; 2 day cure
(baseline) (cellular structure) vacuum fill

RMS deviation = .005 RMS deviation = .17 RMS deviation = .009
3.2 sec exposure 63.2 sec exposure 64.2 sec exposure
approx 3800 counts approx 1500 counts approx 2000 counts

Still to be determined: Attenuation coefficient (I.E. calibration)

Calibration of thickness to transmission

» Use a mold with a square wave pattern:
*3 um amplitude
*400 mm period
*Use Si/Si0O, as template
SiO, mask

_ / 3 um thick
Mold —

N

Si substrate

138 um
§ 2.6um

Foam _




Results for 140 um thick. foam

450 nm light 350 nm light

t, =0.1642

t, =0.1554
Ad/d = .04 Interferometry Ad/d = .03
Ad =5.5 um Ad =2.6 um Ad =4.1 um

* Our results agree with expected values for the step
* Contrast is much better for UV light.

170pr98_1.hdf, Transmission profile at 351 nm

IR AN




1pro98_1.hdf, Transmission profile at 351 nm Model: Photometri !
0e-05 m XOcal: 2.300000e-05 m X1istart: 5.750000e-05 rr? t)(n?ga%taZr.?Sg(C

4500 ' 3

4000 _ _

3500 - -

3000 - -

Fluence (Counts)

2500 , -

2000 ! : 1 : ] : ) % ] 1 1

4 5 6 7 8 9
X (mm)

wdisp:xval=6.92300,yval=2669.27,vval=2.34600(mm),hsmo=11,vbin=1

Conclusions

» Transmission is sensitive to (mass density)*thickness (u)
— Sensitivity increases with absorption
— Can easily detect several % variations in thickness
¢ Optical imaging of RF foams has been performed in
visible and UV ' -

— We have calibrated the transmission with a square wave with a
3pm amplitude in a 140pum thick foam.

Theoretically, we can see variations of 0.02/In(t) in u in visible
and 0.0025/In(t) in UV

— Our foams range in Au/u from 0.009 to0 0.17

— UV imaging reveals cellular structure in non vacuum filled foams
Vacuum filled foams show best uniformity

!
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Spinning Pan Modification To GDP Coater
For Improving Surface Quality

D. Woodhouse, A. Nikroo
Fusion Group, General Atomics
P.O.Box 85608, San Diego, CA 92186-9784

The surface finish of large size (greater than 1 mm diameter) ICF targets
coated with GDP is influenced greatly by the method used to agitate the
shells. The piezo electric bounce pPan works well for small shells of low
mass or a small number of larger shells. When coating production size
batches of large diameter shells, however, - the bouncer induces shell to
shell collisions of sufficient force to knock off small ‘chips of GDP coating.
These chips initiate the growth of domes on the shell, resulting in poor
surface quality. This poster shows that by placing the large shells in a
spinning pan that is slightly tilted, a gentle rolling motion is induced that
reduces the number and intensity of collisions caused by bouncing while
exposing the entire shell surface evenly to the coating plasma. Utilizing
the spinning pan allows a larger number of shells to be coated, while
increasing the surface quality of the shells produced.

This poster describes
modifications to the GDP coater
‘that, by
changing the method of shell
agitation, allow a larger number
of shells to be coated without
surface quality degradation.
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Two Possible Approaches

We have been able to improve the surface finish
of large shells coated with the bouncer pan by
reducing the bouncer agitation strength which
tends to produce non-uniform coatings. Reducing
the number of shells per batch to very few also
improves surface quality but is not cost effective
given the length of coating runs required for NIF
size targets.

Experiments using the spinning pan have shown
that surface finishes as shown in the right hand
photo can be expected, even though the batch
contains many times the number of shells. This
approach appears to be more efficient.

+{> GENERAL ATOMICS

Spinning Pan Hardware

The spinning pan hardware consists of a small
electric motor and gear reduction unit located entirely
within the base of the coating chamber. Power is
supplied by an external DC variable voltage power
supply enabling the rotational speed to vary in
order to provide sufficient agitation for the shells.

The motor assembly is mounted on a support rod,
formerly used as the tapper in the bouncer equipped
GDP coater. The support rod enables the coater
operater to make angle and position adjustments
during a coating run and can also be tapped to
dislodge shells that may be sticking to the pan.

316 ozocavmanmomcs



Surface Finish Comparison

Scale Bar = 10 microns .z.cmsu;nramcs

The SEM photographs above show surface
features of similar batches of 2mm PAMS shells
coated with 12 microns of GDP. In the left hand
photo, 12 shells were coated in a bounce pan.
The right hand photo is from a batch of 12 shells
coated in a spinning pan.

The shells coated in the bounce pan are
covered with domes while the spinning pan
coated shells remain nearly free of domes while
having a very uniform coating thickness around
the shell.

317 ozocmm.aromcs
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Concerns with the modification

Rotational speed of the pan is critical to the process.

The pan must turn rapidly enough to overcome the
tendency of shells to resist rolling, but not so fast as to

cause shells to be ejected from the pan. Required speed

may vary as the shells gain mass and size and must be
monitored throughout the coating run.

We have experienced a few cases of the motor siezing
during coating runs of long duration due to running

the motor above recommended cuirent levels. New motors
of higher capacity have been ordered and are expected to
eliminate this problem.

«}> cENERAL ATOMICS

Conclusions

The spinning pan modification allows
a larger number of shells to be coated
at one time while improving the surface
finish quality. As we move toward
production of larger diameter (NIF size)
targets, the spinning pan may
contribute to cost reduction in the
coating process without compromising
product quality.
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RECENT PROGRESS IN THE AREA
OF MICROENCAPSULATION AT LLNL

Masaru Takagi, Steve Buckley and Robert Cook

Lawrence Livermore National Laboratory
P.O. Box 808 L-474
Livermore CA 94550

12th Target Fabrication Meeting
Snow King Resort
Jackson Hole, Wyoming
April 19-23, 1998

Work performed under the auspices of the US Department of Energy
by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.

\— y,
( )
. Current NIF Target Specifications for Capsules E

Ablator ; Polyimide, Cu-doped Be ( )

Material : Polyimide
DT layer
4 Cu-doped Be

Diameter :2mm

Wall thickness : 150-200 um

Sphericity : >99.95%

G J

319




Relative Interfacial Tension can be
Approximately Determined

T

Method: Aqueous and oil phases are mixed and the time dependence of their separation

is measured.

Faster separations are due to larger interfacial tensions

+ We find that 1,2-dichioroethane / benzene has a greater interfacial tension than fluorobenzene

(" PVAWL% )
025 1.0 20
Aqueous
phase
Oil/water
emuision
0 30 60 90 120
Time (min)
. — _/
Separation Velocity of W Phase Changes h
with the Concentration of PVA L]
| —&— 1,2 Dichloroethane / Benzene | ——e— Surface tension of aqueous PVA (dyne/cm)
=~ Fluorobenzene
PVA Molecular wt. 23.5k, Hydrolysis 88%
- — 70
E 03 o £
-~ 025 [ A
E ] | 8
> 02 ? \ 1 40 2
= :\ \ ] 5
3 : 1 S
® 015 e ™, o 2
> :V ] o
5 2 — e | 8
S_ 00s [ : 10 5
® : 1
0 1 2 3 4 5 s
Concentration of PVA (wt%)
Y,
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A Direct Measurement of Interfacial Tension uses
Gravitationally Induced Drroplet Deformation T

( Experimental method

CCD Camera

Water bath

_ _ _ 28pgr3
‘. m.o.0.R.= 2{(r+c) o2 }= 7

NY_  where

m.o.o.R; difference between maximum and minimum ellipsoid (cm)
t; radius (cm) Spgr3
3y
3p; density difference between droplet and surrounding bath (g/fcms3)
g; gravitational constant (cm/sec?2)
L ¥; interfacial tension (dyne/cm)

g; positive deformation €=

[ Calculation method A

\

The Interfacial Tension of Mixture Solvents
with 1,2Dichloroethane and Benzene is Higher than Fluorobenzene &

The interfacial tension measured using sessile drop method.

( Fluorobenzene h
In Water In 2.5 wt% PVA Solution

op : 0.0197,.

p Interfacial tension v; 6.8 dyne/cm Interfacial tension v ; 2.9 dyne/cm

( 1,2Dichloroethane / Benzene )
In Water In 2.5 wt% PVA Solution

L Interfacial tension v ; 34.8 dyne/cm Interfacial tension y; 11.9 dyne/cm )
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~
( Interfacial Tension is Dependent on Solvent System and Temperature LTISI
(1 wi% PVA, 1.5wt % NH4C! Vs Fluorobenzene )
oy PPV
8p; 0.0155,v;4.0 &p;0.012,v;7.4 9p;0.0045,v;11.9 dp;0.001,y;—
.
—
1 wit% PVA, Vs Fluorobenzene
op; 0.003,7; —
> o Y,
4 )
Interfacial Tension is Dependent on Solvent System and Temperature IEI
e )
1 wit% PVA, 1.5 wit% NH4Cl Vs 11wt% PAMS dissolved in Fluorobenzene
\ y,
\- y,
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Interfacial Tension is Dependent on Solvent System and Temperature

(0.1 wt% PVA Vs Fluorobenzene

ép; 0.022,y;6.05  &p;0.0205,y;7.12 op; 0.01,v; 8.28

\

 3p; 0.018,7;13.2 8p; 0.0175, 3 15.6

(" 0.1 wt% PVA, 1.5 wt% NH,Cl Vs Fluorobenzene

8p;0.006,y;193  &p;— ,y;-—

( 0.1 wt% PVA, 1.5 wi% CaCl Vs Fluorobenzene )

__ 9p; 0.0135,7;143  3p;0.0135,7;20.5 §p; 0.002, v; 25.6

J/

( Stirring Methods for Acheving High Wall Thickness Uniformity
and High Sphericity

Key is stirring of null gravitational state.

sting Cylinder type flask )

\—

Flow rate: 100 ml/min

100 revolutions per minute

Motion of emuision

Air _p

Water Bath

—

),
!il@ gg§
99 @ ©
R A B

Figure looking from top of flask.

)

Result;
e The centering of O/W emulsion to make uniform O

stirring method.

o Drying time is less.
® O /W emulsion isn't damage by a propelier.
L Yield of shells is good.

phase is quicker than the propelier
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Strength Measurements of
Polyimide Coatings

Mike Saculla, Ed Hsieh, Steve Letts,
Chad Roberts and Greg Rogers

University of California

I!!. Lawrence Livermore Nat’l Lab

P.O. Box 808
Livermore, CA 94550

Target Fabrication Meeting 1988
Jackson Hole, Wyoming
April 20 - 23, 1938

Gas burst tensile test apparatus

Gas
Regulator

Pressure Presser
Control  Gauge

Scatle for
Measuring
Displacement

MYRNY 2 T R ey
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By recording the pressure and the radius of
curvature at burst, we obtain the tensile
strength of the film L]

PR

T2t
where o = tensile stress in film
R = radius of curvature
P = pressure on film
t = thickness of film

Ah =displacement
a - ¢ = window diameter

Presently we measure A h to calculate R.

Procedures have been established to determine R from
freezed frame recording, simplifying the calculation.

Derivation of pressure/stress equation on film

G
F=Jg t%
=3 P2 R® (cos 6) sin6 A6
= -§—P"R2 (cos 6)3, Equation1

where & =cos™ (ﬂ-ﬁA—h-) .
F, R
Co~ ot °
Og = tensile stress at points with angle 6 to verticle

P, = Pcos 6, and P is from Equation 1
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Automated method of recording film burst

b
a c
Monitor e n2+ (m2/4)
: 2+n

The radius (1) of a circle can be
defined by selecting three points

(a,b,c) along it's curvature.
Computer codes allow a user to

Sample Flow Shut Off select three points on the saved
'-%!'eg‘:' Restriction Valve image of a deformed film. The

ﬁgius is then calculated. |
e pressure at burst time is also

recorded by the computer.

Punch test was performed using Instron instrument
for tensile stress measurement

force
! F

(Newtons)

Test film

film
l displacement
Ah

(cm)

Instron model 4204 F and Ah are continuously
stress / strain monltpred by the Instron
instrument machine
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Pressure and force on film and sphere

F = total force pushing on sphere
P = pressure on film at the highest
F penetration point (0 = 0)
Pe = pr&eslure at point 0 degrees from
verticle
P §phere s = Pcos @
4 A reaction force from film pushing
; against the sphere, always pointing
! toward the center of the sphere
Py =(A area)
P cos 0+ (2nR%sin6 A6)
verticle component of fy
fe cos 6
d = angle at burst pressure between

the tangential point at the film
with the verticle

o
- d
o,
<

1]

“
A

5 vttt
oy

-
nn

s-e—Tangent ¢
point 6

Basic assumptions in calculating tensile stress
from Instron measurements ©

¢ Using a lubricated punch test sphere there is
negligible friction between the surfaces of

the sphere and film.

& The pressure exerted by the sphere on the film
at angle 6 from the direction of force is P cos 6,

where P is pressure at 6 = 0.
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Influence of Blowing Agent Concentration on Large (2mm) Polystyrene Shells
Formation.

Yuriy A. Merkul’ev, Aleksander A. Akunets, Valeriy M. Dorogotovtsev, Sergey A.
Startsev, Aleksander P. Turivnoy, Lebedev Physical Institute, Moscow, Russia,

Abstract. Influence of blowing agent concentration on polystyrene shell formation from solid granules in
drop tower furnace are discussed. The concentration of blowi g agents (solvent) has typically been 2 to 5
mass %, and under these conditions high temperature and low pressure in the furnace is necessary for
polymer shells formation. We have found both computationally and experimentally that increasing of
blowing agent concentration allows us to produce a high yield of large shells at lower furnace
temperatures. An important benefit of the lower furnace temperature is a reduction in thermally induced
polymer degradation which results in fragile shells. In our report we will discuss both the experimental
results and the agreement of these results with our computational modeling studies.

The laser fusion national projects of different countries have goal of creation of laser with 0.2-2.0 MJ pulse.
The polymer capsules with high pressure of DT-fuel are basis of targets for laser experiments. The shells —
capsules with 1-3 mm diameter must have high sphericity, small wall thickness deviation and smooth
surface. The scientific group of the Department of Neutron Physics at the Lebedev Physical Institute has
been involved in the production of targets for ICF experiments for more than 25 years. During 20 years LPI
target group had been using the method of polymer shell formation from solid granules containing the
blowing agents. High quality polystyrene shells with diameter up to 1.5 mm have been fabricated in drop
tower furnace and in ballistic furnace. Besides mathematical model and simulation codes for shell
formation processes description were created.

Unfortunately, large shell fabrication requires technological condition which gives rise to complicated
processes: hot zone temperature raising leads to polymer degradation, increased granule diameter is
connected with numerous nucleation and foam formation etc. Besides good shells' yield goes down because
of appearance of asymmetric particles, which cannot be explained in one-dimensional model. The blowing
agent concentration rise is one of the ways to achieve hot zone temperature decreasing.

The primary activity was experimentation with drop tower furnace with new 1.5 mhot zone, focusing on
producing of polystyrene shells with maximum diameter from solid granules, similar produced early
granules. Optimal temperature and pressure (EHe-Ar mixture) gas were found for formation of large (about
2 mm) shells at 1.5 m hot zone. The shells with diameter up to 2.3-2.5 mm were fabricated, but its had not
target quality. The good shells had diameter to 1.9 mm, but had dust on surface.

The basic defect of the technology of large (diameter 0.7-0.8 mm) solid granules blowing was high (1100°K
- 1200°K) temperature of polystyrene shell formation. We began to experimentally and computationally
research a influence of high (8-16 mass %) concentration of blowing agents on technological conditions of
polystyrene shell formation. The experiments have been fulfilled an the drop tower furnace, because
statistical errors were small (shells quantity was significant).

The results of this experiments is nest:

1. Solvent concentration increasing from 4 mass % to 8 mass % was raised the good shell yield to 34 times,

2. Shells with diameter up to 3.3-3.5 mm were fabricated, but its had not target quality. The good shells
had diameter to 2.2 mm,

3. Optimal temperature of the polystyrene shell formation was decreased.on 100°K - 150°K at- solvent
concentration increasing, :

4. Computational results have been agreed qualitatively with experimental dependence and predicted
decreasing of optimal temperature of the polystyrene shell formation up to 800°K and mass loss reduction
at solvent concentration increasing to 16-20 mass %.

Summarizing obtained result, we can affirm that goal results - production conditions of good 2mm shells
are real at solvent concentration increasing to 12-16 mass %.
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Inlet ) O Initial
. . Granules
Q M
Initial heating \63/’
Bubble . - M - <¢-He
nucleation ) @ A Ar
. 2
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Gas expansion Heating 4]
(cavity growth) : No
] i Cooling -
Cooling,
compression,
solidification LNo-
' (-]
Final shell o>

Figure 1. Sketch of physical process of shell blowing (left) and current vertical
drop tower configuration.

Typt col Shells
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Fig. 2. Dependence of microspheres quality in relation to total number of monoshells from

radius, T=800°C, size of initial particles - 0.74mm, length of the hot zone is 1 m, pressure -
0.2 atm., He+Ar., '
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Figure 3. Shown is radius as a function of coordinate in furnace. Furnace pressure is 0.2 x
10° Pa. Red lines denote hot zone temperature 1073 K (800 °C). Blue lines denote hot zone
temperature 873 K (600 °C). Oversaturation values § = 30, 60, 120, 240 are denoted by
solid, dash, dot and dot-and-dash Iines respectively.
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Figure 4. Shown is mass of microspere as a function of coordinate in furnace. Furnace

pressure is 0.2 x 105 Pa. Red lines denote hot zone temperature 1073 K (800 °C). Blue lines

denote hot zone temperature 873 K (600 °C). Oversaturation values S = 30, 60, 120, 240 are
denoted by solid, dash, dot and dot-and-dash lines respectively.
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Figure 5. Shown is inner temperature of microspere as a function of coordinate in furnace.
Furnace pressure is 0.2 x 10° Pa.
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Figure 6. Shown is ratio Final Mass/Initial Mass as a function of pressure. Red lines
denote hot zone temperature 1073 K (800 °C). Blue lines denote hot zone temperature 873 K
(600 °C). Oversaturation values S = 30, 60, 120, 240 are denoted by solid, dash, dot and
dot-and-dash lines respectively.
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Figure 7. Shown is final radius as a function of pressure. Red lines denote hot zone
temperature 1073 K (800 °C). Blue lines denote hot zone temperature 873 K (600 °C).
Oversaturation values S = 30, 60, 120, 240 are denoted by solid, dash, dot and dot-and-
dash lines respectively.

333

TIITVN T | N g repppm———— v - -



s enit

z(m)

Figure 8. Shown is radius as a function of coordinate in furnace. Furnace pressure is 0.05 x
105 Pa. Red lines denote hot zone temperature 1073 K (800 °C). Blue lines denote hot zone
temperature 873 K (600 °C). Oversaturation values S = 30, 60, 120, 240 are denoted by
solid, dash, dot and dot-and-dash lines respectively.
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Figure 10. Shown is inner temperature of microspere as a function of coordinate in furnace.
Furnace pressure is 0.05 x 105 Pa. Red lines denote hot zone temperature 1073 K (800 °Q).
Blue lines denote hot zone temperature 873 K (600 °C). Oversaturation values S = 30, 60,
120, 240 are denoted by solid, dash, dot and dot-and-dash lines respectively.
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Figure 9. Shown is mass of microspere as a function of coordinate in furnace. Furnace
pressure is 0.05 x 10° Pa. Red lines denote hot zone temperature 1073 K (800 °C). Blue lines
denote hot zone temperature 873 K (600 °C). Oversaturation values S = 30, 60, 120, 240 are
denoted by solid, dash, dot and dot-and-dash lines respectively.
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Fabrication of a thin-walled plastic shell
using emulsion technique

Hitoshi Nakano and Tsuyoshi Fukuda

School of Science and Engineering,
Department of Electrical
Engineering,

KINKI University

Target Fabrication Meeting '98

April 19-23 1998
Snow King Resort, WYO, USA

Fabrication of a thin-walled plastic shell using
emulsion technique

d

We have modified and extended the direct 2
| wall thickness

encapsulation technique (the emulsion
technique) in order to produce the plastic
shell of thin wall layer.

Method: Emulsion technique

Shell materials: Pblystyrene (PS),
Co-polymer of acrylonitrile and styrene (AS)
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A Polystyrene (PS) and a co-polymer of acrylonitrile
styrene (AS) are used as the shell material.

A PS is the one of the candidate for the ICF experiments and an AS would
be also accepted by several ICF experiments.

The AS was designed such that it has a slightly lower peamiability to
hydrogen isotopes than PS usually used in ICF experiments while maintaining
the same resistance to damaging effect of beta radiation from tritium as PS.
The tensile strength and fiexural rigidity of AS are 750 and 1000 kg/cm?,
respectively, which are approximately two imes higher than that of PS. ASis
advantage to produce the thin-walled shell.

Microencapsulation processes for producing plastic shell

1st emulsification /// ;7
W4/O emulsion %
Y %A ;O-phase.’/: polymer solution
TRy

2nd emulsification 7 TR

P

. \Water Globule
W4/O/W5 emulsion
O-phase
;Wo-phase;;
\ B T 7#0-phase solvent
Underwater drying i
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Experimental parameters for producing
thin-walled plastic shells

Emulsion technigue employs three different solutions.

W1 phase Water w:th surfactant g e
O phase. PS or AS dlssolved m orgamc so‘luﬂon
W2 phase PVA or gelatm solutlon f BTt

Concehtration of plastlcsfm '
Ophase~ RS s

230 000 "'290 coa 499 ggg
Concentratlon of o Phas e 4 wt% R

Wall thickness is found to be reduced at low-concentration.

Temperature at underwater drying: 60°C
1 1 |

€ 25 ,
% O PS shell
%’ 20 |- @® ASshell -
T
8
5 15 | ~
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g 0 I i |
10 8 6 4 2 0

Concentratiéh of O phase [wi%]
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Higher temperature at underwater drying
results in thin wall thickness.

Wall thickness of resultant PS shell [ym]

20 T T T T T
O PS shell
15 }+ -
10 | ﬂ) JE ]
5 | . (I) A O i
O
o ] 1 1 1 [}
40 50 60 70 80 90

Concentration of O phase: 4 wt%

Temperature at underwater drying ['C]

100

Higher temperature at underwater drying
results in thin wall thickness.

Wall thickness of resultant AS shell [pm]

10

Concentration of O phase: 4 wt%

| | | ] 1 | I
@ AS shell
L
o ® ® ®
1 1 1 1 1 1 1
60 65 70 75 80 85 90 95

Temperature%? underwater drying ['C]
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Wall thickness is independent on molecular weight of PS

-~ 10 T T T T
£
=
T 8| ‘([) .
=
® I .
£ I Q U
£ 6 | -
S
o
2
° 4} i
(3
4
% 5 L Concentration of PS: 4 wt% |
Y= Temperature at underwater drying: 50 °C
g 0 | | | |
20 25 30 35 40 45

Molecular weight X 104

The wall thickness reduction at high temperature
drying may be caused by annealing effect

The reduction of the wali thickness has not analyzed what happens during
the underwater drying.

In the underwater drying at lower temperature, a PS or an AS molecule in .
the O phase solvent deposits with insufficient binding force when the solvent
is removed. Thus the shell has the micro-spaces between molecules in the
wall.

In addition, the PS or AS molecules would be shrieked its carbon chain.
These result in relatively wide wall thickness.

In contrast, if the temperature reaches or exceeds to PS or AS softening
point, the molecules may initiate to stretch its chain. The spaces between
molecules would disappear and the molecule would make tough network.

The wall thickness reduction at high temperature would be caused by

annealing effect.
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Summary

Thin-walled plastic shells has been fabricated
using conventlonal emulsmn technique.

t\ﬁolecular weight was not essential to -
L produce thin-walled plastic sheils

“ Tworexperimental parameters | for-producing the- =’ 3 '” 

- sheiis are completely mdanpendent w;th each other

' Wal! thickness:could: he e*xpected to reduce with the ¥
combination of. each paraxmeter demonstrated by present
experiments. ‘;‘a N N . e
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Design, Fabrication and Testing of
Be Capsule for Resonant
Ultrasound Experiments

Mike A. Salazar, Lee Salzer, Robert Day

Los Alamos National Laboratory/UC/DOE

Los Alamos, New Mexico, U.S.A. LA-UR-98-1326

This work is supported by the U.S. Department of Energy under contract number W7405-
ENG36

ABSTRACT

ICF requires smooth and well-characterized Beta layered DT ice inside the ICF target. One of our
researchers is developing Resonant Ultrasound Spectroscopy or RUS1 a means of measuring internal
pressure of DT. This technique also is capable of measuring various aspects of surface roughness and
figure using acoustic methods.

This capsule is intended to be the experimental capsule for the acoustic tests. These experiments require a
Beryllium capsule with an inside radius of Imm and an outside radius of 3 mm. These Be capsules have
various contours machined into their interior surfaces up to mode 12. The capsules are filled to ~4kpsi
(kpsi=1000pounds with Helium or Deuterium gas, and joined using an epoxy adhesive.

This paper describes the adhesive joint design, machining techniques, figure measurements. It
also describes the fixtures needed to assemble and fill this high-pressure capsule and the testing
of this type of capsule.

INTRODUCTION

The design of the interior of the capsule is dictated by the acoustic experimenter so that the
figures he desires to investigate are machined into the interior of the Be capsule. These contours
must be describes mathematically so that they can be machined by Computer Numerical Control
(CNC) techniques.

CNC machining of the Be components is a critical and developing technique in the fabrication of
experimental capsules. Developing tooling and cutting technology for precision contours is an
ongoing process. Measurements of these fine contours are taking place on our new sphere
mapper.

The design of the capsule has a unique joint design that precludes adhesive from intruding into
the interior and ruining the desired contours. This joint provides alignment of the capsule in
radial and axial directions. This large area joint provides structural integrity to the capsule under
high-pressure loads.

A capsule filled to 270 atmospheres requires that many things happen in a sequence that
assures the safety of the operating personnel and the integrity of the capsule. Assembly
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operation timing2 must be consistent with the fixture time of the adhesive. The device therefore
must be quickly assembled into a gas tight device.

The filling fixture/vessel design is a versatile device that provides safe gas handling, part
separation, and part closure. This design can be adapted to insert plugs, assemble cylinders,
and other shapes under pressures as high as 10ksi.

Test units with only spherically machined interiors have been constructed with fill tubes and
tested to verify the assembly process and structural integrity of the gas filled capsules. Some of
the acoustic test items have been assembled with gas and experiments have begun.

CAPSULE DESIGN

This capsule is intended to be the experimental capsule for the acoustic tests. These Be
capsules have various contours machined by CAM into their interior surfaces up to mode 12.

0.01657In[0.42mm] —— 0.01607InL0.41mm]
00066017 mm] D.0D66InLD.17mM]
R0.0030InLRO.08MMI

RD.D020INIROMSAm] —= R0.0020INCRO.05MM] RO.0R20INLRO.05mm]

RD.0D20INCRD.0SMM] 0_0100|n[0‘25nn]__§ RO.0020INLRO.0Smm] RD.0394InLR1.00mm]
R0,0394in{R1.00mm

R0.1181infR3.00mnM]

RO0.1181INIR3.00mm] 0.0100inf0.25mm3

110.0000%In

-

This capsule is intended to be the experimental capsule for the acoustic tests. These Be
capsules have various contours machined by air bearing CAM into their interior surfaces up to
mode 12.

The joint design is self-aligning so the problem of
tolerance build up is lessened. We have very
accurate machining capabilities and it is wise to use
this capability to its fullest. Self-aligning joints take
advantage of the fact that the Be is CNC machined in
an air bearing lathe for all final cuts. This accurate
machining assures self-alignment. This makes the
fixture problem much easier as the fixtures can be
machined in conventional machines to relatively
loose tolerances.

As the hemi-shelis are brought together in the fixture
the alignment portion of the joint becomes very tight
before the parts are at final height. This very close fit
ensures the alignment of the parts and keeps
adhesive from squeezing into the interior of the capsule. Several test parts have proven this
technique of adhesive exclusion to work quite well.

344



AIR BEARING CNC MACHINING OF HEMISPHERES

The hemispheres3 were machined on
a Pnuemo Ultra 2000 computer
numerically controlled diamond turning
machine. This machine has very
smooth roller ways in the X and Z axes
so it is capable of producing a high
quality mirror surface on the parts
machined. The laser interferometer
positioning feedback system allows 25
nm linear resolution. its air bearing
spindle provides a very smooth and
accurate axis of rotation so axis-
symmetric contours can be machined
to a very high precision. This Ultra
2000 had previously been retrofitted
with a beryllium dust collection system
so it could safely produce beryllium
parts. This combination of features
made this the machine of choice for
machining the spherical harmonic
functions into the small beryllium
hemispheres.

To produce the parts the spherical harmonic functions were incorporated into a computer
program written in the BASIC programming language. This program generated as series of X
and Z coordinate values which corresponded to the location of the cutting tool as it machined the
hemispheres. These coordinate positions were downloaded into the Ultra 2000 controller via a
floppy disk. After the cutting tool was located with respect to spindle to an accuracy of 0.5 ym,
the part cutting program was initiated, and the hemisphere was machined.

