

INFORMATION ONLY

Acct 249135
DP-MS-88-9

LEGIONELLA IN PUERTO RICO COOLING TOWERS

by

Abigail Negrón-Alviro, Ismael Pérez-Suarez, and
Terry C. Hazen*

Microbial Ecology Laboratory
Department of Biology
College of Natural Sciences
University of Puerto Rico
Rio Piedras, Puerto Rico 00931

SRL
RECD
COPY

* Present address: E. I. du Pont de Nemours and Company
Savannah River Laboratory
Aiken, South Carolina 29808

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

RECEIVED
MAY 26 1998
OSTI

This paper was prepared in connection with work done under Contract No. DE-AC09-76SR00001 with the U.S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U.S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

1 Legionella in Puerto Rico Cooling Towers

2 Abigail Negrón-Alvíra, Ismael Pérez-Suarez, and Terry C. Hazen*†

3
4 Microbial Ecology Laboratory
5 Department of Biology
6 College of Natural Sciences
7 University of Puerto Rico
8 Río Piedras, Puerto Rico 00931

9
10 ⁸ Running Title: Legionella spp. in tropical cooling towers.

11 *correspondent author

12 †Present address: E. I. du Pont de Nemours & Company, Inc.
13 Savannah River Laboratory
14 Environmental Sciences Division
15 Aiken, South Carolina 29808

16

17

18

19

20

21

22

23

24

25

1
2
ABSTRACT

3 Water samples from air conditioning cooling towers receiving
4 different treatment protocols on five large municipal buildings in San
5 Juan, Puerto Rico were assayed for various species and serogroups of
6 Legionella spp. using direct immunofluorescence. Several water quality
7 parameters were also measured with each sample. Guinea pigs were
8 inoculated with water samples to confirm pathogenicity and recover
9 viable organisms. Legionella pneumophila (1-6), L. bozemanii,
10 L. micdadei, L. dumoffii, and L. gormanii were observed in at least one
11 of the cooling towers. L. pneumophila was the most abundant species,
12 reaching 10^5 cells/ml, within the range that is considered potentially
13 pathogenic to humans. A significantly higher density of L. pneumophila
14 was observed in the cooling tower water that was not being treated
15 with biocides. Percent respiration (INT) and total cell activity (AODC),
16 were inversely correlated with bacterial density. This study
17 demonstrates that Legionella spp. are present in tropical air-
18 conditioning cooling systems, and without continuous biocide treatment
19 may reach densities that present a health risk.

20
21
22
23
24
25

INTRODUCTION

3 Legionellosis accounts for almost 4% of all patients with atypical
4 pneumonia [7]. The disease has been reported in many parts of the
5 United States and Europe. Fliermans [3] has estimated that over
6 200,000 cases a year occur in the United States. Reports of legionellosis
7 from the tropics were rare until twenty four people that visited
8 St. Croix, U.S. Virgin Islands, acquired legionellosis [11]. Legionella
9 pneumophila serogroups 1 and 3, and several new species were isolated
10 from the potable water system in the resort where the patients were
11 vacationing [11]. Recently, studies in Puerto Rico have demonstrated
12 the Legionella spp. are widely distributed in natural environments and
13 may reach potentially pathogenic densities [10]. Ortiz-Roque and Hazen
14 [10] also demonstrated, from autopsy analysis, that legionellosis in
15 Puerto Rico has an overall mortality of 25%, and that at least 52 cases
16 should be diagnosed every year, yet only 4 retrospective cases have
17 ever been reported. The present study was undertaken to determine
18 the incidence, density, and pathogenicity of Legionella spp. in cooling
19 towers for air-conditioning systems in buildings over fifteen stories
20 high in San Juan, Puerto Rico.

(This study was part of the M.S. thesis of A. Negrón-Alvíra at the University of Puerto Rico, Río Piedras, Puerto Rico, 1987.)

23

24

25

MATERIALS AND METHODS

3 Sampling procedures. Samples for the detection of Legionella
4 were taken from the air-conditioning cooling systems of buildings over
5 15 stories high in the banking area in Hato Rey (San Juan), Puerto Rico.
6 The cooling towers were examined for fecal coliforms, Legionella spp.,
7 the existence of algae in the tanks, the state of maintenance of the
8 cooling units, and fill material. Samples for bacteriological analysis
9 were collected by grab sampling and placed into sterile Whirl-Pak Bags
10 (Nasco International, Fort Wilkinson, Wis) or sodium thiosulfate bags
11 (Nasco), if the water source was chlorinated. Standard fixation and
12 storage techniques were performed [1]. Time from collection to analysis
13 never exceeded 6 h.

