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Possibilistic Systems Within a
General Information Theory *

Cliff Joslyn f

Abstract

We survey possibilistic systems theory and place it in the context of
Imprecise Probabilities and General Information Theory (GIT). In partic-
ular, we argue that possibilistic systems hold a distinct position within a
broadly conceived, synthetic ¢IT. Our focus is on systems and applica-
tions which are semantically grounded by empirical measurement methods
(statistical counting), rather than epistemic or subjective knowledge elici-
tation or assessment methods. Regarding fuzzy measures as special previ-
sions, and evidence measures (belief and plausibility measures) as special
fuzzy measures, thereby we can measure imprecise probabilities directly
and empirically from set-valued frequencies (random set measurement).
More specifically, measurements of random intervals yield empirical fuzzy
intervals. In the random set (Dempster-Shafer) context, probability and
possibility measures stand as special plausibility measures in that their
“distributionality” (decomposability) maps directly to an “aggregable”
structure of the focal classes of their random sets. Further, possibility
measures share with imprecise probabilities the ability to better handle
“open world” problems where the universe of discourse is not specified
in advance. In addition to empirically grounded measurement methods,
possibility theory also provides another crucial component of a full sys-
tems theory, namely prediction methods in the form of finite (Markov)
processes which are also strictly analogous to the probabilistic forms.
Keywords: Possibility Theory, random sets, fuzzy measures, imprecise
probabilities, general information theory, possibilistic processes.

1 Possibility Theory and Imprecise Probabili-
ties in General Information Theory

A central conern for interdisciplinary scientists is the search for properties which
can be measured across systems of different types: if we assert that two systems
actually have the same structure or organization, how can that hypothesis be-
come well-posed and testable? Such questions are usually framed in a relational
language of such concepts as order, organization, structure, variety, constraint,
freedom, determinism, and complexity. A formal theory of relational concepts
has rested classically on information theories, and in particular on concepts of
information, such as Shannon’s statistical entropy, which are defined as a re-
duction in or lack of uncertainty. In turn, these uncertainty-based information
theories were rooted deeply within the formalism of traditional probability the-
ory, with a corresponding emphasis on entropy measures, Monte Carlo methods,
Bayes nets, Markov models, etc.

This view is currently expanding in two significant ways. First, there has
been progress towards addressing a primary criticism of information theory,
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namely that it is purely syntactic and does not involve anything about the
meaning of the signal. There is thus a growing semiotic theory of information,
where issues of the semantics, interpretation of signals, and the groundings of
signals in measurements are finally being seriously considered [26].

Second, since the introduction of fuzzy sets [25] and evidence theory [4, 28]
in the mid-1960’s there has been a proliferation of mathematical methods for
the representation of uncertainty which generalize beyond classical probability
theory [24]. In addition to a fully developed fuzzy systems theory [25], there are
also fuzzy measures [32], rough sets [27], random sets [8, 21] (Dempster-Shafer
bodies of evidence [9, 28]), and possibilistic systems [2]. There is a pressing
need to synthesize these fields within a collective as General Information Theory
(GIT) [23], searching out larger formal frameworks within which to place these
various components with respect to each other. And indeed there is a growing
movement in that direction [6, 20, 24].

In particular, Imprecise Probabilities have been advanced as providing a
grand generalization of all of these methods [3, 29]. As a general framework,
imprecise probabilities have both advantages and disadvantages for particular
interpretations and applications. On the one hand, they can subsume multiple
other representations. On the other hand, in their general form they are com-
plex mathematical structures, whose primary interpretations and measurements
are grounded in epistemic evaluations. More specialized mathematical frame-
works, for example within fuzzy measures or probability or possibility theory,
are more constrained structures, with the tradeoff of potentially greater appli-
cability against less generality.