INPECTION OF THE SPHERICAL HARMONIC

The contours were inspected on an air bearing Be#z Male
roundness gauge. Since they were so small i g ]
(nominally 1 mm in radius) conventional probes 6! Sy, ;
associated with a normal roundness gauges g ! ﬁf5’° %\& :
could not be used. To be able to probe insidethe | § &= & :
shells and detect the changing contour caused g = & u&f_z 7
by the spherical harmonic functions, a very g g"é % 3
small diameter probe stylus must be used. Some | = & %, ]
150 pm diameter glass spheres were available T e | o mmeintw e | g
S0 one was mounted on the end of a 100 um - ; t
diameter copper wire. This was a very fragile oo T Angle @epressy e
stylus assembly, therefore an air bearing linear
variable differential transformer (LVDT) with less Be#3 Male
than 1 gram of probing force was used as the oETTTT S B
probe. This combination worked very well for 20 & %, .
measuring the targets. g ¢ i kY
g, 10 - ;}? ?‘L
To measure the contours accurately, the 2 of L_f S T
absolute radius must be known. So the null point E , g vy e 1
-1 - S Measured radius change (m) %’%_
~100 -50 A,,gh, (ZEM) 50 100
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of the LVDT was set to a specific radius using a calibrated master sphere of a known diameter
that was centered on the rotary table. A micrometer was then used to move the LVDT’s null point
to the nominal radius of the part. This null point was located to an accuracy of +2.5 ym. The part
was then centered on the rotary table and the pole of the part was positioned so it was at the
theoretical radius. Radius versus angle data was then taken about the pole in 5-degree
increments. At angles greater than =+ 47° the equator of the hemisphere would hit the stylus so
radii at angles greater than = 45° were not measured. After the data was recorded, a best fit to
the contour was performed to reduce alignment errors. The final measurement error was
estimated to be within + 0.5 pm. The inspection data and the theoretical contour data are shown
for two of the hemispheres in figures.

MATERIALS PREPARATION

We have found that changes in the process can have very large and unexpected resuits. Careful
preparation of the Beryllium and the adhesive is key to the integrity of the bonded assembly of
the joint.

STEM DESIGN

Stainless steel stems are cut to the outside radius of the hemi-shells and to a length that
matches to the bonding fixture height. The stems are bonded with a low strength adhesive to the
hemi-shells in a fixture that assures

perpendicularity. This step is important as [ }

this gives us the handle to hold the parts
and contributes to the closing height. The
low strength adhesive allows easy removal
of the stems after bonding.

BONDING FIXTURE DESIGN and r*A
FILLING OPERATIONS

The heights have previously been
measured and the stems carefully fitted to
ensure closure of the joint. The adhesive is
prepared as described in the end note
paper. The adhesive is applied by hand
carefully and in limited quantity. The hemi-
shells with the attached stems are inserted
into the fixture. The fixture components are
then assembled and bolted together. The
fixture holds the hemi-shells apart by
means of the bonded stem and a non-
sealing o-ring while the gas fill system is
purged and filled to the desired pressure.
The design of the plunger drive mechanism
and its parts are borrowed from the highly
reliable Autoclave Engineers Inc. valve
60VM-4071. This is done to ensure sealing
of the mechanism and avoid custom-built »

parts. \
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Z
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When the desired pressure is achieved, the rotating handie is turned. This drives the plunger
forcing the two hemi-shells together. The large plunger lands on the upper part of the upper
aluminum section of the fixture at the same time the joint of the hemi-shells closes.

The system is allowed to remain at pressure and room temperature for 16 hrs. The adhesive will
cure in this time. An elevated temperature post cure finishes the cycle while the fixture is still
mechanically holding the parts together. The gas pressure is relieved and the part removed from
the fixture.

PRESSURE TESTING

Test units of the above design are machined, and assembled using the same process as the
acoustic experimental parts. After manufacturing, these units are tested in a high-pressure gas
facility. This test facility consists of a 2kpsi helium supply, a Newport Scientific two-stage
diaphragm pump, high-pressure manifolds, digital pressure transducers and a shrapnel
containment box.

Proof tests of fﬁesé units indicate that if processed correctly the failure pressure for this désign is
in excess of 25kpsi. 25kpsi is the limit of pressure for our test facility.
CONCLUSIONS

Gas filled high strength adhesive bonded capsules can be made using careful design, high
strength adhesives, and precision machining.

This capability can be used for a variety of capsules of varying geometry and a variety of gases.
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The pressure capacity for this fill/fixtureing system is 10 ksi depending on the size of the capsule
being filled.

Joint geometry and adhesive strength determine the pressure holding capacity of the capsule.

Air bearing CNC machining is a key element in the cesign and fabrication of any Be capsule or
target.

References
! Resonant Ultrasound Spectroscopy or RUS Tom Asaki

2 TEST RESULTS OF EPOXY ADHESIVE ON ALUMINUM AND BERYLLIUM FOR FABRICATION
OF CAPSULES AND TEST APPARATUS Mike A. Salazar

3 Machining of Be Spheres for Ignition Capsule Applications L. Salzer
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Progress in Enhanced Layering Engineering for the

OMEGA Cryogenic Transport System

D. Bittner, J. Sater, J. Burmann

Schafer Corp., 303 Lindbergh Ave., Livermore, CA. 94550

ABSTRACT

The first cryogenic target experiments will begin within two years at the
University of Rochester/Laboratory for Laser Energetics. Initial
experiments will be conducted using non-tritiated hydrogen layered by IR
heating. Approximately one year later, UR/LLE plans to begin using DT
targets with layers smoothed by Joule heating. We are currently involved
in integrating these enhanced layering capabilities into the UR/LLE
cryogenic system. Our current conceptual design, schedule, and
progress will be presented.

Schafer
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In less than two years the University of Rochester
expects to start shooting cryogenic targets on OMEGA

An IR heating shroud is currently being designed for implementation in

Sept., 1999.

One year later, Sept., 2000, a Joule heating shroud will be implemented.

) { Fiscal Year 1998 Fiscal Year 1999 Fiscal Year 2000
Activty Name T3 T a T 2 1 3 | a T 2 | 3 | a4 1
IR HEATING SHROUD F————m————— ] ! i 5 2
Develop shroud concept... —/mmemmm—" ! i i { : ! '
Design and fabrication... | { R : i
iR heating layering shroud i i . i i !
operational ! i | ' i | i
| i —————————

JOULE HEATING SHROUD

Develop shroud concept...

Design and fabrication...

Joule heating layering shroud
operational

1 t ]

.

{Second @ Thid Q

FouthQ': FirstQ Second Q, ThidQ | FourthQ, FirstQ Second Q! ThirdQ Fourth Q

T laf"Er

The first cryogenic targets will be generated using IR

heating.

0.024

0.016

Log( M

0.008

The hydrogen isotopes have
absorption bands in the mid-IR
range.

Absorption of IR light generates a
volumetric heating, Q, analogous
to B-decay heating.

Uniform IR illumination of the
solid will produce a uniform layer.

Schkzier
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IR heating experiments, using 1 mm O.D. shells with
attached fill tube, are in progress.

In current experiments, an IR beam is
injected into an integrating sphere
containing an HD filled shell.

illuminator/backlighter

radiation vacuum
shield can The dimensions of the shell and
integrating sphere are comparable to
the dimensions for a OMEGA layering
Beam posltioned shroud.
1o miss the shell
prior to hitting the
integrating sphere
vall A
IR
beam
integrating
1 mm sphere 1 mm
sheli
inner
camera ice Y
surface ¢ e o B T
100pm thick HD laye
Schazfer

We are in the process of designing an IR heating
layering shroud.

There are four major components necessary to implement IR heating:

¢ IR source

3.2um radiation is required to pump the D, line. An IR laser provides a convenient
means of producing the desired light in a narrow bandwidth. The laser currently in
use at LLNL is no longer manufactured, therefore, another laser must be identified.

e Uniform shell illumination

This is an issue being addressed by the current experiments. An integrating sphere
is being used to generate uniform shell illumination and various IR injection
schemes are being investigated.

* IR beam transport

The IR light must be transported from the IR source and coupled into the layering
shroud. Current experiments use an open space laser. To transport the beam in the
moving cryostat, a flexible light guide, optical fiber, is necessary.

e Shell material

CD shells developed for the IR experiments will be required for OMEGA
experiments. _

SchazFar
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After a shakedown period, OMEGA will start shooting
DT targets augmented by Joule heating.

Solid layers can be smoothed by
applying a heat flux to the surface.

Tritium decays producing a low
energy beta particle, an electron.

By applying an electric field to
couple to the electrons in the gas,
a heat flux, F, can be generated for
smoothing the inner solid surface.

Joule heating has its own set of issues which must be
addressed.

Among the requirements are some analogous to those for IR heating:

e rf source

A standard power amplifier should work well for this application.

¢ 1f coupling

A suitable means of coupling the rf into the cavity needs to be devised. This is an
issue being addressed by the current experiments. A variable coupler has been
designed and tested to allow for in situ adjustment.

e Uniform electric field

Nonuniformities in the electric field will produce nonuniformities in the final DT
layer. The layering shroud must be a polished spherical cavity which minimizes
perturbations to the electric field. This includes minimizing the size of openings in
the shroud.

Srbkaiar
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Status

IR heating:

® An IR source has been identified. Aculight Corp. manufactures a compact and self-
contained optical parametric oscillator (OPO) laser which covers the range 1 -5um with
a power of about 300 mW at 3pm.

® Typical silica glass optical fiber does not transmit well beyond about 2um. Flouride
glass optical fiber has good transmission characteristics in the 3pm range. We have
acquired a 2m length of the flouride glass fiber from Infrared Fiber Systems, Inc. for
testing.

¢ Design of the IR heating shroud has commenced. It will essentially be an integrating
sphere version of the beta heating shroud.

Joule heating:

¢ Experiments are being conducted using a geometry consistent with OMEGA
dimensions.

® Design of the layering shroud will commence next fiscal year.

Schazfor
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% GENERAL aromics JLawrence Livermore

DESIGN AND TESTING OF THE
VERSATILE CRYOGENIC
HOHLRAUM TEST APPARATUS
(CHTA)

D. T. Goodin, W.A. Baugh, W. Egli, J. Sanchez*, and R.W. Stemke

General Atomics, San Diego, California
*Lawrence Livermore National Laboratory

General Atomics has designed and fabricated a Cryogenic Hohlraum Test Apparatus for
Lawrence Livermore National Laboratory (LLNL). The CHTA provides a versatile platform to
allow LLNL scientists and engineers to test the effects of differing thermal, radiation, pressure,
compositional and mechanical environments on cryogenic hohlraum targets.

The CHTA consists of a vacuum vessel for carrying out cryogenic experiments, a cryogenic stage
for cooling the hohlraum during the experiments, and a gas handling system to provide various
cooling and fill gas mixtures to the hohlraum. The vacuum vessel has multiple windows and
ports to allow experimental access to the hohlraum experiments at the vessel center. Four of
these windows are reentrant and allow very close optical access to the hohlraum. An XYZR
positioner allows precise manipulation of the hohlraum without opening the vacuum vessel. The
cryogenic stage provides supercritical helium cooling to the hohlraum. The gas handling system
can provide H2, D2 and He gas in any mixture to both the interior of the hohlraum and to a
capsule mounted inside the hohlraum.

The CHTA was designed, fabricated and tested at GA and after passing acceptance tests was
delivered to and installed at LLNL.

*Work supported by Lawrence Livermore National Laboratory under Subcontract B310613.




PURPOSE OF THIS WORK

-Provide a versatile, cryogenic test bed for development of an Inertial Confinement Fusion
Temperature Shimmed Hohlraum (TSH)

BACKGROUND/SUMMARY

-Supports development of ICF targets by allowing testing of the effects of differing
thermal, pressure, compositional, and mechanical environments on cryogenic

hohlraums

-Although originally conceived for use with supercritical helium cooling of the hohlraum,
the versatile system is also well suited for studies with conduction cooling via sapphire

rods

-Also could be adapted for testing of the Cryogenically Assembled Hohlraum (CAH)
fielding method

-Designed and constructed by General Atomics for Lawrence Livermore National
Laboratory

INDIRECT DRIVE INERTIAL CONFINEMENT PROCESS

- Uses the heating of a radiation cavity (hohlraum) to produce x-rays that result
in a radiation implosion of the capsule

-Supercritical (100 atm) helium cooling fluid to minimize cooling system mass
-Helium flow of 10 - 60 mg/s total, on two cooling loops
-Central heating ring to generate spherically symmetric temperature isotherr

-Polyimide windows on laser entrance holes contain tamping gas mixture
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VACUUM SYSTEM AND TARGET CHAMBER

Requirements

-Pumpdown from dry nitrogen in 2 hours and from air in 4 hours
-Physical and optical access (re-entrant windows for hohlraum viewing)

Design

-Welded stainless steel high-vacuum chamber, 40” long by 16” diameter
-Volume of 130 liters and surface area of 1.6 scjuare meters
-All metal seals - Conflat flanges and copper wire sealed door flanges
-250 liter/s turbomolecular pump
-Speed sensor interlock automatically closes gate valve if turbo shuts down
-Pressure Measurement

-Cold cathode gauge

-Pirani gauge

Iinterior view of target chamber
showing viewing windows
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CRYOGENIC SYSTEMS

Requirements

-Cool < 60 mg/s of supercritical helium from room temperature to 8K
-Cooldown time of < 6 hours
-Temperature Stability

-Coldhead, + 10 mK

-Hohlraum, + 5 mK

Design

-Liquid helium powered coldhead for heat removal

-Liquid nitrogen radiation shield, intercepts, and pre-cooling

~-Supercritical helium once-through cooling fluid to transfer heat
from hohlraum

-He flow of 5-60 mg/s in two cooling loops

-Counterflow recuperators to maximize LHe usage efficiency

X120
MANIPULATOR

N =

HIGH PRESSURE He
SYSI'E:JJGFOR HOHLRAUM

P

i |
\//J//////////////X(////ﬂ

HOHLRAUM

OPTICAL BENCH

359

T T T T T T S e T L VI e




SIMPLIFIED SCHEMATIC OF SUPERCRITICAL HELIUM
COOLING SYSTEM (ONE OF TWO LOOPS SHOWN)

Shield

Control Healer

LIQUID HELIUM POWERED CRYOCOOLER

Mounting Second
Flange s‘:g;; Stage
LHeEiransfer
ne ] 2
L N by /Coldhead
LHe_. ] ’ Z/A
Pz
— = la‘la Ty .
He Vacuum Can Temperature
Control

Heaters
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HOHLRAUM AND CAPSULE FILL SYSTEMS

Requirements
-Pressures of less than 3 atm

-Pressure controller for hohlraum fill
-Leak rate of < 1E-08 torr-l/s at 18K

Design

-Gas heat exchangers thermally linked to LHe coldhead
-Granville-Phillips pressure controller

SIMPLIFIED SCHEMATIC OF HOHLRAUM AND CAPSULE FILL SYSTEMS

Hohlraum

18 HD ..
Y Helium | Mixing
Hydrogen Tanks
Deuterium
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INSTALLATION AND TESTING RESULTS

-Vacuum System
-Pumpdown from dry nitrogen, 51 minutes

-Pumpdown from air, 55 minutes

-Cryogenic System
-Achieved hohlraum temperatures of < 8K at 32-60 mg/s He flowrates
-Cooldown times as low as 2 hours from room temperature

-Temperature stability of + 10 mK on coldhead, + 1mK, - 3 mK on cold gas to hohiraum

-Liquid He use met criteria

-Hohlraum and Capsule Fill System
-Leak rate of 9E-09 torr-I/s with both systems pressurized

All technical acceptance criteria were met

em Test Criteria Mezsured Value Comments
Vacuum Pumpdown | 2x10° torr <2h from N, | S1minutes Criteria greatly exceeded.
5x10°® torr <4h from air _{ 55 minutes —
Cryogenic | Cooldown | 300K to 13-20K in 6h 2 hrs 22 min to 10.5K Criteria greatly exceeded.
2 hrs 02 min to 10.0K (repeat)
Lowest Temp was 7.8K
<5LPH LHe use Variable depending on imposed heat load. At4.6 LPH:
02Wat7K
13Wat8K
53Wat12k
8.0W at15K
Stability 30 mg/s He flow: Coldhead +10mK
- +50mK on coldhead Cold gas to hohlraum +1mK, -3mK
- 5mK on hohlraum
3 mg/s He flow:
- 250mK on coldhcad
- +5mK on hohlraum
Gas Hohlraum | 0.5 atm Pcontrol Demonstrated control abitity to + 3 torr Not optimized
Handling | Rl S‘ig‘ﬁcated) with bypass flow (HV311) setto
<1x10-8 torr-Vs leak at 9x10-9 torr-Us with both hohlraum and
__ 11K capsule fill lines pressurized
Capsule Fill | <ix10-8 torr-Us leak
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SUMMARY OF COLDHEAD PERFORMANCE

15
Actual Data Points Shown

Dashed Lines Are Extrapolated

-t
o

Power (Watts)

LHe Use (Liters Per Hour)

25
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(" Infra-Red heating forms and smooths )
HD layers
&rhafer
. After
Liquid HD solidification
‘ plastic shell
HD vapor

G. Collins, D. Bittner, G. Moll, E. Monsler, W. Unites, R. Stephens,
D. Tiszauer, M. Feit, J. Burmann, J. Sanchez, E. Mapoles, and T. Bernat

Experiments on flats show surface temperature

gradients, 8T/3h, reduces roughness =

w/sa

(1) Heat flux across the gas/solid interface

g
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=
=)
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MgFa D
Substrate 2 8T/5h = F/IK

To 7100
Surface heat flux (mWicm 2)

Surface roughness rms (um)
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Objective:
Form smooth HD or D, layers in a CD shell

by pumping molecular absorptions C
rhafe
0.041 257m HD Laaier

Log(ig/)
°
3

e o
@ 9
L

'—"\ﬁ

£

3
n
=3

® Absorption of IR light
generates volumetric
heating, Q,,

3600 3300 4000 4200 4400

® Need uniform illumination

® Cannot heat plastic too much

h We have shown
AT = Qh?/2K Q,.can be 30 Q,

o6T(bump) ~ AT + Qhdh/K

IR illumination can significantly modulate

surface structure L
Schafar
surface with spatially 14 % coherent <3% coherent
coherent illumination illumination illumination




The conversion efficiency of IR into bulk heat
Is determined by the redistribution time constant (L
h

¥

14 arnarer
L .
£ Tg=Lp/Qy~3min~1/107,, => Q_ =10Q,_
] ' p=density
o h=1-AeT5 - L= latent heat
2 Q,, = power absorbed/volume
o]
2

0 15 30 L . )

time (min) Laser power limited Q; in these experiments
fill tube —-':"""—' : uniform IR solid HD

lid HD ' illumination -

soli
before => HD vapor
heating
h
HD vapor
Modeling shows IR illumination can easily be better
that 99% uniform (=
Schafer

6 windows and
4 IR beams which miss shell on
first pass yield uniformity > 99%

To generate Q, = 4 Q. we need
P = 21 mW (HD)

41 mW (D,)
160 mW (DT)

23

low intensity regions are from
low reflection windows

onez




Integrating sphere generates uniform

spatially and nodulated IR illumination |
Srhater
Py T Dt
\til ' 1L N e
:’i_‘ T .(-L‘,\«AI‘L\JA
'ﬂ S AL Pews ixy
IR l B

1 Pilasma polymer CD sheli
1mm OD, 10 um wall
35 um CD fill tube

[ LA

A

sapphire /
coupling . .
lens integrating
sphere
F/4
collection
optics

Our polymer shell was designed
to minimize absorption in the shell &

% Transmission

100 -

; dum . R=(%1_ )2~11%  « Plasma polymer from
i deuterated p-Xylene
i 14..m

! « Using the shift in T, we have set
the maximum baseline absorption
ato <4 cm™

50

* Plastic absorption sets the IR
uniformity requirements for NIF

transmission spectrum of plasma
polymer at room temperature

]\ « DT does not effect the relevant

o HD D2

4000 2000 Shee e

Frequency (cm-1) Lot 1o oK -FV.
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Actual Radius (mm)

The bright band is due to i'eflections

off the ice-gas interface L
v g ® Bright band is due to Brhaler
RS internal reflection off the
gas-liquid or gas-solid interface
* Bright band is enhanced by
slow input and collection optics
\ ® Bright band is used to
measure surface roughness
The apparent layer thickness and uniformity
are shifted from actual values _ L]
Apparent interface s
gas-solid interface
0.6 _ _
0.5 ¢ Apparent image for ~ 100um
0.4 layer is shifted ~ 10%
0.3
0.2 , ® Apparent image is more
0.1 distorted for thin layers
0 4
0 0.2 0.4

Apparent Radius (mm)

fad Clramt UG
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Various cooling techniques were used for
generating a uniform layer L
® Fast freeze from liquid state, then apply IR to solid WIS~

e Technique used for mass redistribution and surface roughness
experiments

® Fast freeze from liquid state, apply IR to solid, then warm up slowly to
near melting point

o Apply IR to liquid, then very slowly cool down to solidify
o Had difficulty preventing a quick freeze

Liquid Solid After IR heating

Ug%‘,ﬂ:\?ut))"\a LJ//CV(I (uclg,\,Q‘//

- Degraded layers can be regenerated ~ ' [
TS = 16.19K TS = off - T =16.10k ST
- (ﬁ”j& | Pr=44mW ’ _ P.=no IR . le 45mW
. ] v ; 45 TFC 03T
Nl JiuLy
% ! nse
/5G4

e

. \\\___,/".‘ s § R Tl e :
T::; =15.73K T:; =15.73K Tr:; =15.73K
Pz 44.5mW Bl =no IR P = 44mW
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Gradual melting and cooldown resuilted in

significantly improved layers : .
=Eo
® Apply IR to solid, warm up to meit solid, cool down to SLaaer

freezing onset (about 100mK), then hold

T=15.73K
P, =44.5mwW
rms =3.0 um

t = 32 min
Ve find a huge temperature dependence on
surface roughness in a curved geometry L
wusa.

e HD, 15.3 K M’/ T oo Same layer after warming to 15.5 K
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One can readily make a relatively uniform layer
of HD with IR heating L]

srhafer
Asymmetry
from fill tube
HD, 15.9 K, Q~ 4 QDT
— 10
o~
E
~ 1
= ]
3
o O
2
2 0.0y
L
D
3 0.00%
@
[
§ 0.0007
5
® 0.000011 ™ pr
I- mode Number
Asymmetry '
from direct rms =2.24 um
IR beam

IR heating experiments, using-1 mm O.D. shells with
attached fill tube, are in progress.

In current experiments, an IR beam is
injected into an integrating sphere
containing an HD filled shell.

illuminator/backlighter

radiation
shield

vacuum
can The dimensions of the shell and

integrating sphere are comparable to
the dimensions for a OMEGA layering
shroud.

Beam pasltioned
to miss the shel}
prior to hitting the
integrating sphere
walt

IR
beam

integrating . 3
sphere 3 1mm

camera




After optimizing the IR masks, fill tube
induced defects limited RMS roughness L]

y -
ar; ll’ll &r

COSMOS modeling showed
the fill tube causing a 10 %
distortion of the isotherms

18— - ..

- -
(=] N
B .

-]

% Temporature varlation across co

0 30 60 90 120 150 180
Angle from fil} tube

Layers degraded after turning the IR off at
thick layers and high power t

PIR =50 mW
15.7K ;
no masks
6t=0 o =2.5um §t=12 min o = 5.6um

7 - - T T s e e 10
—~6 - 1
2 u =
s i o Wﬁ'
e . turn off IR s L. ,\
E 3 - n / % voor VI‘M ‘ ———1 231 mn
s , . um ? V‘lif‘n» -0
o § 0.0001 * 'y |
@ 1 ) 0.00001 "\VM

0 0 -'-0 - 2’(’-— "3'0‘ - 4'0 0 000001 , o ron i

Tlme(mln) Mode numbder

373




Layers degraded more slowly after turning off
the IR for thin layers at low power

PR =12 mW §
16.0K
with masks

»

w

(%}

\ turn off IR

9 e e e— -
- s 10 15

Time{min)

Stgina RMS  (nncrons)
&

[

20 25

t=12 min c=23.1ym =24 min

6:3.6;1

1.00E+02
1.00E+01 -
1.00E+00
1.00E-01
1.00E-02

1.00E-03
1 10

Power Spectrum (pixels”2

—_—=0

—1=24 min

100

Mode number

rirst interferometric images have been taken

1000




Conclusions:

&

?

Schafer

IR heating forms and smooths HD layers in thin plastic shells:

Progress has been made in removing asymmetries in the layer
due to illumination nonuniformities

More work is needed to better characterize hydrogen layers in spheres

IR layering provides a simple no risk option for testing T, Q, and

impurity effects on a layer as well as developing characterization
techniques
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PRECISE MEASUREMENT
OF SHELL DIAMETERS

General Atomics, San Diego, California

J. Gibson, M. Hoppe, A. Greenwood,
D. Steinman and R. Stephens

Until recently we have not had the capability for accurately determining shell diameters for shells
larger than 1 mm. We have developed two new techniques for accurately measuring shells with
diameters of up to 2.5 mm.

One method makes use of a longer focal length telecentric lens with a larger field of view that
reduces our focusing error by at least a factor of two over our previous set up. This method
makes use of “Image”, a NIH (National Institute of Health) free-ware program and its “wand” tool.
The method depends on calibrating with a NIST-traceable ball for each set of measurements and
unique lighting conditions. Using this method, the measurement error for the diameter of a 1000
um shell is about + 0.2 pm (+0.02%). The use of the “wand * tool also provides a measure of the
OOR of shells to 0.3 um for a 1 mm size shell (as confirmed by AFM spheremapping).

The second method incorporates a new z-translation laser stage mounted on our Nikon
interferometer which is capable of positioning within 0.1 um over a range of about 3 mm. This
capability allows for very efficient and precise measurement of capsule diameters. The
measurement error for a 1000 um shell is less than £0.2 pm (£0.02%).

Work supported by U.S. Department of Energy under Contract NO. DE-ACO3-95SF20732.

1.

PRECISE OUTER DIAMETER MEASUREMENTS

The need for capability to measure capsules larger than

1 mm in diameter and increased accuracy requirements for
the determination of diameters of capsules have led to the
development of an improved technique to quickly measure
capsule diameters and out-of-roundness (OOR).

We define OOR to be half the difference between the major and minor axes
of the best-fit ellipse to a capsule silhouette:

(Ellipse major axis — Ellipse minor axis )
2

OOR =




2.

PREVIOUS METHOD FOR MEASURING CAPSULE DIAMETERS

Previous 0.D. measurements relied on a planar square grid NIST traceable
standard and a mouse controlled line measurement tool in the National Institute
of Health (NIH) Image program.

This method required the operator to place the cursor on one edge of the
capsule and stretch a line to the opposing edge. The length of the line was
automatically recorded by the “Image” program.

Measurement accuracy and precision by this method was limited to about 0.2% (500 pm
shell) due to operator accuracy in choosing the two pixels with the mouse for measuring
the diameter and the pixel size of the video camiera (~0.5 pm).

The available optics we were using with our former method limited our ability
to measure capsules larger than Tmm.

NEW METHOD RELIES ON SPHERICAL STANDARDS AND
MEASUREMENT OF THE CAPSULE PERIMETER

Our new method encompasses the following enhancements:

Tungsten carbide or sapphire balls with NIST traceable diameters (+0.2um) and
sphericity (<0.2uum) are used to calibrate the built in “wand” tool in the GA enhanced
NIH IMAGE program for both pixels per micron and pixel aspect ratio.

When employing the wand tool, the computer program uses image analysis to find the
ellipse that best fits the capsule image and records the major and minor axes.

(This technique thus eliminates the major source of operator error when picking the two
pixels for measuring the diameter with the “line” tool .)

Because the capsule silhouette is two dimensional, the pixel size limitation is greatly
reduced resulting in increased precision for both the diameter and OOR
measurements.

We now use a longer focal length telecentric lens so focusing is much less critical.

Our present optical set up has a larger field of view that can accommodate capsules up
to 2.5 mm in diameter.
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4. THE GA MODIFIED “IMAGE” PROGRAM AS IT APPEARS ON THE
COMPUTER SCREEN WHEN MEASURING CAPSULE DIAMETER AND OOR

" % Fils Edit Optians Process Analyze Special Sincks Windows User

LT {(Taals || Eamera+ {1.11)
RN e ———————
Mo} ar Rinar Angle ﬁ
W02 0D7.B g9 &
1008.1 0072 170 |
o0, 2 i0?.2 17.2
2
P e I o

5. - 'IP'E) ACCURATELY DETERMINE OOR, IT IS ESSENTIAL
TO CORRECT FOR SCREEN DISTORTION

The image program corrects for screen distortion by using a
parameter called the aspect ratio (A.R.) factor, a constant
applied to the y-axis to make it agree with the x-axis.

Formerly the operator measured a length on a NIST-traceable micrometer scale in the
horizontal direction, then again in the vertical direction. The ratio between the two
measurements gave us the A.R. The accuracy by this method is pixel size limited.