14 Water quality. Conductivity, pH, temperature, and dissolved
15 oxygen were measured *in situ* using a Hydrolab surveyor (digital
16 model 4041, Hydrolab Corp., Austin, Tex.). Alkalinity and hardness
17 were also measured *in situ* by standard methods [1] using Spectrokits
18 (Bausch and Lomb, Rochester, N.Y.). Other samples were collected in
19 Nalgene bottles, fixed, and transported to the laboratory for further
20 analysis. These fixed samples were tested for nitrites plus nitrates,
21 sulfates, phosphates, total phosphorus, and chlorophyll *a* trichromatic
22 using Standard Methods for Water and Waste Water Analysis [1].

23 In order to have an index of biological contamination, fecal
24 coliform densities were done for every sample. Determination of fecal
25 coliform densities was performed by membrane filtration of triplicate

1 samples, plating on m-FC media, and incubation at $44.5 \pm 0.1^{\circ}\text{C}$ for 24 h
2 in a block type incubator [1].

3 Total bacteria cell counts were determined by acridine orange
4 staining (AODC) as described by Singleton et al [12]. At the same time,
5 total bacterial activity was measured in terms of cell ability to reduce
6 INT to INT-formazan during respiration as described by Zimmermann et
7 al. [14]. All methods are as described previously [10].

8 **Direct enumeration of Legionella spp.** Ten liters of water
9 were collected in sterile polycarbonate containers at each sampling site
10 incubated with INT for 30 min [14], fixed with formalin, and
11 transported on ice to the laboratory. These samples were centrifuged at
12 5,000 x g for 15 min at 4°C . The pellet and residual water was filtered
13 onto a 0.2 μm pore size, 47-mm diameter membrane (Nuclepore Corp.,
14 Pleasanton, Calif.). The filter was eluted by shaking with sample water
15 and 10 μl aliquots placed into the 8 wells of a toxoplasmosis slide (Cell
16 Line Associates, Newfield, N.J.). The aliquots were fixed with
17 formalin and the slide subsequently stained with fluorescent antibody
18 to L. pneumophila (serogroup 1-6), L. gormanii (serogroup 1),
19 L. dumoffii (serogroup 1), L. bozemanii, L. micdadei, L. longbeachae,
20 and L. oakridgensis. All sera and antigens were supplied by the U.S.
21 Dept. of Health and Human Services, Center for Disease Control, Atlanta,
22 Georgia. Stained slides were examined with an epifluorescence
23 microscope (Model 16 + IV FL Vertical illuminator, Carl Ziess Inc., N.Y.).
24 The percentage of respiring Legionella spp. was determined using the
25 FAINT technique as described by Fliermans et al. [6]

1 **Inoculation of guinea pigs.** Sample processing and inoculum
2 dosages varied with the total number of organisms (DFA) found.
3 Unfixed water samples were prepared for inoculation into guinea pigs
4 as follows: if the sample contained more than 1×10^3 Legionella-like
5 cells/ml, 2 ml was inoculated intraperitoneally; if at least 1×10^2
6 cells/ml but less than 1×10^3 cells/ml were present, 3 ml were
7 inoculated intraperitoneally; if less than 1×10^2 cells/ml were present,
8 the sample was concentrated by centrifuging the sample at $2,900 \times g$ for
9 30 min, discarding the supernatant, resuspending the sediments in 6 ml
10 sucrose phosphate glutamate buffer, and inoculating 3 ml
11 intraperitoneally, as described by Morris et al. [8].

12 Five guinea pigs were used in each sampling. One guinea pig was
13 used as a positive control, inoculating it directly with Legionella
14 pneumophila (ATCC 33152), and another guinea pig as a negative
15 control, inoculating it with sample water filtered through a $0.2 \mu\text{m}$ -pore
16 size membrane filter. Before inoculation, each animal's mean baseline
17 temperature was established from 5 daily measurements. After
18 inoculation the guinea pig's temperature was measured at a
19 predetermined time each day for 7 days. A rise of 0.6°C over the
20 baseline temperature for 2 consecutive days was considered a fever,
21 and febrile animals were sacrificed immediately as well as the other
22 animals with other signs of illness (ruffled fur, watery eyes, prostration,
23 and hypothermia). All guinea pigs were sacrificed at 7 days. The tissue
24 homogenates were examined by fluorescent antibody and inoculated
25 onto media as described below [2].

