

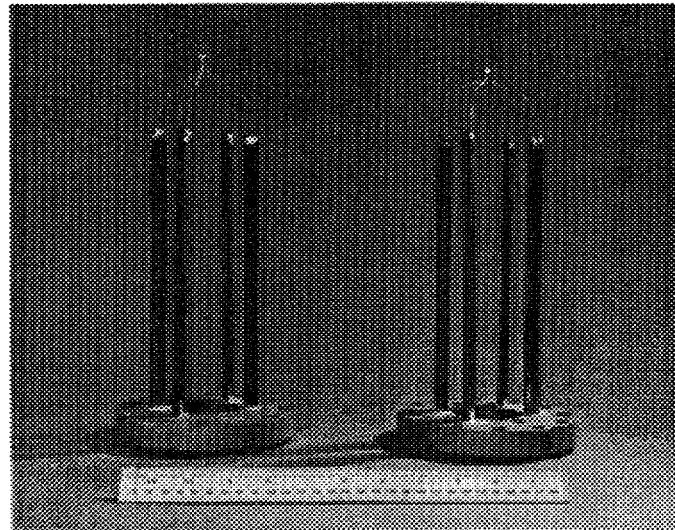
New Technology for America's Electric Power Industry

Conf-941210--12

ANL/ES/CP--85380

High-Temperature Superconducting Current Leads

Opportunity


Use of high-temperature superconductors (HTSs) for current leads to deliver power to devices at liquid helium temperature can reduce refrigeration requirements to values significantly below those achievable with conventional leads. HTS leads are near commercial realization.

Description of Work

Argonne National Laboratory has developed a sinter-forge process to fabricate current leads from bismuth-based superconductors. The current-carrying capacity of these leads is five times better than that of HTS leads made by a conventional fabrication process. (An example of an HTS current lead is shown in the photo. Each assembly, shown inverted, was designed to deliver 1500-A AC with less than 0.2 W dissipation at line frequency.)

Current Status

Under the U.S. Department of Energy's Superconductivity Technology Program, Argonne and U.S. industry partners are developing HTS current leads suitable for various commercial applications. In one effort with Superconductivity, Inc., 1500-A HTS leads are being developed for an existing, commercial superconducting magnetic energy storage (SMES) device. With Babcock & Wilcox Co., Argonne is creating 16-kA leads for use in a 0.5-MWh SMES. In a third project, Argonne performed characterization testing of an existing, proprietary conduction-cooled lead being developed by Zer Res Corp.

For More Information, Contact

Ralph C. Niemann

Phone: (708) 252-6156;
Fax: (708) 252-5568

C. Arthur Youngdahl

Phone: (708) 252-5029;
Fax: (708) 252-3604

Michael T. Lanagan

Phone: (708) 252-4251;
Fax: (708) 252-3604

Energy Systems Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

85

MASTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**