IA-UR- 99-303
CONF-990606—

Instruction-level Performance Modeling and Characterization of
Multimedia Applications

Title:

Author(s): | Yong Luo
Kirk W. Cameron

Submitted fo: | International Conference on Supercomputing ICS99

Rhodes, Greece
June 20-25, 1999

-

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED @f MASTER

Los Alamos

NATIONAL LABORATORY
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.

Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government

retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others ta do so, for U.S.

Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the

auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to

publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.
Form 836 (10/96)

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabili-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

Instruction-level Performance Modeling and Characterization of

Multimedia Applications

Yong Luo® Kirk W. Cameron™

7 Los Alamos National Laboratory " Louisiana State University
Scientific Computing Group Department of Computer Science
Mail Stop B256, CIC-19 298 Coates Hall
Los Alamos, NM 87545 Baton Rouge, LA 70803-4020
{kirk, yongl}@lanl.gov cameron @bit.csc.Isu.edu
Abstract

One of the challenges for characterizing and modeling realistic multimedia applications is the lack of access to
source codes. On-chip performance counters effectively resolve this problem by monitoring run-time behaviors at
the instruction-level. This paper presents a novel technique of characterizing and modeling workloads at the
instruction level for realistic multimedia applications using hardware performance counters. A variety of instruction
counts are collected from some multimedia applications, such as RealPlayer, GSM Vocoder, MPEG
encoder/decoder, and speech synthesizer. These instruction counts can be used to form a set of abstract characteristic
parameters directly related to a processor’s architectural features. Based on microprocessor architectural constraints
and these calculated abstract parameters, the architectural performance bottleneck for a specific application can be
estimated. Meanwhile, the bottleneck estimation can provide suggestions about viable architectural/functional
improvement for certain workloads. The biggest advantage of this new characterization technique is a better
understanding of processor utilization efficiency and architectural bottleneck for each application. This technique
also provides predictive insight of future architectural enhancements and their affect on current codes. In this paper
we also attempt to model architectural effect on processor utilization without memory influence. We derive
formulas for calculating CPI,, CPI without memory effect, and we quantify utilization of architectural parameters.
These equations are architecturally diagnostic and predictive in nature. Results provide promise in code
characterization, and empirical/analytical modeling.

Keywords: Instruction level parallelism, multimedia applications, analytical modeling, performance
characterization, performance prediction

Introduction

Instruction-level modeling is not new. Work has been accomplished via two approaches. Some have attempted to
characterize code or architecture analytically such as [12] and more recently [13,14]. Still others focus on modeling

using complex formulas to characterize underlying hardware such as [11]. [15] shows that analytical modeling of

these types began in early 1980s. Each of these papers however suffers from a lack of simple formulated equations

to quantify relationships. Some also suffer from their inability to be validated. All too often these types of methods
rely on inherently slow simulators to provide validation of theory. In our presentation, we use real code and “on-
chip” hardware counter measurements in support of our equations and theory. We present empirically derived
diagnostic and predictive equations validated without the aid of simulations. We provide these equations in the
context of a generic superscalar microprocessor allowing for theory application across platforms.

This paper presents a new technique of characterizing applications at the instruction level using hardware
performance counters. Through a series of simplifying assumptions, we derive and validate equations to diagnose
bottlenecks and predict architectural influence on existing codes without the aid of a simulator. This technique has
the advantage of collecting instruction-level characteristics in a few runs virtnally without overhead or slowdown.
The biggest benefit of applying this technique to multimedia applications, which usually are present without source
code, is the capability of gathering detailed performance behavior at runtime without accessing difficult-to-obtain
source codes. A variety of instruction counts can be utilized to calculate some average abstract workload parameters
corresponding to microprocessor pipelines or functional units. Based on the microprocessor architectural constraints
and these calculated abstract parameters, the architectural performance bottleneck for a specific application can be
estimated. Meanwhile, the bottleneck estimation can provide suggestions about viable architectural/functional
improvement for certain workloads. Eventually, these abstract parameters can lead to the creation of a complete
analytical microprocessor pipeline model and memory hierarchy model. In this paper, a formula of CPI,estimation
is presented and validated (within 5% error) through some synthetic codes on a real machine.,

This paper describes the application of this technique on a SGI R10000-based system, using the SGI
performance counter tool perfex and its associated libraries. While targeting a specific architecture for example and
analysis, the applied technique is general in nature. Current research includes applications on other processors.