1 **Legionella viable counts and isolation.** Four liter samples
2 were collected in sterile polycarbonate containers and transported on
3 ice to the laboratory. All samples were then pretreated with acid to
4 reduce background organisms as described by Cherry et al. [2]. Treated
5 samples were then plated on Legionella Agar Base and Legionella Agar
6 Enrichment (Difco Laboratories, Detroit, Mich.). After 2 to 5 days of
7 incubation in an aerobic and humid chamber containing 2.5% carbon
8 dioxide at 35°C, colonies that appeared light blue to blue-gray in color
9 were considered positive [5]. Isolates were then gram-stained and
10 subcultured to a fresh agar plate and to a blood agar plate that did not
11 contain L-cysteine. Typical isolates were then subjected to
12 immunofluorescent staining for confirmation.

13 **Data analysis.** Statistical analysis were done with programs
14 developed for Apple IIe and Macintosh computers. Heteroscedastic
15 data were made more homoscedastic using the appropriate
16 transformation prior to analysis. Any statistical probability equal or
17 less than 0.05 were considered significant [13].

18

19

20

21

22

23

24

25

1 RESULTS AND DISCUSSION
2

3 Previous studies by our laboratory [10] demonstrated that
4 Legionella bozemanii, L. dumofii, L. micdadei, L. gormanii,
5 L. longbeachae, and L. pneumophila were found widely distributed in
6 natural waters of Puerto Rico. The present study has shown that air-
7 conditioning cooling towers in the tropics can also harbour Legionella
8 spp. Legionella spp. were found at all five sites with densities from 10^4
9 to 10^5 cells/ml (Table 1). Densities of 10^5 to 10^6 cells/ml, are believed
10 to be potentially pathogenic [4]. The densities reported in this study
11 were similar, though slightly lower than those reported for cooling
12 tower waters in temperate areas [5, 9]. L. bozemanii, L. micdadei,
13 L. pneumophila, L. gormanii, and L. dumoffii were isolated from the
14 cooling towers (Table 2). L. longbeachae and L. oakridgesis were not
15 detected in the cooling towers, but were observed in natural waters of
16 Puerto Rico [10]. Only L. pneumophila was found in all 5 cooling towers.
17 L. dumofii and L. gormanii were found in four of the 5 cooling towers,
18 whereas L. micdadei was only found in 2 cooling towers, and
19 L. bozemanii was only found at 1 site (Table 2). The most abundant
20 species was L. pneumophila (40.75%). L. pneumophila serogroups 1 and
21 3 were the most abundant serogroups found, each accounting for 39.4%
22 and 29.6%, respectively (Table 3). The most abundant species found in
23 the potable water system linked to an outbreak of legionellosis on the
24 adjacent island of St. Croix were also L. pneumophila serogroups 1 and 3
25 [11]. Natural waters of Puerto Rico were also shown to be dominated by

1 serogroups 1 - 3 [10] as were cisterns on the adjacent island of St.
2 Thomas [Hazen, unpublished data). This suggests that in the Caribbean
3 and perhaps in other tropical areas L. pneumophila is the dominant
4 species of Legionella spp. and that serogroups 1-3 are the dominant
5 serotypes.

6 The pathogenicity of the Legionella spp. from each cooling tower
7 was established through guinea pig inoculation and recovery from
8 homogenized tissues of moribund animals. Though all animals that
9 became ill after inoculation, had isolatable Legionella spp. in their
10 tissues, not all of them died (Table 2). This could indicate that the
11 Legionella strains present were less virulent. Guinea pig inoculation is
12 still the most appropriate method for Legionella recovery. Isolation
13 using media is very difficult due to high levels of contamination [9].
14 Indeed, in the present study Legionella spp. could not be isolated
15 directly from cooling tower water using media due to over-growth by
16 yeasts, similar results were obtained previously for natural waters in
17 Puerto Rico [10].

18 The cooling tower which was not being treated by antimicrobial
19 compounds (site B), had the highest densities of Legionella (Table 2).
20 Biocidal treatment of sites A, C, D, and E helped control to some extent
21 Legionella, even though the organisms in site C had a high level of
22 activity (Table 2). Fliermans et al. [4] reported 5-36% respiration for
23 Legionella spp. in water samples taken from freshwater lakes and
24 ponds. In this study the percentage of respiration ranged from 10 to
25 35% for the total bacterial community and from 5 to 30% for

1 L. pneumophila. At site B, where the highest cell densities were
2 observed, the lowest percentage of respiring cells was observed;
3 conversely, at site C where the lowest cell densities were observed, the
4 highest proportion of respiring cells was observed. The total bacterial
5 population was also more active, as indicated by AODC, in the cooling
6 towers which were receiving biocides (Table 2). This suggests that
7 biocides reduce the density of Legionella spp. and other bacteria in the
8 cooling tower water, but that the remaining population is more active,
9 since there is less competition and more resources. It remains to be
10 seen if a more active population of Legionella is also more pathogenic.