Our work specifically is motivated by the introduction of possibility theory as
the first alternative, non-probabilistic form of information theory [22], and thus
as a branch of GIT [2]. Within GIT, possibility theory is unique in that it provides
structures and methods which parallel traditional information theory, with strict
possibilistic correlates to distributions, entropy measures, Markov processes,
and Monte-Carlo methods, etc. [11, 12, 14]. Simultaneously, through random-
set based measurements, empirical methods are available for measurement of
possibilistic structures, including histograms and sample statistics.

Furthermore, there is evidence to support the claim that these possibilistic
forms are unique in providing such a close parallel to the standard probabilistic
forms. The understanding of the deep connections between possibility measures,
coherent upper previsions, and random sets {1}, and the fact that like impre-
cise probabilities, possibilistic systems are better able to handle “open-world”
problems with unspecified or changing universes of discourse [31], combine to
suggest the way forward to integrating possibilistic systems theory within the
broad context of a GIT involving imprecise probabilities.

In the rest of this paper we briefly survey aspects of possibilistic systems
theory and place them in the context of imprecise probability and GIT. In
particular, we recognize possibility measures as extreme plausibility measures,
which in turn are fuzzy measures, and finally which in turn can be cast as
previsions on sets. In this way possibilistic systems are available in an imprecise
probability context. :

‘We consider in particular three aspects of possibilistic systems theory:

e We can measure imprecise probabilities directly and empirically from set-
valued frequencies (random set measurement), and derive empirical fuzzy
numbers and intervals from random interval measurements.

¢ Given a semantic grounding in random set (Dempster-Shafer) measure-
ment, we then understand that those which yield probability and possibil-
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ity measures are special in that they are t-conorm distributional (decom-
posable) and also have certain simple topologies.

¢ Finally, in addition to empirically grounded measurement methods, pos-
sibility theory also provides another crucial component of a full systems
theory, namely prediction methods in the form of finite (Markov) processes
which are also strictly analogous to their probabilistic form.

2 Random Set Approach to Possibility Theory

Assume a universe of discourse ) = {w}. We generally consider ? = {w;},1 <
i < n to be finite, although sometimes we will recognize that € = IR, and
consider half-open interval subsets, elements of the class denoted D := {[a,b) C
R:a,b € R,a < b}. Given a class C = {A} C 29, define the core as C(C) :=
Nagc 4- :

Define a triangular conorm U:[0,1]> — [0,1] (resp. triangular norm
M:[0,1]% ~ [0,1]) as an associative, commutative, monotonic operator with
identity O (resp. 1). R := (U,N) is a conorm semiring if M distributes over L.

The function v:2% — [0,1] is a (finite) fuzzy measure [32] if »(@) = 0 and
VA,BC Q,AC B — v(A) < v(B). v is called distributional if there exists
a conorm U such that VA C Q,| |, .4 ¢ (wi) = v(4), where ¢,:9 = [0,1],
with g, (w;) = #{({w;}) the distribution of ». Furthermore, v is normal when
v(Q) = 1, so that | ], .q g»(w;) = 1. For a fixed finite fuzzy measure v, denote
7={g) = (@{w}) for 1<i<n. .

Probability theory results from considering the fuzzy measure Pr with prob-
ability distribution p := gp,,5 = (p;) := §. Probability measures result from
additive normality, namely that 3., p; = 1. Then U = +; defined by z+,y :=
(z + b) A 1,'where z,y € [0,1] and A is the minimum operator. The standard
forms of probability result VA4, B C Q:

Pr(AUB) = Pr(4) + Pr(B) —Pr(ANB), Pr(A) =3 p f: pi=1.
wi;EA i=1
1

The central tenet of possibility theory is the introduction of a fuzzy measure
IT with possibility distribution 7 := ¢, @ = {(x;) '= ¢ and U = V, the maximum
operator. The equations of probability now take the form VA, B C Q

I(AUB)=T(A) VII(B), WA= \/ m, \n/mzl. (2)
w;EA =1

Possibility measures and distributions share a great advantage with imprecise
probabilities, at least as advanced by Walley in the imprecise Dirichlet approach
[31], in that they can adequately represent “open-world” problems where the
universe of discourse is either unspecified or changes. In particular, given a
possibility distribution on £2, if Q is updated, then no global recalculation of =
is required. This is because the maximal possibilistic normalization is a “local”
property-of the core C(r) := {w: n(w) = 1} C Q, and not a global property of
the whole distribution, as with additive probability distributions.

