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Abstract .

Over the past two decades, demand-side management programs have emerged as a
major element of electric utility integrated resource plans; EPRI and several PUC
commissioners have concluded that DSM has saved utility and ratepayers many
dollars. While DSM holds great potential as a means of abating greenhouse gas
emissions and reducing acid rain, many programs have been ineffective and
inefficient. If DSM is to serve the public welfare and attain its potential, extensive
evaluation is required of the effectiveness of the programs and of their effects on the
net energy bills of participants and non participants, as well as of the resulting
short-and long-term changes in customer energy use. Since evaluation is
expensive, a critical decision concerns the extensiveness of the evaluation. We
discuss several benefits of evaluation, e.g., reducing the variance of demand
forecasts and thus the need for new capacity, in order to determine the optimal level
of the program.

We model the effect of a commercial DSM program on the price of energy and use
short term elasticities to estimate energy consumption for program participants and
non participants. We compare these consumption estimates to estimates of program
savings to assess the magnitude of this effect and the importance of choosing the
appropriate evaluation method.

Introduction

The oil price shocks and 1973 and later made evident the need for increasing the
efficiency of energy use in the USA. Thousands of energy conservation programs
have been created and billions of dollars have been invested in demand-side
management (DSM) programs.’ Initially, the perceived need to reduce energy use
negated the desire for evaluation. However, by the early 1980s, DSM programs
were sufficiently extensive and expensive that evaluation could no longer be
ignored. Early evaluations actually produced no data on whether the DSM program
saved kilowatt hours or were managed well.2 ' S TR

The last decade has seen an infusion of techniques from economics, social
psychology, organizational behavior, and engineering into. DSM planning, .
implementation, and evaluation. This deluge of methods and pérspectives has
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expanded the array of tools available, but there has been little effort to be systematic
in using the tools where they would contribute the most.

Evaluation is expensive. A utility and their PUC must determine how much of the
DSM resources should be allocated to evaluation. Of those utilities that evaluate
their programs, many utlhze a rule-of-thumb and spend 5% to 10% of DSM
resources on evaluation.® But this rule-of-thumb is not based on a systematic
assessment of each program's evaluation needs, or on the value of the information
obtained through evaluation.

Deciding on evaluation expenditures requires an analysis of what information is to
be gained and how much reduction in uncertainty is likely to come from more
extensive evaluation. Determination of the appropriate level of evaluation for a
DSM program requires an understanding of the uses of evaluation information. In
this paper, we analyze two uses for program evaluation information in order to
examine the impact of using different evaluation methods and varymg levels of
evaluation rigor.

There are two inter-related dimensions of uncertainty with which utility and DSM
professionals must be concerned: Uncertainty surrounding program performance
and uncertainty surrounding the evaluation of program performance. In this paper,
we focus on the information content of evaluation programs in order to determine
what level of evaluation is needed. Using information from the Database of Energy
Efficiency Programs (DEEP) at Lawrence Berkeley Laboratories, we will
eventually incorporate statistical data on program performance into the model so that
we can compare the magnitudes of and relationships between program performance
uncertainties and program evaluation uncertainties.

Calculating Rate Impacts

DSM attempts to reduce the need for new capacity, or to shut existing capacity,
through programs that provide consumers with information, conduct audits to
determine where savings are profitable, or subsidize the purchase of energy
efficient equipment are activities that require resources which, other factors held
constant, will add to utility costs and increase electricity price.

Only a portion of rate payers desire or receive DSM services. Those who do may
benefit handsomely. Customers who do not receive the services or who do not find
them helpful must bear the costs with no direct benefits. Nonetheless, these
customers may receive indirect benefits. For example, if all electricity is supplied
by a hydroelectric installation at a cost of $0.01 and a price of $0.04, the low price
will stimulate extensive usage with little thought for high efficiency. However, if
new capacity is required at a cost of $0.07 and a price of $0.10, all customers will
face a large price increase when the new plant is added. If, instead, the utility can
generate "negawatts" at a price of $0.05, even those who don't benefit from DSM
directly will benefit indirectly.

Some care needs to be taken in interpreting this point. Nonusers would still find
their electricity price has increased, but it would increase less than if the DSM
program had not been initiated -- and the new generating facility were built. Thus,
in the sense of the next best alternative, higher electricity prices due to DSM may
leave even nonparticipants better off. Participants presumably would be better off,



despite a higher price, for two reasons. The first is that they would be using fewer
kilowatt hours and so their bill might decline. The second is that price would have
increased still more if the DSM program had not been implemented.