Our new method utilizes the “magic wand” and a NIST-traceable calibration ball. The
calibrated ball is first measured with the wand tool with the A.R. set to 1.0000. The
values for the major and minor axes are entered on the Excel work sheet (light gray cells
on Poster 6). The ratio of the measured minor and major axes gives the true A.R. which
is then entered in the Image program. The calibrated ball is certified to be round; the
aspect ratio forces the major and minor axes to have the same value.
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6. EXCEL WORKSHEET FOR DETERMINING
CAPSULE DIAMETERS AND OOR

007

Operator:
Date:

JBG
3/25/98

Aspect Ratio Derivation

Aspect ratio =

Sheli No. True Ava OD | QOR Comments
Standard Ball 1000.3 0.1 11000.2 um std
Standard Ball 1000.1 0.2 tungsten carbide ball
Standard Ball 1000.2 0.1

1 901.2 0.8

2 898.9 0.1

3 1003.5 3.7

4 976.9 1.0

5 988.9 1.1

6 928.6 1.0

7 973.9 1.1

8 901.1 0.2

9 899.1 0.1
10 1003.5 3.7
11 977.2 1.0
12 989.3 1.1
13 928.8 0.9
14 974.0 1.1
15 901.2 0.2
16 899.4 0.1
17 1003.5 3.8
18 9771 1.0
19 988.8 1.2
20 928.5 0.9
21 973.9 1.2
Avg = 953.2 1.2
St Dev = 40.7 1.1
Max = 1003.5 3.8
Min = 898.9 0.1
Median = 973.9 1.0
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7. ANIST-TRACEABLE BALL IS USED TO CALIBRATE THE “IMAGE”
PROGRAM FOR PIXELS PER MICRON

The true value of a NIST-traceable calibrated ball is entered in the dark gray cell of the
worksheet shown in Poster 6. It is essential that the calibrated ball be close to the same size as

the samples to be measured.

The micron to pixel scale in the Image program is set to a previously determined
approximate value.

The standard ball is measured with the wand tool three times refocusing between each
measurement. The values for the major and minor axes are copied into the medium gray cells
shown in Poster 6. The ratio of the measured diameter to the true diameter is applied to all
subsequent measurements.

Finally the samples are measured with the wand tool and the values for the major and

minor axes are copied from Image into the Excel worksheet. The illumination, microscope and
computer settings must be strictly maintained once the system is calibrated since the
measured OD is very sensitive to the illumination.

8. WE CAN ALSO MEASURE LARGE SHELLS USING A NEW
Z-TRANSLATION LASER STAGE ON A NIKON INTERFEROMETER

to interference
microscope optics

stage height
laser position
indicator stage position

‘ fringes on top coarse control
knob

1540.72

stage position
piezo fine control

\

background fringes
on stage

A z - translation
monitored by laser
interferometry

fiber aptic

‘/ cable

Our z-translation laser stage is capable of positioning within 0.1um over a range of
~2.5 mm. The stage can be translated as fast as 50 um/s to slower than 0.1 pm/s. This
capability allows for very precise interferometric measurement of capsule diameters and

layer thicknesses.
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9. OD MEASUREMENT
COMPARISON OF METHODS
Technique Precision % error OOR/ Size Speed
{um) (1000 um shell) | error (um) | limitations

Old method +1um 0.1% yes/ 1000 um | set up ~15 min
+1pum 30 seconds /shell

New method +0.2pm 0.02% yes/ ~ 2500 pum | set up ~10 min

long f lens +0.3 um 10 seconds /shell

Interferometer*| £1 pm 0.1% no 1000 um | set up ~15 min

old z stage 1 minute / shell*

Interferometer *| +0.2 pm 0.02% no ~2500um | set up ~15 min

new z stage 1 minute / shell

* Also used to measure wall thickness and layer thicknesses
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In-Situ Polymerisation Technique For The
Production Of Foam Filled Laser Targets

A Review
Wigen Nazarov

Chemistry Department, University of Dundee,
Dundee DD1 4HN, Scotland

University of Dundee

® In-situ polymerization technique is used for the production of foams in
difficult to reach areas of a laser target. Briefly, this involves the
following steps:

¢ A monomer (Trimethylol Propane Triacrylate (TMPTA) is the
preferred monomer) is dissolved in a suitable solvent and a
suitable initiator added to the solution.

¢ The monomer solution js injected into the required position in the
target, so that it fills it completely.

¢ The monomer solution is then polymerized to a gel using a UV
light source.

¢ The target containing the gel is then placed in a non-solvent (e.g.
methanol) to precipitate the foam.

¢ The target, contéining— the wet foam, is then dried using a critical
point dryer.

s I e e e e e T e —
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University of Dundee

Examples of Free Standing Foams and Films Made by In-Situ
Polymerization Technique

0.404 D 0.57iC

i

LEW
A FREE STANDING FOAM SIDE VIEW A FREE STANDING FOAM FILM SIDE V

Advantages of In-situ polymerization

m It is possible to produce foams in inaccessible areas of a laser target.

® Density range from 10 mg cm™ to full density (sometimes lower than 10
mg cm depending on target geometry).

m Foams as low as 3 mg cm™ have been produced by this technique.

m High Z elements can be loaded in the foam:

¢ Chlorine. Bromine, Fluorine: up to 50%, can be loaded in the foam
structure.

# Silicon oxide. Aluminium oxide: up to 30%, can be loaded as
dispersion.

388
T e R




University of Dundee

Examples of Targets Made by in-situ Polymerization

Technique

m EOS (Equation of State) targets:

¢ Aluminium Step Targets: Embedded aluminium step in foams.
¢ Washer type targets: for laser shock experiments carried out at

LULI laboratories.

® Free standing foam: Foams without moulds.

® Free standing films: Free standing films can also be made by this
technique.

University of Dundee

1000 pm

Sphere drag targets: These targets were
designed to show the effect of a shock wave
in a low density medium passing a higher
density particle.

Sphere and Wire Targets

- Spider Holding
Aluminium Wire:
K E
AlWre
A@
o — 7
1 = :
[ & |
H =5
2 ¥
o EE 1 ena 700 um
P e { FOAM
b1
PO
ABLATOR, § 2 E
“_—’ 5‘.—“—;3; L_—‘
800 - 1000 um
ALonglmdmal-cﬁonothTm

Wire targets: Wire targets were devised to
investigate Kelvin-Helmholtz instability. These
targets were designed with an aluminium wire
placed along the axis of a foam filled cylinder.
Targets of a similar nature have been made
before by our colleagues at LANL..




University of Dundee

Atomic Weapons Establishment:

This work was carried out under contract to Atomic Weapons Establishment,
Aldermaston, England.

AWE Fabrication Team:

BArTie Lewis ............coooeeeromemeeeeoeeeoeeoo Section Leader
Tony Tymrell.......oooemmooeeeeoo Deputy Section Leader
Colin Horsfield............ooooevovoooeeeoo Senior Scientist
Peter HObbS............ooooooe Design Engineer
Gerry Eatwell.............oovvooero Film production/Electroplating
SN LOCKYET ..o Micromachining
Debbie Hadley...........cooooooooeoooooooeeeoeom Characterization
Marilyn Mertens............oocooovoemoooeoe Microassembly
JUlE BOMON......ovvvooeeceeeereeoooo Microassembly
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Lo FRUS

Characterization of Deuterium-Foam Targets for NIKE*

L. Y. Chan,
Science Applications International Corporation, McLean, VA
J. D. Sethian,
Plasma Physics Division, Naval Research Laboratory, Washington, DC

The NIKE laser facility at NRL has been fielding planar deuterium-foam targets in
accelerating foil experiments to study the hydrodynamic instability growth in fusion-like
target material designs. The present deuterium foil design consists of a polyimide thin-film
and deuterium-wetted resorcinol-formaldehyde (RF) foam, enclosed in a cryogenic cell.
Target fabrication issues that are being addressed under cryogenic conditions include: @
bowing of the polyimide vapor barrier due to the deuterium vapor pressure, (ii) changes in
foam target thickness when wetted by liquid deute_rium and (iii) surface uniformity of the
rear surface of the weﬁed foam. Characterization methods to resolve these issues and

their results will be presented.

* This work is supported by the U. S. Department of Energy
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Deuterium Accelerating Foil Experiment

NRL oo

NIKE KrF Laser

o Gas Laser: 1/4 um wavelength (248nm), 2 kJ on target, 4ns
main pulse with 8ns low intensity foot, 10 '4W/cm?Zintensities.

« ISI Beam Smoothing: intensity fluctuations of 1% rms in single
beam and 0.3% for 44 overlapped beams, 3/4 mm top-hat
spatial profile at focus.

« Direct drive isentropic acceleration and compression of planar
foil targets.

Deuterium Foil Acceleration

« Acceleration of high gain direct drive target consisting of
fusion-like materials for realistic compression and radiation
effects.

» Measure hydrodynamic (Rayleigh-Taylor) instability growth and
evaluate different ablator schemes to control and stabilize this
instability.

high gain fusion pellet

sidelighter
backlighter —

~

\ﬁ

Main Laser Beam

polyimide /

vapor barrier

ejpavssncssannsacssscan

ablator .
deuterium-wetted : : Framing Camera:
RF foam Streak Camera:  rayleigh-taylor
foil trajectory and growth

acceleration
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Characterization Issues for Deuterium-Foam Foil Target

Side View of cryogenic cell o

and deuterium foil target 2 pm polyimide
1. Bowing of polyimide film from
deuterium vapor pressure. 1
2. Liquid deuterium gap between 15 mm

bowed polyimide and wetted
foam.

3. Thickness change in foam
when wetted.

4. Surface uniformity of wetted
foam and meniscus shape.

red HeNe
laser
. reflection
. off foil
photodiode

transmission

optical imaging through foil

of foil edge = I k
video camera /
and recorder

- 12"

A

Y




Measurement of Polyimide Bowing via Probe Beam Expansion

NAL

fine mesh
1l

collimated
HeNe beam

» position fine mesh for image of gridlines (near
field), rather than 2D diffraction pattern (far field).

Grid spacing (cm)

~
™~ R
) < i <
~ nt nt
USRS
T ™
RUEIRYE RS
~N NP
N N (R N
NERE A
N N TSN L
..... > »t S~
- ™~

focusing lens

projection screen

pre-tensioned
polyimide film

.....
"

For small angle bowing:

R = A/20
D = A%/8R = A0/4

2

ory
n

e

d
(3

« liquid deuterium

vapor pressure at
2[’gjy 20K is ~200 torr.
| 2uvapor
| e )
3 « spherical stress on
: 81’3” thin membrane:
| 8u:vapor o =PR/2t
* R= (20/P) t.
100
Distance from target surface (cm)
2um 8um

Source of Polyimide Film: Rebbert | Goodfellow
Bow Radius: R(mm) 23.0 38.2
Bow Displacement: D(um) [A=1.5mm] 12.2 7.4
Probe Beam Spot: Ap(mm) [+/- 20%] 0.28 0.25
Target Bow: D, (nm) [A=800um] 3.5 2.1
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Measurement of Wetted Foam Thickness via Edge Imaging

NAL =
sapphire 200 Ipi mesh
window platform
camera image
400 pm RF foam
38 mm FL
plano-convex

lineout

video camera
(10p x10p pixels)

8 um Kapton

150 um RF foam

— insufficient contrast from backlighting

400pm 150pm

Mesh Spacing (pixel) 58 110
Spatial Scale (um/pixel) 2.2 11
Dry Foam Width (pixel) 194 110
Wetted Foam Width (pixel) 194 140
Uncertainty Estimate (pixel) 2-3 10
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Rear Surface Uniformity of Wetted Foam (Planned)

1. High resolution image scanning of wetted foam edge

 Image of edge of backilit wetted foam appears shiny and smooth
compared to that of dry foam.

e Current cryogenic cell does not permit sufficient access to observe
meniscus of liquid deuterium on wetted RF foam.

* Improvements in spatial resolution,scanning capability and brighter
backlighting are being pursued.

2. Large angle reflection of probe beam off rear surface of
wetted foam
» Reflection at incident angles is very low for RF foams.

e Scattering from non-uniformity at the surface of the wetted foam might
cause addition divergence in reflected beam that could be measured
to determine the level of surface nonuniformity.

¢ A new cryogenic cell is being designed to permit sufficient access for
large angle reflective probing.
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A COMPARISON OF PROCESSES FOR THE FABRICATION OF
FLAT R/F FOAMS FOR ICF TARGET MODELING

M. REBBERT, 0. GLEMBOCK]I, C. MARRIAN, S. PROKES, J. SETHIAN

GOAL

e ——

THE GOAL WAS TO DEVELOP A PROCESS THAT PRODUCES
FLAT R/F FOAMS FOR USE AS ICF TARGETS.

THE PROCESS NEEDS TO PRODUCE FOAMS IN QUANTITY THAT

ARE FLAT, UNIFORM, AND WITH A CONTROLLED THICKNESS

BETWEEN 120 TO 300 pm AND DENSITIES RANGING BETWEEN
25 . TO 100 mg/cm?.




CHEMISTRY OF R/F FOAM

THE CHEMISTRY FOR PRODUCING THE R/F FOAMS IS BASED
ON THE PROCESS DEVELOPED AT LLNL.

FOAMS THAT WERE MADE FOR THIS STUDY HAD AN F/R
RATIO OF 2 AND A R/C RATIO OF 200.

~N
~ Q C<R solder

- GLASS SLIDES ARE TREATED WITH A RELEASE AGENT

Mold Thickness vs. Temperature
700 | s o |
‘;’ 600 [ ;
@500 . |
B0 |
c 400 i | - A
£ .
0 300
L
200
100 -
0. : |
0 50 100 150 200 250
Temperature, deg C

L ] A

Initial thickness: 1

T'hin 402, Thick 80;,98 l « thin -s thick




Yo et waiuuer o

THE FOAM SOLUTION IS PIPETTED INTO THE MOLDS AND THE
GLASS SLIDES ARE CLAMPED TOGETHER.,

THE MOLD SLIDES ARE FIRST BAKED IN AN OVEN TO GEL THE

.FOAM. THEY ARE THEN SWITCHED TO A WATER BATH FOR

THE FULL CURE.

AFTER THE CURE, THE MOLD SLIDES ARE PLACED IN IPA,
WHERE THE GLASS SLIDES ARE REMOVED LEAVING THE
FOAM FILLED MOLDS FOR SOLVENT EXCHANGE.

AFTER SOLVENT EXCHANGE, THE FOAMS ARE DRIED BY
CRITICAL POINT DRYING.

THE GAP BETWEEN THE
Cj SLIDES THAT DETERMINES
’\ THE FOAM THICKNESS IS
g Spacetsﬁ MADE BY SPACERS-

Glass
Slides

V TYPICAL MATERIAL FOR THE
/ SPACERS IS GLASS OR
D ALUMINUM.
‘ THE SLIDES AND SPACERS
e ARE CLAMPED TOGETHER

AND GLUE IS APPLIED TO
THE EDGES.

AFTER THE GLUE SETS,
THE CLAMPS ARE

REMOVED AND THE MOLD
@ - IS READY FOR FILLING.
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VACUUM FILLING

: THE MOLDS ARE PLACED
IN A BEAKER. THEY ARE
HELD ON EDGE BY A
HOLDER. RF FOAM
SOLUTION IS POURED
INTO THE BEAKER TO
COVER THE MOLDS.
THE BEAKER IS PLACED IN
A VACUUM CHAMBER. THE
e—-—""“’/m Foam AIR IS PUMPED OUT OF
THE CHAMBER AND FOAM
SOLUTION AND THE FOAM

FILLS THE EVACUATED
<« Molds
VOIDS.
& Holder

CURING - THE BEAKER OF FOAM IS REMOVED FROM
THE VACUUM CHAMBER AND PUT IN A
WATER BATH FOR PRESCRIBED CURE TIMES.

EXCHANGE - AFTER THE CURE, THE GLASS MOLDS ARE
DUG OUT OF THE FOAM MASS AND ARE
PLACED IN IPA FOR SOLVENT EXCHANGE.
IN THE IPA THE SLIDES SEPARATE LEAVING
THE SHEET FOAM FLOATING IN IPA.

DRYING - THE WET FOAM IS CUT INTO STRIPS,

MOUNTED IN A DRYING FIXTURE AND DRIED
BY CRITICAL POINT DRYING WITH CO,.
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CUTTER USED TO CREATE FOAM STRIPS

Standard surgicat blades

\\,
Spacing can be varied
from 0.5 - 4.0 mm

FIXTURE TO HOLD FOAM STRIPS ON TFP WHILE DRYING

Foam strip clamp

RF Foam strip —

Foam strip guide

‘ TFP (Target Front Plate)

‘TFP Retainer -

401
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Laser

Tungsten
or gold
coating
(optional)

Standard Nike Target Front Plate (TFP) with Foam

1.5 - 13 um Kapton

50 pm Aluminum
(Optional)

RF Foam

D2-E0S.CVS

UV transmission through foams

Nice foam
Open aperture Ugly foam - F/R=2; 2 day cure
(baseline) (cellular structure) vacuum fill

RMS deviation = .005 RMS deviation = .17 RMS deviation = .009
3.2 sec exposure 63.2 sec exposure 64.2 sec exposure
approx 3800 counts approx 1500 counts approx 2000 counts
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Schafer Lﬂ;

Jolm Burmann Steve Letts and Mike Saculla
Schafer Corp. Lavwrence Livennore Natienal Laboratory
303 Lindbergh Ave. 7000 East Ave. Livenmore. CA 94551

Livermore, CA 94550

« We have recently developed a technigue to make plasma polymer shells with integral
Sill tubes.

* Mark Whitman from UR/LLE, was the first person to make a shell and fill tube in one
piece.

* We had trouble successfully duplicating his procedure, but instead have developed an
alternate technique that has proven reliable.

« They can be constructed with small (30 um OD) fill tubes and are easier to make than
capsules with the fill tube glued directly to the shell,

* These shells have been a valuable asset for recent cryogenic experiments at LLNL and
at LANL,

*

“This work was performed under the auspices of the LS. Department of Energy by Lawrence Livermore National Laboratory under
Contract No. W-7405-1:NG-48." :

1 ?k molecula{' weigl.xt PaMS is ground into a powder and placed on a gold coated
microscope slide. It is then heated to = J40° C to create small molten puddles. The
gold adheres to the PaM§ etter than the plain glass slide.
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A shell is being held with a vacuum chuck in a micro manipulator and brought
down to touch a small molten puddle of POMS, then pulled away slowly fo draw a
fiber. The fiber is trimmed to = 1.5 - 2 mm in length before being coated with
"CH'" or "CD" plasma polymer.

i 5 L -

N SEM photos by Derck Coker, Schafer Corp.

This is an S.E.M. photo of a I mm diﬁ efer POMS mandrel with a 19k molecular
weight PCMS stalk.



We had problems with the thinner shells (=10-12 un) stigking to the pan aftez-
pyrolosis, as shown in these photographs . Gas flow was slzgh(l_v increased, which
lowered the shell temperature, until there was no adhesion to the pan.

We have found that putting no more than 5 shells at a time in the GDP coater
gives a more uniform coating.

Radiography and other characteriza}ii o have shown a slight non-uniform wall,
due to the fact that the "tail” limit¥ movement of the shell while coating.




7 The shell/fill tube is then epoxied into a small glass capillary tube and leak
" checked at room and LN. temperatures.

The shell is checked by interferometry to insure an open fill line.
Air is evacuated from the shell causing a fringe shift due to a change in index of
refraction. If there is no fringe change, the fill tube is plugged.

. g . -

Complete shell with fill tube I : 500X magnification at fill . View from inside shell at
at 50X magnification. tube to shell transition. o fill tube, 500X magnification.

B 51 piotos by Derek Coler, Schafer Corp.)

Here are S.E.M. photos of a “¢J)” plasina polymer completed shell.



MACHINING BERYLLIUM SPHERES FOR
IGNITION CAPSULE APPLICATIONS*

L. Salzer, R. Day, N. Elliot, L. Foreman,
R. Margevicius, M. Salazar and
J. Townsend

Materials Science and Technology
Division
Los Alamos National Laboratory
Los Alamos, New Mexico

This work is supported by the U.S.Department of Energy under contract number W7405-ENG36
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Introduction

As part of an initiative to produce capsules for the National
Ignition Facility (NIF), we machined spheres with a diameter of
2.2 mm. The major challenge is relocating the second side after
the first side is completed. This was done with our Quick Flip
Locator (previously reported) and explained in figs. 1 through 7.
Scanning electron micrographs and Wyco interferometer data
are shown.

This poster deals with machining and finishing the outside
diameter of the sphere. The previous operations (the inside
cavity and joint) were machined into cylindrical components
using similar part-holding fixtures and machining operations.

Machining operations

Precision lathe
kinematic spindle
fixture.

For a NIF shell, the
Be cylinder has a
spherical cavity.

Fig. 1 Fig. 2

Boring the ID of part holder while on kinematic mount
on precision lathe. A larger diameter lead area aligns
Be cylinder when inserted as shown in Fig. 2.
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In order to locate the
center of the spherical
cavity a “touch off’
operation on both
sides is required prior
to this operation.

3

A . b N

N N

7,
A7 e =ES) o
77 ; e s

\\ / L \ NS / 6

\ -

\\\\\\ (O \\\\ £
\ S o 4 NN \

Fig. 3 Fig. 4

Removing excess stock on Fig. 3 is done on a conventional
Hardinge lathe. Fig. 4 shows the reversible locator positioned on
the magnetic kinematic mount of the Pnuemo precision lathe for
a final turning operation on the first side.

Machining on first
side is completed.
This includes outer
support ring pocket
diameter.

N b Finish machining
RN .
RNl second half of
=, AN
sphere.

Fig. 5 ~ Fig. 6

Part support ring is secured with epoxy in Fig. 5. Fig. 6 shows
the second finish machining operation. Note: the reversible

locator is reversed relative to Fig. 4.
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\\_\\\\:\;i\\\\\\}\\ | -
\\ NS In Fig. 7 only enough
PN support ring material is
N 77 removed to expose
N2/ epoxy for easier part
\\{{\\\\\ removal.
RN
Fig. 7

38.6rm

Scanning electron micrographs of S200D Be sphere shows
registration of the spherical surface at the equator of < 1.0 um.

Wyco data shows the equator area. The tool path machining
program overlapped at the equator by 12 um in both directions.
This may explains the undercut (or groove).
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Polishing the outside surface

Top polishing
plate

e

T e

Drive plate

ST

S|

=

PataYs

. - =y
Y Y e s T

e

A modified ring lap was used to polish the outside sphere surface. Three
components are shown. The bottom polishing plate is mounted in an
eccentric position on the drive plate. Both the bottom and the top polishing
plates have a pitch polishing track. With the Be sphere positioned in the
polishing track of the bottom polishing plate, the top polishing plate is placed
over it and over the outside rim of the drive plate. During the polishing
process the bottom drive plate rotates. The top polishing plate rotates
around it’s own center. It is contained within 3 rollers (not shown). We used
1um Baikalox as a polishing medium.

Wyco surface finish after 15 minutes of polishing.
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Polishing the cavity

_____ Two stations of our three station Finish
Lapping Machine were used to polish the
cavity surface. The adjusted angle
between the two stations is 135 degrees.
This machine uses compressed-air-
operated polishing head holders to vary
the polishing head contact pressure.

Spindle rotation on the two stations was
in opposite direction. We used Baikalox

Polishing head as the polishing medium.

Acknowledgment: The authors would like to thank Martin
Hoppe and David Steinman of General Atomics for the
radiographs and sphere maps of Be shell #1.
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Fabrication of polyimide shells by vapor phase
deposition for use as ICF targets

Z?E*é"ié
E. L. ALFONSO, S. H. CHEN, R. Q. GRAM,
D. R. HARDING, and F. Y. TSAI
University of Rochester
Laboratory for Laser Energetics

Target Fabrication Meeting
Jackson Hole, WY
April 19-23, 1998

| Introduction |
Polyimide meets the material requirements for
future designs of ICF targets

uRr * VA
LLEY

* ICF targets must have high sphericity, concentricity, smoothness,
and uniformity.

* Additionally, greater tensile strength, elastic modulus, room
temperature permeability, radiation resistance, and thermal
conductivity of the target material benefit future ICF designs.

* OMEGA requires high aspect ratio targets; the goal is a 920 um
target with a negligibly thick wall.
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Polyimide precursors were vapor-deposited onto
flat substrates to characterize the uniformity of the
deposition process and properties of the material

uR
LLE7W

e The chemical composition was obtained from the FTIR spectra.

 The relative composition of the monomers in the film was
adjusted by first calibrating the molar flux of each source.

e The stress in the polyamic acid film was measured at discrete
temperatures through the imidizing cycle.

Temperature [°C])
162 144 127

anhy dddeﬂﬂ?:lde

Janhydide

Absorbapce [a.u]

Molar deposition x 107
[mol/h cm?]

Wavenumber [cm-!]

The stoichiometric ratio of the monomeric
precursors affects the opacity and survivability of
the film '

UR -
LLE7N

1:3 - 1:1

Excess PMDA Excess ODA
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Competing factors during the imidizing and
mandrel-removal temperature cycle affects the
survivability of the polyimide shell

uR *
LLER
} 22% Pimass loss

10:1 PMDA:ODA loss

17 MPa stress o

asymmetric radial load to support PAMS  24% Pl mass loss 27% Pl mass loss

10:1 PMDA:ODA Ioss  30:1 PMDA:ODA loss
8Mpa 5“88 3 MPa stress

8% Pl mass loss

200:1 PMDA:ODA loss

12 MPa stress
o tensile, radial & hoop stresses
5 PAMS soﬂening
d
2 300°C
2. | -23 MPa stress
£ 2200C
@
-

O 180°C
L_ i J
Bursting pressure due to
- PAMS monomer
as deposited
Time
Deposition onto bounced depolymerizable PAMS
mandrels leads to polyimide shells |
UR
u.?;*

High aspect ratio Wall cross section
polyimide target

Deposition rates are ~0.3 to 1.0 pum h-'.
Outer diameters range from 700 to 950 um.
Wall thicknesses are 2 to 13 um.
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Polyimide surface and structure affected by
deposition environment

UR l/(

LLEZN
e Deposited at 10 Torr.
A“-.— c:‘- .’.‘ - :
,fégi}"}{f? SPL RSP
Inner surface and Outer surface
wall cross section
e Plasma-assisted (10- Torr) polyimide shells had a nodular
structure.
The permeation time constant of polyamic
acid/polyimide is a function of cure temperature
HE
Condition Tp2 D, permeability N, permeability
[min] at 25°C at 25°C
(1017 mol m/m2 Pa s} 11617 mol m/m2 Pa s]
PAMS mandrel 1.2 470 16
PAA + PAMS mandrel 74 7.4 -
PAA/PI1 cured to 100°C | 17 32 -
PAA/PI cured to 150°C | 8.5 64 -
Pl cured to 300°C* 0.3 2000 850

*measured on VDP flat film (according to ASTM Designation D1434-82)

 The vapor-deposited material had a permeability 7 times greater
than commercially available Kapton-H film.

« No pinholes or cracks are seen in the film.
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The strength and room-temperature permeability of
polyimide targets offers the possibility of: more
durable thin wall targets; shorter fill times; and
more rapid cooling times for OMEGA Cryogenic
Experiments '

* Polyimide targets (3 um wall) have survived pressurization to 750

psi at a rate of 75 psi s, and depressurization to atmosphere at
250 psi s, without fracturing. ‘

* For OMEGA Cryogenic Experiments, the time to fill the target to
1100 atm would be 3.6 min (A 3 um plasma polymer capsule would
require 18 h).

* By contrast, current plasma polymer shells, with equivalent
dimensions, cannot be pressurized greater than ~1 psi s, or
survive an overpressure of ~120 psi.

* With a burst pressure of 50 atm, a cryo-polyimide target can
withstand a temperature 40 K (the critical point of DT).

Summary

Thin wall, high aspect ratio polyimide capsules have
been successfully fabricated at LLE |

* Stoichiometric ratio of the vapor-deposited monomers affects the
quality of the film.

* Several competing mechanisms in the imidizing and mandrel-
removal phase of processing reduce the yield of fully cured
polyimide shells.

* The final cured temperature of vapor-deposited polyamic
acid/polyimide film determines its room temperature permeability.

* High aspect ratio targets have survived rapid pressurization and
depressurization in nitrogen.
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Characterization of Thick Cryogenic Layers
Using an Interferometric Imaging System

a3
P. W. McKenty and M. D. Wittman Target Fabrication Meeting
University of Rochester . Jackson Hole, WY
Laboratory for Laser Energetics : 19-23 April 1998

Numerical models of the interferometric imaging technique
indicate qualitative agreement in recovering a variety of
spherical harmonic perturbations on the inner ice surface

* The computer code RINGS has been adapted to simulate the OPD
due to 755 ray tracing through single-shell, surrogate cryogenic
capsules.

e Initial results indicated that spectral analysis of the OPD near the
referenced target equator was able to replicate pure sinusoidal
perturbations.

* Many acquired great-circle, 1-D power spectra are averaged
together and transformed to yield the desired 2-D power spectrum
of the inner ice surface.

. Analysis of individual, single-mode Legendre perturbations does
not recover the applied distortion.