Possibility measures are usually intepreted in the context of fuzzy sets, and
in particular the possibility distribution n is interpreted as a fuzzy set. Their
measurements are then grounded in traditional fuzzy systems methods of sub-
jective evaluations [30]. An alternative approach is to ground the measurement
of possibility measures and distributions in the context of empirically-derived
random sets.




Given a probability space (X, ¥, Pr), then a function S:X ~ 29 — {§},
where — is set subtraction, is a random subset of Q if S is Pr-measurable, so
that V§ # A C 9,571(4) € . In the finite case, they can be seen more
simply as random variables taking values on subsets of 2. Further, they are
mathematically isomorphic to bodies of evidence in Dempster-Shafer evidence
theory [4, 28]. In this context, we can introduce a function m:2? + [0,1] as an
evidence function (basic assignment) when m(@) = 0 and 3 o m(4) = 1.
Then § = {{4;,m;) : m; > 0} is a finite random set where A; C Q,m; :=
m(4;), and 1 <j < N :=|8| < 2™ — 1. Denote the focal set of S as the class
F(S) = {4; : m; >0} C 2% A random set S is consistent if C(F(S)) # 0.

The plausibility and belief measures on VA C  are

Pl(4) = Y mj, Bel(d)= > my,

A; LA A;CA

where A L B denotes AN B = §. The plausibility assignment (otherwise known
as the trace or one-point coverage) of S is §(S) = (p;), where p; = P1({w;}) =
245w, M- Clearly p is a fuzzy set.

de Cooman and Aeyels have provided full details on the imprecise probability
interpretation of possibility measures and random sets [1]. Note that [1, 29, 32]:

o Pl and Bel are generally non-additive fuzzy measures without distribu-
tions, and are dual, in that VA C Q,Bel(4) =1 - PI(A).

e II is an extreme plausibility, whose dual belief is the necessity measure

e Pris both a plausibility and its self-dual belief measure.

e If Pl and Bel are normal, then they are coherent upper and lower proba-
bilities on the events A C (0.

¢ II is normal iff it is a coherent upper prevision on the events.

Given a random set S, if P] has a distribution operator U, then ¢(S) := g(S)
is called the distribution of S. In particular, when

VA; € F(S), |45 =1, (3)

then & is called specific, Pr{(A) := P1(4) = Bel(A) becomes a probability mea-
sure, and P(S) = §(S) = p(S) is a probability distribution. Similarly, S is
called consonant (F(S) is a nest) when (without loss of generality for ordering,
and letting Ao = 0) Aj—; C A;. Now II(A) := P1(4) is a possibility mea-
sure and 7(A) = Bel(A) is a necessity measure.! 7 := §(S) = 5(S) is then a
possibility distribution.

Each random set S maps to a unique fuzzy set §(S), or to its distribution
q(S) if U exists. But when we begin with a particular fuzzy set p: Q + [0,1],
or in vector form fi, there is generally a non-empty, non-unique equivalence
class of random sets W(ji) for which VS € ¥ (i), 5(S) = @ [7]. When ji begins
as an additive probability distribution F, then |¥(F)| = 1, so that § uniquely
determines a specific (in the sense of (3)) random set.

But when /i begins as a maximal possibility distribution #, then in general
|[®(7)[ > 1. All of the S € ¥(F) are consistent, and thus it is this consis-
tency which is both necessary and sufficient for S to have a maximally normal-
ized possibility distribution # = g(8) by (2). In particular, S is consistent iff

Since results for necessity are dual to those of possibility, only possibility will be discussed
in the sequel.




