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ABSTRACT

To the extent possible, a discretized system should
satisfy the same conservation laws as the physical
system. We consider the conservation properties of
a staggered-grid Lagrange formulation of the
hydrodynamics equations (SGH) which is an
extension of a 1D scheme due to von Neumann and
Richtmyer (VNR). The term staggered refers to
spatial centering in which position, velocity, and
kinetic energy are centered at nodes, while density,
pressure, and internal energy are at cell centers.
Traditional SGH formulations consider mass,
volume, and momentum conservation, but tend to
ignore conservation of total energy, conservation of
angular momentum, and requirements for
thermodynamic reversibility,. We show that, once
the mass and momentum discretizations have been
specified, discretization for other quantities are
dictated by the conservation laws and cannot be
. independently defined. :

Our spatial discretization method employs a finite
volume procedure that replaces differential operators
with surface integrals, The method is appropriate
for multidimensional formulations (1D, 2D, 3D) on
unstructured grids formed from polygonal (2D) or
polyhedral (3D) cells. Conservation eguations can
then be expressed in conservation form in which
conserved currents are exchanged between control
volumes. In addition to the surface integrals, the
conservation equations include source terms derived
from physical sources or geometrical considerations.

In Cartesian geometry, mass and momentum are
conserved identically. Discussion of volume
conservation will be temporarily deferred. We show
that the momentum equation leads to a form-
preserving definition for kinetic energy and to an
exactly conservative evolution equation for internal
energy. Similarly, we derive a form-preserving
definition and corresponding conservation equation
for a zone-centered angular momentum.

In the absence of energy source terms or energy
dissipation (such as that produced by artificial
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viscosity), difference equations should give rise to no
entropy change. That is, the numerical system
should be able to reversibly transfer energy back and
forth between kinetic and internal reservoirs.
Traditional SGH formulations simply postulate an
evolution equation for internal energy. Although
this might seem sufficient to guarantee reversibility,
such is not actually the case because such
formulations do not identically conserve energy. We
show, however, that our formulation can be made
reversible if certain constraints are observed. The
first of these requires that volume be defined in
terms of a conservation equation instead of the usual
direct function of coordinates. The second constraint
forbids the use of higher order functional
representations for either velocity or stress. That is,
stress must be spatially constant within the cell, and
velocity, within its control volume. Third, velocity
or acceleration interpolation cannot be used.

In addition to the Cartesian form, we present a
formulation in 2D axisymmetric geometry, as well as
formulations in 1D. In 2D axisymmetric geometry,
rotational symmetry of the difference equations must
be preserved if spurious on-axis behavior is to be
avoided. Generally, rotational symmetry is achieved -
by replacing the finite volume surface integrals with
line integrals. This also causes a deviation from
strict conservation form by introducing geometrical
terms that appear functionally as sources.

Finally, we discuss artificial viscosity which is
used for two purposes: first to introduce the proper
entropy change due to shocks and second to reduce
spurious oscillations. We also present a 3D
generalization of a 2D spurious vorticity damping
model that removes both hourglass and chevron
instabilities.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITE.




1. INTRODUCTION

This paper discusses a Lagrangian hydrodynamics
formulation that is multidimensional and is suitable
for arbitrarily connected polygonal or polyhedral
zones. In this section, we discuss why such a method
is of interest, review conservation issues, and
describe our notation. The body of the paper
presents a multidimensional Cartesian formulation.
Formulations in curvilinear geometry are described
in the appendices along with several example
calculations.

1.1 THE FREE-LAGRANGE

METHOD

" Problems involving extreme mesh distortions
have been traditionally modeled using Eulerian
techniques or by Arbitrary Lagrange Euler (ALE)
techniques.1 The free-Lagrange method (FL) offers
an alternative that has significant advantages and has
been used successfully in 2D for more than 20 years.
The term free-Lagrange was first introduced by
W.P. Crowley2 about 1968, although the earliest
work in the area appears to have been done by Pasta
and Ulam® in 1959. Other early work in the US was
also done by J. Boris and M. Fritts* and in the USSR
by D'yachenko, Glagoleva, Sofronov, and others.”

The FL method is characterized by: (a) a
Lagrangian hydrodynamics formulation, i.e., mass
moves with the mesh thereby minimizing advection
error; (b) the use of unstructured grids that permits
zoning to be placed where needed with minimal
regard to special connectivity rules; and (c) the
ability to reconfigure the mesh depending upon the
flow.

Several forms of FL have evolved. The most
common is limited to triangle/ftetrahedral zoning and
centers all variables at the mesh points (see for
example Treaseé). A second form’ employs a
triangular/tetrahedral dual mesh constructed by
connecting adjacent zone centers. The form
described here® employs staggered-grid
hydrodynamics (SGH), a generalization of the 1D
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von Neumann and Richtmyer (VNR)9 scheme known
to produce second-order accuracy in the discretized
momentum equation. The term staggered refers to
spatial centering in which position, velocity, and
kinetic energy are centered at nodes, while density,
pressure, and internal energy are within cells.
Generally the SGH discretization is more accurate
than tetrahedral methods, especially at interfaces.

It is well known that triangular elements are
relatively stiff!® for continuum mechanics and
possibly fluid mechanics applications. Because of
this, the 2D SGH form was extended by Crowley8
from triangular zones to mixtures of triangles and
quadrilaterals. This permitted a strategy of
calculating with quadrilateral zones until some
deformation criteria is reached, splitting
quadrilaterals into triangles where necessary, and
later reforming quadrilaterals. One of the eventual
goals of the present work is to extend these notions
into 3D, resulting in polyhedral not simply
tetrahedral zones.

A common approach to discretizing 3D space is to
extend the set of permitted elements beyond
tetrahedra by adding brick (hexahedra), prism, and
pyramid elements. Finite element prescriptions exist
for this particular set of elements but not for general
polyhedra. This is not a very satisfactory strategy
for a FL method because of the need for
reconnection. Consider, for example, two adjacent

tetrahedra  septahedron

///

Figure 1.
decomposing one of two adjacent hexahedra into
tetrahedra.

Creation of a septahedron by



brick elements sharing a common quadrilateral face.
If one element is tetrahedralized as shown in Figure
1, the joining face must be split into 2 triangles,
causing the remaining element to become a
septahedron which is not an allowed member of the
set.

