' LA-UR- 98-4026
Approved for public release;
distribution is unlimited.

Title: { Recursive Estimation for the Tracking of
Radioactive Sources

CoMfF- 9906 02—

F?EFC:EEI\,Esﬁi
Author(s):] James W. Howse MAY 03 1999
Lawrence O. Ticknor O S T[

Kenneth R. Muske

Submitted to:] American Control Conference
San Diego, CA
June 1999

MASTER

Los Alamos,

Los Alamos National Laboratory, an affirmative action/equail opportunity employer, is operated by the University of California for the

U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S.

Government retains a nonexciusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow

others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article

as work performed under the auspices of the U.S. Department of Energy. The Los Alamos Nationai Laboratory strongly supports

academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint

of a publication or guarantee its technical correctness. Form 836 (10/96)




DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Governmesnt nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, compieteness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the Upited States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
‘reflect those of the United States Government or any agency thereof.




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.




Recursive Estimation for the Tracking of Radioactive
Sources

James W. Howse
Los Alamos National Laboratory, Mail Stop F645
Los Alamos, NM 87545

Lawrence O. Ticknor
Los Alamos National Laboratory, Mail Stop F600
Los Alamos, NM 87545

Kenneth R. Muske
Dept. of Chemical Engineering, Villanova University
Villanova, PA 19085

. Abstract

This paper describes a recursive estimation algorithm
used for tracking the physical location of radioactive
sources in real-time as they are moved around in a facil-
ity. The algorithm is related to a nonlinear least squares
estimation that minimizes the change in the source loca-
tion and the deviation between measurements and model
predictions simultaneously. The measurements used to
estimate position consist of four count rates reported by
four different gamma ray detectors. There is an uncer-
tainty in the source location due to the large variance of
the detected count rate. This work represents part of a
suite of tools which will partially automate security and
safety assessments, allow some assessments to be done
remotely, and provide additional sensor modalities with
which to make assessments.

1. Introduction

In this paper we describe an algorithm for recur-
sively estimating the real-time positions of radioac-
tive sources in a facility. In this work, we will explic-
itly consider the problem of tracking a single source
within one room. We estimate the position by as-
suming a known initial source position and then re-
cursively estimating the change in its position from
this initial state. Our data is four time series con-
sisting of the count rate at one second intervals from
four gamma ray detectors which are located at four
different positions within the room. The count rate
at a particular sensor is the total number of gamma-
energy photons received by the sensor during a one
second time interval. The specific sensors that we use
consist of a photoluminescent slab of plastic attached
to a photomultiplier tube. These sensors do not form
an image of the room in the way that a camera would.
This means that many of the techniques for locating
moving objects in images can not be applied. Our

approximations of the detected count rate are based
on a nonlinear model of each sensor which relates the
source location to the measured count rate at that
sensor. '

Our algorithm simultaneously minimizes the
change in the source location, and the deviation be-
tween the measured count rate and the modeled count
rate. The procedure can be viewed as a nonlinear
least squares estimator which is simultaneously min-
imizing the expected value of the difference between
the detector measurements and the estimated (i.e.,
model predicted) count rates, and also the expected
value of the change in the source location, all in the
presence of noise. The predominant source of noise
comes from the stochastic nature of gamma emissions
from the source itself. Ideally, the emission of gamma
photons from a radioactive source over time looks like
a series of samples drawn from a Poisson distribution.
Since the variance of a Poisson distribution is equal to
its mean, the uncertainty in the source location based
on the detector readings in a single time interval is
fairly high.

An analogy may clarify the difficulties associated
with this problem. Imagine a building containing
only one room and having a flat roof with four sky-
lights cut into the ceiling, each near one corner of the
building. You are standing on the roof and someone
is walking around in the room holding a candle. You
must determine the position of the candle in the room
by observing the relative brightness of the light com-
ing through the four skylights. Keep in mind that
the flickering of the candle leads to variations in its
brightness that are proportional to the square root
of the brightness itself. This analogy makes it clear
that many image processing techniques for tracking




moving objects would be ineffective on this problem.