Vi_; pi = 1. Then while S might not be consonant and Pl not a possibility
measure, there is a unique approximating possibility measure II* and consonant
random set S*(7(S)) € ¥(#). Thus in general when working with possibil-
ity theory in the context of finite random sets, a consistent random set S is a
sufficient condition to generate a possibility distribution 7(S).

As we consider possibilistic measurement proper below, it will be desirable
to let = IR. A random interval, denoted .4, is a random set on = R for
which F(A) C D. Thus a random interval is a random left-closed interval subset
of R. The trace of A is then p4:IR — [0, 1], where Vz € R, pa(z) := Pi({z}) =
b A;52 T A fuzzy subset of the real line F C R is a fuzzy interval if F
is maximally normalized and convex, so that Vz,y € R,Vz € [:c,y],p,ﬁ(z) >

ps(@) A pg(y). A fuzzy number is a fuzzy interval F where 3z € R, C(ﬁ’) =
{z}.

3 Measurement of Possibilistic Histograms

Random set counting provides a superb empirical method to ground the mea-
surent of evidence (belief and plausibility) measures. They are a direct general-
ization of traditional frequentist methods to measure probability distributions
{for an empirical approach using imprecise probabilities, see [31]). More specifi-
cally, measurement of consistent random intervals yield empirical fuzzy intervals.
Full formal details of the following are available elsewhere {19, 17].

The central concept is the introduction of a general measuring device,
a system where counts are collected over a collection of possibly non-disjoint
subsets C = {4;} C 2% . This yields an empirical random set S¥, based on an
empirical focal set, or collection of subsets FZ := {4,} C C which are actually
observed, and their relative frequencies of occurrence recorded in an empirical
evidence function mZ(A4;). If the A; are disjoint, this degenerates to traditional

. measurement.

An important random interval case is when £ = IR and ¢ C D. Then
the empirical random set S¥ becomes an empirical random interval A® with
plausibilistic trace p4. If AP is consistent then ¥ = p= is called a pos-
sibilistic histogram, which is an empirically-derived possibility distribution,
and is furthermore a fuzzy interval (see Fig. 1). If A is not consistent, then
various possibilistic approximations are available, in particular interval versions
of focused consistent transformations [18].

B, |
B, 3
5
a n(x)“

1 J 1+ —0

m(A)

A, 25 |
A, .25 —o
—~+ + - >
0 1 2 3 4 X 1 2 3 4 X

Figure 1: (Left) Observed focal elements of a random interval. (Right) Possi-
bilistic histogram 7%,




Fuzzy intervals are classical structures in fuzzy theory, and used in a variety
of applications. While possibilistic histograms are fuzzy intervals, there are
unusual in an applications context because they are piecewise constant, with at
least N + 1 and at most 2V discontinuities. Various methods are available to
derive continuous fuzzy interval and fuzzy number forms, yielding traditional
forms which still preserve most of the characteristics of the “raw” histograms
7.

4 Distﬁbutional and Aggregable Random Sets

While we ground possibilistic measurement in a random set (interval) context,
in general random intervals are not consistent, and yield plausibility measures
which are not distributional. We strive to produce distributional possibility
measures since they have the great advantage of being able to be constructed on
the basis of on the order of n point values, rather than N = 2™ set values. In the
random set context, probability and possibility measures stand out as special,
in that this distributionality is paired with the simple topological structure of
the random set. Full formal details of the following are available elsewhere [15].

A random set S is called g-aggregable is there is a one to one function
g: F(S) — § called a structural aggregation function. If § is g-aggregable,
then denote the numerical aggregation function h: S — [0,1] with h(m;) =
Pl(g(A;)). g maps each focal element A; to a universe element g(A,), and h
maps that to its plausibility assignment value h(m;). In general, a random set
S may have multiple g corresponding to the various permutations of the A; and
Wi.