Consequently, we have chosen an alternative .

approach that focuses on developing differencing
techniques suitable for arbitrary polygons in 2D and
polyhedra in 3D. In this way, the numerical
differencing is unaffected by the presence of the
septahedron in the example. The only spatial
discretization paradigm that seems suited to this
situation is the finite volume method that replaces
differential operators with surface integrals. It is
appropriate for multidimensional formulations on
unstructured grids formed from polygonal (2D) or
polyhedral (3D) cells. In particular we excluded
from consideration (1) the finite element method
which is limited to a relatively small set of
polyhedra, and (2) finite difference schemes such as
that of Schulz!! because they are restricted to grids
which are logically rectangular. We have recently
developed data structures and discretization templates
that accommodate arbitrary polygonal or polyhedral
zoning and are well suited to constructing the finite
volume integrals.12 '

1.2 CONSERVATION

The focus of this paper is the investigation of the
conservation properties of an SGH formulation of
the hydrodynamics equations using a finite volume
spatial discretization. To the extent possible, a
discretized system should satisfy the same
conservation laws as the physical system and should
employ form-preserving analogs of the physical
variables. (A numerical quantity is said to be form-
preserving when its functional dependence matches
that of the physical variable.) Traditional SGH
formulations are explicitly constructed to provide
mass, volume, and momentum conservation, but tend
to only approximate conservation of energy, ignore
conservation of angular momentum, and disregard
requirements for thermodynamic reversibility. Asa
consequence of the finite volume discretization,

Ps.
Figure 2. Side template for a rectangular zone,

conservation equations can be expressed in
‘conservation form in which conserved currents are
exchanged between control volumes.

In Cartesian geometry, mass and momentum are
conserved identically. We have previously shown
that the momentum equation leads to an exactly
conservative evolution equation for internal energy13
and to a corresponding conservation equation for a
zone-centered angular momentum.}* We now show
that our formulation can be made thermodynamically
reversible if certain constraints are observed.

In 2D axisymmetric geometry, we present a form
of the difference equations that achieves rotational
symmetry by replacing the finite volume surface
integrals with line integrals for both momentum and
strain. The resulting method is symmetrical,
employs an energy-conserving formulation, and
avoids the unintended introduction of entropy by the
difference equations. However, like other
symmetrical formulations, the conservation equations
are not in strict conservation form and errors do
occur near the axis.

A recurring theme will be that, once the mass and
momentum discretizations have been specified,
there are very few independent assumptions to be
made.

1.3 NOTATION AND

CONVENTIONS

For ease of visualization, we will present our
derivations in the context of the 2D case, although




the results are valid in 1D and 3D. Further,
although most figures will picture quadrilateral
zones, the results are valid for arbitrary polygons in
2D and polyhedra in 3D.

Spatial template

For 2D geometry, the zones are divided into
triangular areas that will be called sides as shown
(darkened) in Figure 2 for the special case of a
rectangular zone. The sides are significant because
they are the templates that provide the connectivity
between points, zones, and so forth. The templates
are generalizations of those described by Cooper.15
Each side is divided into two triangular areas called
corners and labeled i.

The analogous 3D sidel2 is shown in Figure 3.
To aid visualization, we have pictured a simple brick
zone, but again the scheme works for any
polyhedron. Although it may appear that we have
introduced very fine detail into the differencing
templates, such geometrical detail is necessary
because the polyhedral faces are generally non-
planar. Each side is further divided into two
tetrahedral corner volumes labeled i.

Figures 2 and 3 also show the surface area vectors
Si and T; that are fundamental in defining finite

volume surface integrals.

Figure 3. Side template for a hexahedral zone. Sj is
normal to plane efz; and T1 is normal to plane fepy.

Indices are used to point to memory locations in
which data, such as physical coordinates, might be
stored. The p index refers to points that define the
mesh. To form numerical integrals, other auxiliary
points are also needed corresponding to zone (z),
edge (e), and face (f) centers. The coordinates of
these points are derived from the points p. A
surprising result of this work will be that the
physical location of the point coordinates are
relatively unimportant to the differencing, while the
differencing is sensitive to the e and f points.

For each corner index i there is an implied set of
indices {p, z, e, f, s}, and for each side index s there
is an implied set of primary indices {pl, p2, z, f} and
an auxiliary set {il, i2, 22, e}.

n n+1/2 : n+l
0 + 1
i [] ]
i i ! Time Centering
u?xdV?]
PR ; Start of cycle
P.E; O, > Unlike the original VNR scheme which was also
Partial . . temporally staggered, our method uses a temporal
art Xp i centering, termed even-time, in which most final-
coordinate + + c )
advance V2 p: state variables are centered at the full timestep. The
- simultaneous advancement of both position and
02“ J ?+ W‘z’* internal energy requires a logically implicit

calculation that is approximated using a predictor-
> corrector procedure to calculate a half-timestep

Iteration E; O,

1
SV IF Wt up X, . . o .
yvipt The time-centering of the variables is shown in
Ef ;1 Figure 4 for purposes of establishing notation. The
z 2z

. . . exact definitions of the variables will be discussed
Figure 4. Time centering of variables.



later. We use the superscript notation {-, 0, +, 1] to
indicate time centering of {n-1/2, n, n+1/2, and n+1}
respectively. Subscripts refer to spatial centering.

2. CARTESIAN

This section presents a multidimensional
hydrodynamics formulation in Cartesian geometry.
Curvilinear formulations are given in Appendix A.
Rather than simply postulating the entire formulation
at the outset, we will begin with minimal initial
postulates, and add to them as more are required.

2.1 MASS CONSERVATION

Since we consider only a Lagrangian formulation,
we postulate that the mass in each corner volume is
constant,

M; =constant 2.1.1
z

M, =3>M; 2.1.2
1
P

M, =2M; 2.1.3
1

. P >
where the notation ~i and «~i refer to sums over
corners i surrounding respectively a point p ora
zone z.

In practice, the zone mass is first computed from
the specified initial density p2° and volume V2,

M, =p2'V;’ 2.14

and the resulting mass is partitioned to M;j based
upon a mass fraction @

M; =M, : 2.15
The fractions @; can be defined in several ways.

Our experience to date has been that best numerical
results are obtained from a surface area weighting

Capitalized quantities are extensive while lower cased
quantities are intensive or specific.

GEOMETRY

- ffi 'XPZI

0=
iITi 'iwl

2.1.6a

where ipz is a unit vector from the zone center to
the respective point and Tj is a zone surface vector.

Equal mass weighting also produced satisfactory
results (nz being the number of corners in the zone).