» Modeling of perturbations with a wide spectrum of spherical
harmonics displays an oscillatory behavior that
must be understood. . '
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Characterization studies simulate probing a cryogenic
target with f/5 optics utilizing a cylindrical probe grid

UuRr 3
LLE7

580

TC2443

Method has been shown to recover a spectrum
of applied modes with reasonable accuracy

ll:le* e
? 0-8 T ] ! ] ' I ! l' '
= -— Analytic
_O_‘ 0.6 - — Model
(]
©
2 o4l i
a .
£
S 02F -
[
T
2 W
E 00 t | 1 | ] |

Mode number

50 :
Ry=Rg+ 2 aum'1 1 cos[m(cp +2b(m)1r)]' with ag = 0.739 um and b(m) — random #.
m=10

L0
TC4451 a2V




The method2-3 used to analyze LLNL’s measurement
of outside surface roughness can be applied by
averaging many (>10) acquired great circles

2R.L. McEachern, C. E. Moore, and R. J. Wallace (to be published).
3'S. M. Poliaine et al., ICF Quarterly Report '94, 87 (1994).

TC4446

Recent studies examine perturbations with single
and wide spectral Legendre content over a range
of amplitudes and spectral dependencies

IL-’LR"E %ihéé
Case1 , Case 2
14 n £ aate
R1 = RO + mum YE,O R1A= RO -;—210 (m;_ TMng)
£ =10, 20, and 40 ' - -
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Th<:z numerical method does not do a good job resolving
a single Legendre mode due probably to the highly

longitudinal structure of the interior surface

UR 3

0.1-umYyq ¢ perturbation-

Analytic trace

Numerical trace

1000 E ' 1 v 1 ¢ 1 T

100

Mode amplitude (nm)

1001

0 10 20 30 40 50
Fourier mode number

TC4684

10 20 30 40 50
Fourier mode number

Analysis of perturbations with a wide spectral content
yields reasonable qualitative results, but oscillatory nature

of the spectral content must be understood e

Orms = 1.0 um, n = 48,t, = 1.5

1000 T T L T T T T
g —- Analytic
o — Numerical
3 o
S
£
«©
% 10 E
0
=

£ |— Analytic

F |— Numerical

1 1 1 1 1
0 10 20 30 40 50
Fourier mode number
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u

L4

Target Fabrication Meeting 1998 Chad Roberts, Mike Saculla
April 19-23, 1998 Steve Letts and Bob Cook

JaCKson HOIE, Wyommg *This work was performed under the auspices of

the U.S. Department of Energy by Lawrence
Unwersy of Catdorras Livermore National Lah y under cont:

Lawrence Livermore g Y
National Laboratory no. W-7405-Eng-48.

The development of high strength ablator materials
suitable for capsule coating is essential. "

* Room temperature transport of
afilled capsule adds significant
fielding flexibility while cutting

80 pm DT ice layer

costs by $10-20M
* At 25 C the internal gas pressure
is ~350 atm.
* Literature strength values (atm):
Polystyrene 800
Kapton 2370
Hitachi L-100 3100
Upilex 3350-4180
Be 1700-4500

i * Advaniayes of Polyimitz:
150 pm plastic ) * Diffusion fillable
or Be wall * Optical access to frozen fuel
tensile strength > 1200 atm. * Solid DT layer enhancement by

~2 mm diameter IR or joule heating

- —
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Science of Polyimide Film Deposition

page 2

Molecular weight and strength are determined by

the stoichiometry and efficiency of the reaction.

200

——r = 0.9 L 70

—_—r = 0.97
« 150 —r =00 r 60 -
§ 150 = e 9
+ 100 T 40"5 M + HzN—O-O_O-NHz
Q +30 3 .
% // 3 PMDA 4,4'-0DA
= 50 + 20 =

___——-‘%. 10 0
0 ] 0 3
0.9 0.95 1
extent of reaction (p) Ho —O—ﬂ

100

80

/)

60

/[

40
201

% ultimate strength

0 50 150

100
Mn (Kg/mol)

200

cast film 100-300oC

Wﬂ}

Kapton
n>> 100

Our coating technology has continuously evolved.

Old Polyimide Coater

New Polyimide Coater
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Science of Polyimide Film Deposition page 3

The deposition process was monitored through the
mass loss and deposition rate.

=
Thermocouple A —a— Thermocouple B
Heater A Heater B
Evaporator A Evaporator B
Heat Shield Substrate
vaid
Hg:;;gﬁss Pedestal may rotate at 22 RPM.
The mass loss from the monomer sources as a
function of temperature was determined. T
Temperature (C)
169 159 149 139 129 119
1000 4+ T
= ODA
£ 100 \%\ Nik
~
% \\
2 10
5 \0 ~E
[/2]
&
E
1
2.25 23 2.35 2.4 2.45 25 2.55
1000/Temperature (K)
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Science of Polyimide Film Deposition page 4

Using a quartz crystal microbalance, the deposition
rate as a function of temperature was determined.

Temperature (C)

159 149 139 129 119
100 $ t i t
x ODA
= o PMDA
<
Qo
©
T 10 \
.g \.\
s \\
[0
S~
1
2.3 2.35 2.4 2.45 2.5 2.55

1000/Temperature (K)

Vapor pressure as a function of temperature was
calculated using the geometry of the evaporators.

Temperature (C)
158 148 138 128
"‘,\ T e * Data follows the
4.5 S, Clausius-Clapeyron
. = ODA equation
5 « PMDA InP=-AHRT+C
235 AN
= DH = 170 & 165 kJ/mol,
g ODA and PMDA.
=25
£ < '\\
S -3 I S R E— * Monomer vapor
2.293 2.343 2.393 2.443 2493 pressures can be matched

1000/TEMP (K) ?;t:isgh and low deposition
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Science of Polyimide Film Deposition pages

Our present vapor deposited films are close to
minimum requirements for NIF. =

at least 900-
1100 atm® Film biaxial tensile

M inimum for NIF 1200 atm

Current Filrns

Kapton (literature) 2300 atm

Gas

Upilex (literature) | 4000 atm

Our immediate goal is to optimjze the film burst strength by varying the
source temperatures (relative vapor pressure of PMDA & ODA).

* Leaking during burst test due to defects in film.

Vapor deposited polyimide films are typically
smooth. Lo

10.0 2 range 15.012 nu
Hean 0.17? nu

Raw sean 109.97 nm

Rus (Rq) 1.533 nu

ean rougshness (Ra) 1. ]
Box x dimension 13.425 pu

Box y dimension 8.002 pu

0 10.0 20.0pm

MR TG R T Y e = D AR wir T ~aat
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Science of Polyimide Film Deposition page 6

Deposition on NIF size madrels was recently

accomplished. ©
~2 mm ~2 mm
PAMS bead coated with CH and PAMS bead overcoated

overcoated with PMDA/ODA with PMDA/ODA

Deposition onto mandrels was preformed using a standard bounce pan with
a charged tungsten filment to prevent surface charging of the beads.

Summa
i 0

1. The dual monomer evaporator system was designed to allow for the
formation of a uniform coating over a 50 mm radius area.

2. Stoichiometry or ratio matching at various deposition rates is now
possible using deposition rate monitor and mass loss data.

3. Strength of current films is adequate for minimum NIF requirements, but
a reasonable safety margin is desired.

and Future Work

1. Deposition chamber will be slightly modified to allow for longer runs and
production of thicker coatings.

2. Correlation of tensile strength and deposition parameters will be refined.

3. Emphasis will be shifted toward coating of shells.

4. Switch to higher strength polyimide monomers.
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Science of Polyimide Film Deposition page 7

Deposition rate data correlates with mass loss data

and demonstrates mass balance. [t
Temperature (C)
157 147 137 127
5 T T "-T T T T t T T T T { T T T 5
. .\bl oDA szs loss '
4 ';Q ~ 4
= 3 \ \ 3
= = \ =
L 2 PMDA massioss | e I~ 2 2
£ E— ~ el
= 0 028
- -1 o B ODA iti R =
R
2 PMDA deposition|rate - -2
'3 T T T T T T T T T T T T ¥ T ¥ ¥ T [ '3
2.3 2.35 24 245 2.5
1000/TEMP (KELVIN)

Thermal conversion of the initial PMDA/ODA coating
to a Kapton-like film was monitored using FTIR.

NIF
100
90 4
80 .
70
5
%0 -
&0,
f=~4
S0 |
°30.
20 4 .Y
“emeinitial amic acid anhydride
10 4
after 300C
o ¥ L] ) L) - N L
4000 3500 3000 2500 2000 imide 1500

cm-1
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Crystal Growth And Surface Energy
Of Hydrogen Crystals:

Application to Target Surface Roughness

Bernard Kozioziemski
Gilbert Collins
Thomas Bernat

April 22, 1998

Predictions of D-T ice layer roughness depend on surface
energy -

* We use Tom’s model to predict smoothing of ice surfaces with
applied heat flux and bulk heating

* We assume large, mismatched crystal facets are the source of
roughness

* Heat flux and bulk heating techniques must overcome surface energy increases
before a surface can be smoothed

* The surface energy must be known to predict the effectiveness of
smoothing techniques

* Surface energy can be determined by measuring the roughening temperature

* We need to know if facets exist and what the crystal orientation is to obtain
the surface energy

* We apply these results to crystals grown in spheres
* Experiments in shells show multi-crystalline surfaces

* Grain boundaries may reduce surface energy in a curved geometry
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To measure surface energy
we grow single crystals from the saturated vapor L

Sapphire Window
Growth Substrate

Supply
T. forD, =18.7K
Substrate ™ " HD = 16.6K

____ Heater H,=13.8K

, Thermometer

j
./:?
e I

* D, is deposited on the supply substrate

« Lowering the temperature of the growth substrate relative to the
supply substrate enables controlled growth from the vapor

« The bottom of the cell is connected to a liquid helium cooled copper biock

We observe a number of common crystal growth shapes
with facets &

D, 18.72K

« Interferometry and sharp edges locate crystal facets.
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Two perpendicular facets have been observed on
crystals growing near T_,

* The hexagons appear much less frequently near T, than the
bars or circles

* We have not been able to hold a crystal near T, for extended periods

HD 16.45K
J=0D, 18.65K

* Because facets exist at the triple point temperature, we can
set a lower bound for the surface energy

The atomic roughening transition temperature is
proportional to the surface energy

2y(p)d?

T = — Y(@) =7, + 7, |tan(o)|
T kb

Y(o) is the orientation dependent surface energy
d is the spacing between parallel planes

* Each crystal plane has a different T/

* Measuring T, determines the surface energy

» Hydrogen crystals have at least one facet at the melting temperature

* We find y=1.5 ergs/cm? for the (0001) direction, and
v, = 1.0ergs/cm? for the (1010) direction
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Steps increase the energy of a surface

* The number of steps increases with increasing angle

* For low angles, we model the surface energy of a tilted surface as
Y="1, + v,itan(e)l

» Heat flux and bulk heating must overcome the step energy to
smooth a facet

Vicinal Plane

Low energy plane

The step energy is found from the crystal curvature near
the facet

* Landau’s theory for the equilibrium crystal shape is matched
to the phase map of a crystal profile

,:)_

Surface Energy = J’}’(QD)\/I—;—\"'

* We find v,/y, = 1/4

et
Contour step of 1.1
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Orientation of the c-axis is characterized by the raman
spectrum C

A .

170 175 180 185 190 170 175 180 185 190 170 175 180 185 190

We model layer roughness using our values for the

surface energy (L
* Layers seek out minimum free energy K= cpF/(2k)
[+ + Koy’ () + Ky () Kg= cpQ/(3k)
Surface Energy Heat Flux Bulk Heating ¥,= 1.5 ergs/cm?

Y, = 0.35 ergs/cm?

«Tofirstorder  Y(Q)=7Y,+7, lzm((p)l

* ¥, and y, determine a minimum surface

roughness
1 - - 10
— 100 microns “§— 100 microns
— 500 microns i | ~ 500 microns
— 1000 microns 8 i — 1000 microns

Helght {mlicrons)
L) [
—

Helght (microns)
O = N W Hd NN D OO

e e

o s 10 15 20 25 30 % 100 200 300 400 500
Heat Flux (mW/cm?) Bulk Heating Power (mW/em?)

A X T s T IR IR PL P o O P i SN I L A S REM Sin s



Smoothing of crystal is wavelength dependent

*Short wavelength crystals are harder to smooth than long wavelength.

*Bulk heating can smooth thicker layers easier than thin

y,= 1.5 ergs/cm?
Y= 0.35 ergs/cm2 100 u thick layer
Bulk Heating Value of 50mW/cm~3

— 50 micron thick

-— 100 micron thick __ Beta Layering + TmW/
cm*2 Heat Flux

— Beta Layering

-]

Height (microns)
b b

[

Height (microns)
(]

0 200 400 600 800 1000
0 200 400 600 800 1000 Wavelength {(microns)
Wavelength (microns)

Crystal growth in shells looks similar to growth on flats

*The surface structure minimizes the total energy, including surface,
grain boundary, and thermal energy

« Initial nucleation of crystals strongly influences the surface roughness

DT crystal

DT in 1mm shell

D, crystal on a flat
in liquid D,
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A cusp is formed where crystals meet

*Two surfaces meeting at a grain boundary form a cusp

* Grain boundaries cost energy to create

* The energy of the grain boundary is' y,=2 v_sin(p)
*We find P~
Y, = 7/10
Surface profile across
*Recrystallization of ice layers is 152 9rai boundary

limited by grain boundary energy
o 1
c
=
S
£0.51
B
c ) 1 [ ] 1]
'W.W. Mullins Journal of Applied Phys. 28,333 (1957) 150 160 170 180 190 200 210
{Microns)

Conclusions

L

* Facets are observed on hydrogen crystals at the triple point temperature

* We set a lower bound for the surface energy for two crystal orientations
¥,=1.5 ergs/cm? for (0001), and v, = 1.0ergs/cm? for the (1010) directions

* Tom’s smoothing model predicts roughness of multi-crystalline surfaces

» Growing crystals on flats helps us understand growth in shells
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Status of the Design of the Tritium Handling Systems for the
Omega Cryogenic Target System

A. Nobile and J.E. Nasise
Tritium Science and Engineering Group
Los Alamos National Laboratory, Los Alamos, NM

C. Gibson, G. E. Besenbruch, and D. T. Goodin
Fusion Group
General Atomics, San Diego, CA

D. Harding, and L. Lund
Laboratory for Laser Energetics
University of Rochester, Rochester, NY

The Omega Laser Facility at the University of Rochester Laboratory for Laser Energetics
(UR/LLE) will begin laser implosion shots on cryogenic DT ICF targets in the year
2000. The OMEGA Cryogenic Target System (OCTS) that fills plastic ICF targets to
high pressure, cools them down to cryogenic temperatures, layers and characterizes the
targets, and then transports them to the center of the Omega Target Chamber where they
are shot, is being designed and constructed by General Atomics. Although the quantities
of tritium being handled are relatively small (<1 g), the design of the tritium handling
systems to support the OCTS operation is a significant challenge. The gloveboxes that
provide secondary containment of the tritium handling equipment are quite large and
must support a 1700 kg cryostat vessel, contain the vacuum and gas handling systems,
and yet allow for access to the vessel for maintenance and repair after it becomes tritium
contaminated. There are two major vacuum systems to support the OCTS operation.
These were designed to be tritium compatible, relatively compact, easy to maintain, and
yet provide high vacuum and roughing vacuum to a number of vessels having a wide
range of tritium contamination levels. Finally, a Tritium Removal System (TRS) is
being designed to provide cleanup of the glovebox atmosphere, vacuum system effluents,
and equipment associated with the Target Chamber. The TRS must perform in a manner
to support a yearly tritium release limit of 400 mCi of tritium, which is a significant
challenge. This paper describes the current status as well as some of the challenges
encountered in the design of the gloveboxes, the vacuum system, and the TRS.
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The OMEGA Cryogenic Target System will field
cryogenic DT ICF targets on OMEGA

» Laser illumination of first cryogenic DT targets on OMEGA at the
University of Rochester Laboratory for Laser Energetics (UR/LLE)
will occur in 2001

+ Tritium release limits are low

+ Several systems will play a role in the tritium handling aspects of
the OCTS

— Gloveboxes
— Vacuum System
— DT High Pressure System
— Tritium Removal Systems
« DT experiments are planned with a small scale cryostat at LANL

Los Alamos

UR/LLE will have a 1 g tritium inventory with
stringent tritium release limits

« 1 g tritium inventory is licensed by State of New York
+ Current tritium release limits are low
— Tritium Fill Station room: 200 mCifyr
— Target Chamber bay: 2-3 Cilyr
+ Increase in release limit in Tritium Fill Station room is an option
+ A high degree of tritium containment is necessary

Los Alamos
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OCTS equipment will be contained within four
gloveboxes

* Tritium Fill Station Glovebox (existing)
* DT High Pressure Glovebox (new)

* Fill/Transfer Station Glovebox (new)

* Vacuum Pump Glovebox (new)

Los Alamos

Fill/Transfer Station Glovebox

*  Overall height approx. 13 ft.
»  Supports 1700 kg cryostat

g;y':ztiitﬁ *  Provides access for
docking of the Moving
Cryostat Transport Cart
Glovebox below the cryostat
= Contains support systems
Cryostat for cryostat, such as
Vessel cryocoolers and vacuum
system

*  Allows for opening of the
cryostat and maintenance

Moving of cryostat components
Cryostat i
Must be assembled in a
Transport relatively small room
Cart e ely small roo
Los Alamos




Fill/Transfer Station Glovebox is under construction

-)

— RYOSTAT
/ ‘\, VESSEL

EXISTING
CEILING

MOVING CRYOSTAT
TRANSPCRT CART

Design of the vacuum system required close
coordination with other system designs

¢ Vacuum pumpdown calculations performed with Vacuum
Designer Il code

* Approach involved use of small turbo pumps and small diameter
backing lines

+ Tritium “hardened” turbomolecular pumps not needed in all
locations

» Tritium compatible pumps used on systems with relatively high
tritium concentrations

+ Conventional pumps with elastomeric seals used in systems with
low tritium concentrations

Los Alamos
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Vessel pumpdown times were evaluated with
Vacuum Designer Il code

Inserter Pumpdown from

Atmospheric Pressure * Stainless steel rate =

1.0E-08 tL/cm2sec;

1'88533 total = 8.6E-05 tLisec
£ 1.00E+01 * Oringlength = 6'
£ 1.00E+00 * Volume=17L
g 1.00E-01 * 240 Us turbo with 2" of
S 1.00E-02 s, :
% 1.00E-03 3.83” dia. Tubing _
& 1.00E-04 * PV-12 scroll pump in

series with a MB 601
bellows pump

1.00E-05
1.00E-06

1.00E- 1.00E+ 1.00E+ 1.00E+
01 00 01 02

o | o]
r——— e INTERFACE|

!
e | e s -
WTERORAY H CRYOSTAT
|

Time, min
Los Alamos
OCTS vacuum system

FILL/TRANSFER STATION GLOVEBOX e et e e« o PUMP GLOVEBOX
HGHUEVEL DT MANEOLD I: SCROUL FUAPS  BELLOWS PUMPS !
] i
= | ~Hp,
TR . 1 METAL
= | B 1 ;
I MEDRU LEVEL OT MANFOLD i i
| 6] é! >, |

i
(I ;I i

1

!
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Approach involving turbo pumips directly connected
to vessels was chosen

Small pump, mounted

directly on the componert or sysiem
component, has the P
same pumping speed as 1Zotosnom s D
a large pump connected lock pump
to the component with
large diameter tubing
The former is easier to component or system
fitin a glovebox and is t
3" x 30" Jong Pury;

cheaper L

Large Turbopump

(ntree speed)

Los Alamos

Vacuum pumps were not tritium hardened except
where high tritium levels are expected

» Turbopumps are hybrid mag-bearingj, dry film lubricated ceramic
bearing types. Full mag-bearing, hardened seal and connector
design would add substantially to cost.

* Roughing pumps, used for passboxes and for backing some
turbopumps are not tritium hardened when only trace tritium
levels are expected (Edwards Scroll pump uses elastomeric seals
and teflon tip seals)

+ Roughing pumps which evacuate and back turbopumps in known
high tritium areas are tritium hardened. These pumps are all metal
and use metal seals (Metal Bellows zind Normetex Scroll pumps)

Los Alamos

472




Tritium cleanup systems are needed for operation of the
OCTS and OMEGA Target Chamber

* OCTS equipment in Tritium Fill Station room

— Four gloveboxes

— Pumping manifolds
» Target Chamber

— Tank purging during maintenance

— Rough pumpdown of Target Chamber

— Purging of diagnostic antechambers

-~ Rough pumpdown of diagnostic antechambers
Target Chamber cryopump regeneration gas

Los Alamos

Rm. 157 Tritium Removal System (TRS)

Cleanup
System (PCS) To

To stack @

ST




Target Chamber TRS

Diagnostic 60 CFM
Antechambers ng’_ﬂ @
Manifold Turbo Reactor, Preheaters and
Pumps Aftercooler
Traps
% Filters,Pumps
Traps ; System "
Air
Turbo Backing and
Bloed
Roughing Pumps >0
From La Cave
Vacuum System
To stack
To stack
Summary

« Safe handling of tritium will be critical to the successful
operation of the OCTS

» The system must operate under stringent tritium release
constraints

» A number of tritium handling systems have been designed
to meet the operating objectives

Los Alamos
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’D-T Surface Roughness Statlstlcs and Temperature-Step Stress Effects
for Solld Layers Ethbrated Ius1de a 2 mm Beryllmm Torus ,

JohnD Shehak S JamesK Hoffer

" General AIomlcs S f' . Los:Alamos’ Nauonal iaboratory

- Los AIamos Ncw Mexwo Los Alamos,NewMexxco A

12tll Target Fabrlcatlon Speclahsts Meetmg
g Jackson, Wyommg
7 Apnl 20 23 1998

DT Freeze - Thaw Cycling @ 19 K in 2 mm Beryllium Torus
with 14 hr Equilibration Cycles
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Temperature and Time Dependence of DT Solid Surface Roughness
for Freeze/Thaw Equilibration Cycling Inside 2 mm Beryllium Torus
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The average equilibrated solid D-T surface roughness was 1 - 2 ym for all these data,
excluding the higher equilibration temperature and lower equilibration time regimes

We then attempted to reduce surface roughness by slow-freezing at 3 mK/min & 5 mK/min
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Average Surface Roughness per Cycle for D-T Solid Layer
with a Slow-Freeze Cycle and Follow-on Temperature Steps
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Temperature and Time Dependence of D-T Surface Roughness
for Slow-Freeze Cycling Inside 2 mm Beryllium Torus
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The 19.0 K and 12 hr equilibration data showecl an average RMS roughness of 2 ym;
above 19.4 K and below 12 hrs, the surfaces were rougher

This residual surface roughness can be smoothed by subjecting the solid layer to
sudden temperature excursions
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Average RMS Roughness for D-T Equilibrations
with Follow-On Temperature Stepping

(normal-freeze experiments)
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Avg RMS Surface Roughness (um)

Avg RMS Surface Roughness (um)

Effects of Sudden Temperature Changes on Equilbrated
D-T Solid Layer Inside 2 mm Beryllium Torus

(normal-freeze experiments)
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Conclusions

Equilibrated surface roughness for normal freeze/thaw cycling at 19.0 K averaged 1.3 + 0.3 ym,
with a low value of 0.81 ym .

Temperature stepping consistently produces a final layer as smooth as, or smoother than the
initial equilibrated D-T solid layer

Slow-freezing generally resulted in rougher D-T solid layers; but temperature stepping reduced
roughness close to that observed in normal freeze experiments

Residual layer roughness resulted from - modes 60 and below, although very rough layers were
smoothed by reducing / - modes 20 and below
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@ DIRECTION DES APPLICATIONS MILITAIRES - /

Thermal Simulations of a Cryogenic Indirect Drived Target

Ph. BACLET - S CHARTON

- TFM 98, 18-23 April 1998, Jackson Hole

?//"4/ DRNVAHOS | &S U L'ATOME, DE LA RECHERCHE A L'INDUSTRIE

Laboratcire Micro-cibles - siiac3.ppt

@ " DIREGTION DES APPLICATIONS MILITAIRES -

SUMMARY

1/ Introduction
2/ 3 D Thermal modelisation

3/ First order 6ptimization : more than 10, or several tens of mK
- thermal shield. - . -
- Convecting effect of the gaz in the holraum.

4] Sécond order optimization : less than 1mK.
- Variable thickness hohlraum
- Sapphire rings position.

5/ Conclusion

7/4/ DENVHTHNOS .| X D ——— L'ATOME, DE LA RECHERCHE A L'INDUSTRIE

Laboratoire Micro-cibles . sunjac3.ppt
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@ DIRECTION DES APPLICATIONS MILITAIRES /

Geometry

Hohlraum
- gold
- 6mm diameter - 10mm long
- thickness : constant 50pm or varying 15-75um
- filling gas : low pressure helium (no convection)
- windows : 4000 A polyimide film- diameter 3mm

Cooling system

- AL O, rings : 8mm OD

distance from hohlraum center : 6 - Smm
Al O, connecting rods 100mm long - Imm diameter

Capsule
2mm diameter
200pm CH layer - 180pm DT uniform layer
temperature : 19.5 K nominal

W;?/pmmos! [J | —————— L'ATOME, DE LA RECHERCHE A L'INDUSTRIE

Laboratoire Micro-cibles!

sirmyacd ppt

@ DIRECTION DES APPLICATIONS MILITAIRES /

Thermal Modeling

3D Mesh
Mesh generation : CASTEM 2000 (gibiane)
Finite elements : 6-nodes prisms
4-nodes tetrahedrons
Total of 55,000 elements for 1/4% of the geometry

Boundary Conditions
Black body thermal radiation at 300K, 80K, or
Cryogenic Rod Temperature

DT ice layer : B—decay heat 0,05 W/cm3
Fixed temp. at the bottom of the cryogenic rods

V| p=nonmos

Laboratoire Micro-cibles

Finite Element Solver
THERMX 96
Steady-state resolution
Non-linear diffusion equation
Cholesky decomposition algorithm

= 1
XX D } ——————— L'ATOME, DE LA RECHERCHE A L'INDUSTRIE
I | simjac3.ppt
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DIRECTION DE
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Description of the thermal gradients
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@ DIRECTION DES APPLICATIONS MILITAIRES /

Materials Properties

Y.S. Touloukian and D.T. DeWitt,
Thermophysical Properties of Matter, 1970

Thermal Conductivities Total Hemispherical Emissivities

F100000= =

R s Gold : 0.05

$ 1000 = S T

= = ALO;: 0.07

'g —o— Au I

S . : —=— AI203 imi .

S oL 0= en | Polyimide : 0.4

= —— DT =5

S S i

2 01d— : -— —& . extrapolated values

e 10 12 14 16 18 20 measurements planned

Temperature (K)

?}4/’(727%/’/7{05 I D ———— —— L'ATOME, DE LA RECHERCHE A L'INDUSTRIE
Laboratoire Micro-ciblest

simjze3.ppt

@ DIRECTION DES APPLICATIONS MILITAIRES /

Different configurations of thermal shield for cryogenic indirect
drive target

Cryogenic
holraum

Black bady 300K 80K (vaccum) 20K (vaccum) 20K (helium

(target chamber) several 10 mbar)
U ozvonmos x [ | L'ATOME, DE LA RECHERCHE A L'INDUSTRIE
Laboratoire Micro-cibles — ) simjact.ppt
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@ DIRECTION DES APPLICATIONS MILITAIRES -~ —
Effect of the thermal shie[d :

température gradient in xz plane Around the PS shell :
AT, (300k) = 182.3 mK
150 AT,,(80k) =15.6 mK
AT, (20k) =0.82 mK
o 100 R .
£ w. —— Epc-20K
3 | |—Epcsok
& T N Epc-300K| |
[~ [ .
-100 . '. e .
théta (o) \

V| povmpmos | x> I l L'ATOME, DE LA RECHERCHE A L'INDUSTRIE

. smjact ppt

Laboratoire Micro-cibles

@ DIRECTION DES APPLICATIONS MILITAIRES /

Influence of variable thickness hohiraum

temperature more uniform on the inner surface of the hohlraum

cold point
Constant thickness holraum * Variable thickness holraum
Vré| o=venmos | . L'ATOME, DE LA RECHERCHE A L'INDUSTRIE
Laboratoire Micro-cibles . simjacd.ppt
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@ DIRECTION DES APPLICATIONS MILITAIRES /

influence of poly-imide windows for 300K black body radiation

i AT,, (without windows) = 2.7 mK

I AT,,{with AICHON windows) = 10.5 mK

—O—Eq:ﬁ(wm;wm
—=— Epo K witous AT,, (with CHON windows) = 183 mK
—A— 30K - with Al ayer

temperature varlations

y-z plane

Great influence of Al coating

7}4/@27702}%05 KR D L'ATOME, DE LA RECHERCHE A L'INDUSTRIE

shmjact ppt

Laboratoire Micro-cibles

@ DIRECTION DES APPLICATIONS MILITAIRES /

Compatibility between implosion Physics and thermics of the cryogenic target

* Implosion Physics (gas hohlraum) : (50% He/H,)
- Minimal pressure to avoid the expansion of gold plasma
- Maximal pressure to minimize the development of plasma instabilities

about 1 bar He/H, (20K}

* Thermics of the target:
- Low pressure inside the hohiraum to avoid convection

- Pure conductipn desired.
several 10 de mbars He/H, (20K)

* Filling of the hohiraum :
- Low pressure with the target in the middle of the laser chamber.
- Increase the pressure several seconds before the laser shot

Vs#| pzventmos xx [] L'ATOME, DELARECHERCHE A L'INDUSTRIE

Laboratoire Micro-cibles simjact.ppt

488



@ DIRECTION DES APPLIGATIONS MILITAIRES - ———— /

. First results for convection effects
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Laboratoire Micro-cibles . . B simjacs.ppt

@ DIRECTION DES APPLIGATIONS MILITAIRES —— ' /

Compatib)’lity between impldsion Physics and'the(mics of the éryogenic target
Firstoption . = , L ~"Second option

Sap&l}ire rods ' ; Sapg!jire roﬁs are the filling tubes
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@ DIRECTION DES APPLICATIONS MILITAIRES

Temperature variations in the y-z piane for

radial profile

radial variable thickness holhrau

Cawte do conversion vue de face

oy
peetr !

do b cavite ph

constant thickness

Constant thickness : 50um
Variable thickness : 20um -70um

25 /
sz 2 PRI
& s R et . .
8 15 — ! ~ variable thickness
: : =
é 1 SN - /
= . T [y
T 05 ettt
2 TP e -
g 0 | Zae M 3 > Ep. 50 constante| |
§-05 i - - o Ep.50variable | |
= . giy '-raiw oRp] s

100 -50 0 50 100
THETA (DEGRE)
>> AT=2.65 mK

>> AT =13 mK

Radjial profile improve the uniformity for 300K configuration only
{with polyimide aluminium layer)

U pzromos sax [ |

Laberatoire Micro-cibles

{ \m DIRECTION DES APPLICATIONS MILITAIRES

Variable thickness hohlraum : longitudinal profile

L'ATOME, DE LA RECHERCHE A L'INDUSTRIE

wnjacd ppt shimac.po?