A random set S is g-aggregable iff |S| = N < |Q] = n. If this become
equality, then S is called g-complete. If a g-complete random set S is also
U-distributional, then the distribution Pl is called complete. In a g-complete
random set, the focal elements and universe elements are mutually determining,
with each focal element A; existing as a particular g~!(w;). The indices ¢ and
j are then identical and can be used interchangeably. Also then g is onto, with
inverse g1 {w;) = A;, and h™! may also exist, so that m; = A~} (PL;).

Random sets yielding probability and possibility measures as their plausi-
bility measures are special in that they are both distributional and aggregable.
It remains to be proved that they are unique in this respect, but the evidence
is highly suggestive. In particular [15]:

s Probability is characterized by disjointness of the random set and the
additivity of plausibility. When g is defined such that VA;, Fw;, g(4;) =
wj, then & is specific. Then Pl = Pr, which is also +;-distributional. If S
is also complete, then

g4 =wj, g Hw))=4;  hmy)=h"Yp;) =p; =m;y,
and Yw; € Q,p; > 0.

e Possibility is characterized by nestedness of the random set and the maxi-
mality of plausibility. When g is defined such that VA;, g(A;) € 4;—A;j_1,
then S is called consonant. Then Pl = I, which is also V-distributional.
If S is also complete, then

g(Aj) = Aj — Q41 = Wy, g—l(wj) = {wlsza e 7wj} = Aja

N
h(m]) :ka =7y, h_l(ﬂ'j) =T — Wiy = My,
k=3




l=m>m > >, >0.

o In search of other information theories, we first consider Sugeno-distributional
fuzzy measures [5, 15] defined by

va{AU B) = vy (A) + va(B) + Ava(A)wa(B), AfLB, Xe(-1,00).

vy, is LIy -distributional, where Uy is the Sugeno conorm defined by zU)y :=
(z+y+Adzy) Al,z,y € [0,1}. If A = 0 then vy = Pr. If A # 0, then
letting K := [log,(n + 1)}, then & is gy-aggregable for some structural
aggregation function g iff '

N € I:={1,3,7,...,251-12K_1}.

In general, no numerical aggregators exist. Further, non-probabilistic
Sugeno measures produce complete random sets only if 3k € {1,2,...}, N =
n = 2% — 1. Thus this broad class of distributional fuzzy measures does
not generally yield aggregable random sets.

e Now consider an important class of aggregable random sets, and ask
whether distributional fuzzy measures are forthcoming. In particular,
consider ring-structured random sets with aggregation functions g(A4;) =
A;NAj1 = {w;} where Ag = An by convention. If S is complete, then
h(m;) = mj + mj_;. But S is not distributional for any distribution
operator Ll.

Thus in general probability and possibility stand as special cases which pro-
vide both distributional evidence measures and aggregable random sets. These
results are summarized in Tables 1 and 2.

Table 1: Summary of the existing information theories.

General Probabilistic | Possibilistic
Topology 2% 1y Specific Consonant
Distribution g; = Pl; p; =Pr({w;}) | m; = OI{{w;})
t-conorm u +b Vv
Focal Element Aj =g wy) | {w;j} {wi,we,...,wi}
Structural Aggregation || g(A4;) = w; Aj Aj— A
Numerical Aggregation || h(m;) = Pl; m; fmj M
Inverse ™Y (PL) =m; || p; Tj — Tj+1
Completion [F(S) =19 p; >0 Tj > Wit

5 Possibilistic Processes

So far, we have motivated possibilistic systems theory within an overall GIT, also
including imprecise probabilities, by first semantically grounding them in ran-
dom interval measurement, and them justifying them as special distributional
and aggregable forms. We now point the way to the other crucial aspect of a
full systems and modeling theory necessary to complement measurement pro-
cedures, namely prediction methods. In particular, we introduce possibilistic
processes as correlates to first-order Markov processes (see [13, 16], and [11]).
We can define a system which acts as a generalized first-order Markov process
as a system Z := (S, ¢V, R, A) where S is a set of states; V' is the valuation




Table 2: Summary of the special random set cases.