Some utilities and PUCs have taken this logic to imply that any DSM program is
beneficial, even to nonparticipants. This conclusion is fallacious. If the DSM
program is ineffective (does not produce negawatts), costs rise with no offsetting
benefits. Alternatively, the program can produce negawatts, but at costs so high
that it would be cheaper to build the new capacity.

An undesired effect (at least according to the utility) of a DSM program would be to
reduce demand below current levels. If this occurs, the utility will lose the net
revenue that represents the difference between price and marginal generation cost.
For example, if the DSM program were so successful that it reduced net revenue to
the utility by $10 million, price would have to rise to cover this difference.

This logic suggests a DSM evaluation criterion shown in table 1. If the benefits
exceed the sum of the costs, society gains by the DSM program. If not, the
program should not be implemented. Unfortunately, the DSM program can be
worth while for society, but still represent a net-cost to nonparticipants. For
example, the cash incentives to participants represent a transfer from the
nonparticipants to the participants. This transfer can changes the distribution of
benefits and can change them sufficiently to make nonparticipants worse off.

Table 1. Costs and benefits used in rate impact calculation

Costs Benefits

DSM Management & Implementation Avoided incremental capital costs
Subsidies to participants Environmental quality gains, etc.

Possible reduced coverage of fixed
costs

Massachusetts Electric Companies’ Enterprise Zone Small Commercial and
Industrial Program operated from Fall, 1985 to Spring, 1987. The program audited
and installed energy efficient lighting measures free of charge to eligible commercial
and industrial customers.. Approximately 1400 customers received energy audits,
and 775 had new lighting equipment installed. Program evaluation was extensive.
Billing data, bulldmg data, and end-use characteristics were compiled from program
participants.® Nadel assessed program savings using several different methods:’

1. An engineering estimate based on laboratory measures of old and new lighting
equipment efficiencies.

2. A cross-section comparison of pre- and post-program electricity usage by
participants and matched non participants using a two-sample t-test.

3. A time-series comparison of pre- and post-program electricity usage by
participants, using survey information to exclude from the comparison
buildings that had undergone changes in utilization.

4. A conditional demand analysis that regressed the presence of individual energy
end-uses (obtained for each building during the audit) against pre- and post-
program energy use in participating buildings.



The time series comparison was complicated by data coordination and survey
problems, and thus the results obtained are of dubious significance. The other three
methods provided estimates within 6% of each other. Table two lists the per
customer annual savings estimates together with rate impacts, short run changes in
annual energy use for program participants and non participants due to price
impacts, and long run changes in annual energy use for the average customer.

Table 2. Savings estimates from the Enterprise Zone Program

Evaluation | Average Total Rate Impact | Change in { Total
Method Annual Program Customer | Price-
Savings Savings for Demand Induced
for DSM | DSM due to Demand
H/holds H/bolds price effect | Reduction
(kWh)
(kWh) (mils’kWh) (%) (kWh)
Engineering 6600 5.1x10¢ 1.4 -047% -  4.7x10¢
Cross- 6900 5.3x10¢ 1.4 -0.48 4.8x10¢
section
comparison
Time-series 2300 1.8x10¢ 1.3 -0.44 4.4x10s¢
comparison :
Conditional 6500 5.0x10¢ 1.4 -0.47 4.7x10s¢
Demand

Note a) The price fluctuations that occur when conservation program costs and lost
revenue are ratebased affects customer consumption behavior. For this analg'sis, we are
utilizing the short run price elasticities of -0.28 for the commercial sector.” We utilize
the Allen own-price model to calculate final energy consumption.

Rate impacts do not differ significantly across evaluation methods because the rate
calculations are dominated by the cost of the program (approximately $1.2M).
Using the short run price elasticities of demand, we estimate that the change in
energy consumption due to price changes is much less than program savings
estimates themselves, which were 9% of participant energy consumption.

Because all ratepayers, not just program participants, are affected by the change in
price, the overall decrease in demand for the customer base is on the order of the
total annual program savings. Although this model is simplistic in that it does not
account for regulatory lag in ratebasing conservation costs, or other factors that
effect consumption such as weather, this result demonstrates the potential of DSM
programs to create significant second order effects. In this case, however, these
second order effects could be estimated with any of the evaluation methods
explored.