The facility in question conducts various exper-
iments using radioactive materials, and knowing
where the sources are located has implications for
both security and safety. Currently all security and
safety assessments are made by people who are phys-
ically present during experiments. The overall pur-
"pose of the project is to provide tools to facilitate
and enhance this assessment process. Our algorithm
is one part of a suite of tools which will allow some
of these assessments to be made remotely. The tools
will also provide sensor modalities that are not avail-
able to people using only their own senses. These
tools will also be used to partially automate the as-
sessment process. These three factors will enhance
both security and safety by reducing personnel risk
through remote assessment, providing new methods
and sensor modalities for risk assessment, and provid-
ing a source of independent verification for the cur-
rent assessment process.

2. Sensor Model

In this section we discuss the model that relates
the detected count rate from a point source to the
position of that source based on the analysis in
[Tso83]). For the ith detector, the relationship be-
tween the detected count rate D; and the source po-
sition (u;, v;, w;) relative to that detector is given by
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for i = 1,2,...,m, where in our case m = 4. In
this equation & is the actual source strength, ¢; is
the detector efficiency, 7; is the dead time, F; is the
product of all the correction factors (e.g., absorption
and backscattering), D; is the total number of counts
per unit time actually detected, B; is the number
of counts per unit time which constitute the back-
ground, and the view factor ©;(:) is the ratio of the
number of particles which actually enter the detec-
tor to the total number of particles emitted by the
source. The quantity €2;(-) can also be thought of as
the solid angle subtended by the detector for a par-
ticular source location, which ranges between 0 and
4m. For these detectors, the efficiency is rated at
~10% for a Cs!37 source. The dead time of a detec-
tor is defined to be the minimum length of time which
must separate incident photons in order for them to
be recorded as two separate pulses. The photolumi-
nescent material used in these detectors has a dead
time of 3.3 nanoseconds. Note that there is one equa-
tion of this form for each of the m detectors. We will
use the right hand side of Equation (1) as an approx-
imation for the count rate given a particular position
{us,v;, w;), and we denote this function by M;(-).

For a point source and a rectangular detector of
finite size, the most general relative position is shown
in Figure 1. The solid angle ©;(-) subtended by a

w

Figure 1: The relative position between a point source
at position § and a rectangular detector of width W and
height H{. The projections of the source location onto the
% and v axes are u; and v; respectively.

detector of width W and height JH for a point source
located at (u;,v:,w;), relative to the ith detector, is
given by

— Ui Vi
Qi(U,’,'Ui,’lUi) = tan ! e
W

iVul + v +w?
—tan~! (ui = W)
wiy/(ui — W)2 + v? + w?
—tan—! u; (vi — H)
wi/u? + (v; — H)? + w?

-1 (ui = W) (vi —H)
*tan ('wi\/(ui —W)2 +(‘Ui —.'H)2+w?>

2

as shown in [GY71]). The detectors that were used
have a height 3 of 0.83 feet and a width ‘W of 3.00
feet.

It is clear from Figure 1 that the coordinate system
used to derive Equation (2) is detector centered, not
room centered. Since the desired answer is the source
location in room centered coordinates, a transforma-
tion must be made between these two coordinate sys-
tems. The required transformation converts room
centered coordinates (z,y,z) into detector centered
coordinates (u;,v;,w;), which allows Equation (2) to
be properly evaluated. One way to construct this
transformation is by moving each of the detectors
from their actual location to the selected origin of
the room. This is accomplished by first rotating the
sensor about the v-axis in Figure 1, and then trans-
lating the rotated sensor to the origin of the room.




This transformation can be written in matrix form as
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where J;i, Ty, and T, ; are the translations along
the room centered z, y, and z directions, respec-
tively, for the ith detector. The quantity A; is the
rotation angle around the v-axis for the ith detector.
Note that the source location in room centered coor-
dinates is (z,¥, z), and that the source strength S is
not changed by the transformation in Equation (3).