Sugeno Ring
Topology Sub-hypercube Ring
t-conorm Uy None
Focal Element Any0#ACQ {wj,wjt1}
Structural Aggregation || Only for N < 2liog2(n+D) — 1 | AN A;qq
Numerical Aggregation || None mj +mj_1
Inverse Never For n even
Completion n=2F-1 Pl; >0

set, a lattice with 0,1 € V (here we assume that V is a chain with V' C [0, 1]);
R = (U,M) is a conorm semiring; A:S? — V is the transition function; and
$7:S — V are a family of state functions for 7 € {0,1,...}, with ¢° a given
initial state function; and Vs € 5,7 > 0,

¢7(s) = || ¢ M AGs, ). @)
s'es

When S is finite with S = {s;},1 < i < n :=|S|, then it is common to
consider ¢” as the vector ¢ = (#7), with ¢7 = ¢" (s;); A as a matrix A = [Ay]
for 1 < i,j < m, with Ay; := A(s;,s5); and " = ¢! o A where o is matrix
composition over the semiring R, as shown in (4). Furthermore, ¢! is normal if
llses #°(s) = 1; A is transition normal if Vs’ € S, },.4 A(s,8') = 1; and Z is
normal if A is transition normal and Vt > 0, ¢' is normal. By theorem, if ¢° is

normal and A is transition normal, then Z is normal.

A number of cases follow depending on the specializations made for R,V,
and normalization, which are summarized in Tab. 3:

Stochastic Processes: Result when R = (43, x) is an additive semiring, so
that the A;; are the conditional probabilities of transiting from state s;
to state s; and o is normal matrix composition -. Here normalization by
-+ is required, so that V7,3, p] = 1. This implies the weaker conorm +
normalization (3, pI)Al=1.

General Fuzzy Processes: Result when R = (v, ) for any norm M. A € §?
is now a fuzzy matrix representing a fuzzy relation of the fuzzy linkage
between the prior state s’ and the subsequent state s; and o is fuzzy matrix
composition [25]. Note that there is no normalization, and all values are
unconstrained over [0, 1]. ‘

Nondeterministic Processes: If now V is restricted to {0,1} C [0,1], then
a classical nondeterminstic process results [10], so that at time 7 there
exists a set of possible states and any state can transit to multiple states.

Deterministic: Given either a stochastic process with V' = {0,1}, or a non-
deterministic process with the certainty requirement Vr,3!s;, ¢*(s;) = 1,
then a classical deterministic process results [10], which is always in one
definite state, and transits to another definite state.

Possibilistic: Finally, given a fuzzy process which is normal by V, then a possi-
bilistic process results [12]. Now 77 (s;) == ¢"(s;) € [0, 1] is the possibility
of being in state s; at time 7; A is called a possibilistic matrix II := A,
with 77(s;{s;) := IL;; = A;; being the conditional possibility of transiting
from state s; to state s;; and o is fuzzy matrix composition.




Class Denotation | R Vv Normal
Stochastic Z, {45, %) 0,1} By +

Fuzzy zZ (v,n) [0,1]  Not necessarily
Nondeterministic 2, (v,n) {0,1} Yes
Deterministic 24 (+s, x) =(v,M) {0,1} Yes
Possibilistic Zx (v, ) [0,1]  Yes

Table 3: Special cases of processes.

6 Conclusion

‘We surveyed aspects of possibilistic systems theory in the context of GIT and im-

precise probabilities. As the community moves to the articulation of a complete
GIT involving these components and others, it will be important to consider
them in mutual interaction, for the various strengths and benefits that each
particular theory, or a general theory, can bring to particular interpretations
and applications.
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