This paper consists of two parts. In the first part, we present a description of the underlying code
characterization method used to derive our equations. The parameters and motivation behind this approach are
discussed followed by a series of assumptions to facilitate modeling of the architecture-code relationship. In this
paper, we focus on the effects on CPI due to architectural limitations within the chip itself. We present equations
and their derivations based on previous assumptions. Discussions of our validation methods on the MIPS R10000
are also provided. After substantial emphasis on the underlying diagnostic and predictive equations, we provide

example analysis on the MIPS R10000 for several typical multimedia applications in the second part of the paper.

We utilize the abstract workload parameters and methodology previously defined and validated to analyze the
characteristics of several sample multimedia applications. Herein we discuss analytically drawn conclusions and

interesting observations. We conclude with a discussion of overall observations and directions for future work.

General Microprocessor Model

Today’s superscalar processors are very complex incorporating architectural in1pro§ements to increase the amount
of work performed while waiting on memory. These enhancements such as out-of-order execution, speculative
execution, and outstanding misses contribute to the inherent difficulty in modeling processors of this type. We
introduce a general microprocessor model that is applicable to most modern superscalar architectures. In particular,
our model focuses on the quene lengths and dispatching capabilities of the processor under analysis. It incorporates
the enhancements mentioned and is flexible enough to model future architectural changes. Before describing the

model, it is necessary to discuss the parameters that will be used to characterize codes and architecture.

Application Dependent Parameters

In any modeling study, defining a good set of application or workload parameters poses a significant challenge [10].
We use a set of instruction-level parameters as described in [16] to characterize particular workloads. In order to
analyze the behavior of those queues mentioned earlier, we need to measure the average inter-arrival distance in
number of instructions, not cycles which are dependent on both architecture and application. We focus on the
importance of using instruction-level parameters to characterize a workload so as to associate the workload
performance behavior with the microprocessor architecture. When we characterize an application, one of the keys is
to separate the architectural factors so that a true workload characterization can be presented. The “number of
instructions between two consecutive operations” idea is borrowed from the concept of run-length defined in [2].
We define the terms in Figure 1 for those queues to be described in the general microprocessor model. This A value

is a factor without a unit such that 1/A, is the probability of occurrence of instruction x over the incoming instruction

stream. Ap; and Ay refer to the occurrence of L1 and L2 misses. These are inclusive and a subset of overall memory

instructions.

graduated instructions

T graduated FP instructions

#graduated instructions

T graduated INT instructions

graduated instructions

~ # graduated memory instructions

_ #graduated instructions

Ant
#11 cachemisses

P # graduated instructions
2=
1.2 cache misses

Figure 1 A equations

Hardware Dependent Parameters

There are certain architectural parameters that, generally speaking, apply to all current superscalar microprocessors.
We include two particular parameters as a first step in developing equations that are code dependent (relying on the
aforementioned application parameters) as well as architecturally dependent. Superscalar processors generally have
the ability to decode multiple instructions per clock period. This affects the rate at which instructions collect within
the queues of a microprocessor and thus we deem it necessary to include in our modeling equations. We define B as
the ideal instruction dispatch rate for a given microprocessor. In a similar fashion, superscalar processors often
include multiple execution units to service pending requests. Differing combinations of these types of units within
the given architecture influence a term we define as A,, or the preset hardware execution rate of the x-queue. x'is

the current instruction type of interest, namely m, i, or f for memory, integer, or floating point instructions.