3. Estimation Algorithm

In this section we discuss the estimation algorithm
used to track the position of the radioactive source
over time. This problem was posed as a state esti-
mation problem whose formulation is explained, for
instance, in [SM71] and [Jaz70]. In this context the
measurements or outputs are the detected count rate
D;(k) at each detector i at each time step k. The
states are chosen according to the problem that must
be solved. In this case, the state must at least contain
the source location (z(k),y(k),z(k)) at every time
step k. In addition to the source location, another un-
known in Equation (1) is the background count rate
B; at each detector. We will assume that the back-
ground is the same at each detector, making B(k)
independent of 7, and include this single quantity in
the state. We assume that the source strength S is
known. We also assume that at time & = 0 we have a
good estimate of the source position and background
level (z(0),y(0),2(0),B(0)). Lastly we assume that
the correction factor product F; is constant over time.
Note that while these assumptions are not always rea-
sonable, in our problem they are often valid.

At succeeding time steps we update our estimate
of the source location and background level using the
relations

z(k) = z(k — 1) + éz*(k),
y(k) = y(k - 1) + dy™ (k),
z(k) = z(k — 1) + 0z%(k),
B(k) = B(k — 1) + éB*(k),

(4)

for all time steps K = 1,2,3,..., where dz*(k),
dy*(k), 6z*(k), and 6B*(k) are state changes which
are optimal in some sense. Denote any change in
the state estimates at time k& by the vector d(k) =
[6z(k) 6y(k) dz(k) 8B(k)], denote the state estimates
at a particular time step k by the vector e(k) =
[z(k) y(k) z(k) B(k)] and call the number of elements

in each of these vectors p = 4. Using these defini-
tions, Equation (4) can be written in vector form as
e(k) = e(k — 1) + d"(k). At each time step k the
optimal estimated state change d* (k) is computed by
solving the optimization problem

d’(k) = argmin (; Wi (D,- -~ M;(e(k—1)

)’ +3wra)
j=1

subject to

—-B; < d;(k) < By, N
Li<ek-D+d;(R) <y, 7T
In this equation, M;(e(k — 1) + d(k)) represents our
approximation of the detected count rate 25,-, given
by the right hand side of Equation (1) evaluated at
e(k—1)+d(k) for the ith detector. Note that evaluat-
ing the right hand side of Equation (1) requires solv-
ing Equations (2) and (3) first. The quantity W™
is a weight which determines how closely the algo-
rithm tries to match the model. Similarly, W{ sets
how much the algorithm tries to change the previous
state estimate. The term 3=, W™ (D; — M;(e(k —

1)+ d(k)))2 is a weighted £, norm of the difference
|D — D||; between the actual detected count rate D

and the predicted detected count rate D. Likewise
the term Y, W d2(k) is the weighted £; norm of
the difference |le(k) — e(k — 1)||2 between the esti-
mated position and background at the previous time
and that at the current time. Conceptually this is a
regularization term which penalizes large changes in
the state estimate more than small changes. A block

- diagram of this estimation algorithm is shown in Fig-

ure 2. In this figure, M(-) is the vector form for
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Figure 2: A block diagram of the state estimation pro-
cedure.

the right hand side of Equation (1), Z is the identity
mapping, A~! is a unit time delay, and ming)(-)




is the optimization problem in Equation (5). So
Equation (5) will try to minimize the change in po-
sition and background while simultaneously making
a change that makes the resulting position and back-
ground approximately agree with the model. When
selecting the weights, note that making W™ large rel-
ative to W¢ reflects a high confidence in the sensor
model, while setting W§ high with respect to W
indicates confidence in the state estimate.

Note that there are upper and lower bounds on the
state change d(k) and on the state estimate e(k). The
constraints on the estimate e(k) are imposed so that
the estimated position can not be outside the room,
and the estimated background can not exceed histor-
ical bounds for the background levels in the room.
The constraints on the change in estimate d(k) are
imposed in order to keep noise from causing the po-
sition to jump around excessively from time step to
time step. Conceptually these constraints are reason-
able because the sources are moved by people, and
there is a limit to how far a person can move in a
given time interval.

The optimization problem posed in Equation (5)
is a nonlinear programming problem with linear in-
equality constraints, which can be solved by a num-
ber of methods, many of which are discussed in
[Ber95]. The optimization algorithm that we chose
was CFSQP, which is documented in [LZT94]. This
algorithm uses a sequential quadratic programming
(SQP) approach, modified so that each iteration is
feasible with respect to the constraints. We chose this
algorithm because all the intermediate iterates of the
algorithm are feasible, so if we have to stop the opti-
mization before achieving convergence, the resulting
suboptimal solution will still satisfy the constraints.

