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Summary of Activities

During the three years of support under our grant, DOE-FG05-86ER 13507, ten novel polymer
structures have been synthesized and characterized in detail in terms of sorption and transport properties
to test our hypotheses on strategies to develop advanced materials for gas separation membranes. The
extremely important O,/N; and CO,/CHy4 systems have been the focus of our work. Six PhD students
were supported by the grant during the their studies. Several of them went on to accept positions with
companies developing the commercial aspects of this new field. Funds to leverage DOE support were
also provided by a University-Industry consortium at the University of Texas. This consortium, called
the Separations Research Program, allowed leveraging the DOE funds by helping to cover supply and
equipment costs. A total of twenty refereed papers were generated during the grant, and these are listed

at the end of this report.

More Details on Activities Noted Above

In earlier papers, our group has developed guidelines and principles to assist in the optimum
development of tradeoffs between permeability and selectivity [1-5]. Application of these principles have
resulted in several attractive materials for gas separation for O,/N; and CO,/CH4 systems. A
comprehensive review by Robeson [6] defines the current situation in the membrane-based gas
separation materials field. Our most recent work shows that similar principles, developed in our work
with polycarbonates and polysulfones appear to apply to the polyarylate family as well. Specifically,
counterbalancing the effects of packing disruptive substitutions with segmental mobility adjustments by
-control of pendant groups and isomer types allows optimizing polyarylate properties very effectively.

Data for permeabilities and permselectivities for Oo/N; and CO,/CHy4 at 35°C at approximately
2 atm feed pressure for O, & N; and 10 atm for CO, & CHy are reported in Tables 1 and 2 and will be
discussed in two parts, one related to each of the groups of structures in these two tables. For the sake
of efficiency, we will only consider the O,/N; data; however, similar trends apply for the CO,/CHy
system as well. This gas pair is useful, since solubility selectivity effects are generally of much smaller

importance than for the CO,/CHy pair, so even without detailed solubility and diffusivity data, mobility

selectivity based arguments tend to be adequate.




Table 1: Materials focusing primarily on bisphenol-A based structures.
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Table 2: Materials focusing primarily on phenolphthalein-based and
fluorene-based structures.
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Figure 1, corresponding to the data in Table 1, shows the tradeoff curve for the Oy/N, system at
35°C with the area below the line typical of commercially available glassy or rubbery materials. This solid
line was determined by an extensive review of the existing literature about ten ye;ars ago in preparation of
our original proposal to DOE. The dashed line at the top of the figure corresponds to the current
boundary above which no structures yet exist in the open literature. This line was taken from the
extensive review by Robeson [6] of the state of the art of the field and provides a useful limit against
which to compare.

The first set of structures considered consists of the series of polyarylates shown in Table 1 and
in Figure 1 aré structures "1"-"4" and correspond to: "1"[bisphenol-A/terephthalic acid], "2"[bisphenol-
Afisophthalic acid], “3"[bisphenol-A/t-butyl isophthalic acid] and "4"[tetrabromo bisphenol-A/t-butyl
isophthalic acid]. Consider the dotted line arrows describing a "trajectory” on the tradeoff plot from "1"-
->"2". In this case, replacement of the para connection (tere) which can undergo relatively free
movement at its collinear backbone connections by the noncollinear iso connection causes the selectivity
to rise with some loss in productivity due to increased impedance of segmental motion. Although clearly
not near the upper bound property line, such a result is still desirable, since "2" lies favorably off the
tradeoff line as opposed to the starting point structure "1". Continuing from "2" to "3" illustrates the
effects of introducing the large packing-inhibiting t-butyl spacer group on the motionally hindered
isophthalic acid. A small loss in selectivity occurs, while the permeability rises greatly, actually
exceeding that for the starting material "1". Proceeding still further from "3" to "4", illustrates the strong
effects of introducing polar attractions withiq the matrix to hinder segmental motion. Unlike the tere--->
iso change, the tetrabromo substitution drives selectivity up sharply with almost no loss in permeability.
The "4" point lies rather close to the upper bound limit properties. This series shows the
advantage of not only inhibiting motion (tere --> iso) but also simultaneously inhibiting packing (iso -->

t-butyl iso change) and introduction of polar units (bisphenol A ---> tetrabromo bisphenol A).
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Figure 1: Permeability-Selectivity Tradeoff Relationship for the oxygen-

nitrogen system with a “trajectory” formed by consideration of
the structures “17-74” in Table 1. The signficance of the solid
and dashed boundaries in the figure are discussed in the text.




A second, interesting group of structures consists of the series shown in Table 2 and in Figure 2

corresponding to: "1"[bisphenol-A-terephthalic acid], "5"[phenolphthalein/terephthalic acid],
"6"[phenolphthalein/ isophthalic acid], "7"[tetrabromo-phenolphthalein/isophthalic acid], and
"8"[tetrabromo phenolphthalein/t-butyl isophthalic acid], "9"[tetrabromo fluorenebisphenol/isophthalic
acid], and "10"[tetrabromo fluorenebisphenol/t-butyl isophthalic acid]. In this series, as shown by the
dotted line arrows in Figure 2, replacement of the "mobile" bisphenol A with the noncollinear and highly
packing inhibited phenolphthalein causes the permeability and selectivity to rise favdrably off the
standard tradeoff line (see "1" -->"5"). Proceeding further from "5" to "6" involves replacement of the
para connection (tere) with the noncollinear iso connection. This change causes a similar tradeoff with
higher selectivity and a loss in productivity like that seen in the first group ("1" --> "2"), supporting the
generality of the hypothesized effect. Proceeding still further from "6" --> "7", illustrates the strong
effects of introducing polar attractions within the matrix to hinder segmental motion. Unlike the tere--->
iso change, the tetrabromo substitution drives selectivity and permeability up. Applying the lessons
learned in the previous set of structures and proceeding from "7" --> "8" with the introduction of the
large t-butyl spacer group on the motionally hindered isophthalic group we find an expected small loss in
selectivity, while the permeability rises well above that for the starting material "1".

In Figure 2, Point "8" point actually lies on the upper bound limit property line, while
retaining the ability to be processed with current asymmetric membrane technology! The step from "8" --
> "9" gives the first hint of the beneficial effects on selectivity due to incorporation of large flat units in
the polymer by considering the fluorene-based bisphenol arylate structure. This theme is developed
further in a following section. Finally, the step from "9" --> "10" reaffirms the packing disruptive utility
of the t-butyl group illustrated earlier with both the bisphenol-A and the phenolphthalein materials noted
above.

Although other series can also be considered, the structures in Tables 1 and 2 suffice to show that
one sees the same intuitively reasonable behavior in the polyarylates as we found in the polycarbonate
and polysulfone families earlier (see last section in this report for a list of publications citing DOE
support). The proceeding examples illustrate the exciting utility of the emerging data base for

understanding the desirability of a particular structural change relative to a starting material, e.g.,
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nitrogen system with a “trajectory” formed by consideration of
the structures “17-"10” in Table 2. The signficance of the solid
and dashed boundaries in the figure are discussed in the text.




structure "1" ys. structure "10" in Fig. 2. This is a significant achievement in its own right and provides
industry with a useful instrument to guide the ongoing search for improved materials.

In many cases, such as the discussion of Figs. 1 and 2, analyses of structure-property behavior
are confined to a given polymer famﬂy. This approach avoids confusion associated with cross-family
differences in mobility around the hetero-atom linkage (carbonate, ether, imide, etc.) characteristic of

each family and allows illustrating obvious principles as was demonstrated in the above discussion.
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