4

- Second order optimization : below than 1mK for the homogeneity on the outer shell surface
- Must be compared to optimization of rods position.
- Make the temperature on the inner surface of the hoiraum hotter in the middle.
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m DIRECTION DES APPLICATIONS MILITAIRES

Conclusions ﬁ

* Specification : homogeneity of temperature on the outer surface of the PS shell better than 0.2mK.
* First order variations : several-10 of mK

- Thermmal shield :
+ 300K : 180mK ;
. Not consistent with the specification

- Evaluation of aluminium layer to reflect the black body radiation of the chamber
+ 80 K: 16mK : ) -
. Not consistent with the specification
. No specific advantage
+ 20K (conduction through sapphire rods) : 1.5mK
. Consistent with a first order optimization
. No need of gas (technology more easy)
+ 20K (He) : 1.5mK '

- Convection effects ; study in progress
* Second order variations : below 1mk :

- Variable thickness hohlraum (radial, longitudinal)
- sapphire rods position,...

"*z/ DEHUIHOS E L'ATOME, DE LA RECHERCHE A L'INDUSTRI

‘o-atoire Micro-cibles

simfazf.opt
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Neutronics and Activation Analysis
for the National Ignition Facility
Cryogenic Target Positioner

NIF WL
7he National Gritin Facatty 2] \‘

by
Jeff Latkowski
Jorge Sanchez

'ﬂ\isworkwaspexformedundeﬂheauspicsuf&wus.DepammofEnergybyY e Liv National Lab y under contract no. W-7405-Eng-48.

NIF operations will be subject to
several radiological requirements

* Individual workers will receive doses < 500 mrem/year

* Total occupational dose will be maintained at or below
10 person-rem/year

» Target insertion & characterization will be allocated
~ 0.5 person-rem/year

* Several subtasks have been identified:
— general access at the target chamber
— nosecone/foam removal
— general inspection & seal replacement
— target installation, cryogen fill, pump down, and layering

NIFxxxxxxx 3
JFL 422/1998 -
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Time-Motion studies
have been completed

-t

é \:..?45.': .

Start time after Dose Rate Goal
Subtask a 20 MJ shot Duration (mrem/hour) Contributors
General accessat 5 days 6 person-hr 1.25 TB equipment
the target chamber & cryostat
Nosecone/foam 6 days 0.5 person-hr  0.33 Cryostat, foam,
removal ) & nosecone
General inspection  14/30 days 4 person-hr 0.04 Cryostat
& seal replacement
Target installation, 14/30 days 12 person-hr  0.04 Cryostat

cryogen fill, pump
down, & layering

Neutron activation will prohibit
use of traditional materials

+ Without shielding nosecone,

use of SS #316 would result o ‘ :
in dose rates that would 5 t —e—SS#316 Structure w/o nosecons
prohibit routine access to the £ > T SSH16 Stucture & S nosecone ]
transport cryostat for g RN
unacceptably long times o 107 e S 7 S ek
(several years) s \\ .
o § bl "N---¢--.- \p
e With copper nosecone, 3 4 g :
routine access would still be Y —= /" =
" impossible for 1 year a 1yoes
10" =
* Doserates only include ° Time after lz::; shot (secon;:)
contributions from nosecone,
transport cryostat, and foam
NIF-XXXXXXX 5
JFL 4/22/1998
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" The cryostat will combine features
that result in a low-activation design

* Design utilizes a borated polygthylene insert (25 cm long)
* Cryogen tanks could be made from an aluminum alloy

* Beryllium structure may need to be coated with ~ 1-10 pm of Ni,
Cr, or Al to deal with x-rays and unconverted light

35L of SOL of
; Borated liquid liguid helium
Aluminum N
Copper tubing polyethylene nitrogen
NIF hohlraum Crushable Beryllium ] -——7
§o§6ccmlf : ) aluminum  pocerane r
.2 cm lon, s
: foam structure, and Aluminum Main portion of
heat shield pressure tanks Steelsupports  tarpet positioner
: (made from GFRC)
NIF-xxxxXXX
JFL 41221998

With a Be nosecone and structure,
‘the cryostat dose rates would nearly
meet the limits

* At 5 days after a 20 MJ shot, 10°

1 ]

other equipment would
--+--Be Structure & Be nosecone

—e—SSi#409 Structure & Be nosecone

-
contribute 1.17 mrem/hr* to § 1o P ——Dose Rate Limit for Subtask #1
the 0.15 mrem/hr from the E
transport cryostat** g :
By t=6 days, dose rate has g ! \‘? -
- ’ s P - | ¥
fallen to 0.30 mrem/hr (worker  § | ™
is only exposed to the cryostat 9 TS
& foam) a8 b 1 bt "4
10° 10° 10"
+ At 30 days, dose rate exceeds Time after last shot (seconds)

0.04 mrem/hr goal by 2X3 butis .. Assu;n$ that the polyethylene plug is implemented to reduce

dominated by Cu tubing - activation of the Final Optics Assemblies

(CODSGI'V aﬁvely estimated 1 kg) ** Assumes that a shielding cover is placed over the aluminum foam

NIF-xxxxxxx
JFL 4/22/1998
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ES&H issues related to
the use of beryllium

* Beryllium is hazard when it is in a particulate form that may be
inhaled (3-4% of the population is allergic to Be)

» According to LLNL policy, an Operational of Facility Safety
Procedure would be required as the possibility of generating Be
particulates

* The crushable aluminum foam is intended to reduce the shock
imparted to the target positioner

— the foam will also “shadow shield” the nosecone from soft target x-rays,
which may ablate beryllium

— depending upon the temporal and spatial emission of the x-rays, the foam
may need to be enlarged/supplemented to ensure that beryllium is not
ablated (see Considerations for the Preliminary Design of the NIF Target
Insertion Cryostat by Pittenger, et al. at this meeting)

NIE-XXXXXXX ’ - 8
JFL 4/22/1998

« Due to neutron activation, traditional structural and
cryogenic materials may only be used sparingly in the
NIF transport cryostat

By using a beryllium nosecone & structure, residual
dose rates may be decreased to acceptable levels (dose
would be 0.56 person-rem/yr)

— quantity of copper tubing should be minimized
— steel supports for the cryogen tanks should be reduced/ehmmated

« The ES&H issues related to the use of beryllium need
to be fully addressed '

NIF-XXRXXXX
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Shock Driven Physics Experiments
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Pegasus Precision Liner
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|
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Liner Current ? : \
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Joint Flange //////}/L/;\’ E M
Liner :
Glide Plane l
o, ! NN
Z/ e : o2 § 1.75 cm
% : N

Active Liner

— Experimental
Volume 3 cm

Liner Specifications:
e 4722 cmii.d.
* 406 um wall thickness

5 ninch rms surface finish

Shock Driven Physics Experiments

diameter by

cylinder height.
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LLNL-1 Radiograph
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Our most recent Pegasus experiments in collaboration with AWE have
verified the generation of vorticity predicted by 2D Eulerian calculations

Calculations e Experimental
W . radiographs
Density ¥

contours

Dynamic § %
12.3ps %% T %

Los Alames National Laboratory
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Shock Driven Physics Experiments  *oerevemerems
Ejecta

Liner Ejecta Experiment

PZ4=—Aluminum Driver Liner
I . c
Target Liner

Axial holography to measurs distribution
of ejecta from the target iner.
Triple axis x-radiography to measure
motion of driver liner.

*Axial shadow graph shows ejecta plumes from a Sn surface.

*Ejecta density and velocity are a function of surface finish and features
micromachined into the Sn surface.

*Narrow, fast ejecta plumes are from conical voids, cone angle and depth are indicated
on shadow graph.

*Low density volume ahead of dense plumes can be analyzed holographicalily for ejecta
particle size distributions, inset box is an example of a candidate region.
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Los Alamos National Laboratory
MST-7 Group
Los Alamos, New Mexico

Special Liners for Physics Experiments i ecuemsosns:
Composite Liners for RT&E Mix Experiment

*200 um thick Cu
impactor in 800 um
thick Al liner.

sLiner and impactor
cylinders machined
with excess wall
thickness and for
interference fit
interface at thermal
equilibrium.

sLiner surfaces finished
after impactor
insertion.

*Sinusoidal perturbations
machined into surface of
RT&E Mix-2 Cu impactor.

Los Alamos National Laboratory

Special Liners for Physics Experiments o

Los Alamos, New Mexico

Composite Liners for High Strain Rate =~ "=
(HSR) Experiments

*400um thick Al 6061T6 impactor in 700um thick 1100 Al liner.

*Liner and impactor cylinders machined with excess wall thickness
and for interference fit interface at thermal equilibrium.

Liner surfaces finished after impactor insertion.
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Los Alamos National Laboratory
MST.7 Group
Los Alamos, New Mexico

Pulse Power Science and Technology " emms
Liner Performance Measurements

Aluminum Liner

/ /Optical Impact Pins
- / - e
s TR 27
%=6.0mm =\ 4
perturbations :%— 5 X<Cg Glide Plane
A=1.6mm i B-dot Probe
perturbations ] ; - - o
;//Z///// 27 4 \ AlPinCan  eAxial and Radial X-radiography
7l _ER_ Y «Optical Impact Pins
% :r 7 Visar
i *B-dot Probe

*Diamond Raman
*Ruby Fluorescence
*Foil Strain Gauge

hell Visar

Los Alamos National Laboratory
MST-7 Group
Los Alamos, New Mexito

Pulse Power Science and Technology vrwswercamemsmozusa
Machined Perturbations for Liner Stability Experiments

*5 pinch rms surface finish *44 pinch rms surface finish
2 mm wavelength, 100 um «0.7 pinch rms surface finish,
peak to valley sinusoid diamond turned
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Los Alamos National Laboratory

Pulse Power Science and Technology USTTG s
Machined Perturbations STy ot GetiomiaBosse
LS-6 &LS-9 Radial Radiographs

Static Static
LS-6 LS-9
7.50us 8.90ms
8.25us 9.61ms
9.00us 10.82ms
*Top: 2 mm wavelength, 25 *Top: 44 pinch rms surface finish
um p-v amplitude *Bottom:0.7 pinch rms surface
*Bottom: 0.5 mm wavelength, finish, diamond turned
25 um p-v amplitude

Los Alames, New Mexico

Pulse Power Science and Technology e csmvozuss
Ranchero Explosive Pulse Power Driver

*Shown in 25 MJ, 25MA configuration without liner power flow channel or
pulse shaping elements.

* Atlas liner design verification experiments in FY-98.

*Basic Atlas radiography design verification in FY-98.-

*Weapons physics experiments at Atlas parameters in FY-99.
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Los Alamos Natlonal Laboratory
MST-7 Group
Los Alamos, New Mexico

Pulse Power Science and Technology e em==
VNIIEF High Energy Liner HEL-1

S A

48 cm o.d by 10 cm cylinder height liner, 4 mm wall thickness.

*1 kg liner of a Russian Aluminum alloy, fabricated by VNIIEF.

«False color image calculations by LANL group X-PA, courtesy R. Faehl. .

«Both Los Alamos and VNIIEF diagnostics agreed with the calculated dynamic
performance.

«Liner motion was not perfect but indicated an Al liner in a 100 MJ system can
remain intact. This is 4x to 5x the energy of available US drivers.

Los Alamos National Laboratory
MST-7 Group

Los Alamos, New Mexico
University of Calitfornia/DOE/USA

Conclusions

*MST-7 has a five year history of fabricating solid liner driven
Weapons Physics Experiments and Pulse Power Technology

Experiments for the Los Alamos 4 MJ Pegasus Il driver in support
of the SBSS Laboratory Mission.

*Program transitions toward the 25 MJ Atlas facility under
construction at Los Alamos have begun.

*Radiation driven Los Alamos HEDP Program pulse power
experiments are now done at the Sandia Albuquerque Z facility.

*The Los Alamos Ranchero explosively driven pulse power generator

will be used first to verify Atlas liner design and dynamics, and then
for preliminary Atlas weapons physics experiments.
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Modeling of the emulsion process to make uniform ICF capsules
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Modeling of the emulsion-process to
make uniform ICF capsules

T. Norimatsu, Y. Izawa, and K. Mima :
Institute of Laser Engineering, Osaka Universi
2-6, Yamada-oka, Suita, Osaka 565, Japan
E-mail, norimats@ile. osaka-u.ac.jp

Presented at Target Fabrication Meeting 98
April 20-23, 1998
Jackson, WY, USA

Abstract @

ILE. Osaka

In the emuision method with a stirring propeller in the dry process,
deformations of emulsions are an important key to make uniform
shells. On the other hand, such deformations may leave permanent
out-of-roundness after the shell is completed. In order to make high
quarity shells, it is necessary to understand the process in which a
uniform layer is formed .

We formulated the centering force by which a nonuniform compound
emuslion turns to be uniform.

We think that the centering force consists of hydrodynamic forces
and thermodynamic force based on interfacial surface tension.

Resultant centering force can move the water globule in a compound
emulsion to the center before the emulsion lost the fluidity.

By T. Norimatsu
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Modeling of the emulsion process to make uniform ICF capsules

Presented at Target Fabrication Meeting 98
April 20-23, 1998, Jackson, WY USA

gt e 7 % YAy T T o OB T R M e 3 T ST Y S

'What is the centering force? |

@

We consider that the ce
consists of hydrodynamic forces and at
energy on_the inner surface.
1. Hydrodynamic force
When low frequency vi
off-set sphere moves to the cen
between thicker oil side

Core

—oil

«—Water

2. Thermodynamic force
When an inner water globule is
pushe
moves due to increase in the free
energy (=interfacial tension times

surface area) on the inner surface.

ntering force bases on ihe Tayler Wang’s process

brational modes are set up in the oil phase,
ter. This is due to the pressure difference
and thinner oil side.

d by something, the globule

{LE. Osaka

hermodynamic_force hased on the free

Driving force

Final equation of motion
for the water globule - @
. . . ILE. Osaka
TR o, +Bi—;'—&’—é—2-po = Inertial + Buoyancy + Frictional + Fieq
3 RO - R"
RS - R2[( AvDt* AVDt 'I[R. ]2
Inertial term = o o V2= == Vorz | o~
RS +R2 5 2
0L P —2 A -(—2x,,,Fh2 +-§x3)
Buoyancy term = 980(p, — Puw Vi
26
[ R\ AvDr -ADE RE-R2 Vg
. e _ . i - o 4 3
Frictional term = GnuoR,Lvo 0.6 +( Ho) 10 Ria VwJ—'—1 G K
0AE,
Firee = —'87:"2
—4my(30R} X, +40RFX, +6%u) ,
= 5 €5
RO
2 By T. Norimatsu
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Modeling of the emulsion process to make uniform ICF capsules
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April 20-23, 1998, Jackson, WY USA

P e s oA -,

{With rotation of the emulsion, a

. water globule moved to the center, @
Even if the centering force is too small to counter ballance the ILE. Osaka

gravitaional force, a water globule in a rotating emulsion moved
to the center.

004 T T 0.04
Deformaion only Deformation+Rotation
0.03 [ 003
002
xwi 0.02 ”UnUﬁ A xwi
- ™ oot -
00 u A/\A W

gaRa vviviviy A A A

0 02 04 0.6 038 1 1] 2 4 6 8 10

. y

A
o AVAIRYRTANA

002 U U V Diameter of shell 6 mm
Deforamtion frequency 13 Hz
Deformation amplitude 10% of Ro

0.019
[} 2 4 6 8 10
4
. A step induced by pulse deformation strongly '
_depends on the viscosity of the oil phase. ; @
ILE. Osaka
0.02 $Shift of water globule induced by a 0.1Ro pulse
' ! ' followed by a 0.03Ro pulse
100 ey
- 0 € 3 o8- Qifset 200um
— oml 12 22z St doom
~0.04 : . ! g 10 3
0 0.05 o. 0.15 02 - F
y i sl
Applied deformation on the outer surface 2 . “;>°
z 1 s W g
s g
002 e L i = L
- ' R . (]
4 S~ 0.3P 0.1 T 4ot araa, fiies
X — | %° 0.01 0.1 1 10
;. d o3P Viscosity (P)
oo B Scaling law for shft (u<i P)
Ax =2x10*‘(——)(—-‘”—](——) {

l e
3§ : . N
Motion of inner water globule Qw;:ﬁ";g{'f,‘;‘,’:a,°e’§’§,’;gz',2‘;‘;2,;’" the outer surface (cm)

n,; viscosity of oil phase (P)

By T. Norimatsu
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Modeling of the emulsion process to make uniform ICF capsules
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K4

ILE. Osaka

Deformation was estimated from
observed velocity change and the

interaction time. Relation of deformation with the momentum

80 rpm change
F
c FAt = MAv
Quick _ OE free
acceleration - Je
or hitting
=8mey
10 The interaction time is given by the blade width divided
by the blade velocity.
M=0.12g, y=15 dyn/cm

L Stirring speed| ov &t Expected Frequency of
Moderat drift without deformation | the event
rotation v=4 cnv's (rpm) (cm’s) | (ms)
(um) (1 / min)
230
80 4 50 3
(7.7% of Ro)
680
120 7 30 5
{23% of Ro)

ILE. Osaka

Terminal thickness uniformity depends on
the deformation amplitude (stirring rate).

0<A<22 % of R, Deformation rate=1/12 sec

0.03
0.02
™ oot Thickness uniformity
— after 1 hr is 99.97%.
¢
-0.01
0 500 1000 1500 2000 2500 3000 3500 4000

t.

0<A<22 % of R, Deformation rate=1/60 sec

0.03

002
™

Thickness uniformity
after 3 hr is only 80%.

001

4000 2000 1109 12+10%

S0

By T. Norimatsu
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Experimental conditions and estimated

Viscosity of oil ILE. Osaka
parameters for NIF class emulsions. tyofo
1000 T T T T T
Frequency
Stirring Expected )
speed ov 8 | deformation Z:I;hn': ¥ s 7
(rpm) (cm/s) { (ms) (mm) 4 /i)
64 : s 1 1 ] 1
180 " 19 (6:4% of Ro)] 8 o 2000 4000 60 000 1-104 120104
Motion of water globule in emulsion
For smaller shells, deformation ¢ can not be 0.0068
expected because of smaller mass.
0.0066
i
c dv-m ~0.0064
8r-y-ot
0.0062
1-10* 12:104

0 2000 40800 60(;3 8000

Diameter; 2 mm

Thickness of oif; 133 um

The terminal thickness uniformity was only 52 %.

In this calculation, the oil phase lost fluidity before centering.

=4.2 . .. N
Y":{?-, d;lnn?cm The density matching is more important for smaller shells.
pW=0.9718
p0=0.997
Summary <@

Centering of water globule in a coumpound emuision was formulated
basing on Taylor Wang’s process.

. The centering force consits of hydrodynamic forces and

thermodynmaic force.

By repeating pulse deformations uniformity of the compound
emuision is improved. Since the centering force is not so strong to
support density mismatched emulsion, rotation of emulsion is always
necessary.

Our calculation basing upon the experimental stirring rate and the
drying rate indicates that our emulsion method has feasibility to
fabricate shells with uniformity>99.9%.

- To improve the shell uniformity, deformation-induced centering is

necessary before the emulsion loses the fluidity. After the centering,
the emulsion must be rotated to keep the uniformity until the emulsion
loses the fluidity and fix the water globule at the center.

ILE. Osaka

P RN Y e e T I R T TR T IS e W YT T T L T T g ——s a . S V) e e mm———— S = oy — — ———

By T. Norimatsu
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Fabrication of large shells using a rotating dry bed in emulsion process
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Fabrication' of Iarge'shélls using a
rotating dry bed in emulsion process

Y. Kimura, B. Hiragaki, T. Norimatsu, Y.

Izawa, and K. Mima

Institute of Laser Engineering, Osaka University
2-6, Yamada-oka, Suita, Osaka 565, Japan
E-mail, norimats@ile. osaka-u.ac.jp

Presented at Target Fabrication Meeting 98
April 20-23, 1998
Jackson, WY

Abstract

K4

To understand the emulsion process, large shells were fabricated with
controlled rotation speed and deformation rate using a rotating bed.
‘Key points of this experiment is as follows;

1 Counter balance the gravitational deformation by centrifugal
force

2 Eliminate midle mode nonsphericity

3 Improve the thickness uniformity

ILE. Osaka

In conventional emulsion process stirred with a propeller,
gravitational sagging of oil phase takes place because of bad
density matching between W1 and O.

Middie mode (3-50) nonsphericity would be attributed to
collisions of emulsion with the stirring propeller.

The thickness uniformity will be improved by continuously
rotating the emulsion around the horizontal axis.

By Y. Kimura
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Fabrication of large shells using a rotating dry bed in emulsion process

Presented at Target Fabrication Meeting 98
April 20 - 23 1998
Jackson WY, USA

A rotating bed. was ‘newly used ‘in |
drying process-of' .emuision method.

@

Point support of emulsions provides the centering force. ILE. Osaka
Continuous rotation eliminates gravitational sagging.
Separator Emulsion
\

Ty

/_,

. ‘1 /

‘i

\,
f

/

Rotator

R
H

Twister

PRI 4

“Rotation around the horizontal axis improved the
spherlclty and uniformity of emulsion.

rvetatoran

K4

et o o S Soin 3 n o A/
X ILE. Osaka
yTThm Ax= de:
a Thin
b | t of spherici T
mprovement of spherici
135 1 P P Y 12 lmprovement of uniformity
—8—A, 5. [T ]
1.3 = _gzé.érm ~-§l —a—Ax
—4}--C, 6.3mm 10 » —-g-- Ay [
1.25 = et - ---D.o.Omm [~ . "'D"BX 1
5 i E ]! = it A== By 1]
g 12 s 8 T —+—Cx H
3 @ : —x = Cy I
8 115 BT @ g RN —-&--Dx |
« 3 L ] N i —--=Dv §]
= 11 2 = T £ 59
3 bt g 4
2 105 e e = =3
2 | B8 -, AR
e i E, st E
0.85 i 0 I AN S
4 6 8 10 12 14 16 18 4 s 10 12 14 16 18
Rotational speed (rpm) ﬁiotational speed (rpm)
By Y. Kimura
2
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Sphericity of shells fabricated |
on a rotating bed J @

The rotating bed showed good performance in sphericity but poor in !B Osaa
uniformity.

~—@— Sphericity | —— Uniformityl

100 prermrprrrr g ey 100
9.5 /m\ 95
® s : : “Pancake”-
“Rugby football”- % °°F e 799 S &
like shell = %8st </ /"C:" N 1% 2 fike shell
L - ] 3
@ el O
[-% ] & 3 —~
? a7 L4 / \\ 70
96.5 15/ i\_ 65
96'.:..!....!...1 PETSE ST ISR S SN SN RSSO SN B0 S S 60
14 15 186 17 18 19 20 21
Rotational speed of bed (rpm)
{ Rotating bed showed good performance 3
{ in the low mode range except for mode 3. B @

ILE. Osaka

Dried in a bath stirred with Dried on the rotating bed

 Pbropelier -
110 1°10
) X
] ;
I N —;%
/ % \
o) RN )& A 8 |“>‘1|1-10‘4 £
350 \\ E 2 A
£
|"“i| N = M
== 8 R
Uz, K
! E |=
E Al g oS
i
]
14107 3 11076 l A lMdlﬁ
1 oo 100 + 110 1 10 100 1-10%
i
rMode number
Higer middle mode is attributed to -
collisions of the emuision with the Large mode 3 was induced by curvatures
propeller. of rotating bars. (current guess)

By Y. Kimura




Fabrication of large shells using a rotating dry bed in emulision process

Presented at Target Fabrication Meeting 98
April 20 - 23 1998
Jackson WY, USA

' Ty
: formity bad? |
3 Why is the uniformity bad? | @

Sa.

ILE. Osaka

Because the rotation was one dimensional and the deformation is
continuous.

The best unifomrity was only 86%.
This can be attributed to;

2.7 mm

1 One dimensional rotation

There is no centering force in the
axis direction.

4—>» No centering force
2.3 mm

2 Centering force in the equator plane is also
week because dE/dx =0.

In case of continuous rotation, the

X ray image of a 6.15-mm-diameter shell ge:e-;a;lergy change on the inner surface

(Rotation speed of bed; 18 rpm)
3 Deformation induced by point contact was
smail.

When an emulsion lost solvent, it begins
to float.

Summary ©@

ILE. Osaka

The rotating dry bed showed good performance in the sphericity but
poor in the wall thickness uniformity.

- By counter balancing the gravitational deformation with centrifugal force,
sphericity of 99.93% was achieved.

- The sphericity can be further improved if the accuracy of rotating bars is
improved.

. The thickness uniformity was only 86 %. Currently we think this low
uniformity is attributed to no centering force in the axis direction.

- The uniformity is improved if the rotation axis is changed or additional
vibrational mode is applied on the emuilsion.

By Y. Kimura
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Development of a Cryostat to Pressure Load and Evaluate Cryogenic
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N N T O T

ICF Targets

Peter S. Ebey, James K. Hoffer, Arthur Nobile, Jr.