CPU model without memory influence

In Figure 2 we pottray a simplified version of an arbitrary superscalar microprocessor. In this modeling technique,
we wish to concentrate only on the architecture within the chip itself ignoring all “off-chip” activity, namely
memory accesses. Common architectural features of many modern superscalar microprocessors can be generalized
as separated pipelines for functional units: one or more integer pipeline(s) for ALU(s), one or more floating-point
pipeline(s) for FPU(s), and one or more memory operation pipeline(s) for load/store unit(s). As is the case in both

ters of our model, we need to simplify things to allow for easier characterization. What follows are detailed

Incoming Instruction Stream

Branch Pred/ Register Rename

Figure 2 General pipeline model for CPU only
explanations of the assumptions necessary tQ utilize the current model followed by derived equations. We will
minimize these assumptions in future work. In the present case, for many applications, this modeling technique is
very useful as will be shown when describing the analysis of the MIPS R10000.
Assumption 1 Uniform distribution of instructions
The A values mentioned previously are conceptually determining a synthetic instruction stream based on measured
values from a particular code. This stream is based on an average parameterization of the A values over a uniformly
distributed stream of instructions fed to the microprocessor. This assumption is necessary to simplify what would
entail a modeling of the permutations of the instructions within the stream, an enormous amount of work and added
complexity. We believe, and are supported by our results, that using streams in this manner produces a best-case
scenario for instructions entering the microprocessor; and thus our equations for CPI, present a lower bound due to
this assumption
Assumption 2 1 values individually converge
In [16] we show that for large problem sizes in scientific applications, A values converge. This is intuitive if we
consider application codes in general achieve a steady state of computation at some point in their execution. For

multimedia applications, when source code is not readily available, we must vary input sizes instead of varying

problem size within the code. Thus we cannot simply determine convergence of A values by the previous method.
Runtime profile data shows that VO activities are negligible for all these experiments. By discounting startup
effects, and I/O effects not related to the computational workload of a multimedia application, we can assume a
steady state of computation is reached for a fairly large volume of input data. Thus, the values for A used in our
equations are the steady-state values for the code-application combination being modeled. In general, thronghout
this paper, when we discuss modeling of the processor, we refer to a modeling of this steady state.

Assumption 3 Branch influence is negligible

In a large amount of scientific codes, with particular exception to Monte Carlo based applications, processors are
fairly successful at branch prediction. Branch modeling is a difficult endeavor. Luckily, if branches are predicted
well (around 98% of the time), then we consider their effect as negligible. In truth, branch instructions have
influence, but if they are small enough in proportion to the measured code that their effect is within counter
tolerance, we chose to ignore them. This is the case with the modeled multimedia applications.

Assumption 4 Icache effect is negligible

With the size of today’s icaches, it is no surprise that in our multimedia applications, and for well-structured codes
in general, icache misses are limited to startup costs and thus negligible.

Assumption 5 No data dependence

It is fair to say that dependence modeling is an extremely difficult task due to the nature of dependencies. The goal
in our modeling approach is to determine the stalls within a processor due to architectural constraints, not code
dependencies. We also feel (again), that by modeling a CPI, without dependencies, we are in fact finding a lower
bound. Farther, if we can model all effects other than dependencies, then we will in fact be able to quantify
dependencies themselves.

Assumption 6 Infinite LI cache (or no LI misses)

In this model, we wish to focus on contributions to stall that are not related to memory. We assume an infinite 1.1
cache so that no memory access can cause stalls within the processor, and we can model only the effect of the

architectural constraints on performance.

Equation 1 Conservation Equation

RV/AV/S ®

In applications with a small percentage of branches and high branch prediction hit ratio, the execution of these
applications can be virtually viewed as feeding integer, floating-point, and memory instructions into pipeline queues.
At the end of each queue, functional units execute the instructions at a preset rate, e.g. two floating-point
instructions per cycle, one memory instruction per cycle, etc. The out-of-order execution feature provides the ability
of resolving data dependency within or between these pipeline queues. Therefore, the distributions or the mixture
pattern of these three types of instructions in the application instruction flow shall essentially determine the
instruction execution rate (/PC), ignoring the memory hierarchy effect. This is the well-known IPCy or CPIy, which
represents the effective application performance on a specific microprocessor without memory slowdown. The
conservation equation mathematically defines this concept. The sum of the probabilities of each type of instruction
must be 1. We should note that in the formulas for this model description we discuss in the context of one integer,
one floating point, and one memory queue. The reasons for this will be obvious when we discuss the details of the
MIPS R10000. For the sake of simplicity in presenting this work, we mention that these can easily be extended to
model different numbers and sizes of queues provided the original assumptions are kept. For extension to other

processors, these formulas may need to be syntactically modified, but will conceptually remain unchanged.