¢; =1/n; 2.1.6b

True area/volume weighting produced the poorest
results.

(P1=Vim/vzm

2.2 MOMENTUM CONSERVATION

Forces

As shown in Figure 5, each point p is surrounded
by surfaces that define the momentum control
volume. TForces result from reversible and
irreversible stress fields o and & that exist within the
zone or side. The stress on each element of surface
S; of the momentum control volume results in forces
R; due to reversible fields and Qjdue to the
irreversible fields. We will show in a later section
that the reversible stress fields must be centered at
the zone, but will not at this point restrict the
notation to reflect this. Sign conventions are such
that the pressure is given by (summing over repeated
indices)

P=-0y/3 22.1

Since stress at + depends upon energy while energy
is incremented from 0 to + by the Pdv work, the two
must be solved for simultaneously. This can be done

2.1.6c




zone

momentum
control volume

Figure 5. Zone and momentum control volumes,
showing surface vectors.

in many ways, and we simply note that we use a
predictor-corrector iteration.

Then let us assume that the stresses are known,
and we can calculate forces F; time centered at n+1/2
on the surfaces S;

— +
F=Ri+Q 222
R =S8} e
Q! =S} en’ 223
so that the total force on point p is
K =§F§* 224

Conservation requires that the forces sum to zero
on the boundary of the momentum control volume

(Newton’s third law); that is,

K =-F; 225
Since

Sh=-8% 226

the finite volume method automatically accomplishes
this providing

+ __ ot
C;, =0j,
+ 4 2.2.7
Tcil = ”iz
at the surface.

Acceleration and Velocity

The control volume plays the role of an
accounting device in which the conserved momentum
of the system can always-be accumulated. The force
at + imparts an acceleration to the momentum
control volume, presumably to the center of mass.
Later, we will show that we must take this
acceleration to be constant throughout the volume,
although we do not explicitly make this assumption at
this point. The acceleration is calculated from

My =Fp 2.2.8
Velocity is integrated using a central difference
scheme

1 50t St
up = up +up 81 2.2.9
The value at + is not arbitrary, but is chosen for

consistency with kinetic energy equations to be
described below.

uj =3(up +uy) 2.2.10

The coordinate integration will also be described
later.

2.3 ENERGY

Kinetic Energy

Trulio and Trigger'® pointed out in 1961 that the
VNR method was not energy-conserving and
proposed conservative methods for the one-
dimensional equations. Their 1D formulation
retained the spatial staggering of VNR but
relinquished the temporal staggering. Burtonl3
derived a temporally staggered form for
unstructured multidimensional grids. The following
derivation is for an even-time scheme. By
considering the momentum equations in the half
intervals [0, +] and [+, 1] and dotting them into the
respective velocities at 0 and 1, the evolution
equation for kinetic energy is derived



K - Ko =2(u}p —u)eu)
=5-F; ou) 23.1
=38
i
K-k} =%1(u:, ~uf)eul
=54-F; ouj 232
=3
i

where we have identified the following form
preserving definitions of kinetic energy

233

The latter corresponds to a definition originally
made by Trulio and Trigger. We also identified
energy currents J between the zone and the point
arising from forces on the surface Si

+
1 =5 Ffeud
J-l-l &t F+ . u:, 234

Then in the full interval [0, 1], the kinetic energy of
a point changes by
0 1
~Kp =(K; - Kp)+(K; -K7)
- + 1
=5F; o(uf +uy) 235

=3t
i

where
_10 1
=3+
=5t'F; eu

Work and Internal Energy

The discrete SGH system has only two energy
reservoirs, internal in the zone and kinetic at the
node. The zone is viewed as a system without
explicitly modeled kinetic energy but with a velocity

' boundary condition. Similarly, the node is a system

having only kinetic energy. Thus, the work done by
a zone on the surrounding nodes is simply the sum
of the exiting energy currents about the zone

z
=33
i

z 2.3.6
=3t" Y F eu;

Most SGH hydrodynamics formulations simply
assert that the work-is P8V where 8V is defined to be
a time difference of volumes that are functions of
coordinates Vz=V(xp). Such formulations, which we
will denote as PDV, do not exactly conserve energy.
As will be discussed shortly, our work expression,
which does conserve energy, does not reduce to this
particular definition. Imphcanons of this will be
discussed below.

Energy is exchanged through the boundary via

" heat transfer SH and work W. The zonal energy

balance is then
SEF = 8HY — W+
z
=8H; -3 If 2.3.7
i

Entropy and Reversibility

The work can be resolved into parts Wy resulting

. from reversible forces R and Wq due to irreversible

viscous or plastic forces Q. The energy balance for
the zone can then be written

SE=T&S-W,
=(8H_v,,rq)_q/r 238

‘We require that all viscous or plasticity models be
dissipative, i.e.,

Z
Wy =8"2Qf eup <0 239
1

so that the second law of thermodynamics is satisfied

T35 = 3H - W, 23H 2.3.10




In the absence of heating or viscous forces,
reversibility implies that energy can be converted
between kinetic and internal reservoirs via the
momentum equation without loss. Because energy is
not exactly conserved in PDV formulations, they
cannot satisfy the reversibility condition. However,
our numerical expression for the change in internal
energy seems to guarantee that no entropy is
produced under these conditions. That is, the energy
change for the zone involves only reversible fields
and is exactly given by

Z
3E;} - —8t+ZR'i" ouy
1

z
=—at+§,s;‘ *o} eup 2.3.11

=—Wr

so that if we were to explicitly integrate a numerical
entropy $, it would properly not change under these
conditions, i.e.,

ToS=8E+ W, =0 23.12

However, this is not the complete picture because
such a numerical entropy is not explicitly used except
perhaps as a calculational diagnostic. That is, this
numerical entropy is fictitious, and the true entropy
is that which comes from the equation of state

(EOS).

The entropy S is not an independently integrable
quantity, but is rather a dependent variable of the
EOS which has specific volume and energy as
independent variables. Therefore, the actual entropy
change comes from an iterative calculation of the
form

8s=EOS(E',V!)-s°

= EOS(E° +8E, V°+8V)-$° 23.13
Because this is not an algebraically exact calculation,
there will always be accuracy issues associated with
large steps or incomplete convergence. We are not
concerned with this type of error which is
controllable, but rather with a more serious potential
error associated with the form of 3E.

For simplicity consider an adiabatic gas system.
For points sufficiently near each other, the EOS was
explicitly constructed to satisfy 8E =—P3V along an
adiabat. In the traditional PDV formulation, JE is
simply set to -P3V, so that 8V and SE are consistent
with the EOS, although not conservative.