4. Tracking Results

In this section we present some tracking results based
on experiments with a real source in the facility. The
experimental procedure consisted of placing a Cs*3”
source on a cart and moving it along a predetermined
path in the room. Along this path there were 17
points at which we paused with the source for approx-
imately 3 minutes each. The estimated position of the
source as seen from the ceiling looking down is shown
in Figure 3 . Figure 3(a) shows the estimated source
positions for model weights W™ = 10~ for all 4, and
Figure 3(b) shows the locations with W™ = 1075, In
both cases the all the state weights were Wf = 1. The
17 numbers in these plots show the actual positions
of the points at which we paused with the source. Be-
ginning at point 1, we followed the numbered points
in ascending order, ending at point 17. The points
¢ in the figure represent the pairs (z(k),z(k)) of the
state estimate for every time step k. These estimates
are computed at 1 second intervals, which is also the
sampling rate for the detectors. Our algorithm runs
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Figure 3: The estimated position of the source in the
z-z plane with model weights (a) W = 107* (b) W™ =
107%. These plots show a view of the room from the
ceiling looking down. The detectors are located in each
of the four corners of these pictures.

fast enough for us to compute each state estimate in
less than 1 second, hence we are able to track the
source in real-time relative to the detector sampling
rate. Although the detectors do not appear in these
pictures, they are located in each corner at a 45° an-
gle with respect to the walls. Note that in Figure 3(a)
most of the position estimates cluster around one of
the 17 numbered points, while in Figure 3(a) there
is a smooth track of points running through the 17
numbered points.

Figure 3 shows that most of the estimates of the
source location are close to the path described by the
17 points where we paused with the source. However,
it does not show whether the estimates follow this
path in the correct temporal order. Figure 4 shows
the estimated position in both the z and z directions
versus time for the z-z plot shown in Figure 3(a). In
these two plots the the solid lines represent the esti-
mated source position, and the dotted lines represent
the actual source position. Figure 4(a) plots the po-
sition in the z direction versus time, and Figure 4(b)
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Figure 4: The estimated position of the source in the (a)
z-direction (b) z-direction versus time. The dotted lines
show the actual source position over time.

shows the z position with respect to time. It is clear
from this figure that the numbered points are visited
in the correct order.

We estimated the error of this tracking algorithm
in the following way. For each plateau in Figure 4(a)
compute the absolute value of the difference between
the median estimated position and the actual posi-
tion. Then take the maximum value of this difference
over all the plateaus. We performed the same calcu-
Jlation for the data in Figure 4(b). This gives a max-
imum median error in both the z and z directions.
Note that this error measure is probably dependent
on the source strength. For the data shown in Fig-
ure 4 this error was 3.11 feet in the z direction and
2.14 feet in the z direction. So the maximum median
error leads to an uncertainty in the source location

which is a rectangle around the actual location that
is 6.22 feet in the z direction and 4.28 feet in the 2
direction. Dividing the area of this rectangle by the

area of the room itself leads to a percent location er-
ror of 2.10%. For the z-z points shown in Figure 3(b),
this error statistic is 1.70%. In achieving this higher
accuracy, the trade-off is that the estimated location
lags the actual location in time. So there is a trade-
off between accuracy in space and accuracy in time
for this estimation algorithm.

5. Conclusion

We have described a real-time algorithm for tracking
the position of radioactive sources in a facility in the
presence of measurement noise. We formulated this
problem as a state estimation problem and solved it
recursively using a constrained nonlinear optimiza-
tion method. The optimization simuitaneously mini-
mizes the change in source position and disagreement
between measurements and a sensor model. The sen-
sor model is a fairly complex function relating po-
sition to detected count rate. The overall purpose
of this work is to enhance both security and safety
by automating part of the assessment process, allow-
ing remote assessment, and introducing new sensor
modalities into the assessment process. We presented
tracking results based on an experiment done with
one source in a single room. Our results indicate that
a source can be tracked quite well with this algorithm
in spite of rather high measurement noise levels. In
short, we have demonstrated the capability to track a
single source in real-time with high accuracy in spite
of a complex sensor model and high measurement
noise.
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