Equation 2 Growth Equation for Queue x

Using our original assumptions and some basic algebra, we define a growth equation to describe the state of a
particular queue within the microprocessor. Let us define G as the growth rate of queued instructions of type x
within the microprocessor. We must take into account the rate at which instructions graduate as well as the rate at

which they are decoded giving:

G.=L- @

Ax

where G, is the growth rate for the x-queue of interest, P is the ideal instruction dispatching rate for the given
microprocessor, 1/A, is the probability of encountering an instruction of type x for a given code, A is the preset
hardware graduation rate of the x-queue, and x is the current instruction type of interest, namely m, i, or f for
memory, integer, or floating point instructions. Informally, the growth rate for queue x is determined by the

difference between the incoming rate of x instructions (/A5) and the graduation rate of x instructions (A). We

are interested in positive growth rates (Gx> 0) for each queue in question. This formula, along with our infinite L1

cache assumption, allows us to approach a lower bound for the widely discussed CPIy as we discuss in our next
equation. As a steady state is reached, positive growth rates will contribute to cpu stalls as any queue within the
microprocessor reaches its capacity. A limiting factor-is the key contributor to stalls within the microprocessor
(excluding dependencies and memory latency as we assume infinite L1 cache). In particular, we use our growth rate
formula to diagnose the limiting factor for a particular code-architecture combination. This limiting factor will be
the key contributor to resource stalls within the microprocessor for the code measured. It will also indicate the type
of instruction that will have the greatest influence on CPI,. Single positive growth rates simplify determination of
the limiting factor, but multiple positive growth rates lead to contemplation of K, a threshold of maximum
instructions in flight; in other words in some cases we must consider queue interaction as well as mdividual
contributions to stalling. There are some limitations of growth rates for typical superscalar processors. We discuss

this in relation to another intuitive assumption.

Assumption 7 ZAx > [wherexisi, f, orm.

Consider multiplying the conservation equation by p.

%+%+%:ﬂ

Let

SA=A+A+A

Then overall growth rate in the processor, G, is defined as,
G=p-> A

Now we have three cases to discuss. For each of these cases, our modeling method could be extended for analysis,

but we find this unnecessarily complicates formulas while not contributing to coverage of most types of processors.

G>0: If this case is found, this is a very inefficient processor. Here the decoding rate is greater than the peak
graduation rate of the chip. This means as a steady state is reached, more instructions attempt to enter the
processor’s queues than could ideally be serviced - contributing directly to resource stalls within the chip. It should

not be surprising that we do not know of any popular, current processors that perform in this manner. Hence we

ignore this case in our modeling.

G=0: Now our decoding rate matches our peak graduation rate. This type of processor could at times suffer from
the same inefficiencies as the previously discussed chip. The problem lies in instruction mix. In order to achieve no
stalls here, the chip requires a perfect mix of instructions to match its functional units. Unfortunately this does not

occur. Modeling this case is similar to the following case, so we do not need to ignore this case entirely.

G<0: Herein lies a quality of a good processor in today’s market. The decoding rate is less than the graduation rate
to provide more functional units than absolutely necessary. This provides for service of requests at an acceptable
rate and implies the overall growth rate inside the processor is not positive.

Now, with our proper assumption, we can ease the analysis of queue limitations on processor efficiency:

if ZAx > [thenG: < O for at least one of x=m,i,f

Proof: From the conservation equation and previous definitions, G» + G + Gy < 0. Generically,

Gu+ G2+ G £ 0. Tt follows that:

if Gx1=Gx;=0 then G<0

if Gi>0, Gyo=0 then Gx<0

if Gx1>0, G>0 then Gge<0
In these and all other cases, at least one growth rate is less than or equal to 0.