However, in our formulation, 3E is fixed by the
energy conserving formulation, and we have not as
yet defined 8V. If we make no attempt to guarantee
exact consistency of the two, our numerical model
will generally yield SE#—P3V even though no
viscous forces are present. Failure of the
differencing scheme to satisfy such a consistency
relationship will appear as unintended entropy
errors (deviations from the adiabat). The solution,
of course, is to define a consistent 8V which is done
in a later section.

Constraint on the stress field

It follows from the preceding discussion that the
form of the strain or volume calculation cannot be
arbitrarily chosen, but is in fact dictated by the
initial discretization chosen for the momentum
equation. That is, it must be defined such that the
following is true for a fluid

Z
W, ==3t" Y P'S] oup
i . 2.3.14
->Pev;

The first step in establishing the desired relationship
is to factor the zonal pressure P, from the sum. This
can only be done if Pi=P,. Consequently, extensions
to SGH with side-centered stresses such the TTS!7
method cannot be exactly reversible. We are then
constrained to use only a so called constant stress
element, resulting in

Zz
W, =P/ {—8t+2s;' . u;}

2.3.15

This particular argument does not apply to the
viscous forces Q which are intended to be dissipative
and do not need to be factored from the
corresponding sum.



For a solid, the corresponding work equation
" needtobe

Z
W, =3t*3,8] ecf euy
i

=—o} :{-aﬁisgu;}
i

——0} : 8D}

2.3.16

where ¢ denotes contraction on both indices, and

+ _ setgt
8D; =8t"V; Vu 23.17
is a deformation tensor and includes dilitational,
shear, and rotational components. In the next

section, we establish that the above correspond to
reasonable discretizations for 8V and 8D; i.e.,

zZ
SV =-5t*Y.Sf o up
i

——— Ez: Sy 2.3.18
z 291 Up

2.4 VOLUME AND STRAIN

Obviously, we cannot simply postulate that
V=V(x). Instead, we propose an evolution equation
for volume in conservation form and will verify that
it is equivalent to Equation 2.3.18

SV =8t*vi(Veu)
=8"§dTeu 241

Z
-8 YT euj
i

Note that volume is rigorously conserved even
though it may not be exactly what might be
calculated directly from the coordinates. This is
easily shown to reduce to the form required by the
reversibility constraint. We rely upon the fact that
the velocity up is constant within the momentum
control volume and that S;+S,=~(T;+T,) as
shown in Figure 6. This is simply a statement of the
path independence of the integral between e7 and e2
providing 0z and up are constant along the path. The
same result obtains in 3D. As was the case with

-9-

€2 my U

Figure 6. Path independence of the volume integral.

stress, use of a higher order spatial dependence for
up would destroy the path independence of the
integral. In particular, velocity or acceleration
interpolation cannot be used, such as has been
suggested to correct for the center-of-mass of the
momentum control volume.31% Our point is that
such extensions to SGH are unintentionally
dissipative, not that they fail to serve useful purposes
or should not be employed.

Then we have shown that the volume change can
be written as in Equation 2.3.18

Z
8V =B 2S] eup 242

and the corresponding deformation equation as
8D} =&t*V} Vu
=8t*¢dTu
z

Z
- 8t+ZT{" uy 243
1

Zz
+ +
=-3at ZSi llp
1
Another convenient form for these equations is

Z
8Vz"’=——81:"'ZS;"0(11;1 —u;',"z)

244

Z
D} = t"'ZS;*(u';1 —-u‘l','z)
s

where S7 =S;. This is useful in defining artificial
viscosity tensors.




The zone specific volume used in EOS
calculations is given by

245
V. =V +38V]

2.5 COORDINATES

After substituting a conservative integral for the
explicit volume expression, examination of the
difference equations reveals an extremely significant
fact. The momentum contained in the control
volume about a point remains important as the
primary momentum accounting device, but the
specific point coordinates xp do not play a role in the
differencing. What actually matters are the
coordinates of the edge centers xe {and face centers
xf in 3D) that are advanced using a momentum
conserving average of adjacent point velocities given
by

1 [
+ _ +
ul = M zi',Miup
+ 1 : M +
U =y 2 Ml 25.1
+_ 1 & +
u; = ZMiup
1

2

z

with similar expressions at times 0 and 1. In order
to mechanically form the surface S; vectors, control
points Xz and Xp are needed in addition to Xe and Xf,
but mathematically drop out of the integrals. The
coordinates for the auxiliary points can be directly
integrated. However, since we use constant mass
weights, a more economical alternative procedure
for calculating the auxiliary points is possible. If the
point velocity is formally integrated

+_ 0, & 0

XP—XP-*-TUP

1 _ o+ 5t 1

Xp =Xp+55Up 252
— 0 + 4+
-xp+8t ug

then the auxiliary coordinates can be found using the
same weighted averages as in the velocity equations
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R S
Xo = M—eEI'. M;x; 253

with similar expressions for xf and x;.

Hourglass instability and coordinates

It is also well known that SGH suffers from
spurious modes on the scale of the mesh size because
of degrees of freedom unconstrained by the
difference equations. One such mode is the
hourglass mode shown in Figure 7. By definition,
an hourglass mode is any mode of deformation that
does not change the zone volume or strain and
therefore produces no response from the constitutive
model. There exist many ad hoc artificial viscosity
schemes successful in reducing hourglass distortion
without affecting physical shear modes. The
smoothing viscosities discussed in a later section are
effective against instabilities such as hourglassing.

However, unless we introduce special artificial
viscosities that are themselves sensitive to
hourglassing, the only manifestation of the spurious
mode is through the point coordinates xp. But, as
we have shown, the specific point coordinates do not
play a role in the differencing either. It follows that
the major consequence of hourglass modes is simply
that the grid may appear distorted, not that the
quality of the solution has been compromised. We
are justified therefore in independently moving the
points, without adjusting velocity, anywhere
aesthetics demands. There is not even a requirement
that edges formed from pairs of points be straight
lines. We propose advancing the point using the
center-of-mass velocity of the surrounding zones

Figure 7. Typical hourglass instability.
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Figure 9. Example of chevron instability.

