skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An explanation for the shape of nanoindentation unloading curves based on finite element simulation

Conference ·
OSTI ID:35341
;  [1];  [2]
  1. Rice Univ., Houston, TX (United States). Dept. of Materials Science
  2. Nano Instruments, Inc., Knoxville, TN (United States)

Current methods for measuring hardness and modulus from nanoindentation load-displacement data are based on Sneddon`s equations for the indentation of an elastic half-space by an axially symmetric rigid punch. Recent experiments have shown that nanoindentation unloading data are distinctly curved in a manner which is not consistent with either the flat punch or the conical indenter geometries frequently used in modeling, but are more closely approximated by a parabola of revolution. Finite element simulations for conical indentation of an elastic-plastic material are presented which corroborate the experimental observations, and from which a simple explanation for the shape of the unloading curve is derived. The explanation is based on the concept of an effective indenter shape whose geometry is determined by the shape of the plastic hardness impression formed during indentation.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Oak Ridge Inst. for Science and Education, TN (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC05-84OR21400; AC05-76OR00033
OSTI ID:
35341
Report Number(s):
CONF-941144-99; ON: DE95008905; TRN: 95:009671
Resource Relation:
Conference: Fall meeting of the Materials Research Society (MRS), Boston, MA (United States), 28 Nov - 9 Dec 1994; Other Information: PBD: [1995]
Country of Publication:
United States
Language:
English