This allows us to assume that we will never have more than two positive growth rates in a three-queue
situation. So when we do analysis to determine the limiting factor for a code-architecture combination, for multiple
positive growth rates we just need to figure out whether a single queue fills first or the threshold, K, is reached. This

simplifies our analysis significantly. This concept is extendible to other queue architectures as well.

Equation 3 Lower bound for CPI,

Since we assume an infinite L1 cache, indicate no significant branching effect, and ignore data dependency,

calculations of CPI, based on A values must give a lower bound to CPlp. It is necessary to determine the limiting

Jactor using the growth formula prior to using the following equation. CPI, is the cycles per instruction for an

application-architecture combination that assumes no influence from memory accesses. It is easy to describe this
intuitively as the case where an infinite L1 cache is present. Following our previous assumptions, we give a formula
to calculate this CPI, based on characteristics of the application and architecture under analysis. Once the limiting
Jactor has been determined, we may proceed with this equation. Here, we briefly discuss its derivation.

We wish to derive this equation as generally as possible. Let us propose the concept of a period in cycles
that is repeated by the processor for a particular code. This period is composed of two parts. Let C be this period.
We define C as

C = Cuossar + Coant .
Now, Cpostan is the portion of this period in cycles during which no stalls occur due to “on-chip” resources. During
this Cposan, by our earlier assumptions and the underlying theory discussed so far, all non-limiting factor instructions
are serviced at their preset graduation rates or incoming rates. But, we know we have a positive growth rate for
instructions of type x. This means after the Cposan portion of our period, we require Cyy cycles to service the “left
over” instructions dictated by the growth rate. So, Cyy depends on the length of Cyesan, and the growth and
graduation rates of the queue dictated by the limiting factor. So, we can define Cqa with these terms:

Cmmll * Gx
Cslall =

This gives a new equation for C that we simplify as

C = Coosats+ Crosar* (G/A) (3a)

C = Crosar * (1 + G/A) .

Now we must define the number of instructions that will graduate during C cycles. First let us consider the number
of instructions to be serviced without stall effect. These are the instructions entering and graduating from the queues
not associated with the limiting factor. We multiply the sum of these instructions by the number of cycles of no
stall, Cpoqay. This gives the first term of Equation 3b. The second term is given by the limiting factor instructions to
be serviced during the entire period. These limiting factor instructions graduate at the hardware preset rate of Ay,

Now we define and simplify N in equation form using j=i,m,f and x the limiting factor instruction i, m, or f:

N=x %*cmumx*c, (3b)

J#Ex

10

N=2x % * Chaat + B (Crosvar + Cromai* (G/Ax)) ,

j#Ex

N = Cona* (2 Bl 40501+ G7).

J#EX

We now have the number of cycles and instructions for a fixed repetitive period that is dependent upon both

architecture and application. We define and simplify CPI, now as cycles per instruction for this theoretically

defined period:
Cnostall * (1 + Gx)
CPlo= A‘ ,
Croa® (2 % +ax(1+Gy))
1+G
CPlo= 7 /A‘ G .
* £3
B e

Since G = % ~ A« from Equation 2,

B/ _
1+—MA’c -

Ac
) %+(A;+%—Ax) ’

JEx

CPIlo=

CPIoz—AH%_AX

(z Bysa
jemig /P
Vi
CPIo= A‘ ,
BHA
1
CPIOZE. (3)

This simplification is actually quite interesting as it shows CPI, is dependent upon the product of probability of a
limiting factor instruction and the associated graduation rate (in CPI) of the associated limiting factor queue. At this
point, we stipulate that this is the formula for CPI, when a limiting factor is present. If all growth rates are negative,
there is no single limiting factor. CPI, can then be calculated as 1/B, the ideal CPI,. In the scenario of more than

one positive growth rate, the derivation process of CPlyis essentially the same and varies just slightly in details.