1
UP=MP$Miuz
+ __ w0, &t g0
Xt =X0+3U°
1 _w+ o &5t
XP—XP+—2—UP

—_v0
=X, +8"Uj

254

As a practical matter, these results do not
eliminate from concern other instabilities such as
chevron modes which occur in fluids because the
constitutive model does not respond to shear
deformation. Further, although pure hourglass
modes do not themselves degrade the solution, they
are seldom pure. That is, velocity patterns that
appear in one zone as hourglassing typically show up’
in an adjacent one as a chevron or other mode.

2.6 ARTIFICIAL VISCOSITY

Artificial viscosity serves two principal functions:
first to attain the correct shock dissipation, and
second to smooth numerical noise. In this section,
we consider both functions and also two spatial
centerings of the viscosity tensor, zone-centered and
side-centered. The requirement that the viscous
work be dissipative Wq < 0 greatly constrains the
permissible form of artificial viscosity equations.

Zone-centered viscosity

Consider the case of a zone-centered viscosity
tensor. The viscous work equation reduces to

-11-

’ Z
W, =8t+ZQ§‘" oup.
1

B z
=&+ Y nf :Sfuy
i

—&ttxt 3 Sl 264
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i

+ o
TRz . SD:.
so that we can guarantee dissipation if we choose
+ aD-l- T VT
x} o<(8D}) «VTu

The velocity gradient can be decomposed into strain
and rotational rate tensors

Vu=¢+0
o=4(Vu-v"u) . 2.6.2

The usual approach in defining a viscosity tensor
would be to discard the rotational component,
arguing that rotations should not be damped.
However, the chevron instability (illustrated in
Figure 9) which occurs in fluids and low-strength
solids is an example of a spurious rotational
numerical mode that also requires filtering.

Let us first consider shocks. On the scale of an
individual zone, shocks are physically planar so that
the viscous forces should only be parallel to the
direction of propagation ¢. This means that we must
eliminate non-shock components of 'Vu such as those
which might arise from convergent flow. The
direction of propagation € can be found in a number
of ways, such as by diagonalizing the strain rate
tensor €. The viscosity tensor can then be written

T =P, fL,E 263

where the effective strain rate tensor is obtained by
removing the non-shock components

g=(gsle)ce

f =(q,|Au+ q,c)O(Au)
Au=L, g:¢¢ 264
1 compression

oa)={

0 expansion




Lz is the zone width in the direction of propagation
¢, c is the soundspeed, and pz is the zone density.
The quantities q1 and gz are multipliers for the
linear and quadratic viscosities. For a y-law gas
typically recommended values follow from analytical
shock solutions?0

q1-= 0.1
9, =3(y+1)

The net effect of this form is to produce a force on
each surface parallel to the direction of propagation

Q. =S, em;
o< (S, o &)(e2 88)¢ 26.5

Next, let us consider viscosity used for
smoothing. The linear q is an example of such a
viscosity with a serious flaw. If problems are
calculated long enough, the linear q could, in
principle, smooth until all velocity gradients have
disappeared. For this reason, it is preferable to
avoid linear q and use an alternative

%} < —p, cL(Vu-V)' 26.6

in which L is a characteristic length and Vu is an
average velocity gradient which has been spatially
smoothed in some fashion. This form causes the
velocity gradient to relax toward the local average,
as opposed to the value of zero used in the linear q.
In practice, the velocity gradient is separated into
volumetric 6, deviatoric A, and rotational ® tensors,
and different multipliers are permitted on each

Vu-Vu-q,(6-8)

+q4(A-7) 2.6.71
+qw ((’) - 6)

This form has not been proved to be rigorously
dissipative, but this has not been a problem in
practice.

Side-centered viscosity

An alternative to the zone-centered viscosity is
one centered on the side. The viscous work reduces
to

Z
Wq=8t+ZQi+ou;
DAy Qb
=8t ;ﬂs :Si up 2.6-8

b4
=&*Snt :Stuy,
8

where

+ _ o+

Ujz =Up, — Uy, 2.6.9

We can guarantee dissipation if we choose

T, =—p,f s: fﬁxz o él U,

Q=S ex
=-p.£S] o8] [y + u, 2610
=-p,f IS:I h‘-\‘lz i elulz

where
£ =(qofupo]+qic)0(n;2) 2.6.11

The restoring force on each side is proportional to
the velocity difference uj,between the two points,

The ad hoc factor iy, ®& has been introduced to
eliminate non-shock components of u,,such as those
which might arise from convergent flow.

A variation on a form due to Barton?!

T =—p,f Iﬁxz . él ,u;,
Q=S om; 2,612

- -p,f l S, ﬁlzl Iﬁl2 * EI Uy,

also produces a restoring force proportional to the
velocity difference wuy, and is rigorously dissipative.

The absolute value of the dot product S, ei,, has
been taken to avoid pathological attractive forces
which could otherwise occur.

-12-



Yet another variation comes from calculating a
gradient V u from the motion of the side points {p1,

P2,2,f}
% o< —p, £ [xp| Vou"
-4

which produces a resulting force that is not
necessarily parallel to u;,, so that dissipation is not
guaranteed but has not been a problem in practice.
This form (and the next) can be made rigorously
dissipative by retaining only the component of the
gradient parallel to u;

Vau—[Vauli,h,|a,ih,

We have not fully investigated the consequénces of

_this variation.

2.

A variation of the previous form is a side-
centered viscosity used only for purposes of
smoothing

xF o<—p, clx;p|(V,u- V—su)T

Q=Stent 2.6.14
Again dissipation is not guaranteed. This form is a
multidimensional generalization of the spurious-
vorticity-damping method (SVD)14 and is effective
against both chevron and hourglass instability (see
Figures 7 and 9). ’

7 ANGULAR MOMENTUM

Unlike kinetic energy which directly enters the
differencing through the internal energy, the
numerical angular momentumn appears only as a
diagnostic. However, the analysis is important for
understanding the source of common SGH
instabilities and for establishing that the zone center
is free of such instabilities.

Let us briefly review the kinematics of angular
momentum and the role of the center of mass (CM).
For a system of particles satisfying Newton's law, the
rate of change of angular momentum is equal to the

total applied torque. For any point T, this balance

-13-

equation can be separated as follows into rates
associated with the point and about the point.

