

LA-UR- 99-152

Approved for public release;
distribution is unlimited.

CONF- 990605--

Title: Impact of MCNP Unresolved Resonance Probability-Table Treatment on Uranium-233 Benchmarks

Author(s): Russell D. Mosteller

Submitted to: 1999 Annual Meeting of the American Nuclear Society
Boston, Massachusetts
June 6-10, 1999

RECEIVED
MAR 12 1999

OSTI

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

Los Alamos NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

Impact of MCNP Unresolved Resonance Probability-Table Treatment on ^{233}U Benchmarks

Russell D. Mosteller
Advanced Nuclear Technology Group (NIS-6)
Nonproliferation and International Security Division
Los Alamos National Laboratory

(This paper is closely related to LA-UR-98-29)

Impact of MCNP Unresolved Resonance Probability-Table Treatment on ^{233}U Benchmarks

Russell D. Mosteller

Los Alamos National Laboratory

Previous versions of the MCNP Monte Carlo code,¹ up through and including MCNP4B, have not accurately modeled neutron self-shielding effects in the unresolved resonance energy region. Recently, a probability-table treatment² has been incorporated into an intermediate version called MCNP4XS, and compatible continuous-energy cross-section libraries have been developed for 27 different isotopes.³ Preliminary results for a variety of uranium and plutonium benchmarks have been presented previously,⁴ and this paper extends those results to include several ^{233}U benchmarks.

The probability-table method^{5,6} relies on the statistical nature of neutron resonances in the unresolved region. Average unresolved resonance parameters from nuclear-data evaluations may be utilized by a processing code (in this case, NJOY⁷) to generate ladders of representative resonances. Cross sections from these ladders then are used to form cross-section probability distribution functions, from which NJOY prepares a table of cross sections (total, elastic, fission, radiative capture, and heating) as a function of probability. Such tables are a function of incident neutron energy. When transporting neutrons in the unresolved energy range of a particular nuclide, MCNP4XS samples the total and reaction cross sections rather than simply using single average values as the code has done in the past. By virtue of randomly sampling large, intermediate, and small cross sections from the probability tables, MCNP4XS models the effects of neutron self-shielding in the unresolved resonance energy region.

The previous results were obtained using a preliminary set of cross-section libraries that contained probability tables only for ^{235}U , ^{238}U , ^{239}Pu , ^{240}Pu , ^{241}Pu , and ^{242}Pu . In contrast, the final libraries contain probability tables for 27 isotopes, including ^{233}U . All the previous benchmarks have been re-run with the final libraries, and, although there are small differences between many of the new and old eigenvalues, the conclusions that were drawn from the preliminary results all remain valid. The most important of those conclusions are that (1) the probability-table method does not significantly affect the reactivity results for highly enriched uranium (i.e., ^{235}U) systems, but (2) MCNP calculations for systems with large amounts of ^{238}U and intermediate spectra can produce significantly nonconservative results unless the probability-table method is employed.

The objective of the current study is to assess the reactivity impact of the probability-table treatment on ^{233}U systems. The benchmarks that were chosen are summarized in Table 1. With three exceptions, they employ specifications⁸ provided by the Working Group for the International Criticality Safety Benchmark Evaluation Program (ICSBEP). Unfortunately, neither the ICSBEP benchmarks nor those⁹ from the Cross Section Evaluation Working Group include any ^{233}U systems with intermediate spectra, and inclusion of cases with intermediate effects is necessary for this study because the unresolved resonance region for ^{233}U extends from 60 eV to 10 keV. Consequently, three fictitious cases — ^{233}U ZEBRA 8H, ^{233}U HUG #1, and ^{233}U HUG #2 — were constructed from the ICSBEP $^{235}\text{U}/^{238}\text{U}$ k_{∞} benchmarks for ZEBRA 8H (MIX-MET-FAST-008) and HISS/HUG (HEU-COMP-INTER-004). ZEBRA 8H, while predominantly a fast system, contains a significant intermediate tail, while the HUG cases have spectra that overlap the entire unresolved resonance range of the ^{233}U . The ^{233}U density in case #2 is only half that in case #1, and consequently it has a somewhat softer spectrum.

The MCNP4XS calculations each used 1 million active histories, and employed ENDF/B-VI cross-section libraries exclusively. In contrast to the previously distributed ENDF60 library,¹⁰ which is consistent with release 2 of ENDF/B-VI, the libraries with probability tables all are consistent with Release 4. With the exception of the three fictitious cases, the calculations always employed cross sections with probability tables for the isotopes that have them, and the cross sections for all other isotopes were taken from ENDF60. However, because they are strictly computational benchmarks, in the calculations for ^{233}U ZEBRA 8H and the ^{233}U HUG cases probability tables were employed only for ^{233}U to isolate the effects on it.

The results from these calculations, along with their associated standard deviations, are presented in Table 2. Not surprisingly, results for the fast and thermal benchmarks are not significantly affected. Specifically, the spectra for the metal spheres and for ^{233}U ZEBRA 8H are too hard to produce large reactivity changes, while the spectrum for the nitrate solution is too thermal. The probability-table method produces a significant change in reactivity for ^{233}U HUG #1 but, at most, a marginal change for ^{233}U HUG #2. This result demonstrates that the probability-table method can have a small but significant reactivity impact for ^{233}U systems with spectra that substantially overlap the unresolved resonance range for ^{233}U . However, the magnitude of that impact is quite sensitive to the details of the spectrum even within that range.