11

Model Validation on MIPS R10000

Validation of analytical methods is inherently difficult and many promising techniques go unused because of the
limited ability to validate. To validate our model, we chose to use real synthetic codes on real processors using
hardware performance counters to provide necessary counts. In this way, we hope to underscore the practicality of
our modeling technique and the time saved using our characterization method. The modeling technique discussed so
far is general in nature and casily modified for different architectures. The assumptions are necessary for
simplification, but not overly limiting.

The MIPS R10000 is a 4-way superscalar microprocessor with an two integer, two floating point and one
memory functional unit. It supports up to 32 outstanding instructions across queues, and up to 16 instructions in
each of its integer, floating point, and memory queues [8]. We use Ag=1, A=2, A=2 for our experiments and
according to [9] for ideal instruction mixes. In some special cases, A=1.5 is used to compensate for instruction
streams that vary from ideal. In particular, the R10000 can execute only one floating point multiply and one add
simultaneously. So, for mixes of instructions that overwhelm (for example) the floating point multiply unit, we
sustain a lower Ay as a result.

Our approach to validation is simple to discuss, but quite complicated to implement. We omit details of the
implementation while presenting the important details of how our approach validates the model. We have created

code that we can modify to ensure certain instruction streams are fed to the microprocessor. Our code has the

Table 1 Results for synthetic instruction streams on MIPS R10000

Growth Rates Limiting
Pattern Gr Gm Gi Factor Ax Ax Meas CPI |Calc CPI |Rel Error
Fff_*4% 1.9578 -0.9945 -1.9819 { 1.0107 1.5000 0.6622 0.6596 0.40%
[ifff +%+ 0.9761 -0.9959 -0.9942 f 1.3440 1.5000 0.5192 0.4960 4.47%
i -2.0000 -0.9918 1.9640 i 1.0091 2.0000 0.5057 0.4955 2.01%
Hiif -1.0079 -0.9959 0.9898 i 1.3379 2.0000 0.3962 0.3737 5.67%
pmfff *4+* 0.9762 -0.0038 -1.9863 f 1.3440 1.5000 0.4989 0.4960 0.57%
miii -2.0000 -0.0038 0.9898 i 1.3379 2.0000 0.3960 0.3737 5.63%
mm -2.0000 2.9450 -1.9728 m 1.0139 1.0000 1.0010 0.9863 1.47%
mmff +% -0.0159 0.9882 -1.9863 m 2.0118 1.0000 0.5044 0.4971 1.45%
mmif -1.0079 0.9882 -0.9943 m 2.0118 1.0000 0.5072 0.4971 2.01%
mmii -2.0000 0.9882 -0.0022 m 2.0119 1.0000 0.5070 0.4970 1.97%
mmmf -1.0079 1.9803 -1.9864 m 1.3422 1.0000 0.7553 0.7451 1.35%
bmmmi -2.0000 1.9803 -0.9943 m 1.3422 1.0000 0.7526 0.7451 1.01%

following properties: any instruction mix is uniformly distributed, A values are constant, branch influence is
negligible, icache effect is negligible, there is no data dependence among instructions, there are no L1 cache misses.
We use direct hardware counter measurements to ensure these assumptions are met. In Table 1, we present a series
of uniformly distributed instruction mixes and measured results to show we satisfy our assumptions. The pattern
descriptions consist of one or two parts. The first part describes the repeated sequence of instructions. For example,
miii refers to a memory instruction followed by three integer instructions. This series constitutes a synthetic stream
repeated to the point of stability (in the millions of instructions). If a stream contains more than two f's (i.e. floating
point operations), we specify the types of operations after the “underscore”. For example, fff_ *+* refers t0 a
repeated sequence of floating point instructions of the type “multiply”, “add”, “multiply”.

Table 1 shows our calculated and measured CPI, are within the tolerance of the counters themselves,
implying they are quite accurate. Thus, with our assumptions, we are able to model CPI, with a great deal of
accuracy. Since our theory is general in nature, we believe validation on other processors will support these

findings.