2 X =¥ 5 xf; 211
i i

erU+Zmi(ri —'r)XI.'li =er+Z(ri —r)Xfi

272

o 273
L{r)+Ar)=T()+1(r)
where

MEZmi FEZfi 274
Tlr)=rxF )= (5 -1)%f;

= i X = -l' 13 == :

= g,m,rl = MEﬁ',m,ux R
Lr)=MrxU

A(r) =T my(r, —r)x;

However, only for the CM point ¥ =R 1is the integral
of L a constant of the motion, so that

L(R)= [dtMRxU
=[at MR xU+RxU)
_ i 275
=[at S MRxU

=MRxU

For this particular reference point, the angular
momentum of the point and the intrinsic angular
momentum about the point can be independently
integrated

L(R)=T(R)
i(R) = T(R) 2.7.6

We must show that the former comnservation
equation for angular momentum is satisfied by our
numerical system. To do this we must (a) establish a
center of mass, (b) define a control volume, and {c)




express the torque on the right hand side as a sum
of fluxes across the control volume boundary.

Center of Mass

‘We must find some point for which the velocity
is known and which could reasonably be taken to be
a CM. Since the points p, e, and f all stride zone
boundaries, the adjacent masses Mj depend upon the
initially assigned zoning and can not in general be
CM. Among our set of control points, only the
zone center is a possible candidate. Depending
upon the definition of M;, there are two approaches
to showing that the zone center is a CM. If the
equal-mass definition of M;j is used, then the CM of
a corner i can be defined to be

R _{%(xp+xz+xe) 2D

fd(xp X X +x¢) 3D 2.1.7

It can be shown that the above definitions for the

auxiliary coordinates lead to
1 Z
R,= —M—Z-?MIR,
1 Z
=3 =M% 218
=X

z

so that the zone CM is indeed the auxiliary point x,.

On the other hand, if one of the other definitions
of M; is used, then an approximate CM must be used
for i. One such is defined

R;=ox, +(1-a)x, 279
where o varies between 0 and 1. Consider the
substructure consisting of the set of corners which
share points p and 2. Although this definition is
seemingly inappropriate for individual comners, it
has the effect of setting the CM for this substructure
on the line between p and z, a reasonably good
approximation. Then, the CM for the zone again
reduces to

Torque

For the momentum control volume, the forces Fi
are applied at some position xj on the surfaces S;.
The total force Fp on a point p and torque Tp about
some point R are given by

P
Fp =2Fi
1
TP(R)+'cp‘Eixi xF
1

. 2.7.11
=Rx3F, +3(x; ~R)xF,
i i

=RXFi+'tp

Consider the extended zone control volume
formed by the median mesh passing through the
centers of adjacent zones as shown in Figure 8. The
forces F,, are applied at the surface of the extended
zone, but accelerate only the true zone. Define the
mass fractions

v; =M; /M, 2.7.12
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which are used to conservatively divide the point
forces among the zones with which they interact.

2.7.13

The notion of splitting the point forces in this
manner requires some explanation. The point force
produces a momentum change within the point
control volume. Since all points within the volume

have the same velocity, the momentum change is

correctly apportioned to subvolumes according to the
mass fractions.

Similarly, the torque applied to a node can be
resolved into torques at and about the CM, and can
be distributed to the zone by mass fraction. These
resulting forms for torque correspond to the same
control volumes used in the linear momentum
equations.

T,(R,)+7, =X ¥i[T,(R,)+1,]
v S x
-szZ\inFy

+ i‘l’ii(xi’ —R,)xF;

=R, xXF, +1,

Il
MN - MN

2.7.14

Conservation Law

The equation for the nodal momentum is in

conservation form

M, =F,
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The equation for the zonal linear momentum is in
nonlocal conservation form because the currents sum
to zero at the extended zone boundary instead of the
true zone boundary

M,a, = ZM“
=Z‘l’iM u

z

= Z Win
i

=F,

2.7.15

The acceleration equations for the zone are of lower
spatial order than those for the node. The
conservation law for angular momentum at zone z is
then proved

L, =M,R, xu,
‘=R, xM,u,
=R, xF,
=T,

2.7.16

No similar law can be proved at the point because it
isnot a CM.

. Although conservation of angular momentum on
the global scale has never been in question, this work
shows conservation on a scale somewhat larger than
azone. The lack of such conservation on the scale of
momentum control volumes gives rise to numerical
instabilities such as chevron and hourglass modes.
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3. CONCLUSIONS

Hydrodynamics algorithms are often formulated
in a relatively ad hoc manner in which independent
discretizations are proposed for mass, momentum,
energy, and so forth. We have shown that, once
discretizations for mass and momentum are stated,
the remaining discretizations are very nearly
uniquely determined, so there is very little latitude
for variation. The resulting analysis provided some
known results and several previously unreported

surprises.

e As has been known (and largely ignored for
some years) the kinetic energy discretization
must follow directly from the momentum
equation; and the internal energy must follow
directly from the energy currents affecting the
kinetic energy.

» Because energy is not exactly conserved in
traditional PDV formulations of SGH, such
formulations are not in principle reversible.

» Requirements for reversibility and
thermodynamic consistency unexpectedly
forces the replacement of the usual volume
calculation with a conservation integral.

*  Reversibility considerations further forbid the
use of higher order functional representations
for either velocity or stress within zones or
control volumes, forcing the use of a constant
stress element and a constant velocity control
volume.

« In tumn the constant stress model causes the
zone center coordinates to formally disappear
from the formulation. Likewise the constant
velocity model causes the point coordinates to
formally disappear from the Cartesian
formulation, removing the direct need for
hourglass corrections

« The form of the work equations and the
requirement for dissipation by viscous forces

-16 -

strongly limits the possible algebraic forms for
artificial viscosity., We have proposed a
distinction based upon the shock dissipation

. and numerical smoothing functions of artificial
viscosity and have presented forms for both, as
well as two spatial centerings of the viscosity
tensor.

e The momentum equation and a center-of-mass
definition lead directly to an angular
momentum conservation law which is satisfied
by the system. Although conservation of
angular momentum on the global scale has
never been in question, this work shows
conservation on a scale somewhat larger than a
zone. The lack of such conservation on the
smaller scale of momentum control volumes
gives rise to numerical instabilities such as
chevron and hourglass modes.

¢ It was shown that, by a few straightforward
substitutions, the Cartesian formulation can be
converted to a multidimensional curvilinear
one. The resulting equations for momentum
and quantities derived from it are not in strict
conservation form and some conservation
error occurs near the axis.

e  The formulation in 2D axisyrhmetric geometry
was shown to preserve rotational symmetry.
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APPENDIX A
CURVILINEAR GEOMETRY

This appendix presents, without proof,
curvilinear formulations in 1D (Cartesian, spherical,
and cylindrical) and 2D (Cartesian and
axisymmetric). We will retain the form of the 3D

expressions previously presented, but indicate the .

replacements that must be made to achieve the
curvilinear form. The basic method involves
replacement of the finite volume surface integrals
with corresponding integrals of lower dimension
(e.g., line integrals in 2D) and addition of
geometrical 1/r terms that formally appear as
sources.