11 The presence of pathogenic Legionella spp. in air-conditioning
12 cooling towers in the tropics at concentrations high enough to cause
13 disease, especially in the immunocompromised or the elderly, suggests
14 that legionellosis may be under-diagnosed in the tropics. Considering
15 the constant year-round use that these cooling tower receive and the
16 large proportion of the population that may be exposed, monitoring and
17 treatment of these systems is essential for prevention of legionellosis.

18

19

20

21

22

23

24

25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

ACKNOWLEDGMENTS

We are especially grateful to Carl B. Fliermans who made many helpful suggestions to the manuscript. This work was supported by the Water Resources Research Institute of the University of Puerto Rico at Mayagüez and in part by Sea Grant R/LR-08-87-THA1 and by Public Health Service grants RR-2657 and RR-8102 from the National Institutes of Health. In addition, portions of the information contained in this article was developed during the course of work under Contract No. DE-AC09-76SR00001 with the U. S. Department of Energy.

1 LITERATURE CITED
2

3 1. American Public Health Association. (1985) Standard methods for
4 the examination of water and wastewater, 16th ed. American Public
5 Health Association, Washington, D.C.

6 2. Cherry WB, Summer JW, Morns GK, Weels JG 1981. Isolation of
7 Legionella spp. from environmental samples by low pH treatment
8 and use of selective medium. *J Clin Microbiol* 13:714-719.

9 3. Fliermans CB (1983) Autecology of Legionella pneumophila. *Zbl
10 Bakr I Abt A255*:58-63.

11 4. Fliermans CB, Cherry WB, Smith SJ, Tison DL, Pope DH (1981)
12 Ecological distribution of Legionella pneumophila. *Appl Environ
13 Microbiol* 41:9-16.

14 5. Fliermans CB, Cherry WB, Orrison LH, Thacker L (1979) Isolation of
15 Legionella pneumophila from cooling towers by water filtration.
16 *Appl Environ Microbiol* 41:1202-120.

17 6. Fliermans CB, Soracco RS, Pope DH (1981) Measure of Legionella
18 pneumophila activity in situ. *Curr Microbiol* 6:89-94.

19 7. Meyer RD (1983) Legionella infections: A review of five years of
20 research. *Rev Infect Dis* 5:258-278.

21 8. Morris GK, Patton CM, Feeley JC, Johnson SE, Gorman G, Martin WT,
22 Skaliy P, Mallison GF, Polti BD, Mackel DC (1979) Isolation of the
23 Legionnaire's disease bacterium from environmental samples. *Ann
24 Intern Med* 90:644-666.

25

- 1 9. Orrison LH, Cherry WB, Milan D (1982) Isolation of Legionella
- 2 pneumophila from cooling tower by water filtration. Appl Environ
- 3 Microbiol 44:1202-1205.
- 4 10. Ortiz-Roque C, Hazen TC (1987) Abundance and distribution of
- 5 Legionellaceae in Puerto Rican waters. Appl Environ Microbiol
- 6 53:2231-2236.
- 7 11. Schlech III WF, Gorman GW, Payne MC, Broome CV (1985)
- 8 Legionnaires Disease in the Caribbean. Arch Intern Med 145:2076-
- 9 2079.
- 10 12. Singleton FL, Atwell RW, Jangi MS, Colwell RR (1982) Influence of
- 11 salinity and organic nutrient concentration on survival and growth
- 12 of Vibrio cholerae in aquatic microcosms. Appl Environ Microbiol
- 13 43:1080-1085.
- 14 13. Zar JH (1984) Biostatistical Analysis. 2nd ed. Prentice-Hall,
- 15 Englewood Cliffs, N. J.
- 16 14. Zimmermann R, Iturriaga R, Becker-Birck J (1978) Simultaneous
- 17 determination of the total number of aquatic bacteria and the
- 18 number thereof involved in respiration. Appl Environ Microbiol
- 19 36:926-935.
- 20
- 21
- 22
- 23
- 24
- 25

Table 1. Cooling tower water quality by site.