Characterizing the Value of Program Evaluation Information
Costs of Evaluation

The data gathering and analysis requirements of evaluation can be expensive. The
most expensive component of any evaluation is data acquisition. DSM programs,
unlike supply-side investments, are highly decentralized. The collection of



qualitative and quantitative data is a painstaking, labor-intensive process. Pacific
Gas and Electric’s estimates of their per-participant costs for implementing surveys
are shown in table four.”

Table 4: Estimates of data acquisition costs®

Survey Type Per Participant Cost ($1991)
Mail or Phone Survey $65-100
On-site Survey . $135-675

These estimates of evaluation cost are used to estimate the costs of evaluations
described in the next section. Evaluation costs will vary from program to program
since management, program, and market characteristics affect data acquisition and
analysis costs. Foresight and planning can often reduce data collection costs.
Auditors can collect pertinent data while auditing customer's structures. Evaluation
planners can coordinate with utility database departments to ensure that the data
already being collected is usable for program tracking and evaluation analyses.
Sample sizes in evaluations range from 10 to 2000 depending on the objective of
the evaluation and the type of program being evaluated.

RCG/Hagler Bailly estimates the cost of evaluating a medium sized program for the
commercial sector (i.e., 2,500 participants and a design to save 10% of total
energy use) weatherization program to be as follows:’

Table 5. Estimates of evaluation cost

Evaluation Description ' Approximate Cost
Back-of-the-envelope engineering calculation $15,000
Adding billing information to compare pre- and post- $75,000

program consumption

Multivariate regression with socio-economic indicator $150,000
variables and controls for self-selection (requires more
data, surveys, site visits)

Adding extensive load research and end-use metering $300,000

For most programs, the techniques in table five increase in accuracy as they
increase in cost. One can conceptualize a cost of reducing uncertainty curve.

Points on the curve represent different evaluation methods. Uncertainty in each
method could be measured using the variance of statistical models, sample error, or
by comparison with the most robust method’s result. Such a curve is sketched in
figure one.




Figure 1. Hypothetical cost of evaluation accuracy curve

Cost of
Evaluation
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Accuracy of Evaluation Estimate

Evaluation methods that combine information from several types of evaluations
(sometimes called triangulation methods) may provide savings estimates superior to
any single technique. Due to the myriad evaluation methods available, both singly
and in combination, a cost of accuracy curve that listed every possible evaluation
method or combination of methods would be impossible to produce.

Any constructed cost of accuracy curve would be a step function, reflecting the
discrete and nonlinear nature of different levels of evaluation. If this curve were
calculated for different programs (by performing numerous evaluation techniques
and plotting their uncertainty and cost in a stepwise manner) it would reveal that
different programs achieve different improvements in accuracy from the same
evaluation method. This is because different programs are subject to different
combinations of weather and price fluctuations, free-ridership, etc. The marginal
accuracy of successive evaluation techniques is determined by the existence and
magnitude of factors for which each technique can control.

By combining the cost of reducing uncertainty curve with a representation of the
benefits gained from a reduction in energy demand uncertainty, the optimum level
of evaluation expenditures can be calculated. In this section, the optimum level of
evaluation expenditures is calculated for a residential weatherization retrofit project.

Forecasting Demand

Load and capacity demand forecasts are adjusted to reflect estimates of DSM
program savings. Typically, residential and commercial sector conservation
program contributions to demand reductions are estimated using end-use
engineering models of electricity use. Adjustments are made to these models based
on information gained through program evaluations.

An alternate method is to base estimates of future demand reductions from DSM on
evaluations of current full-scale and pilot DSM programs. Integrating DSM results
into the planning process allows one to examine the impact of different evaluation
methods on demand forecasts and plans for new capacity.




Electricity load and capacity planners are risk averse; underestimating demand and
underbuilding capacity can lead to brownouts and unreliable service. In contrast,
overestimating demand can lead to overbuilding system capacity and a disallowance
of cost recovery mechanisms by government agencies.'® For this case study, we
make the simplifying assumption that in order to avoid underbuilding, planners will
plan to the ninth decile of demand estimates.!' Stated differently, they plan for
capacity and load that will meet demand at the 90% upper confidence level of their
demand estimate. Thus, the variance associated with an evaluation’s estimate of
demand reduction would directly affect planning decisions. If the standard
deviation associated with a demand reduction estimate (obtained using a statistical
multivariate regression model) is unnecessarily large, planners will plan for excess
capacity and risk overbuilding.