Los Alamos National Laboratory, MS-K764, Los Alamos, NM 87545
This work is supported by the U.S. Department of Energy under contract number W7405-ENG36

Capabilities and Design Features of LANL Cryogenic Pressure Loader (CPL)

Permeation loading of either Omega or NIF sized plastic targets
Serve as a test bed for future target concepts
Measure DT Equation of State (EOS) at high densities
Beta Layering of DT shell to determine effects of mount/hohlraum geometry on layer uniformity
Observation of Layered Sample surface
Real time video monitor and CCD camera for roughness analysis of stored images
Ability to rotate layered sample to obtain multiple views
Space exists to accommodate future experimental apparatus
Cryogenic valve; Resonant ultrasound spectroscopy (Asaki, LANL); Joule heating apparatus (LLNL)
Spare feedthroughs
Spare signal, heater, and coax leads
One spare gas feedthrough tube could actuate a bellows
Several blanked-off openings for future applications

Inserter and mechanical support of the cryostat are coaxial to avoid misalignment due to thermal
contraction

Cryocooler is mechanically decoupled from the cold can to lessen vibrations

Heat load up inserter minimized: To permit operation with one cryocooler
Exchange gas path is severely constricted across thermal gradient

Inserter post is evacuated and filled with radiation baffles to minimize conduction and radiation transfer from

300 K to the target

Copper Layering Hemispheres driven in from two sides to form an isothermal layering environment

LANL CPL Will Test Elements of the Omega Cryogenic Target System (0CTS)

Permeation cell is an exact copy of the OCTS cell
Test operation of high pressure breechlock seal
Evaluate pressure loading procedures

Test the effects of warm ballast volume in the DT plumbing
Target shells are identical to Omega plastic targets
Tritium Migration Tests
Determine amounts of residual tritium in permeation cell
Measure rates of tritium migration within cryostat to estimate rates in the OCTS

Layering environment and target mount geometry are similar to OCT
Evaluate post-filling steps, including beta-layering
Test whether mount wire distorts the thermal profile at the target shell
Inserter Z and rotation manipulators similar to OCTS: from the same vendor
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Cryostat Details Cryostat Front View

. Insulating vacuum can
Diaphragm .
| —Target shell Thermal shield can
DT volume |
— i
~8co \ Cold can enclosing
Heater and exchange gas space
thermometer .
High pressure™]
seal

Target shell in place

in PERMEATION CELL.
This cell is an exact

copy of the GA design
for the Omega CTS

= (o =T

OOOI IOOO

) ]

b el 1 i | o |l @

Target shell in place U/§::
mLA G SP ’ Inserter post, LU

fo;med by two geat evacuated and the
dnl:ren copper hemi- section within the
spheres cryostat has radiation
baffles and only
— 0.010" annular clearance
@j‘: with its guide tube
I; /
—— Z-axis translation
stage to position
- target
Il T
[ | |
) e————
[0
Rotation Stage to rotate
insertion post to actuate
% | % breechlock and give multiple
views of the layered target
Newly loaded target
in INSERTION CHAMBER
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Position of
cryostat
in glovebox

g
1. Mount target on inserter
2. Raise inserter

3. Engage breechlock

4. Pressurize diaphragm
5. Pressurize DT space
6. Permeation fill target
7. Cool cryostat to 20 K
8. Pump away excess DT

9. Release diaphragm pressure
10. Disengage breechlock
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11. Lower inserter

12 Bring layering hemispheres
together to form sphere

13. Observe beta layering




Heat flux #H
fromDT N
beta decay

EW A USRI
U720 2038 5,9 30 38 34 9

He gas

Stainless
Steel

BRERERRESY
WOWUVUNWNGM N

opper

T=20K:

Simulation of effect of beta heating on the cooldown of the DT filled permeation cell: The left figure
shows the model used for an axisymmetric finite element analysis of the steady state temperature contours
within the cold can and permeation cell. The right figure gives the result for the conditions that the
coldplate is regulated at T=20 K and the permeation cell is warmed by beta heating of the DT. In this
model the actual cryostat design is simplified somewhat to maintain axisymmetry, but the model thermal
paths have essentially the same thermal characteristics as the actual paths.
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=
15004 K g
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Simulation of the effect of target mount geometry on spherical isotherms in the layering sphere:
These two figures show the resulting temperature contours from two axisymmetric finite element
analyses for a 1 mm diameter, 100 pm thick spherical shell of solid DT (self heated due to beta decay)
suspended in helium exchange gas in the center of a 25 mm diameter isothermal (15 K) spherical cavity.
In the left figure there is a (~4.6 mm long, 200 um dia.) copper wire thermally anchored to the isothermal
wall. This causes a temperature gradient of 0.9 pK on the inner surface of the DT shell. In the right
figure there is a ring (7.8 mm dia., ~250 um cross sectional dia.) held isothermally at 15 K. Even with this
perturbation, the inner surface of the DT shell is within 0.02 pK of being isothermal. (The gray regions in
the figures correspond to temperatures warmer than the color scales.)
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Tritium Systems for the OMEGA Cryogenic
Target System

Target Fabrication Specialists Meeting
April, 1998

A. Nobile, J.E. Nasise, E. N. Schmierer, and C. R. Walthers
Tritium Science and Engineering Group
Los Alamos National Laboratory, Los Alamos, NM

N. B. Alexander, G. E. Besenbruch, C. Gibson, and D.T.
Goodin
Fusion Group
General Atomics, San Diego, CA

D. Harding, and L. Lund
Laboratory for Laser Energetics
University of Rochester, Rochester, NY

Los Alamos

The OMEGA Cryogenic Target System will field
cryogenic DT ICF targets on OMEGA

Laser illumination of first cryogenic DT targets on OMEGA at the
University of Rochester Laboratory for Laser Energetics (UR/LLE)
will occur in 2001

Tritium release limits are low

Several systems will play a role in the tritium handling aspects of
the OCTS

- Gloveboxes
— Vacuum System
— DT High Pressure System
— Tritium Removal Systems
DT experiments are planned with a small scale cryostat at LANL

Los Alamos




UR/LLE will have a 1 g tritiurn inventory with
stringent tritium release limits

» 1 g tritium inventory is licensed by State of New York
e Current tritium release limits are low
— Tritium Fill Station room: 200 mCi/yr
— Target Chamber bay: 2-3 Cifyr
« Increase in release limit in Tritium Fill Station room is an option
« A high degree of tritium containment is necessary

Los Alamos

OCTS equipment will be contained within four
gloveboxes

« Tritium Fili Station Glovebox (existing)
« DT High Pressure Glovebox (new)
 Fill/Transfer Station Glovebox (new)

e Vacuum Pump Glovebox (new)

Los Alamos
532



Fill/Transfer Station Glovebox

e Overall height approx. 13 ft.

e Supports 1700 kg cryostat
Cryostat

Dome Lift * Provides access for
docking of the Moving
Cryostat Transport Cart
Glovebox below the cryostat
e Contains support systems
Cryostat for cryostat, such as
Vessel cryocoolers and vacuum
system

e  Allows for opening of the
cryostat and maintenance

'gm’i“t%t of cryostat components

Tg:: port Must be assembled in a

Cart relatively small room
Los Alamos

Fill/Transfer Station Glovebox is under construction

/-" CRYOSTAT
VESSEL

GLOVEBOX —

L s : - LI Cr o P s L Er LR o

MOVING CRYOSTAT -
TRANSPORT CART
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Design of the vacuum system required close
coordination with other system designs

e Vacuum pumpdown calculations performed with Vacuum
Designer Il code

« Approach involved use of small turbo pumps and small diameter
backing lines

« Tritium “hardened” turbomolecular pumps not needed in all
locations

 Tritium compatible pumps used on systems with relatively high
tritium concentrations

« Conventional pumps with elastomeric seals used in systems with
low tritium concentrations

Los Alamos

Vessel pumpdown times were evaluated with
Vacuum Designer Il code

Inserter Pumpdown from

Atmospheric Pressure « Stainless steel rate =

1.0E-08 tL/cm2sec;

: 88?82 total = 8.6E-05 tL/sec
. + o - e
% 1.00E+01 O ring length =6
< 1.00E+00 e Volume=17L
g }gg‘é'g; e 240 L/s turbo with 2” of
% 1 00E-03 3.83” dia. Tubing -
& 1.00E-04 e PV-12 scroll pump in

1.00E-05 =2 series with a MB 601

1.00E-06 ¢ . — , bellows pump

1.00E- 1.00E+ 1.00E+ 1.00E+
01 00 01 02
Time, min

Los Alamos
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OCTS vacuum system

FILLZTRANSFER STATION GLOVEBOX PUMP GLOVEBOX

TTT ST T TS ST T TTT T T T _l l—- ALL METAL
1
i
1
1!
|

© ©

© O M@—'

L
I

]
CONVENTIONAL
: SCROLL PUMPS
PERM CELL, FTSMCTC CRYOSTAT
I . He INTERFACE] BASE | |
- =N —
uctc I—Tmsr TSTAX | 1 ‘@1
wrermonar| 1 |umarod U aiGNeER CRYOSTAT { o)
F15 } |POTARY sEAY | eaows DOME
gy N il
@ GLOVEBOX ANTECHAMBERS AND GLOVEPORT COVERS o
(DT FGH PRES) MCTC MAINTENANCE STATION .
} svst sec. LOW LEVEL DT MANIFOLDS @]—
CHARACTERIZATION STATION Y
PREPARATION STATION

r.-__

TYEMOMT
s} J—' REMOVAL 1—1 T l—

Approach involving turbo pumps'directly connected
to vessels was chosen

Small pump, mounted
directly on the componesk or system
component, has the

same pumping speed as 12010570 s S g
a large pump connected Block pump
to the component with
large diameter tubing .
The former is easler to componert or system
fit in a glovebox and is n '
cheaper _ o= m"”‘“"""’" T e

Lerge Turbopump

(afinks speed)

Los Alamos

535

PPN VRN AT PRSI TN P s i AT ¥ S e J 8 T enecye ey ryr——— e R e et N - - PR



Vacuum pumps were not tritium hardened except
where high tritium levels are expected

» Turbopumps are hybrid mag-bearing, dry film lubricated ceramic
bearing types. Full mag-bearing, hardened seal and connector
design would add substantially to cost.

e Roughing pumps, used for passboxes and for backing some
turbopumps are not tritium hardened when only trace tritium
levels are expected (Edwards Scroll pump uses elastomeric seals
and teflon tip seals)

« Roughing pumps which evacuate and back turbopumps in known
high tritium areas are tritium hardened. These pumps are all metal
and use metal seals (Metal Bellows and Normetex Scroll pumps)

Los Alamos

The DT High Pressure System must safely
compress DT at a very slow and uniform rate

DT High Pressure System Glovebox

Fr.
Existing
UR/LLE —£
Tritium
Fill
Station

High Pressure
intensifier
¢ 0-22,500 psiain

. 0.5 psia/min steps
—

Stepper Motor * 1m617 ngt DT
Driven Oil Syringe inventory
Pump

Los Alamos
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Tritium cleanup systems are needed for operation of the
OCTS and OMEGA Target Chamber

* OCTS equipment in Tritium Fill Station room
—~ Four gloveboxes
— Pumping manifolds
¢ Target Chamber
— Tank purging during maintenance
— Rough pumpdown of Target Chamber
— Purging of diagnostic antechambers
— Rough pumpdown of diagnostic antechambers
— Target Chamber cryopump regeneration gas

Los Alamos

Rm. 157 Tritium Removal System (TRS)

He
———-l Gloveboxes

>t »o 02, He

<l TFS it Filters, Pumps Reacto;,ﬁl:z:::rs and

e =
| FTS _I] Mol

™ o]
b LT \aim! Sieve
| DTHPS~ | I @®] Driers
Glovebox

Cleanup To
System (GCS) Regen. N
Fr.
| Regen,

Reactor, Preheaters and

Filters, Pumps Aftercooler
‘ cw
Vacuum LPRW
Manifolds Tank
Mol Sieve
o, Purge Cleanup Driers
System (PCS)
Fr.
Regen.
To stack




Target Chamber TRS

Roughing
Manifold Turdo [0 Reactor, Preheaters and
Pumps Aftercooler
/ ¥
Traps i \3
Traps
Alr Turbo Backing and
Bleed R hi P g To
oughing Pumps R .
From La Cave
Vacuum System
To stack @
To stack «—

DT experiments will be performed with a small scale

cryostat at WETF

/——Clyostat

O

O

st 9

Panel for gas

=
Oy

{
l -
ﬁ L « manifolds

Nﬂmmem Racks

P
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The cryostat will perform many of the same
operations as the OCTS Fill/Transfer Station

Cryostat Vessel 7= —=_———Permeation Cell

Insertion Box

Helium Reﬁgemtor—\lﬂﬂ_-;_

Los Alamos

Summary

e Safe handling of tritium will be critical to the successful
operation of the OCTS

¢ The system must operate under stringent tritium release
constraints

* A number of tritium handling systems have been designed
to meet the operating objectives

Los Alamos
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APPLICATION OF OPTICAL
PROFILOMETERY TO ICF TARGET
COMPONENTS*

A comparison of “tried and true” techniques and those
using a Computer Aided Optical Profilometer

by: Charlotte M. King
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Introduction

Optical Profilometery allows non-contact surface

measurements of parts that may be damaged by

a typical stylus profilometer. Additionally, the tip

geometry of a stylus profilometer is limiting even
on parts where damage is not a concern.

These advantages led to the acquisition of a
commercially available Computer Aided Optical
Profilometer (CAPO).

The following is a comparison of methods.
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L
Computer Aided Optical Profilometer

specifications

» Vertical resolution
— 3A (Phase Shift Interference)
— <1nm (Vertical Scanning Interference)
« Maximum vertical range
— 500um
» Magnification
— 251097.7X
= Accuracy / repeatability
- +1%

Limitations of Computer Aided Optical Profilometer

«  When viewing large dynamic range subtle details are lost
- Data drops out on rough surfaces and steep slopes

Typical ICF aluminum stepped witness

SEM images

- Difficulty in quantifying physical characteristics
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Typical example of CAOP data from
aluminum witness plate surface

:mh':!‘wndnnhdmrnmu
sasured array
+ With one measurement, C{\Ol? gives T e ) e
poth quqntnative and qualitative b ions B Wi e et s
information = il dainics bween e Nghestand
. Rz = Average maximum height of the protils
- mmﬂmuwmdmdun

Example of CAOP data from aluminum L]

witness plate showing large scale

features and X and Y profiles
E: £ le:

N

3
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L
Traditional labor intensive approach to

- Profiled by hand mapping | 1es

— This approach takes 5 | s l 199 l a1 l
times longer than CAOP

Typical ICF Rayleigh-Taylor package
micrograph

Optical Micrograph:
limited qualitative data
(some x-y data)
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Profiles of Rayleigh-Taylor package 9
from AFM and diamond stylus contact
profilometery

— X 20000 pw/div %58/ AFM
Teeee.Z 4,000 pn/div #

Sl -

&0 AL
S 0 ing b

40
« Limitation
— Requires surface contact
— Stylus tip distorts Peak and Valley data
~ Maximum height difference (with current LLNL
technology) each system can work with
« AFM 5p
+ Diamond Stylus 160p

Example of CAOP data from Rayleigh-

Notice “drop out” of
information - white areas -
Still useful for Peak to Valley
measurements

T -

BRENCT ATy
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i Target Assembly and Metrology
P at CEA Limeil Valenton

Loic Polés

CEA Limeil Valenton
Département Lasers de Puissance
94195 Villeneuve Saint Georges
FRANCE

tel. 01 45 95 66 36

fax. 01 43 86 74 38

4
- 59
e

oL

"TFSM 98 Jackson Hole

o]
Direction des Recherches en lle-de-France DRIF - 171041998 - 1

Target Assembly and Metrology
at CEA/Limeil Valenton

Abstract

At the heart of laser driven Inertial Confinement Fusion experiments are tiny targets. Their size,
constituting materials and fabrication processes have evolved to meet the demands of doing experiments

on high-powered lasers such asPhébus, an operating facility at CEA/Limeil-Valenton or the future Laser
MeégaJoule (LMJ) facility.

Within the numerous targets designed and fabricated at CEA/Limeil-Valenton are, for instance,
those for electronic temperature measurements in gas-filled target or those for debris generation and effect
measurements for LMJ/ target chamber dimensioning studies. The uniform high temperature environment
and the density conditions are provided by the use of small millimeter-sized hohlraums driven by the
current Phébus laser (2 * 3 kJ energy of 0.351 pm wavelength in a nanosecond pulse regime).

Based on such examples, the proposed paper will present both the assembly and metrology
methods and advanced capabilities developed at CEA/Limeil-Valenton to produce the targets.

o

Direction des Recherches en lle-de-France 555 DRIF - 170411958 -2
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Debris production measurements on Phébus facility
are critical for target chamber dimensioning
of the LMJ project

Numerical and experimental studies to :
« produce debris impacts onto different materials to address

debris rate determination,

. evaluate debris effects onto materials of the LMJ target chamber.

o
Direction des Recherches en lle-de-France

0

DRIF - 1710413998 -3

4

Debris production experiments on Ph%us facility

Conditions of the experiment

 Laser energy :
3 kj / beam
Pulse duration : 1,3 ns

* Flying plates :
stainless steel, aluminium, copper

« Collector materials :
polyethylene, glass, B,C, SiO,

Taryget positioner

thread Capsule Dism 500um

South beam

N\ /T
/N

Sharpnels collector
40 mm

North beam

_ Laser entrance

™ Diam.4 mm

21

-

o
Direction des Recherches en lle-de-France

556 DRIF - 1770411996 -4
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(continue...)

Target posatrones

Capsuke

Quarnt? thread

South beam Nnr(h beam

Target ’p.
1 aser entrame

Polyethylene collector

-

Fhang plare

s
~-.

I &mm
,/

Cold-nated Gold cavity
plass shel)

LEH

DRIF - 17i041990 - §

Direction des Recherches en fle-de-France

N

S

Different debris production targets

< B €
b [

Direction des Recherches en le-de-France
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4
ASSEMBLY STATIOM

Target positionner

« 3 translations

» 2 rotations
Resolution : 1um, 103°

Part positionner

« 3 translations

« 3 rotations
Resolution : Spm, 102°
1 motorised displaceme
(5 soon)

Direction des Recherches en lle-de-France DRIF 17:04119% - 7
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e 4
Metrology station

gf":'—"—"-'-'»{ : e

o

Motion controller

E

ees | Lodo i

video screen

Camera

A

000|{000]{000

ooolisoe]iooo
ooolloos}joco

Image acquisition
and measurement

Direction des Recherches en lle-de-France

ORI 11040008

4

Microscope

Accuracy : > +/- 10 um

Accuracy : > +/- 3 pm

Direction des Recherches en Ille-de-France

DRIT 17RANGSE 2

pp— e pe—— Ay -
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Gas-filled target experiments on Phébus facility

4

Use of gas-filled hohlraum is considered for the
indirect drive ignition and burn of capsule containing
DT mixtures on the LMJ facility.

Main issues :

« high precision assembly of the different constituting
target parts

» durable and tight assembly of LEH

and diagnostic membranes-

M Direction des Recherches en jle-de-France [.oic Polés & Jean Pierre Ventre DRIF - 1710311938 - 9

eSP

A\

Gas-filled target assembly

" Hohlraum Main stages of assembly operation
« Cu lines welded on brass support

« hohlraum positionning and gluing on
brass support

Filling - . .
lines « window gluing on hohlraum

« leak measurements

M Direction des Recherches en lle-de-France Loic Polés & Jean Picrre Ventre DRIF - 17/0411890 - 11
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Gas-filled target experimental set up

Sensor box

Target above the
sensor box

Direction des Recherches en lle-de-France Loic Polés & Jean Picrre Ventre DRIF - 1770411998 - 12

A\

Pressure sensor box

|-a2-3-
A \\
P.in
\V4 v, P.out
X X
/ Pressure
Valve sensor
l Gas-filled target and both
pC the filling system
and the pressure sensor
o
Direction des Recherches en lle-de-France Loic Polés & Jean Picrre Venire ORIF - 171081958 - 13
561
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Implementation of gas-filled target experiments
in the target chamber

A\

Target positionner

., | »| Data Measurement is made using :
* a pressure sensor
\ « an amplifier
%ﬁ - with an accuracy : +/-1%

Data acquisition :
« [/O device
« Labview software

Target
Target

chamber

t laser synchronization

M Direction des Recherches en lle-de-France Loic Polés & Jean Pierre Ventre DRIF - 1770411958 - 14
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Fabrication of Miniature Targets for Nova

Anthony Demiris, Hedley Louis, Larry Logory,
and David Farley

Lawrence Livermore National Laboratory
Livermore, California 94551

Target Fabrication Meeting, April 1998
~ Jackson Hole, Wyoming

Work performed under DOE by LLNL under Contract No. W-7405-Eng-48.

—

Introduction to miniature target fabrication E«E

Millimeter-scale shock tubes with precision-machined submillimeter
features have been fabricated for experiments conducted on the
Nova Laser facility

Materials used in these experiments often require precision
machining of features as small as 1 um

The ability to conduct quantitative experiments depends critically
on the precision with which these targets can be constructed

- Target fabrication
requires precision
diamond turning
machines operated by
skilled and dedicated
workers




Our experiments are performed at the ne
Nova laser facility Lo

The Nova Laser Facility

We use Nova to prowcle over 22 trillion watts of
power to drive our experiments

Nova is used as a driver to send a strong | gl
shock down a miniature shock tube A

Hohlraum

Titanium x-ray (end on)

Backdighter Foil

x-ray Framing

:\Plastlc Ablator Camera

(2% Br)

achined
Perturbation

Au Grid
(side on)

™~ Garbon
Foam

Laser Beam

1. Eight of Nova’s beams heat the hohlraum to 2,000,000 °K
2. Ablation drives a shock down the miniature shock tube
3. The flow is backlit using a titanium backlighter foil

4. The ﬂow is |maged with a gated 2-D) x-ray framing camera

Au Hohlraum

a2 ‘_.:._"Sk’\-“-v

5
Mix package Ig
Target shown with US dime for 5¢4 Cut-away view of package
size comparison mounted to the hohlraum




Target designs typically incorporate @
several precision machined parts =

T ——

Laser light
shields

experimental
package

Some targets are
assembled from
manx_precision
machined parts

Numerical simulations guide the investigation,
and the results are confirmed by experiment

N

umerical Simulations

“ & ma 10202 - “ - s

5
3 i & &

Shock |
jPropagation

henent

<

-
)
o

2
rrerrreisro v foree i

.carbon foam:
% p=0.1
+ Bé ;)AQ gﬂcc.

1ot 1 1 ! PITRA S T

¢

Experimental Data ¢
©
%.
§
1390@’.‘*‘ e
565 -300-200-100 O 100 200 300

Horizontal Position (pm)




Circular sawtooth perturbations have also ;| |l
been investigated =)

These SEM images illustrate
the precision of the machining
process and the quality of the
surface finish

amplitude = 10 um
wavelength = 23 um

—

The experimental data is analyzed, and the @
results are compared with simulations and theory »_J_

The experimental data is determined from analysis of gated
x-ray framing camera data

" - 100um lineout

el 5x46pm

€ 1600 S
~ "y 5 —
S 1500 v 1500 Mix &
@ N w B 00 Widthy
% 1400F: . : - 3 95%
S 1300, ‘  § 1a00-
5 REGION w Z
> 1200 o o SaEE o 1200- .
aay 0 0.5 1 1.5
7 _20p 0 e 200 Expnsuré Normalized Transmission (au) .
Horizontal Position (pm) 2
(ergs/em<) . R
120 ¥ f *
@ NOVA DATA
10071 4 CALE CALCULATION
----- NONLINEAR THEORY
- ~ 80
Measured data agree g o
- -~ 6 _A—
well with computer z ° "
. . ) 2, »"
simulation and theory 2 * K
g 20 2
v
* TA. Peyser et al., 2

Phys. Rev. Lett. 75, 2332 (1995§66 ' 0 5 10 15
TIME (ns)



A surtace profile consisting of the superposition of 100
sinusoidal waves was machined and the assembled

target was shot =
Desired surface profile

Constant Amplitude Ratio Machined Surface
100 modes (10 - 100 um) ; a /A = 0.05

: P/WWML’%\/\/\ - The machined

2
o 100 200

D | profile matches
Drstance (um) the desired
mathematical
function
(dashed line)

o
-3

N a
© ©°
rryren

Heigth (um)
8 o

g 3

SEM images of profile

A hemispherical perturbation has been machined to
serve as the source of a high-speed jet flow

Two plastic ablator configurations were used:
i) brominated plastic, or

ii) brominated plastic with a 2 um-thick layer of
scandium coating as a tracer

side view side view
‘brominated plastic ablator Sc-coated brominated plastic

Brominated piastic ablator : ' Oblique view of foam payload
Density = 1.22 g/cm?®
Surface finish = 0.1 um

Foam payload :
Density = 0.1 gm/cm?®
Surface finish = 2 um
Cell size < 0.1 um

(All parts micromachined with diamonddols)




The hemispherical perturbation was uniformly @
coated with a 2-um-thick layer of scandium metal e

Experiment Schematic
Hohlraum Drive

:1“%0 \A 4

Plain plastic ablator

Scandium metal is vapor
deposited onto the inner surface
Carbon of the hemisphere
Foam —
PR End View
| [700 pm

Scandium coated plastic ablator
Hohlraum Drive.
\AAAAAAA]

V4

N 2um
Carbor Thick
Foam| | Sc Tracer

End View 1.2 kV X6.00K

i ' SEM images of scandium-coated
ablator prior to final machining

Comparison of simulations and experimental data
indicate good agreement for the high speed jet flow

simulated simulated experimental
_ material Plots | radiographs data

t=25ns

T 7
Sheck Front, Data : .
Jet Tip, Data s s gae

L
14004 =

2 R B

a Shoulder, Data
—————Shock Front, CALE
Jet Tep. CALE

1200}
| —-"
} | ~——shoulder, CALE

Comparison of jet

' feature locations as a
function of time from
experiment and

_ simulations indicates
e S good agreement

1000 -« - omn - om

Axial Position (um)

soo- -

§00F - ~ -

400

25 30

‘ll S 2‘ 1]
56ﬂmo (ns)



Comparisons indicate poor agreement for the high

speed jet flow with the scandium coated ablator L
simulated simulated i
m.aterial Plpt_s_ radiographs expe;;r:\: ntal

; This data from the

oo . scandium-coated ablator
’ " design indicates that

additional simulation

development is required

A4t Position (ym)

400 s e e e
10 s 20 23 30

Tume (a3)

Computer Aided Optical Profilometery has
increased productivity

« Current stage allows for larger parts
* Minimal environment requirements needed
—~ Modest vibration and p
« Data Outputs
— Color topographlc “map”
— Profiles of area of Interest
- Caleulated surface pl:oparﬂas (Ra, Rq....)

Sum?nary

Optical profit Y
with Increased quantification and productivity, although it
does have limitations.
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Considerations for the Preliminary Design of the NIF
Target Insertion Cryostat

Lee C. Pittenger, Jeff Latkowski, Jorge Sanchez
Lawrence Livermore National Laboratory

4/19/98

*This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under contract no. W-7405-Eng-48.

NIF-0004579
LCP/inh- 1

General Design Considerations IE

The Kationed igrince Facaey

e Compatibility with NIF Target positioner
— Horizontal insertion

— Payload limits assumed for positioner design and stability
analysis

— 200 kg mass
— 2 m length (target to positioner boom interface
— 0.5 m diameter
® Cryogenic refrigeration loads
— Heat transfer from surroundings
— target
— other exposed cold surfaces
~ thermal control inputs
e Effects of yield target neutrons
— Heating of cryogens
— Activation

NIF-0004579
LCP/inh-2




General Design Considerations (continued) NI

T Mstsarad sgrition Fachey

e X-ray and debris considerations

— Shock absorption by crushable material - Testing of Al foam
has demonstrated its suitability.

— B,C layer prevents ablation of Al sheet foam facing

e Size and placement of protective foam affect access for
diagnostics and depend on:

— effective size of the radiating source (the expanding
Hohlraum material for indirect drive targets)

— the distance from source beyond which ablation of
unprotected material can be tolerated, which in turn depends
upon the material (Al, Be, ?)

NIF-0004579
LCP/inh-3

Cryogenic capacity IE
e The NIF target positioner design anticipates that the cryostat will
be filled prior to mounting and will require only exhaust
connections for spent (and heated to ambient temperature)
cryogens.

e Supercritical He may be preferred to LHe as a refrigerant to avoid
the disturbances of two-phase flow.

e After some iteration, we find that a tank containing 30 litres ( 2.57
kg. @ 2.5 atm.) of supercritical He @ 5.2 K will provide 1000
mWedays of refrigeration of a cold sink @ 8 K.

e The radiant load on a 6 mm dia X 12 mm high Hohlraum from a
300 K vacuum shroud is = 23 mW; the estimated power for
Hohiraum temperature profiling is =50 mW; and the $-decay load
is negligible.

e A LN,-shielded tank of the above size will receive < 100 mW of
radiant and conductive load with good cryogenic design practice.

e Taking, conservatively, the sum of the above loads to be ~ 200
mW, such a tank would provide for 5 days’ capacity.

e Such a tank also fits conveniently into the size envelope of the
assumed positioner payload.

NIF-0004579
LCP/nh-4
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Cryogenic capacity (continued) NIF

The Kotionst fpaom Facikty

e RECAP: A 30 litre dewar will provide for 5 days refrigeration by
supercritical He.

¢ This capacity would be reduced by any surface area in addition to
that of the Hohlraum which may have to be maintained at ~ 8 K.

Capacity (days) Added load Area (e =.2, source @ 300K)
5

0o mw 0Ocm?
4 33 4
3 133 16
2 300 36
1 800 95

e (If a 77 K shield is employed until shot time the Hohlraum
radiation load, as well as the load on chilled surface areas which
can also be so shielded, becomes negligible.)

¢ Under the assumption that a holding time in the rangeof1-5
days will be operationally acceptable, a supercritical He capacity
of 30 litres is taken as a preliminary estimate.

¢ (The same volume of LHe will provide = 2X the refrigeration at the
cost of dealing with 2-¢ flow.)

NIF-0004579
LCP/inh-§

Layout of tanks in the cryostat uE
¢ The cryostat exterior configuration is assumed to be that of the
business end of the current NIF positioner:

— atruncated cone subtending a 10° half angle at the target
center, transitioning to

— a cylinder of 500 mm dia.

e At the expense of requiring longer transfer plumbing for the He,
the He tank is placed outboard of (further from center than) the
LN, tanl;, thus gaining a reduced flux of 14 MeV neutrons by
virtue of:

— reduced solid angle
— shielding by the LN, tank and its contents

KIF-0004579
LCP/inh-6
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Layout of tanks in the cryostat (continued) NI

Tow Naticmad sgrien Fscitty

e A workable layout of the tanks is below; the He tank volume is
= 50 litres as shown; thus there exists the possibility of providing
somewhat more refrigeration capacity than we have here
estimated.

He

..{

e A volume of LN, of > 50 litres can also be accommodated. This
allows for a time between LN, fills of > 5 days, compatible with the
longest hold time afforded by the 30 litres of He.

NIF-0004579
LCP/inh-7

Beryllium offers advantages for cryostat
construction NIF

e Be acts as a neutron moderator, shielding the cryogens
(particularly the He), the positioner mechanisms, and the
surroundings.

¢ In Be, 14 MeV neutrons produce:

— a very short-lived product, 8Be (with a half life of <106 s
(quicker than we can extract the positioner)),

— orders-of-magnitude lower yields of °Li and ¢He, both with
sub-second half lives and,

— a low yield of 1°Be (with a half life of 1.6+10° yr, thus of low
activity).

e Be as a structural material has a very high stiffness/mass ratio

e A cryostat vacuum shell of the assumed truncated cone +
cylinder configuration, made of Be and having a factor of safety
of 10 against buckling under 1 atm of pressure, will have a wall
thickness of 2.4 mm, and a mass of 8.8 kg.

e By comparison, a similar Al shell would be 4.6 mm thick, and
have a mass of 25.6 kg. (Al is also less desirable from an
activation standpoint.)