The resulting equations for momentum and
quantities derived from it are not in strict
conservation form and some error occurs near the
axis. Exact conservation could be assured by also
including the error terms as sources, but exact
rotational symmetry would be lost in 2D.

Rotational Symmetry

The 2D axisymmetric formulation presents a
special problem, that of rotational symmetry. If a
spherically symmetric flow field is calculated in 2D
axisymmetric geometry using rotationally symmetric
zoning, then an exactly symmetrical result should be
obtained. If not, a numerical algorithm will be
prone to generating spurious vorticity especially
along the axis. Generally, we achieve rotational
symmetry by replacing the finite volume surface
integrals with line integrals and introducing
geometrical terms in 1/r. The resulting method is
symmetrical, employs an energy-conserving
formulation, and moreover avoids the unintended
introduction of entropy by the difference equations.
However, like other symmetrical formulations, the
conservation equations are not in strict conservation
form and errors occur near the axis.

’A numerical algorithm can be tested for
rotational symmetry by comparing the difference

-17 -

Figure Al. Thought experiment for rotational
symmetry. .

equations for a zone on the symmetry axis with
another at some other angle (shown in Figure Al).
This is a relatively difficult test to pass. The proof
in most cases amounts to showing that the
expressions in question rotate as

_ ﬁi 5 Ar,cos0 _
Brb Brbcase

E E

in which both r; and rp correspond to points on the
line from the origin through the zone center.

A.1 GEOMETRY

Define

0 cartesian
o=41 cylindrical /axisymmetric
2 spherical Al




Surface areas

Surface areas in the Cartesian formulation are
replaced by

o0
Si = Sirp

Ti = tirg

where in 1D

Ss M= Sgn(XZI) i
t,(1) =sgn(x5 )i
s;(D) =xs,
t; (D ==t

A.l3a

and in 2D
s:(D=kx(x. xx;)
t.(2) =k x(x; XX,)
5;(2)=1s,
t,(2)=t,/2

A.l.3b

where i and k are respectively unit vectors in the r
and out-of-plane directions.

Volume

Volume conservation in the curvilinear
formulation is exact but, as in the Cartesian form,
not a direct function of coordinates. However, the
initial areas and volumes are defined by coordinate
areas and volumes A;j and B; of corners

y4
a® = ZAi(xp,xz,x,,xf)

A.l4
Vf° = zz‘,Bi(xP,xz,xc,xf)
Specifically,
Izl D
A;=3(xy xx,)/2 2D AlS5
v 3D

-18 -

and Bj is the corresponding volume of revolution.
At each timestep, the zone area and volume change is
calculated from the conservative integrals

da, =8ty t; eu,

z
BV, =8ty ro't; eu,,
i A.l.6a

This discretization of 8V is consistent with the work
equation. A commonly used alternative’

z z
3V, =dtr, [Eti *u, +:_x'2aiup:| A.16b
i 2 1.

is not. The accumulated area and volumes are then

— a00
a2, =2, +zsaz
t

Al7
V,=VPX+3Y 8V,
t

We have omitted multiplicative factors ﬁlvolvmg .
The mass fractions ¢; are constants determined as

before and are used to define

3; =03, _ Al8

In 2D axisymmetric geometry, ratios like
8V,/VY® do have rotational symmetry. For
spherical flow, the expressions for both 8V and V;
can be shown to be composed of terms effectively
evaluated on the line from the origin through the
zone center, so that the ratio is rotationally
symmetric.

A.2 MASS

In curvilinear geometry, zone and point masses
are defined in distinctly difference manners. Zone
mass is used principally in determining density for
EOQS calculations and is defined

M, =pV°

=constant A21




In order to produée a rotationally symmetric
momentum equation in 2D, point mass is defined in
terms of an areal quantity

m, =p.2, A22

and is not exactly conserved. The quantity m; is
partitioned according to mass fraction @;

m; = (pimz
’ p
mp = Zmi
i A23
M, =m,r;’
#constant

The point masses Mp are not constant because rp is
not exactly the CM of the momentum control

volume. However, large errors should only occur
near rp=0.

A.3 MOMENTUM CONSERVATION

Forces

For brevity, we combine the -reversible and
irreversible stress tensors into a single ©j. The
forces Fj centered on the surfaces Sj are

F, =(f; +g)rp A31

The expression for Fp is unchanged from the
Cartesian form. The necessary equations for fand g
follow from the differential expressions for the
divergence operator and are given by

fi =8§; 0;
2(6,,~P) IDcylindrical
3o, —~P) IDspherical

a;

8i=7 [ox-o
Tz [ ”c W] 2D axisymmetric ~ A.3.2
1z

0 otherwise

.

Because the surface areas satisfy
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Sy =S5 A33
the finite volume formulation produces f forces that
sum to zero on the boundary of the momentum
control volume; that is,

f;, =T, A34

The g forces arising from the curvilinear geometry
appear as body forces.

Acceleration, Velocity, Coordinates

After the indicated substitutions the curvilinear
form of the momentum equation is

m,u, =$(fi +g;) A35

The velocity and coordinate integrations are
unchanged. Unlike the Cartesian formulation in
which the point coordinate Xp drops out of the
discretized equations, its component rp appears
repeatedly in the curvilinear formulation.