SITES	WTTEMP	DO	pH	HARD	NO ₂₊₃	PO ₄	TP	CHLA	%R	%A	FC
A	27 ± 0.5	6.6 ± 0.2	7.1 ± 0.2	76 ± 6.3	1.7 ± 0.2	0.6 ± 0.1	8.1 ± 0.2	16.7 ± 1.1	38.9 ± 2.0	11 ± 1.0	
B	29 ± 0.3	8.8 ± 0.2	7.9 ± 0.3	40 ± 6.0	1.4 ± 0.1	3.4 ± 0.1	1.7 ± 0.2	6.8 ± 0.2	16.6 ± 1.5	32.4 ± 1.3	66 ± 4.0
C	28 ± 0.6	5.0 ± 0.3	7.1 ± 0.1	43 ± 3.3	5.2 ± 0.1	4.8 ± 0.1	4.1 ± 0.1	8.4 ± 0.2	30.1 ± 3.7	39.7 ± 1.1	10 ± 4.8
D	27 ± 0.1	4.0 ± 0.2	7.2 ± 0.2	30 ± 5.8	4.4 ± 0.1	4.4 ± 0.1	0.5 ± 0.1	8.1 ± 0.2	14.1 ± 2.6	58.9 ± 4.0	7.4 ± 1.0
E	28 ± 0.3	4.3 ± 0.6	7.2 ± 0.6	37 ± 5.8	6.9 ± 0.1	3.9 ± 0.1	0.4 ± 0.1	7.5 ± 0.3	14.0 ± 2.0	37.7 ± 7.0	7.4 ± 1.5

*All values are mean ± one standard error, WTTEMP = water temperature (°C), DO = dissolved oxygen (mg/L), HARD = Hardness (mg/L CaCO₃), NO₂₊₃ = nitrites plus nitrates (mg/L), PO₄ = orthophosphate (mg/L), TP = total phosphorus (mg/L), CHLA=chlorophyll a (mg/L), %A = percent of total bacteria active (AODC), %R = percentage of total bacteria respiring (INT), FC = fecal coliforms (CFU/ml).

Table 2. Density, activity and pathogenicity of Legionella by site.

SITES	TL	LG	LD	LB	LM	LL	LO	LP	FAINT	GP
A	25 ± 5.1	29 ± 9.0	25 ± 7.0	ND	ND	ND	ND	13 ± 3.5	15 ± 1.5	19/20(2)
B	290 ± 37	ND	27 ± 5.3	ND	11 ± 4.1	ND	ND	110 ± 37	14 ± 2.4	20/20(1)
C	20 ± 3.9	25 ± 6.8	ND	8.2 ± 5.3	ND	ND	ND	13 ± 3.2	22 ± 5.5	15/16(0)
D	22 ± 6.4	28 ± 8.0	20 ± 5.8	ND	ND	ND	ND	14 ± 8.8	11 ± 1.9	15/16(0)
E	19 ± 1.8	15 ± 3.1	12 ± 4.5	ND	12 ± 4.2	ND	ND	1.4 ± 0.9	9.7 ± 1.8	16/16(0)

*All densities are mean ± one standard error x 10³ cells/ml (n = 4), TL = total Legionella, LG = L. gormanii, LD = L. dumoffii, LB = L. bozemani, LM = L. micdadei, LL = L. longbeachae, LO = L. oakridgensis, LP = L. pneumophila (serogroup 1-6), FAINT = percentage of LP that were respiring as measured by INT reduction, GP = guinea pig recovery of Legionella spp. number of positive recoveries / number tested (number of fatal infections).

Table 3. Densities of Legionella pneumophila serotypes by site.

SITE	SEROTYPES					Percent of total
	1	2	3	4	5	
A	1.6 x 10 ⁴	2.6 x 10 ³	1.1 x 10 ⁴	3.0 x 10 ³	1.1 x 10 ³	2.4 x 10 ³
B	2.3 x 10 ⁴	8.5 x 10 ³	3.7 x 10 ⁴	2.4 x 10 ³	4.5 x 10 ³	2.2 x 10 ³
C	9.4 x 10 ³	2.0 x 10 ³	7.9 x 10 ³	2.8 x 10 ³	2.7 x 10 ³	3.4 x 10 ³
D	6.3 x 10 ³	2.4 x 10 ³	6.4 x 10 ³	3.9 x 10 ³	0	7.0 x 10 ²
E	9.0 x 10 ³	9.2 x 10 ³	0	8.1 x 10 ²	8.9 x 10 ²	0
				29.6	7.6	6.5
						5.9

*All densities in cells/ml by DFA