Application Description

GSM (Global System for Mobile Communication) Vocoder is a set of standardized voice encoder/decoder
for mobile communication. The code used in this study is a public domain C code package developed by The
Communications and Operating Systems Research Group (KBS) at the Technische Universitact Berlin. It’'s an
implementation of the European GSM 06.10 provisional standard for full-rate speech transcoding, which uses
RPE/LTP (residual pulse excitation/long term prediction) coding at 13 kbit/s. GSM 06.10 compresses frames of 160
13-bit samples (8 kHz sampling rate, i.e. a frame rate of 50 Hz) into 260 bits. For compatibility with typical UNIX
applications, this implementation turns frames of 160 16-bit lincar samples into 33-byte frames (1650 Bytes/s) [3].

MPEG-2 video decoder is the second application studied in this paper. MPEG-2 Video is a generic method
for compressed representation of video sequences using a common coding syntax. It has been standardized by the
International Organization for Standardizétion (ISO) and the International Electrotechnical Commission (JEC), in
collaboration with the International Telecommunications Union (ITU). The MPEG-2 concept is similar to MPEG-1,
but includes extensions to cover a wider range of applications. The primary application targeted during the MPEG-2

definition process was the all-digital transmission of interlaced broadcast TV quality video at coded bitrates between

13

4 and 9 Mbit/sec. However, the MPEG-2 syntax has been found to be efficient for other applications such as those
at higher bit rates and sample rates (e.g. HDTV) [4].

MPEG audio encoder/decoder (Layer 2) is examined as a separate application in this paper. This software
implements levels 1 and 1T psychophysical auditory models as described in the ISO 3-11171 rev 1 standard. The
input/output audio data may either be headerless raw 16 bit data or alternatively an AIFF formatted file (Audio
Interchange File Format) with certain limitations [5].

A public domain speech synthesizer rsynth is used in this experiment. This is a text to speech system
produced by integrating various pieces of code and tables of data. The SGI port was developed by Nick Ing-
Simmons of Texas Instruments. It claims to be the best public domain text to speech synthesizer. The SGI port
package (rsynth 1.1) is obtained from Tom Benoist’s “strange software page” [7].

The last multimedia application studied in our experiment is RealPlayer™ version 5.0 for SGI IRIX

system. Itis perhaps one of the most popular multimedia applications used.

Performance Characterization on R10000

In this section we discuss the present practicality of this instruction-level modeliﬁg/characterization
technique. We concentrate on applying the newly developed methodology to analyzing performance characteristics
of our sample multimedia applications. Efficiently measuring these instruction-level workload parameters is the key
component to code characterization. On-chip hardware performance counters widely available on recent generation
microprocessors become good candidates for extracting these functional-unit-related parameters.

For the MIPS R10000 and our associated multimedia codes, we must show assumptions 1-7 are met. There
are two assumptions that need some explanation. Uniform distribution is obviously not going to be found in our
codes. In our technique, we extract the A valucs from the measured codes. As described earlier, these values are
used to create (theoretically) a synthetic, uniformly distributed, instruction stream. Our actual codes also contain
dependencies. As mentioned earlier, we do not model dependencies in our equations. Instruction streams created
with A values are (again theoretically) independent of time. We can aiso intuitively infer that dependencies will not
influence the instruction sequence committed to machine-state. Dependencies will affect the overall number of

cycles for an application, but not the order in which instructions graduate within the processor. In other words, the

CPI, calculated will be a lower bound for CPIp that does incorporate the effect of dependencies and instruction

clustering. The argument holds for the infinite cache assumption as well. In this case, we will again be modeling a
best-case scenario. Therefore, the bottleneck analysis based on growth rate should still reflect one aspect of the real
code characteristics.

To discount the effect of branch misprediction and the overhead impact of branch instructions, we. also
need to obtain the ratios of branch instructions and branch mispredictions to ensure the applications can be
simplified as three major instruction flows (FP, Int, and Memory). On the other hand, the instruction cache miss
ratio is also considered to see if the instruction fetch effect can be significant. We discuss these in the context of
each code below. The key to this methodology is to estimate which instruction-associated A value can cause stall of
the microprocessor due to the limitation of architectural constraints.