NIF-0004579
LCP/inh-8
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Problem of expanding Hohlrdume NI

e Meationst Lymiviens F acsity

® The cryostat can be cushioned from the sharp impact of ablation
recoil caused by < 100 eV x-rays with a disc of crushable material
(Al foam has been tested and found suitable.)

® The disc can be coated with B,C, as a relatively benign ablator.

¢ The mass of ablated material depends to first order on the area
presented to the source by the disc, and the flux of x-rays (thus,
for a point source on the solid angle subtended by the disc).

® The area of the disc depends upon the distance from the target to
which it is necessary to prevent ablation of the cryostat material,
and the effective size of the radiating target (the expanding
Hohlraum).

o In order to shield from a distributed source, the disc must
subtend a larger conical angle than the cryostat proper. The
shadow cone of the disc is also a cone of inaccessibility for
diagnostic viewing of the target.

® The effective sizes of the radiating Hohlrdume for different targets
is currently being investigated. Some consequences of source
geometry are quantified on the next page.

NIF-0004579
LCPfinh-9

Problem of expanding Hohliriume (continued)

¢ For a range of effective source sizes (here assumed spherical and
of uniform strength), the resulting disc diameter and shadow
cone half-angle for protecting the entire conical section of the
cryostat with a disc 10 cm from the target center are given below,

along with the number of NIF target chamber ports denied line-of
sight to the target center,

Effective source Disc radius to Shadow cone half Number
€ : of NIF
radius (cm) shield cryostat angle with disc at ports denied line-
cone section (cm) 10 cm from target of sight
center (°) (cumulative)
0.67 2.31 13 1
(unexpanded
Hohlrarrmn)
2.75 4.24 23 6
3.66 5.10 27 13
5.70 7.00 3s 16
NIF-0004579

LCP/inh- 10
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Cryogenic capacity (EXTRA VIEWGRAPH)

NIF

e Kational ipnition Facary

e Rad load on 6mm dia X 10 mm high Hohlraum from
300K vacuum shroud, assuming £ < 0.2 20 mW
(If a 77 K shield is employed until shot time, this
load becomes negligible.)

e Power for Hohiraum temperature profiling 50 mW
e 3-decay load 0.1 mwW

e From the above, we conservatively take as a starting point a 100
mW direct refrigeration requirement. To provide this for 5 days at
8 K would require (if there were no other heat sources)

— 8 litres of LHe @ 4.2 K or
— 15 litres of supercritical He @ 5.2K

e Doubling the latter volume to allow for an additional 100 mW, the
radiant load on a roughly spherical, chromium plated 30 litre
dewar with a 77 K shield is found to be 65 mW. Thus, there
remains an allowance for an additional load through conductive
supports of 35 mW, which is more than adequate for tensile
supports of Kevlar, e.g.

NiF-0004579

LCP/inh- 11
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PRODUCTION OF LOW DENSITY FOAM TARGET

COMPONENTS FOR SANDIA Z-PINCH EXPERIMENTS
Scott Faulk Diana Schroen-Carey Kelly Youngblood
Schafer Corporation, 303 Lindbergh Ave., Livermore CA. 94550 (510) 447-0555

SANDIA USES FOAMS ON THE Z-PINCH
TO MODULATE THE PLASMA

* Sandia’s z-pinch machine is being used for pulsed power experiments.

» Stored electrical energy is carried down a cylindrical array of fine tungsten wires,
resulting in a burst of x-rays lasting several nanoseconds.

o These experiments pave the way for:
- testing of radiation effects on materials
- weapons effects simulations
- studying the physics of inertial confinement fusion.

-
ST Er ’t‘GENERAL ATOMICS
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THE FOAMS ARE PRODUCED AT SCHAFER’S LIVERMORE SITE

o Equipment includes:
- emulsion forming syringe pump
- computer controlled oven [SNL loan)
- critical point drier
- freeze drier
- single point diamond turning lathe
- Hardinge precision lathe
- CNC mini-mill
- Nikon Measurescope with computer analysis system
- interference microscope
- photon tunneling microscope
- laser micrometer
- Kodak DC120 digital camera

o Key personnel

- Scott Faulk, precision micromachinist
- Diana Schroen-Carey, polymer chemist
- Kelly Youngblood, chemist

ol — I ’t’ GENERAL ATOMICS

OUR GOAL IS TO MAKE FOAM PRODUCTION ROUTINE

o Orders are e-mailed in Autocad format

- Foam designs have gotten more complex, and this ensures that the
design is understood
- E-mail expedites the process

o We map out a strategy

- Molds reduce labor hours and increase reproducibility, while some
designs require machining

- Decide on foam type (usually polystyrene or TPX)

- Cast or machine and evaluate product

- Create new molds or modify machining process to improve quality
and tighten dimensional tolerances

o When order is complete, a detailed QC package is made

- Excel file containing dimensional tolerances and density calculations
- Digital images of foams are created
- Alidatais sent on CD

584
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ORDERS COME ON EMAIL IN AUTOCAD FORMAT

Dim "X"
07.75 mm_g:?gg mg
L12"] ary Motersol Woll Thachness Densty .
vy X°
1 1EXCH | WX Foom 05 een 10 mgfcc
3005 mm 12 ma/zc
0.000 mm
8.98 mm_g100 mm 2 } BN | TP Foom 1:1'}5":- ;g %fi.
3 1 0 TPX Foom 2 mm 10 mg/ec
$0.05 mm 12 mg/zs
4 TEACH | TPX Foom sokdt 10 mg/ce
1005 mm 12 my/zz
Notes:
1. All dimensions in mm TPROVEE:
2. Material: TPX foam
. |___SEETmoex | -
3. Series: 5 May 1998 GART w;m TPX Low Density
. F
Unclassified
[O9G QASSFICATON Z W
[

o T o ’t‘ GENERAL ATOMICS

NEW FOAM DESIGNS HAVE GOTTEN MORE COMPLEX

¢ Tight tolerances and new geometries

Target Components
Gold hohlraum machined at GA
Foam inset is 10 mg/cm® TPX

g -
e vmlll""g
BT TTHIPOTEINT L1111 (L

Finished Target
Assembled at Sandia
By Schafer personnel

.
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... MORE DESIGNS

D

‘E PS Annulus 40 mg/cc

EEd]

. {17mmoD

TPX Annulus 10 mg/cc
24 mm OD

GENERAL ATOMICS

... MORE DESIGNS

Hole closure foams

Annuli with various wall
thicknesses and same OD

e —
ey =r 586 ‘t’ GENERAL ATOMICS



WE ARE ALSO BEGINNING TO “DOPE” THE FOAMS

* We were asked to add molybdenum to polystyrene

- Short lead time (5 weeks notification)
- Custom synthesis was not an option

- We used a technique analogous to dispersing piément in a water based paint
- Resultant foam dried without shrinkage and machined well.

7 .
Srhofoi ‘z‘GENERAL ATOMICS

ANALYSIS INDICATED MOLYBDENUM DISPERSED WELL BUT
AT 1/3 THE EXPECTED LEVEL

X-ray mapping

® The results suggest we had incorporated only the smaller particles
(Goodfellow, Mo.C, mean diameter 3.8 microns).

® XRF result 2.9 mg/cc Mo, 7.8 wt %.
We made an excess of organic solution, then removed an aliquot while stirring briskly.

587
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WHEN ORDER IS COMPLETE, A QC PACKAGE IS MADE

e Includes data in excel format and bhotos and is sent on CD
¢ Photos are in JPEG format '

sample |weight injheightin] ODin | volume density

ID mg cm cm mg/cc
803051-1A | 1.649 | 0.674 | 0.580
0.684 | 0.566
0.646 | 0.569

Average | 1.649 | 0.668 | 0.572 | 0.17 9.6

e i ’t‘ GENERAL ATOMICS

SANDIA HAS USED ION MICROTOMOGRPHY TO
FURTHER CHARACTERIZE THE FOAMS

e Characterization done by Arlyn Antolak, SNL-CA.
- non-destructive, high resolution, elemental analyses.
- Internal voids can be identified.

Image of foam with internal void Image of uniform foam

588
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WE HAVE DELIVERED 120 PRECISION PIECES
SO FAR THIS FISCAL YEAR

* Three foams are currently being produced, polystyrene-divinyl benzene
(polystyrene), poly(4-methyl-1-pentene) (TPX), and resorcinol-formaldehyde (RF).

» We are developing a production method for silica aerogel.
* Density from 150 mglcm3 to 7 mg/ cms.

o Geometries include:
- cylinders, diameters 4 to 24 mm
- annuli, diameters 4 to 24 mm, walls 2 to 0.5 mm
- flats, circles and squares, 0.7 to 0.3 mm thick

o ‘t‘ GENERAL ATOMICS
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C@:} DIRECTION DES APPLICATIONS MILITAIRES /

A NEW INTERFEROMETER BASED
PROFILOMETER FOR ROUGHNESS AND
THICKNESS MEASUREMENTS
OF ICF TARGETS

P. LOINTIER

Aim: Measure the thikness, the outer and inner
surface roughness of a complete shell

e :] DIRECTION DES APPLICATIONS MILITAIRES : j
VERTICAL SCANNING INTERFEROMETRY

EXPERIMENTAL SETUP

iSRS STATIF

i — SHELL

z
-X

Rl

» .
63
b
. .—- =
o
(35
;_&

3

STAGES XY
TABLE
7 . .
%/{/’/L' .

DIRYIN VJON L°’ATOME, DE LA RECHERCHE A L'INDUSTRIE
Fabo Métallurare Frowde et .




C@:] DIRECTION DES APPLICATIONS MILITAIRES : /
COMPARISON EXPERIMENT - SIMULATION

1(2) = lo(A).Z(1+cos(4nZ/7))

I(2) = If+lo(A).exp(-k(Z-Zo)?).cos((4n(Z-Zo))I1)

Intensitv

2
®
c
e
£

%lduc-

DRMN MOS L'ATOME, DE LA RECHERCHE A L'INDUSTRIE
Lubo Mérallurgie Froide et .

C@J DIRECTION DES APPLICATIONS MILITAIRES ) /
RESULTS ON SHELL |

= ATs

Fringe pattern of
outer surface

_ Fringe pattern of
inner surface
| FEEEEE ‘
Outer surface topography of a
shell of 0.5 mm diameter
(area 30 x 30 pm)
alduc
DRMN - MOS L'ATOME, DE LA RECHERCHE A L'INDUSTRIE

Labo Métallurgie Froide et .
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C@Q DIRECTION DES APPLICATIONS MILITAIRES ¢

CONCLUSIONS

s/ Modelization of the fringes intensity curve versus z

J Utilization of an autocorelation function to fit
experimental data with modelized function

PERSPECTIVES

‘/ Setting up a z displacement for thikness méasurement
and a presicion rotary air bearing for the target rotation

N

L'ATOME, DE LA RECHERCHE A L'INDUSTRIE
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Be and Be-alloy PVD at Los Alamos in Support of
Weapons Physics and ICF Experiments®

Chris Adams, Bob Henneke, Norm Elliott, and Larry Foreman
Materials Science and Technology Division, MST-7
Los Alamos National Laboratory, Los Alamos, NM

* This work is supported by the U. S. Department of Energy under contract number W7405-ENG36

Current Be and Be-alloy PVD Capabilities

Current capabilities include both RF/DC sputter deposition and electron heam evaporation of
Be and Be-alloys

*  Can make use of:
- Substrate heating
— Gas pulsing
— Substrate biasing
—~ lon cleaning/ hombardment
in either deposition system

Current focus is on electron beam evaporation of Be and Be-alloys, although sputtering is not
being ignored

Electron Beam Evaporation System Sputter Deposition System
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Typical DC Sputtered Be Surface
Morphologies and Microstructure

Typical DC sputter deposited Be
«Si substrate (~1.2nm RMS)
* 6OOW, no applied bias
(-24V, substrate floating)
« ~ 2.3pm/hr, ~10pm
* Target-substrate: 3 in.
« No substrate heat applied

weoct 3l 1¥¢.0nV

Typical columnar structure

e e 1o7e

ﬂrm@ t:el::.x Surtace Data Time 1L28S
-

um
. 4544_} 72513
Ra 1085mn 5
Rq 1347mm
Rz 1130 am
Re 15105 am

Sut-up Pursmborc
Sare 383U 134
Swmpbag 1671

784581

i
»

=

z

7
Sl

]

2,

el

1000 2000 3000 4000 5000 6118

ARty

o
©

a0 h
©82373 3.8 xv

I e 1 Tile DC Spunt Be
N, gas pulsing Note. 12/19/96. 10 e on Si

Typical Electron Beam Evaporated Be
Surface Morphology and Microstructure

3 Typical electron beam deposited Be
« Si substrate (~1.2nm RMS)

« ~ 5.4pum/hr, ~9pm

« Source-substrate: 6 in.

« No substrate heating

« No gas pulsing or applied bias

.
ee2967 5.8 kV

YXYE Lo M 102X Dazc U471652
LIALY K CI e Surface Data Time 11140

E-beam evaporated
Be film smoother
than a DC sputtered
fiim at this film
thickness

Title E-bcam Be, 1/12/98
Note: 10 mic. on Si
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Advantages/ Disadvantages of Electron Beam
Deposition of Be and Be-Cu Alloys

* Potential advantages of electron beam evaporation
~ Typically a more rapid deposition process than sputtering (easily 36um/hr on flats)
~ More compatible with implementation of flow-through ion gun

~ Gas pulsing more effective due to lower pressure during deposition

 Potential disadvantages of electron beam evaporation
~ Expend source material quickly
~ Difficult to produce alloys from a single source if constituent vapor pressures
differ significantly
~ Fortunately. the vapor pressures for Cu and Be are nearly identical
~ Limited to evaporating upwards

~ Unwanted heating of substrates (PAMS) due to presence of molten source material

Barrel Coating of Microspheres

* Recently tried using the barrel coating arrangement shown below to coat hollow glass microspheres and
hollow NIF scale PAMS shells.

. Microspheres
Screen
Drum

Heaters and/or
fon Gun gto/ \.ﬂ

Be c-hcam
source

* Results to date have heen disappointing due to static charge build-up on spheres during deposition
resulting in striped spheres.

* Tried using a hot filament in vicinity of the barrel to provide electrons for charge neutralization. This
has been ineffective so far.

* We also plan to try using the ion gun already in the chamber to bombard the substrates with positive
ions during deposition.
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Alternative Approaches to Fabrication of
Be-Cu Coated NIF Targets also Being Considered

Microspheres Bouncing in

a Mesh Pan Electrical Bias

/PZT Crystal

.\.ﬂ
10-1000 kHz

Ceramic Break for
Electrical Isolation

Optional Heaters °
and/or lon Gun\t./

Be or Be-alloy
E-beam Source

Method A

Microspheres Bouncing in
a Mesh Pan

Optional Heater ®

and/or lon Gun Electrical Bias

—e—— Ceramic Break for
Flectrical Isolation

o)

10-1000 kHz

PZT
Cylinder

Be or Be-alloy
E-bcam Source

Method B

We are incorporating a vibratory pan driven by a PZT piezoclectric crystal. Two
implementations will be considered, (methods A & B shown above). Method A offers two

distinct advantages over B. The PZT crys

tal is removed from both the deposition flux and

any potential heating sources used during deposition.

First Approach to Using a Vibratory Pan

FAN TS e
//\\h« TR

The photo at the left shows our bench top first
attempt at using a PZT crystal (from a Sonatert
device) to vibrate PAMS micro-spheres. The
stainless cup proved to be too heavy and
excessively damped the system. We were able
te vibrate the spheres when they were placed
atop a lighter screen material
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Bounce Coating Induced Domes on Glow Discharge Polymer
Coated Shells

Abbas Nikroo

David Woodhouse

1oth Target Fabrication Specialists' Meeting
April 1998
Jackson Hole, Wyoming

‘20 GENERAL ATOMICS

Bounce coating many large shells led to dome-filled surfaces

* Dome-filled coatings were encountered intermittently in 3 different coaters
when bounce coating 1 mm shells.

* The poor surface finish correlated with number and size of shells bounce
coated at once.

* Roll coating the shells in a spinning pan dramatically reduced the number of
domes on the final coating.

* The seeds for the domes appear to originate from GDP chips produced in shell
to shell collisions.

605 o:ocmsmx.armmcs
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GDP coatings on pristine 1 mm PAMS shells were cluttered
with domes

» Above is an SEM image of a coating thicker than 3 um on 1 mm PAMS shelis
« 3 different coaters produced these poor surfaces on an intermittent basis.

0:0 GENERAL ATOMICS

Spherical beads were also produced in these coatings

to coat shells in (a)

scale bars = 10 um

+ =10 um beads were often loosely attached to the shells
» These beads could be knocked or washed off. They could also contaminate clean

shells .

606 ozoasumz ATOoMICS




The bouncer pan was also littered with domes and beads

scale bar = 30 um

* SEM image of a portion of the bouncer pan used for a coating run that led to
a dome-filled surface finish on the shells.

’3‘ GENERAL ATOMICS

The different coaters in our lab have a number of items in common

oo
Items coaters had in l’ Trans-2-butene
common :
{or CD,)
* Quartz Plasma Tubes
* Bouncer Pans RF_
« Shells Coil

Piezo Bouncer

607 0:0 GENERAL ATOMICS




Systematic experiments showed a definite correlation between poor
surfaces and the number of shells coated at once

« We performed a series of systematic experiments to determine the cause of this

problem:
Tube 1 Tube 2
— | Substrate Domes! Substrate Domes
Consecutive ist Run | Flat No 10shells No
runs usingtwo  2nd Runj} 200 shells Yes 200 shells Yes
separatetubes  3rd Run| 10shells No Flat No

» The poor surface finish correlated with the number of shells bounced coated

together at one time.
» The final surface finish was dome-filled only when large numbers of shells were

coated together.
» Reduction of the bouncing agitation improved the surface but led to non-uniform

coatings.

Shells suspended above the bounce pan had a dome free coating

o
Trans-2-butene

(orCD,)
[+ dopant]
RF
Coil
Many
Suspended Bouncing Shells
non-bouncing shells DOMES !
No DOMES !

I Piezo Bouncer
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Larger shells had a higher density of domes

300 ¢ = Bounced hard, n > n-max
o 250 T ¢ Bounced hard, n < n-max
o
5 200 ¢ e Rolled, n > n-max
o
s 150 L]
S
w2
QE) 100
S
a 50 °
- n °
0 2 £ —2 2
0 500 1000 1560 2000
Shell Diameter, um

* 12 um coatings on different diameter shells all with ~20 pum wall thickness.

* For each size, when more than a critical number (n-max) of shells were coated
together , the surface became filled with domes.
* Rolled shells were coated in a spinning pan.

ozo GENERAL ATOMICS

The maximum number of shells that could be coated together for
dome free coatings decreased with increasing diameter

10
14 2 mm e NV A
X 0.1 T
[
=z
N~ 001+
- Nova
Te—
0.001 +
0.0001 }
100 1000
Diameter, ym

10000

* n-max appeared to scale as :

~d™
for d <2000 um
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Dome filled surfaces increased the spectral power of modes >20

PR P | PRSI TUY | N
AN
10 \\
10t
10° :
“g 10" -
s i
(o 1 i -
0
SERT ( B
w0 - Power increase
o2+ Do due to domes
: cqati
10° 3
I L 1
1 10 100 1000
‘Wave-number
« Power spectrum as measured by atomic force microscopy

o‘o CENERAL ATOMICS

Coating over a hundred LLE shells together in a spinning pan led to
coatings with reduced number of domes

o)

3 Hz DC motor

To feedthru,
Used as tapper rod

» See poster by David Woodhouse tonight
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Coating 2 mm shells in a spinning pan produced virtually dome free
coatings

Bounce coated Roll coated
scale bar =10 um

* 2 sets of 12 NIF size shells were coated. One was bounce coated, the other roll
coated.

* Roll coated shells had a superior surface finish.

ozo CENERAL ATOMICS

Roll coating shells does produce a uniform coating

e
o,
e
o

3

Roll coated 2 mm shell

* The interferometric fringes are offset only very sligthly from the center of the
shell,

indicating uniform walls.

611 ozomanarmmcs
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The domes appear to originate at depths of >3 um from the inner
surface of coating

Start of

Scale bar =3 um coating

+ SEM cross-section of the domes indicates that the dome cones do not extend to
the start of the coating.

« This corresponds well to the absence of domes on <3 pm thick coatings.

« GDP becomes more brittle at >3 pm thickness and chips away as a result of
strong shell to shell collisions, creating seeds for the domes.

*3‘ GENERAL ATOMICS

Conclusions

« Bounce coating large numbers of shells together results in dome-filled
coatings.

« For NIF size shells only one shell can be coated at once, while for Nova shells
=500 shells can be coated together.

» Reducing the bouncing agitation reduces the number of domes in the final
coating, but leads to non-uniform coatings.

* Roll coating shells in a spinning pan dramatically reduced the number of
domes on the final coatings while producing uniform coatings. This allows
coating larger number of shells at once.

» The seeds for the domes appear to originate from GDP chips produced in shell
to shell collisions after the coating becomes > =3 pm thick.

612 ozoasnmx. ATOMICS




Properties of Films Generated
with a
Saddle-Field Plasma

W. T. Shmayda, N. P. Kherani, F. Gaspari 1, S. Zukotynski T,
D. Hardingt 1

Presented at: Target Fabrication Meeting
April 19-23, 1998

Ontario Hydro Technologies, Toronto, Ontario, Canada
TElect. Eng. Dept., University of Toronto, Toronto, Ontario, Canada
ﬂ'LLE, University of Rochester, Rochester, NY, 14623

DC Sadd le Field: discharge fields

ONTARIO HYDRO
Cathode
Bias —-Lr__— : .
Substrate e . . T / s
R LSRR Spectrometer
Heater S |

Drift
Ground region

Neutral fill pressures: 30 - 150 mTorr
Neutral particle density: 1-5* 1015 #/cc
Discharge current density: 56 - 170 pA/cm>2
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Film Deposition: control parameters
Ontario Hydro

The substrate is decoupled from the plasma. The ion energy, the
ratio of neutral to ion fluxes and the substrate temperature can be
controlled independently.

lon energy: ‘

The potential of the substrate can be adjusted from ground to
values above the floating plasma potential. The energy of the
ions striking the film surface can reduce to zero.

Ratio of ion to neutral flux:

Both neutrals and ions irradiate the substrate. Their ratio can
be altered by adjusting the substrate potential in addition to
the plasma parameters.

Substrate temperature:

The substrate can be heated during the deposition to alter the
morphology of the film as itis deposited.

Film Density Dependence on Gas Pressure and Substrate Current

1.7

¢ M N ] ' * ' ] v * * i v ' * !
Working gas: CH, . : i

. * .

I 1}
i : !
: :

1.6 ! /./
: : . !
: P =90 inTorr : i
—~ 1 ) 1
L]
E 15
B !
2 : : L
Fy : . P=50 mTorrl
e i H
[~ : . i
g 14 : {
E ' i / ; i ]
o ® ! i |
: d ! Anode Current ]
1.3 i ; : ! A =20mA 1
. : ' i = |=20mA ]
: :_ ‘ e I=30mA ]
i :
: i
1.2 [T RSO T SR WY S SUNUT S N SN S SN SN S S—
0.2 0.4 0.6 0.8 1 1.2

Current to Substrate (mA)
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How do the hydrogen species mix in the plasma?
How are these species incorporated in the solid phase?
How does the isotopic ratios in the plasma affect film densities?

%CH, | %CD, | %H, | %D, Isotopic Ratio (H/D)
50 | - - 50 21
33 - - 67 11
100 - - - 110
- 50 50 - 12
- 33 67 - 11
- 100 - - 01

. FTIR Absorption Spectra illustrating the
Stretching Modes for films grown using CH,
or CD, as the working gas

0.003
Ch,

0.002
3
8
e :
£ 0.001 %
g z
S i
7] i
el H
2 !

0.000

-0.001 ! L L L

.2000 2400 2800 3200
Wavenumber (cm™)
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CH/(CH+CD) Ratio of Stretching Mode Areas
(in percent)

Fiim Density (g/cm®)

Correlation between Isotopic Ratio of Gas injected
into the Plasma and that found in the films

100 L RN A M Rt ) ML L I R S A B R R
T S —: Y — 4
60 o
. A e
31| pale e [ TR e
0 — 2 L l 1 1 : | I 2 2 1 1 x 2 1 PO L
¥ 20 40 60 80 100

H/(H+D) Gas Ratio (in percent)

Correlation between Film Density and -
the Stretching Mode Area Ratios

2 T T T T T 4 LB B T
B H/D=: tH
18 A -
- DH=2/1 4o a DH=11 |

1.61

1.2

_CD/Gmunded Substrate |

'Note:
D/ implles CD4 + H, gas feed
LH/D implies CH, + D, gas feed

2 L i 1 " . . ! 2 L 1 i i L L 1 I : 3
1 0 20 40 60 80 100
CH/(CH+CD) Ratio of Stretching Mode Areas
(in percent)
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Apparatus for the measurement of tritium outgassing

Tritiated Tritiated
Amorphous| Amorphous
Silicon Silicon
Sample Sample
/W\/—/
200g
Silica Gel y, I Water ™
Dry Test Wet Test
* Silica Gel analysed for tritium + Water sampled regularly for

cumulative tritium content
* Fresh charge of silica gel
following each analysis

Tritium Outgassing Rate of Tritiated Amorphous Silicon Films

'|””|””|“
H ]

—O— Wet Test ~ Thickness: 2.1 ym
—— Wet Test - Thickness: 1.1 pym

‘3;/7 0.1 —— Dry Test - Thickness: 1.4 ym  J
g —2— Dry Test - Thickness: 1.9 pm
8

i3 J
)

[+ 4

o

2 0.01F - .
£ * - ]
Q kiw K
o )
g 4
£ o

= 0.001 F i E

0 100 200 300 400 500 600 700
Time (h)
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Time Derivative of the lonization Chamber Current (A s

Typical measure of the rate of tritium evolution during
linear temperature ramping of a tritiated amorphous silicon film
8 10™
610 /A i

i i Low \ I;
[ | T EvEon |
410" i A
: High
Temperatur
Evolution
210"
| N’ L)
] !
0 .
200 300 400 500 600

Measurement of Tritium Diffusivity using
an lonization Chamber Tritium Monitor

To
Pressure
Transducer
To
Electrometer

Floating Shield
BNC Feedthrough

-a— lon Precipitator
Region

-—— lonization Chamber

ra— Collector
1
Tritiated
Amorphous
Silicon
|

*Copper

Crucible

Heater—""

_—»|| 1™ Themocouple
Heater—""
Cables

To
Ramping
Temperature Controller

Temperature (C)
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First Measurements of Tritium Diffusivity in Tritiated Amorphous Silicon
(Growth Temperature: 150 C; Tritium Concentration: 17 at %: Si-Bonded Tritum: 6 at %)

E AL L L R L LA A U L
3 Beyerla Wagner = ﬁ—“\o\ D=°~m‘?$nm9"zs:
B 2 2 g1 - e, id R
o | B R DT 5 NG L
— i
% o | O\ \\ LowTeDr:u;efsﬁ(q 5‘[e\l‘jlk‘l')(:!;I.,sm\Q
:m
E
:c’ 107 - \° ; N |
5 | Didomaslmnens
10 | |
10715 I\\
1.1 1.2 1.3 1.4 1.5 1.6 1.7
1000/T [K)
Summary -
= Film density can be controlled between 1.1(?) and 3 by:
- substrate potential
- operating pressure
- ion/neutral flux blending
m Film density decreases with increasing atomic H mass
m Gas phase isotopic ratios of atomic hydrogen are reflected
in the films
- simplifies fabrication of C-DT films
- useCD,+T,gas
m aC:H films are stable in air below 300°C
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Organometallic Chemical Vapor Deposition of Beryllium*

Mitchell Trkula, Stevan G. Pattillo and Kenneth V. Salazar

Polymers and Coatings Group
Materials Science and Technology Division
Los Alamos National Laboratory

*This work is supported by the U.S. Department of Energy under contract number W7405-ENG36

Why Beryllium?
h

OMCVD of Be

* Material Properties
— density
— low opacity
— high tensile strength

— high thermal conductivity
* Capsule Design and Fielding

— hold DT fill at room temperature
~ more tolerant of DT ice surface finish

~ thermal environment for ice is easier to achieve

LosAlamas -

T Muteriats Sclence und Technology




Approach to Beryllium OMCVD

S S e
OMCVD of Be

* Looking to develop new routes to Beryllium CVD
— old deposition chemistries were often high temperature
— old, low temperature chemistries were
« difficult to control

« produced impure materials

* Looking toward low temperature depositions
— gives one a wide choice of substrates

— Be is refractory - expect very fine grain material at low T

¢ CVD well suited to 3-D coatings (fluidized bed)

Los Alamos -

" Materials Science and Technology -
.