Assessing Programs with Incomplete Evaluation Data

Although evaluation is best planned and performed concurrently with the DSM
program and its pilot level implementations, this has not always been done. We can
simulate a retrospective analysis to get estimates of the value of various evaluation
and other variables. The objective of this exercise is to see which data are of
greatest value in the evaluation so that the information content of a variable can be
compared to its cost of collection in deciding whether to collect this information in
future evaluations. In this approach, we would look at each variable and
combination of variables in a regression to measure the bias and precision of the
estimates. These two measures, bias and reduction of error variance, characterize
the value of each variable.

Without complete program data, one could use data from the regression performed
during a billing or conditional demand analysis to approximate this regression.
This technique assumes one can estimate the change in variance when a regression
variable is dropped by using the relation between t-values and partial correlation
coefficients to calculate the R2 of the model with the omitted variable. The
technique requires the coefficient means and their variances, the means of the
dependent and independent variables, the residual sum of squares, the standard
error of the estimate, and the coefficient of determination. Its key assumption is
that explanatory variables are uncorrelated. Each variable contributes explanatory
power orthogonal to the other explanatory variables. Thus, when a variable is
dropped, the coefficients of the other variables do not change. By dropping
variables from the regression, we also assume that the residual is unbiased.

In this section, a statistical technique is used to estimate the increase in the standard
error of a regression model predicting energy consumption when explanatory
variables are dropped from the regression model. A larger standard error will
increase the value of the upper 90% confidence interval and guide utilities to plan-
for more capacity than is necessary. Table six describes two reduced forms of a
time-series regression model used to calculate energy savings from a residential
weatherization program. The costs of each evaluation level are based on estimates
of data acquisition costs given earlier.



Table 6. Full and reduced forms of time-series regression models

Variables retained Controls for Cost of evaluation

POST, HDD, MPELECT = Weather, price of $30,000
electricity

POST, HDD, MPELECT, above plus demographic 50,000

NUMRES, AGE25_34, characteristics
EDUCHH, AGEHH

POST, HDD, MPELECT, above plus dwelling 75,000
NUMRES, AGE25_34, characteristics (full model

EDUCHH, AGEHH, specification)

SQFTHT, WOOQOD,

STOCK

Variable legend: POST—pre or post program time period, HDD—heating degree days,
MPELECT—marginal price of electricity, SQFTHT—number of sq. ft. heated, WOOD—one if
house uses wood stove, 0 if other, STOCK-—number of major electric appliances,
NUMRES—Iog(number of residents+1), AGE25_34—number of residents ages 25-34,
EDUCHH, AGEHH—education level (four-way variable) and age of head of household.

These numbers are only rough estimates of evaluation costs. As discussed earlier,
the cost of an evaluation depends on the degree of coordination between program
planners, evaluators, and utilities. Actual costs would be less if, for example,
program employees were instructed to compile the data during each home energy
audit.

By dropping variables from the regression model, we approximate a regression
model that omitted those variables. Such a model might be used in a less
comprehensive evaluation due to a lack of data acquisition resources. Thus, we can
calculate the effects of different levels of evaluation on planning decisions. A
detailed description of the statistical method used to simulate a regression using the
analysis of variance is available from the authors.

Table seven reports the results of using this technique on the time-series regression
model used to estimate energy savings due to a residential audit program in
Portland, Oregon, sponsored by the Portland General Electric Utility.'> Each
group of variables retained represents a distinct level of evaluation. The table
presents the estimated energy demand (represented by an upper 90 or 95%
confidence level) for the program population of 5,000 residents. If we assume that
the model incorporating all available explanatory variables is the most accurate, then
the difference in the estimated energy demand calculated by that model and any
other model is unnecessary capacity, representing a loss to the utility. The
magnitude of this loss is dependent on the utilities’ current capac1ty and its cost of
acquiring additional capacity.



Table 7. Change in confidence level when variables are omitted"

Root variance term of the upper
Variables retained C°“ﬁde‘f§n1::§p%s§;n&tgv‘;f energy
90% 95%
Weather, billing, price 621 743
and demographic vars 605 723
and dwelling vars ' 583 697

Notes: Adding the root variance term to the mean capacity demand, 9525 kW, yields the actual confidence
level estimate :

The next section calculates estimates of additional generation costs due to increases

in demand estimate variance using the information in table eight.