We need to show that this momentum equation
preserves rotational symmetry in the case of 2D
axisymmetric geometry. Consider the element of
area shown at two different orientations in the
Figure A2. For a configuration with spherical
symmetry, the stress tensor for the element on the r-
axis will be given by

Gx =61
Gz =02=03=0¢ " A36
ze =612 =0

The f forces depend only upon planar quantities and
aré clearly rotationally symmetric. However, the 1/
terms require explanation. Consider

a =
r T
. =§£_02_clz_o A37
gt
r r T
We need to show that

VT T e T T T P A3 NN A diadiiae 1 e A



Figure A2. Rotational symmetry of g forces.

r 2 —
a; =a.cos0—a,sin® =a_cosd
a; =a,sinb+a,cos0 = a,sind A38

In the rotated frame, the transformed quantities are

OL =G;c0s20 +G,s5in’0
GL, =Gy5in%0 +G,c0s%0
oL, =—{(06, — 0, )sinfcosd A39
Ogp =03

r’=rcos®

For the postulated spherical flow conditions,
CG3 =05, and it follows that spherical symmetry is
indeed preserved

» 282~ 0g

T
_ 61£05°0 + 05 (sin6 - 1)

rcos6
= ——-—(cl =) cos®
r
- Oq
az = rl
_ (o, -0, )sinfcos6 A3.10
rcos®
= ——(Gl =) sind
r
A.4 ENERGY

The kinetic energy and energy current
expressions are unchanged aside from the indicated
substitutions which result in
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Ji = 8tFi ] up
—8trg (f; +g;)e u, A4l
Wz =ZJi
z Ad4.2
=8 r%(F; +g;)ou,

Because the point mass is not exactly constant, some
error is present in the kinetic energy, and
consequently in the resulting current, work, and
internal energy expressions. The radius in these
expressions is evaluated at +.



APPENDIX B
SAMPLE CALCULATIONS

The following are representative results for the
hydrodynamics algorithm described. Although the
3D hydrodynamics algorithms are fully functional, B.1 1D SPHERICAL NOH PROBLEM
we have yet to define non-trivial 3D test problems, Geometr .
L) t%lat no 3D re.sulfs are pres?nted. Because optir.nal 1D sphgricai geometry
settings for artificial viscosity are currently being Sphere of radius 10 cm.
investigated, the problems were run with different .

Zoning

viscosity formulations as noted. _ 100 equally spaced zones.

) Materials
Notes ) Gamma law gas with Y= 5/3

1sh=1e-8 sec .pe oee

1jk=1el6erg Initial conditions
Density = 1.0 gm/cm3
Specific energy = 2.e-7 jk/gm
Velocity = 1 cm/sh toward origin except for

origin itself which has velocity =0

Boundary conditions
Origin is fixed
Outer radius is constant inward velocity of 1
cm/sh

NP U TN TP PPN ] StOb time
E 3 6 sh

6000 E

®om ' F

2000 3

200 ] ’ E

1000 - 3

HohS85 Cub98 tmBOOKSELD tite I
Figure B1.1 Density versus distance to zone

centers. Exact result is a density of 64 behind the
shock which extends to a radius of 2 cm.
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B.2 2D THREE K-LINE NOH
PROBLEM

Geometry
2D axial geometry
Half sphere with origin at (0,0) and radius 1 cm.

Zoning
3 equally spaced radial (K) lines (0°, 45°, 900)
200 equally spaced lateral (L) lines.

Materials
Gamma law gas with y=5/3

Initial conditions
Density = 1.0 gm/cm3
Specific energy = 2.e-7 jk/gm
Velocity = 1 cm/sh toward origin except for
origin itself which has velocity = 0

Boundary conditions
Radial line at 0° is z-fixed
Radial line at 90° is r-fixed
Origin is fixed
Outer radius is constant inward velocity of 1

cm/sh

Stop time
06 sh

Comment

NoLS00 €=1537 twm8O0TRERD fte 50O

Figure B2.1 Density versus distance to zone
centers. Exact result is a density of 64 behind the
shock, If plotted versus point centers, the shock
would extend to a radius of 2 cm.

Run with shock viscosity only (Equation 2.6.3,
q1=.1, q2=1.33). No hourglass, or other
smoothing viscosity was used.

Figure B2.2 3KL Noh grid at stop time. Entire mesh.
Apparent irregularities are due to graphical raster
spacing, not the calculation itself.

¥

W

N

=

B

!

Figure B2.3 3KL Noh grid at stop time. Shock
region. Apparent irregularities are due to -
graphical raster spacing, not the calculation itself.
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Initial Conditions

. Density = 1.845 gm/cm3
B.3 SCHULZ ELLIPSE Specific energy = 2.7 jk/gm

Geometry Boundary Conditions
2D axial geometry o . Vertical radial line is z-fixed
Half ellipse with radial semi-axis=18 cm, axial Pressure profile outside the ellipse that ramps

semi-axis=12 cm from 0 jk/cm3 at t=0 to 0.1 jk/cm3 at t=5 sh
. and remains constant thereafter

Zoning:
10 equally spaced radial K lines extending from Stop Time
origin (0, 0) to the edge of the ellipse at angles 100 sh
from O to 90 in 10 degree increments. The
innermost lateral L-line is the origin (0, 0). The Comment
next L-line is an ellipse with a radial semi-axis of Run with a combination of shock viscosity
6 cm and a axial semi-axis of 4 cm. The (Equation 2.6.3, q1=.1, g2=1.33) and smoothing
remaining lateral L-lines are equally spaced from viscosities (Equation 2.6.14, gy=qd=qw=.5)
there to the edge of the ellipse.

Materials:

Gamma law gas with y=5/3

Figure B3.3 Schulz grid at 50. Figure B3.5 Schulz grid at 100.
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ties (Equation

2.6.13, q1=.1, g2=1.33, qv=qg=1., qw=0.) and

(Equation 2.6.14, qv=q4=0., qw=.5)

1SCOSI

th a side centered vi

Wl

1sh
Run

Stop Time
Comment

1’]4-0.01(1(-1)
ted toward

100

1to 11,
(K-
=5/3
irec

AL
AW

grid at 0.8. expanded in
direction.

Figure B4.3 Saltzman
the radi

-2 -

7 NI

el
i

1 cm and length 1.0 cm

1cm/shd

thy
2.e-7 jk/gm

L

wi

?

0.01(L-1) sin[
0.1-0.01(L—1)

0 except on boundary

radius 0.

1.0 gm/cm3

opposite end of cylinder

ZK,L)
r(K,L)
0CI

,,//;,E;2//////////////////2//////////////////2//,,E===_=
JLLTLLANLTAEAALUARARA AU ARA

Boundaries at r=0 and r=.1 are both r-fixed

Boundary at z=1 is fixed

2D axial geometry

Specific energy
At z=0, velocity

Cylinder of
Gamma law gas

Density

Vel

LTTET11TTURAVVIVIITARVRARBANAAAAAAVNURAVARARARRRRRRAASRRNRRRRARRAARE

ForK=11t0 101
Boundary Conditions

Geometry
Zoning

Materials

Initial conditions

B.4 SALTZMAN PROBLEM

grid at 0.4. expanded in

Figure B4.2 Saltzman
the radial direction.

grid at 0. expanded in the
ction.

radial dire

Figure B4.1 Saltzman
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