Beryllium Synthetic Chemistry Effort

SR 0 O A T ST M P
OMCYVD of Be

Synthesis of Precursors:

* bis(cyclopentadienyl)beryllium
BeCp, - original precursor
— BeCl, +2 NaCp — BeCp, + 2 NaCl
* bis(pentamethylcyclopentadienyl)beryllium
BeCp,* - lower volatility
— BeCL* + 2 NaCp* — BeCp,* + 2 NaCl
* H Be:NR, - analog to alane amines
— Et,Be + NaH — Et,Be,-NaH,
— EtBe,-NaH, — 2 NaBeH, + BeEt,
— NaBeH, + R NCI — H,Be:NR, + NaCl + RH

" Los Alamos

Materiuls Science und Technology
|
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Proton NMR of BeCp, Made at LANL

“

OMCYVD of Be

1.0 NI NENNE FENTE FEWEE FRTTS CETEE FTTTE STETE N SN
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02— B
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nmr shift (ppm)

M ;uEriuls Sclcncc und Techn

Vibrational FT-Raman of BeCp, Made at LANL

%

OMCVD of Be
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Thermal Analysis of BeCp, Made at LANL

OMCVD of Be
YOS BTN RPN RS S SR S R T R
Sl \ i T
: kN i i i — 0
o : ; i :
ol N > STA
i s . . BeCp,
X ¢ ! : from
) : BeCL+2NaCp [..5 .
~ 601 g
t) —
< =
= i )
28 : £
D H ~
z —-10 &
40 152°C | 0z
! Be ;
N - =6.5,%
20 ) i el -15
s2°C - 5 i i
N i i :
: L e T SE 2R SEPEURE S
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Apparatus for Deposition of 2-D Beryllium
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XRD of OMCVD Beryllium on Silicon

“

OMCVD of Be
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SEM of OMCVD Beryllium on Silicon
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Infrared Analysis of OMCVD Be on Silicon
———-——
OMCVD of Be
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RBS Spectrum of CVD Beryllium on Silicon
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Cu Doping of CVD Be
%

OMCVD of Be

* Appears (hfac)Cu(tmvs) is an ideal precursor
(hfac = hexafluroacetylacetonato, tmvs = trimethylvinylsilane)

= CuO, + 4 Hhfac + 2 tmvs — (hfac)Cu(tmvs) + HO
* High deposition rates

— 165 C - 1000 A/min

— 200 C - 5000 A/min
* High purity metal

- 99.99 % Cu

- 1.81 uQ-cm
* Easy to deliver

— yellow liquid with 1 torr vapor pressure at 60 C

— can produce a cocktail for direct liquid injection

© Los Alamos > 4
Materials Science and Technalogy .

Summary and Future Directions

M

OMCVD of Be

* OMCVD from BeCp,
— very fine grain Be with assortment of larger clusters
— films contain C at ~10%
— state of C still not known
= precursor is very air sensitive
¢ Future Work
~ perform OMCVD from BeCp,*
— prepare H Be:NR, and perform MOCVD
— down select best process

— convert process to fluidized bed

g Alameos.~ .
" Materiuls Science and Technalogy
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First shells formation

experiments with upgraded
Ballistic Furnace.

A.L.Nikitenko, S.M.Tolokonnikov.

Department of Neutron Physics, Lebedev Physical Institute
Moscow, Russia

Robert Cook
)} Livermore, CA 94550, USA

Lawrence Livermore National Laboratory

1998

The concept of a “"Ballistic

Furnace”.
s N A TR T T T

> The initial granules are

formation te occur near the
trajectory apex when its
velocity is small.

ez e -injected granule
! #:-blowing point propelled upwards into the
O-blown shell hot zone along a ballistic
Thot gas trajectory. This approach
1 == j t 1
. trojectory allows one to sharply increase
A the time th 1 ds i
LT injector e time the granule spends in
; / the hot zone of the furnace as
! well as allowing microshell
i
i
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/
_ Main parameters of the modern Ballistic

Furnace configuration.

\
~ Maximum hot zone temperature.................. 900°C.
= GAS PrESSUIC. ..uvnrnrennarnsnsenennsnnasensenennes 0-1atm.
~ Height of hot ZONe.....civiiirieniiiririeeneen 1.56 m.
~ Inner diameter of hot zone..........coovveeenneees 200mm.
> Maximum injection speed .........cooeeciinaenes 12m/sec.
> Maximum injection rate ........cooeeerueerermnnn 1sec.

~ Controlled temperature profile in hot zone (13 channels).
~ Computer controlled initial granules loading and injection.
~ Forced water cooling of the cooling zone.

Goals of the first experiments with
upgraded Ballistic Furnace

- "Mm

~ To find operational conditions suitable for shell formation from
0.7-0.78mm initial granules.

~ To compare results of shells formation experiments with
previous ones obtained with 1m hot zone.

~ To study dependence of shell’s diameter and yield of good
shells on operational condition and initial granule’s size.

~ To compare experimental results with modeling calculations.

630
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_ Initial granules for shells formation

experiments

. m,uiﬁ_l ; . SN

We are using LPI made
initial granules - solid
spherical polystyrene
particles from 0.7 to 0.78 mm
in diameter.

Average molecular mass of
granules material ~ 60 000.

Polydispersion factor ~ 2.5
Foamer - ethylacetate,

methylacetate 6-8 weight
percent.

N s
NI VI
, Ml 23N R BN U2
l osno2
IZE
"
o o .
W Al ™ Tt v e Ty 2273 0 r R N SV
12 mkm

Typical initial granules size distribution.
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leighis (em)

Two types of hot zone temperature
profile tested in our experiments.

\
|

i

I

Prolite with
amooth slope

' 4

S
/-’ Unitorm profite /0
with sharp edge
-/ rp edg &

@I/ mo"

T T T T T T T T
0 100 200 300 400 S00 600 70O 80O

Iemperature ()

~ Results of shell formation
experiment are strongly depended
on temperature profile in the hot
zone.

~ Experiment with 1-st profile:
pure shell’s yield, small size, a lot
of deformed shells.

~ Experiment with 2-nd profile:
quite good yield, larger shells, a
few of deformed shells.

Results of recent shells formation

experiments

R et

Modification of the Ballistic Furnace configuration have led to
significant changing in operational conditions suitable for shells

production.

Strong influence of temperature profile in the hot zone on shell’s yield,

size and quality has been found.

Final size of formed shells and their quality weakly depends on other

operational condition.

First good quality shells up to 1.9mm have been produced with
upgraded Ballistic Furnace from small (0.7-0.78mm) initial granules.
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DIRECTION DES APPLICATIONS MILITAIRES ——

DEVELOPMENTS OF LOW-DENSITY CH FOAMS DOPED WITH
ORGANO-METALLIC PRECURSORS :

R. COLLIER, Ph. BACLET, M. PEREZ Target Fabrication Meeting 1998
and N. PAJOT Snow King Resort

CEA/ Centre de Valduc Jackson Hole, Wyoming
Département Recherche surles . - | [ April19:23/1888 ~ -

Matériaux Nucléaires - -

21120 Is-sur-Tille S .
FRANCE b T -

W/f/ DEVHIMOS | o H L’ATOME, DE:LA RECHERCHE A L'INDUSTRIE
Laborafoire Ificro-cibles © 127TFM/R.COLLIER / CEAWVA

DIRECTION DES APPLICATIONS MILITAIRES - ~ /

Outline

* Introduction - -
* Needs . - - R
. Synthe5|s of organo-metalllc precursors -
- Synthesis process
~ Characterization means
— Structure of several molecules
¢ Synthesis of metal-doped CH foams
’ — Synthesis process Tet T
- Characterlzatlon means . o
~ Study of several parameters - -
« Concluding remarks. - ‘ - T

: W;?/Dmﬁ;zés' o [ —-—____ LATOME, DELARECHERCHEALINDUSTRIE—:

-Laboratoire iMicro-cibles)_ ] U SN smmooum:ca-\m
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DIRECTION DES APPLICATIONS MILITAIRES

Infroduction

. Dopan& are means of studying several plasma physics
experiments . . t

« We have a good knowledge of undoped or halogen-doped CH
foams

« Implosion and radiochemistry experiments are interested in

metals and rare earths as dopants such as titanium,
aluminium, yttrium, ytterbium and erbium , _ .

Yré | oruenmos A u L’ATOME, DE LA RECHERCHE A L'INDUSTRIE
taboratoire Ificro-cibles] 42 TP/ R COLLIER / CEA-VA

DIRECTION DES APPLICATIONS MILITAIRES

Two stages to fabricate metal-doped CH foams

First stage : Second stage X
Synthesis and Introduction In organic o Synthesis and
characterization of phase to participate o the it g?: z:;&g?té%“
organo-metallic polymotization stage foa'xm p
precursor

Criteria to fabricate suitable metal-doped foams :

-« QOrgano-metallic precursors * Foams -
—~ Polymerizable ligands — Density ~50 mg/cc
— Soluble in organic phase — Cell diameter < 30 pm
- Cristals or oil — Open porosity
— Dopants : aluminium (Al), - Dopant'% at. 0.5-1
titanium (Ti), yttrium (Y), - Homogeneous distribution of dopant

yiterbium (Y,-b)’ erbium (Er) — Ability towards machining

Yt ozmenmos O . ———————— L'ATOME, DE LA RECHERCHE ALINDUSTRIE
Laboratoire MMicro-cibles|____ - . ST " -, 12TFR/R.COLLEER/ CEAVA
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1 DlRECTlON‘DES APPLICATIONS MlLlTAlRES_

SyntheSls of organo-metalhc precursors

* Starting materials - . S Lo
- COmmerclal metal alkoxydes and metalhc mtrates
» TI(OPr), - ) ) .
» [A1{OPr), - : . °‘Pf‘=9ﬂ?ﬁ(9*'a’= ‘
» M(NO,);,5H,0 M=Y, Yb, Er L
— Commercial polymerizable ligands toward metals

» Acefone
- » 2-butane 1,4-diol -

» HAAEMA

Y

» APOH, -

»HAAAV

Vot ozaentmos gl——— L'ATOME, DELA RECHERCHE ALINDUSTRIE
Laboraloire ifiicro-cibles| " 12TFR/R COLLIER fCEAVA

DIRECTION DES APPLICATIONS MILITAIRES

Sjmthesis of-organo-metallic précursors -

. Sol-gel process the challenge is to remain polymerlzable
function(s) (having cristals for X-ray mvestrgatlons is the best)

* Main reactions (40 % < ylelds < 95 % )

- =l -

-Ti Ti{O'Pr); + 2-but x.4-_dm1 o : . TAO‘PIMOCHZCH-CHCH;,OL
THO'Pr), + acetone- Toluene - 'B. - T:,GZ(O‘P )5(OC(CH3)~CH2}3(HO'P1')
THO'Pr), + HAAEMA 20°C, 1h<x<80b  THOIP[),(AAEMA),
THO'Pr), +2 APOH, THO,AP),

Tolueno . )
[AI(O'P:)314+3HAAEMA 20w, T ~ lN(AAE“M).’ .‘A_”, 7 v - L.
—YYbEr - s :

NaOH + HAAA ,._ME, Na(AAA)
-20°C, 48 .
CBNO,), SH,0  EtOH CINBHOES,J - M=, Yb,

o (e 4 ) 4°C, 20 1 [MSOZ(OH)g(Crt:,C(O)CHC{O}OCH;CH—CHz)m}‘

Lk

Vrtlommenmos E -———-— LATOME, DELARECHERCHEAL'INDUSTRIE
* Laboratojre Micro-cibles — - - d um/n.eowsmcm

P
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DIRECTION DES APPLICATIONS IMILITAIRES /

Synthesis of organo-metallic precursors y &f

« Characterization means of the structure
— Elementary analysis

~ FTIR spectroscopy
- THNMR
— X-ray diffraction
+ Sfructures
A -
e :
R='Pr :
“A* R= GH,0C(0)C(CH,}=CH,
W/é / DEWARINOS 2 4 ]:[ ———— L'ATOME, DE LA RECHERCHE A L'INDUSTRIE
Laboratoire fflicro-cibles{ 42 TFI4/ R. COLLIER / CEAVA

{’“@j '
DIRECTION DES APPLICATIONS MILITAIRES /

Synthesis of metal-doped CH foams

Organic solution :

60 % Styrene/50 % DVB
Surfactant 20 %
Precursor (0.8 % at.- toluene)
Initiator

» Experimental set up

AQUEOUS SOLUTION :
| atf——% Na,S,0, or Na;S0O,
AlCH;, 6H,0

| W/O EMULSION |

€0°C,12h
copolymerisation
Washing H,0, EtOH,
Hexane

Y Drying
| PORUS DOPED SOLID J

“Low-density polystyreno foam materials for direct-drive inexti: ', F-8l. Kong, R.Cook,
B.Haendier, L.Hair and S. Letts ; J.Vac.Scl.Technol. A6{3), Mayium 1888, p.1894.

W;@/ DEMHIHOS n L’ATOME, DE LA RECHERCHE A L'INDUSTRIE
Laboratoire Micro-cibles| : 42 TPM/R.COLLIER/CEA-VA
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7 - DIRECTION DES APPLICATIONS MILITAIRES

Synthests of metal-doped CH foams

. Mam parameters set
- Stirring process, washmg and drymg process
— Time and temperature of copolymenzat:on
— Aimed density 50 mg/cc
- Monomer distribution {50/50)
~ Aimed % at. dopant 0.8
— Amount of initiator
* Main parameters studied
_~ Surfactant (concentrauon)
~ Process of polymerization .
» reference : without electrolytes
» L2+ AlCkL, 6H,0
* » i : initiator in the organic phase, N@SO‘, in the water phase
- Precursors {type of metals and ligands, toluene)

&

Wﬂ/zz/ﬂzmas' Gt D ~——————— L'ATOME, DE L A RECHERCHE A L'INDUSTRIE
Laboratoire Micro-cibles] - . o 12 TFM/R. COLUER/CEAVA

DIRECTION DES APPLICATIONS MILITAIRES

Synthes:s of metal-doped CH foams
* Parameters studied
~ Amount of surfactant.effects
» toomuch™ —e destablhzatlon of emulslon T'weak foams

» not enough —32 ot sufficient stablllzatxon of emulsxon ! ngld
foams / big cells

» g’ 5% -z distribution of cell drameters is more homogeneous
reduction of cell diameters

15 % wt

. 20 % wt.
surfactant

2y susfactant

- 'ﬁﬂ)(dh)x(OCI%CH#HGEsz e
0.88 %T5- U 07%Ti
" Optimum amount : 20 % wt, sur_facmn:t,

W;ﬁ/@zmmos H ——— L'ATOME, DELARECHERCHEALINDUSTR]E
Lahoratoire Tiero-ciblesl____ "~ ] <= T o0 Do T 121mm.oou.|snlcsA-VA
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DIRECTION DES APPLICATIONS MILITAIRES .

Characterization means of foams

= Elemental analysis —= + Metal \.r."eight%
= FT-R spectroscopy —5 * Organic residues
« X.ray analysis ——» ¢ Metal distribution

« SEM o ——=- «  Morphology and microstructure.
« massivolume or picnometer ... * Density

» Compressing testimachining ——»- » Mechanical strength

W)‘i” / DEWHINOS | ¢ U —————  L'ATOME, DE LA RECHERCHE A L’INDUSTRIE
Laboratoire Hicro-cibh 12 TFM/R. COLLIER / CEA-VA

¢ DIRECTION DES APPLICATIONS MILITAIRES
S N Synthesis of metal-doped CH foams /
« Parameters studied (cont.) i ?
— Electrolyte effects (example)

» reference » system |/ reference » system it / reference

o~

Y

TR

e Y
St o3

More homogeneous distribﬁtion

Large cell diameter

distribution ’ Reduces cell diameters
Pores closed ’ Open pores
Vol prmnnmos I L'AfoME,'i_QE LA RECHERCHE A L'INDUSTRIE

Laboratoire ficro-cibles] 412 TP /R COLLIER /CEAVA
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- DIRECTION DES APPLICATIONS MILITAIRES - "
Synthesns of metal-doped CH foams
. Parameters studied (cont.) . -
To- Electrolyte effects (cont.)
. - system I RS

.~ Cell. dlameters seemto be smaller
- —Wall thlcknesses are thiner. -
system - ;
T Better opening of pores

. u-l\l‘\awm .

- Toluene effects P 0 L

: _— -+ ~» Good effects on Tiy and T4 ifno toluene . -

© -t 7« Badeffects onT(T(O’Pr)z(AAEMA),)xf notoluene (no emuision)
- Lrgand effects . . . .

» Dependsonthetype ofmetal s L

» Only studied on Ti : preference according:to foam criteria

Ti{(O'Pr){OCH,CH=CHCH,0), > ﬁaoz(oipr),(oc:(cﬂapcu,);(ﬂo’m) > ﬂ(o'Pr)z(AAEMA)z ~ Ti{O,AP),

Wf? / D?‘MM[&S n - L'ATOME DE LA RECHERCHE A L'INDUSTRIE
Labortatoire Micro-cibles) ) R 7 TFH /R, COLUER / CEAVA

DIRECTION DES APPLICATIONS MILITAIRES. —————— /
Synthesis of metal-doped CH foams -~~~ 4

* Parameters studied (cont.) -
— Metal effects
» Not yet studied because.of synthesis difficulties

» Foam structure depends on the type of precursor (metal or -
ligand ?) .
— Metal concentration effects - =~ R
» Precursor introduction destabilize emulsion
» Destabilization depends on the type of metal
« Ti:[Ti] increase ——» cell diameters increase

* Y, Yb, Er : no variation S e ey i s
» Metal loss._ o ( ~'Metal Max!mlm‘lw-l(o-s)/oat. Maxxmum /owf.
L. Lossofmetaldependson Lo 02 7. 45’
© ' - Typeofprecursor " i " 022 T ess <
‘< Toluene - : 006 079
— Amount of surfactant - 004 1.10 :
» Possible explanations : S0 147

- Partial polymerization of precursors
- Alteration of precursors -’

' W)f/'a}??fmmos U - - L‘ATOME DELA_ RECHERCHEAL'INDUSTRIE
" Laboratoire iMicro-cibles]_ - L T SR 121FHIR.00LLIERICEA-VA -

Tl -
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¥ "DIRECTION DES APPLICATIONS MILITAIRES g /
o

Synthesis of metal-doped CH foams

+ Metal distribution
- Mapping analysis on 4 mn¥
- Good distribution _ '

« Mechanical strength
-~ Compressing test (20°C, cylinders) A
» A %metal ——~ % _E (Young modulus)
- and Re {elastic resistance)

- Machining has been obtained on best metal-doped
foams : example (diameter=173 pm, height=380pm)

@24 / DEULNNITLOS 4 H L'ATOME, DE LA RECHERCHE A L'INDUSTRIE
Laboraioire Hfifcro-cibiesy 12 TFH/R. COLUER / CEAVA

DIRECTION DES APPLICATIONS MILITAIRES

y

Concluding remarks

+ We succeeded in synthesizing metal-doped foams with
titanium, aluminum, yittrium, yitterbium and erbium

» We managed to meet the foam criteria (50 mgl/cc density, cell
diameters < 30 um, open porasity, homogeneous disfribution
of dopant, machining) but we still have to improve the
knowledge of molecular mechanisms to increase the dopant
concentration

» One possible way is to try to understand molecular
mechanisms to fit the precursor into the organic phase

« We also plan to introduce precursors into polystyrene to
_synthesize metal-doped polystyrene microballoons

7;4/ DEHRITOS | 53 n L'ATOME, DE L A RECHERCHE A L'INDUSTRIE
Laboratoire Micro-cibles _ - ' 12 TAMJ R. COLUER / CEAVA
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ReQUir ements: | University of Dundee -

Required to test 3D Hydfodynamnc mix models of the RM
instability and fully turbulent regimes

o Target design: |
= A randomiy rough interface
= Foam dopants to aliow the
spec&meomcmmefm

°W

= No-bartier _ et
.t Mm@m

Universify of Diindee

In-Situ Polymerization of Foam Filled Laser Targets With Two
Regions of Different Densities, Separated by a Thin Film.

Presented at the 12th TFSM Jacksan Hole, Wyommg,
Aprzl 19 23, 1998

Colin J. Horsﬁeld* W‘rgen Nazarov** , Kevin Oades*
*Atomic Weapons Estabhshment Aldermaston Reading RG7 4PR. Engiand
Department of Chemlstry, Umvers:ty of Dundee_, Dundee DD1 4HN, Scotland. -
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University of Dundee

Two phase foams with no barriers

Second Stage

First s
tage .

polymerization

Fill

Second
. Stage -
S ) Polymerization
Free: Standing
<4~ . <+
Foams

University of Dundee

Differential radiography showed that the Cl monomer diffusion was
greater than 100 um and this was unacceptable. '

¥ ’ B Criwve Dwia 1 a5
o Toacygm bucasr o5
le\ﬁﬁ;
°

8 e 300 300 48 30 W0 100

Catoann sa)



University of Dundee

Surfaces of thé foam

B A AN T v AR St et At

The surface of the foam facing the top cylinder appears to be similar roughness to that found
on the rough foils. The lower surface is, however, much smoother than expected.

University of Dundee

Removal of copper foil

¢ SEM showed there was a high
density broken film on the surface of
the top foam. Initially this was
thought to be an effect- asseociated
with TMPTA foam. However, _of
dissolving the copper foil used in the
interface, a plastic residue was
thit is a layer of PMMA, highly
crosslinked by the heat generatéd
during the sputtering process. This
renders the film insoluble.

+ It was also observed that the copper
foil buckled. This explains the
smooth surface in the upper cylinder

665
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University of Dundee

Permanent barrier

+ At this stage it was decided that
a permanent barrier would be
acceptable. '

o Rough PMMA surfaces were
coated with Parylene C which
was used as the interface.

s Universify of Dundee
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University of Dundee

Two phase foams with removable metal barrier

RADIOGRAPH OF TWO PHASE WITH

A RQUGH Cii BARRIER (.Ci REMOVED ).

+ Atarget with copper
removed showed an
apparent surface roughness.
However, the interfaces
were too confused by the
boundary between the two
cylinders.

¢ The cylinders were therefore
separated and examined by
- CLSM.

University of Dundee

Surface measurements

surfaces on the scale of a laser targt 400). )
Ref.: C. J. Horsfield, 9th TFSM, Monterey, 1993),




University of Dundee

Immiscible solvent systems

¢ Foams produced from Immiscible solvent systems
were considered. However, it was proposed that the
solvent would wick in the rough surface of the first fill
as it is the same order as the pore size. Therefore,
this technique was never attempted.

+ Targets were all plastic or gold. The obvious choice
for the removal barrier was a metatlic foil. Which could
beremved bymds '

c» Th:s foil had to have re - surfice roughness,
- Sopm rms. Themncknessnas_émsentobe <1 um
(pore size of the foam).

University of Dundee

ALt w\ovj
Production of Metalhc x{ Plastie barmers
‘MC& “%st (Ad) Pm’\
7S (1) LU'VWV'% YT I )
) After Cooiling
Woods Matal VOODS METAL Waods: Metal
: PERSPEX
Deposited
i on Metal
METALLIC OR
PLASTIC FiLM

Maetal is Dissolved PERSPEX

‘ 4-———""”'“'“ AN
4""—"— WOODS METAL

PMMA removed
by Chiloroform

B  WAAAAAA, | ROUGHFILM
’ 668 ‘



University of Dundee

Experimental Shots

1D sleietions wih B8 W Siier Sk i — : A
mix mode! predict the exian " Gook suality experimental dats caRY Ahow widle 0pagus fegion
mmmmbunmumumm? ot unnmm mﬂumaougmmm

PR e - w

$het 200
t= 17ne

University of Dundee

Conclusion

¢ We have shown that the production of two phase targets to be 3 viabie:
method of measuring mix e&e&, in laser driven experiments.

'S Wé remain hopeful that theafad)mques can be further developed to
pmduce barrier free targels. A!!iough this also requires development
of suitable dopants for poink piojection as a diagnostic technique. '
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TARGET SYSTEM OPERATION:
FILLING and TRANSPORTING POLYMER SHELLS
TO MODULE for CRYOGENIC LAYERING STUDY.*

Igor E. Osipov, Elena R. Koresheva, Irena V.Aleksandrova,
Lebedev Physical Institute, Moscow

Gennadiy D. Baranev
Red Star State Enterprises, Moscow

12" Target Fabrication Specialists’ Meeting, April 19-23, 1998.

*W()RK ISSUPPORTED BY THE SCIENCE AND TECHNOLOGY CENTER (ISTC) UNDER THE PROJECT #3512,

INTRODUCTION

® The Lebedev Physical Institute (LPI) and the “Red Star” State Enterprises (RSSE)
have developed the fill and the transport systems of polymer shells designed to cryogenic
target fabrication with a 100-pum-layer thickness. The results of the design, engineering
and construction are presented.

® The specifics of the system are the following:
- work with a batch of free standing shells
- diffusion ramp-filling procedure for minimizing the fill time
- the transport of all the filled shells to layering module at 300 K.

e A system allows for filling of 10 to 25 polymer shells at one time with gas fuel
(H3, D3, Hy-D;-mixture) up to pressure of 1000 atm at room temperature. The calculated
fill-time is less then 24 hours for millimeter-size capsules.

® The filled shells transport to the layering module is carried out in a special
shell unit at room temperature. Under operation with D-T fuel, the radioactivity of the
shell unit does not exceed 10Ku.

® At present we carry out a set of experimetns on the created system approbation.
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EXPERIMENTAL SETUP FOR FUEL FILLING AND LAYERING

Low pressure system
P <150 atm

High pressure system

/ P <1000 atm

et

Vacuum system

Automatic control
system

Facility for layering /v
study

SCHEMATIC OF THE FILL SYSTEM

LOW PRESSURE HIGH PRESSURE | ISTEPWISE PRESSURE FILL CHAMBER
SYSTEM SYSTEM DELIVERY OPERATION
P<150ATM P<450ATM P<1000ATM P < 1000ATM

@ )
7 —N(? D) 2

i &

X

P @
- Zagaasd

H, ]
734_

INTER-;[ET ALLIC INTER-METALLIC THERMO- DIAPHRAGM VACUUM

STORE VACUUM PUMP_| MULTIPLICATOR COMPRESSOR PUMP
U ] U U

AUTOMATICALLY CONTROL OF THE FILL PROCEDURE sy
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PHYSICAL LAYOUT

STAGE L
EMETALLIC=oCOMPRESSOR=FILL CHAMBER
PrL+I50ATM

LMETALLIC
T-MULTIPL

X oren

&4
3
compresior

LMETALLIC
T-MULTIPL

FILL CHAMBER

FILL CHAMBER
|
=

% crosen’GAS DELIVERY TO COMPRESSOR  GAS COMPRESSION

STAGE 11

LMETALLIC= COMPRESSOR=FILL CHAMBER g & - £ g &
I-METALLIC=T-MULTIPLICATOR Z a7 pre” =] Z g z ::5 z
Pe1S0e450ATAM ; U : - 5 U 2 "5'- 3 z

- ik o = 3 a2 - ; v

LF=IseATyy = Li3soATaY -
GAS COLLECTION INTO THE T-MULTIPL GAS COMPRESSION
GAS DELIVERY TO COMPRESSOR :
STAGE I 2 9 ;’:12 QP 2 9

[-MULTIFLICATOR= COMPRESSOR=FILL CHAMBER ¥ = = g &4 i

3 o « l—"-‘:’y = = 2 Z ‘Z—,‘ g 1
P=4S0+1000ATA 2 2 R Z = =3 % E] H

2 £ E @! e TREH=E

z Z o & Z A 2 €

: : L [EN N | s

GAS DELIVERY TO COMPRESSOR GAS COMPRESSION

FILLING PROCEDURE

¢ WE USE RAMP FILLING PROCEDURE

AP(t)=Po-P;x= CONST

0 ALLOWABLE PRESSURE DIFFERENTIAL
ON THE SHELL WALL

AP(1) £ 0.5P, = 2E (Ay?

1)3(!—\')2 s

E - Young's modulus; v - Poisson’s ratio
4

A = R _external radius
s -wall thickaess

¢ ACCURACY OF PRESSURE DELIVERY
<1ATM

PRV & R i Tiami e o aras-ws o0 qe ol

BT 1.3 A3 B e T e e RS P

RAMP FILLING REGIME:
TIME VS. YOUNG’S MODULUS

AR=8pm
R=500pm
GAS-D,

FiLL TIME fbrs)




INTER-METALLIC COMPOUNDS

Propose to be achicved: collection, purification, and reversible storage of hydrogens.

Zr-CR-Fe COMPOUND DISSOCIATION PRESSURE

vS. TEMPERATURE IN THE PLATEAU AREA
= 3
1) 3
_— m } ’
Z s
£ i
§ " 3
2 .
s 2
= TR & » % ®  ®
TEMPERATLRE ('O
. PARAMETERS
¢ MATERIAL ZiCrFey
« RESIDUAL PRESSURE 0.1-0.5AT™M
« RESOURCE >1000 CYCLE
o GAS PURITY 99,6999
e PRESSURE DELIVERY
WITH THE ACCURACY +=1ATM
o CAPACITY 4.5mot
THERMOMULTIPLICATOR
§ PARAMETERS
| :
‘z » 1 STAGE: ;
i -volume 60 cc
{ - pressure 430 aT™
i
| ® 2 STAGE: 5
i -volume 20 cc §
| - pressure 600 aT™
i

e TEMPERATURE: T=77-300 K .

¢ HEATER: N=100 Wt
o TIME OF HEATING

(from 196K to 300K): 7=0,9—1,57 hrs

. e g o A i i 8 SR s 0
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