Estimating the Costs of Excess Capacity: The Value of Information

We assume that an increase in estimated demand results in a need to increase the
size of available capacity. Thus, benefits of a reduced variance in demand estimates
are a function of the incremental cost of peaking generation additions. If the lead-
time of constructing a peaking generation plant is five years, the discounted value
cost of the facility (which includes interest payments during the construction period)
as of the date it begins generating electricity should be computed.'* Table eight
describes the three plants considered for incremental cost of peaking generation
addition.

Table 8. Possible sources of additional generation'®

Capacity Capital Design to Adjusted Capital*
Plant type Cost Startup time
MW) ($/kW) (Years) ($/kW)

Gas turbine 40 443 <1 532
Pulverized coal-spray 300 1368 five 1286
dryer FGD
Integrated 200 1845 five 1735
gasification/
Combined cycle-
bituminous

Notes: *Adjusted cost is adjusted for reserve margin, and present valued if startup time is > | year (5%

discount rate).

Gas turbine supply options might be used if capacity additions are required in the
near-term, and the coal-based supply options might be used if capacity is required
in several years. Table nine lists the calculated capacity requirements and resulting
capital costs based on the 90% upper confidence estimates of demand.



Table 9. Estimates of additional capacity requirements and costs for
three plant types

Root Cost of
variance necessary ($,000’s)
term of additional

90% upper | capacity to
confidence | meet 90%

UcCl
Variables retained estimate Gas Turb  Pulv. Coal IGCC
(kW) FGD
Weather, billing, price 621 $330 $799 $1,077
and demographic vars 605 $322 $777 $1,049
and dwelling vars 583 $310 $750 $1,011

The information in table nine and the cost of evaluation estimates in table six allow
us to plot the marginal evaluation cost and marginal evaluation benefit (that is, the
avoided cost of construction of additional capacity).'

Comparing Evaluation and Additional Generation Costs

Figure two shows the marginal cost of evaluation and marginal benefit of capacity
reductions for all three types of power plants when planning to the 90% confidence
level. Lines representing the supply facilities describe the reduction in facility
construction costs due to an improvement in the accuracy of the forecasting model.

Figure 2. Marginal costs and benefits of evaluation: Planning at the
90% confidence level of demand
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In figure two, the marginal cost of both levels of evaluation falls between the
marginal benefit curves for the pulverized coal and gas turbine supply options.




Thus, the question of whether evaluation benefits exceed costs is dependent on the
supply option used. Based on this use of evaluation information, evaluation
provides net benefits when either coal-based supply option is planned.

Planning at the 95% level increases the benefit of evaluation for all three supply
options. However, the marginal benefits gained if a gas turbine is being planned
continue to be less than marginal evaluation costs.

The net benefit accrued from a given level of evaluation is dependent on the size of
the DSM program being evaluated. Evaluation costs will be similar for a five
million dollar DSM program and a fifty million dollar DSM program, but the
resulting increase in accuracy of demand forecasts will be greater for the larger
program. The program investigated here had 5000 participants. If 10,000
residents had participated, evaluation benefits would have exceeded evaluation costs
for all three supply options.

The method outlined here is useful to determine what level of evaluation is best for
a DSM program. Since there are other uses of evaluation information (improving
subsequent program iterations, cost- effectiveness screening), even if the marginal
costs of an evaluation exceed the marginal benefits due to reductions in planned
capacity additions, a comprehensive evaluation may still be justifiable.

Conclusion

Myriad ineffective DSM programs, billions of dollars devoted to DSM, and the
potential of more effective DSM to lower the need more new capacity are good
reasons for more comprehensive and effective DSM evaluation. All evaluation is
not the same: There are vast differences in the cost and information content of
available evaluation programs. Ultilities and PUC need to think carefully about the
costs and benefits of each evaluation alternative.

As utilities progress from using bottom-up (engineering estimates) of program
savings, they face challenging issues. The more advanced methods allow control
for extraneous factors and can combine results from different evaluation techniques
(engineering estimates, billing analyses, and end-use metering). But these
advanced methods can be much more expensive than engineering judgment. The
decision about which evaluation method to use requires a careful analysis of the
information content of each method and the value to the utility of this information.
Utilities should not leap from Chevettes to Cadillacs without a careful look at what
they are getting for their money and whether the additional information will generate
net savings. ~
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