References

1. Judith F. Briesmeister, ed., "MCNP — A General Monte Carlo N-Particle Transport Code, Version 4B," LA-12625-M, Version 4B, Los Alamos National Laboratory (March 1997).
2. Lee L. Carter, Robert C. Little, John S. Hendricks, and Robert E. MacFarlane, "New Probability Table Treatment in MCNP for Unresolved Resonances," *Proceedings of the*

*ANS Radiation Protection and Shielding Division Topical Conference on Technologies
for the New Century* (April 19-23, 1998, Nashville, Tennessee).

3. Robert C. Little and Robert E. MacFarlane, "ENDF/B-VI Neutron Library for MCNP with Probability Tables," Los Alamos National Laboratory report LA-UR-98-5718 (December 1998).
4. Russell D. Mosteller and Robert C. Little, "Impact of MCNP Unresolved Resonance Probability-Table Treatment on Uranium and Plutonium Benchmarks," *Trans. Am. Nucl. Soc.*, **79**, 313 (November 1998).
5. J. M. Otter, R. C. Lewis, and L. B. Levitt, "UBR, A Code to Calculate Unresolved Resonance Cross Section Probability Tables," AI-AEC-13024, Atomics International (November 1973).
6. R. N. Blomquist, R. M. Lell, and E. M. Gelbard, "VIM — A Continuous Energy Monte Carlo Code at ANL," pp. 31-46, (J , .- 4 b 2 *Proceedings of a Seminar Workshop*, D. K. Trubey ORNL/RSIC-44, Oak Ridge National Laboratory (April 21-23, 1980, Oak Ridge, Tennessee).
7. R. E. MacFarlane and D. W. Muir, "The NJOY Nuclear Data Processing System Version 91," LA-12740-M, Los Alamos National Laboratory (October 1994).
8. "International Handbook of Evaluated Criticality Safety Benchmark Experiments," NEA/NSC/DOC(95)03 (Rev), OECD Nuclear Energy Agency (September 1997).
9. "Cross Section Evaluation Working Group Benchmark Specifications," BNL-19302 (ENDF-202), Brookhaven National Laboratory (November 1974).

10. John S. Hendricks, Stephanie C. Frankle, and John D. Court, "ENDF/B-VI Data for MCNP," LA-12891, Los Alamos National Laboratory (December 1994).

Table 1. Summary of ^{233}U Benchmarks

Benchmark Name	ICSBEP Identifier	Principal Core Material(s)	Principal Reflector Material(s)	Shape
Jezebel-23	U233-MET-FAST-001	Uranium (98.13 wt.% ^{233}U)	None	Sphere
FLATTOP-23	U233-MET-FAST-006	Uranium (98.13 wt.% ^{233}U)	Normal U	Sphere
^{233}U Reflected by Tungsten	U233-MET-FAST-004, Case 2	Uranium (98.2 wt.% ^{233}U)	Tungsten	Sphere
^{233}U Reflected by Beryllium	U233-MET-FAST-005, Case 2	Uranium (98.2 wt.% ^{233}U)	Beryllium	Sphere
^{233}U ZEBRA 8H	None	Uranium (20.5 wt.% ^{233}U), Normal U (6 wt.% ^{233}U Average)	Steel	Infinite Lattice of Parallelepips
^{233}U HUG #1	None	Uranium (45.9 wt.% ^{233}U), Graphite, Boron	—	Infinite, Homogeneous
^{233}U HUG #2	None	Uranium (45.9 wt.% ^{233}U), Graphite, Boron	—	Infinite, Homogeneous
ORNL-9	U233-SOL-THERM-001, Case 5	Uranyl Nitrate (97.7 wt.% ^{233}U), Water	None	Cylinder

Table 2. Reactivity Impact of Probability-Table Treatment for ^{233}U Systems

Benchmark Name	k_{eff} or k_{∞}			Δk_{PT}
	Benchmark	with Probability Tables	without Probability Tables	
Jezebel-23	1.0000 ± 0.0010	0.9930 ± 0.0006	0.9928 ± 0.0005	0.0002 ± 0.0008
FLATTOP-23	1.0000 ± 0.0014	1.0007 ± 0.0007	1.0000 ± 0.0006	0.0007 ± 0.0009
^{233}U Reflected by Tungsten	1.0000 ± 0.0007	1.0049 ± 0.0006	1.0050 ± 0.0007	-0.001 ± 0.0009
^{233}U Reflected by Beryllium	1.0000 ± 0.0030	0.9976 ± 0.0007	0.9982 ± 0.0006	-0.0006 ± 0.0009
^{233}U ZEBRA 8H	—	0.9931 ± 0.0004	0.9928 ± 0.0004	0.0003 ± 0.0006
^{233}U HUG #1	—	1.0350 ± 0.0005	1.0379 ± 0.0006	-0.0029 ± 0.0008
^{233}U HUG #2	—	1.0365 ± 0.0006	1.0374 ± 0.0006	-0.0009 ± 0.0008
ORNL-9	1.0004 ± 0.0033	0.9971 ± 0.0006	0.9965 ± 0.0006	0.0006 ± 0.0008