GSM Vocoder
Table 2 lists the growth rates for GSM vocoder, under different input conditions. It is clear that no floating

point operation is invoked in GSM decoding and the overall decoding performance (CPI) is slightly different from
the encoding behavior. Their performances remain the same for different input data (EQ1, E02, E06). A single
positive growth rate in the integer queue indicates the likely bottleneck for on-chip performance. The greater
numbers in the decoding integer quene growth rates reflect that this queue may be more of a problem for decoding
than for encoding. Other performance counter data also show the following for the GSM vocoder: nearly 100% L1
cache hit rate; branch ratio lower than 4%; Icache hit rate higher than 99.8%. These data guarantee that the growth- -
rate-based analysis leads to a good bottleneck estimate. Memory hierarchy effect apparently is insignificant in this

application as nearly 100% of memory accesses can be satisfied by L1 cache data.

Table 2 GSM Vocoder Growth Rates

15

MPEG-2 Video Decoding
MPEG-2 video decoding growth rate data are exhibited in Table 3. Meanwhile, performance counter data

demonstrate the following overall observations for this code: L1 hit rate >99.4%, Icache hit rate >99.9%, and branch
rate < 9%. Again, it indicates a good sign for employing the growth-rate-based bottleneck analysis. Both MPEG1
and MPEG?2 video decoding are performed in this experiment (IBM MPEG1 samples and Tektronix standard
MPEG2 test streams [18] are respectively used for MPEG1 and MPEG2 decoding). Different video quality (B for
Betascam, V for VHS, and D for Digital), different video formats (N for NTSC 525-line video, PAL for PAL 625-

line video), and different bit rates (15 for 1.5Mbit/s, 30 for 3.0Mbit/s, ...) are compared in this MPEG video

Table 3 MPEG Video Decoding Growth Rates

MPEG2(N-60)

decoding process. It is interesting to see that the same application actually behaves in a slightly different way,
probably due to the invoking of different algorithms incorporated in the code. However, the memory queue appears
to be the likely architectural bottleneck for all situations tested, based on the positive growth rates shown in the
table.

MPEG Audio
Table 4 lists the growth rates of MPEG audio encoding/decoding. In addition to this table., we’ve also

noticed the following: L1 hit rate: encoding > 97%, decoding > 96%, Icache hit rate > 99.9% branch rate: encoding
< 8%, decoding < 6.5%. We consider these Icache hit rates and branch rates not bad enough to prevent us from
using the growth-rate-based analysis. The input data used in this experiment are also obtained from Tektronix

standard test stream library [18]. Digital streams of 100Hz, 15kHz tonal tone signal, a synthetic multi-frequency

sound, and a music stream are used here. It seems that MPEG audio encoding/decoding behavior only varies

Table 4 MPEG Audio Encoding/Decoding Growth Rates

slightly on its input data. As for the likely architectural bottieneck, the memory queue is the only one for encoding.
However, for decoding, it becomes a bit complex as it has both G, and Gy positive. We do not see a general pattern
for decoding from our simple experiment data, but it is equally likely that memory, integer and total “on-the-fly”
instructions cause processor stalls during code execution.

rsynth and RealPlayer™
It turns out that the rsynth and RealPlayer™ performance are a little more complicated than the rest of the

codes due to higher branch rates (as high as 12.9 % for rsynth and nearly 22% for RealAudio™ playback, 11% for
RealVideo™ playback). However, we can treat correctly-predicted branches as NOPS instructions which do not
have any impact on the functional queues but change the overall outgoing instruction rate. It would still be
beneficial to list their growth rates (Table 5 for rsynth and Table 6 for RealPlayer™) to see their instruction
distributions across functional units.

Both rsynth and RealPlayer™ show a high density of memory instructions as their Gy,’s confirm. On the
other hand, RealPlayer™ seems to be experiencing more memory instructions and branches (twice as high as for
video) for audio-only playback (bottom half of Table 6, _ra inputs). This is probably the main reason RealPlayer ™

has over 50% higher CPI for audio-only playback.

17

Table 6 RealPlayer Growth Rates

sSoxXmas_rTry

sheavy_ra

wizISDN_ra

Conclusions

We have developed a growth-rate-based performance characterization/modeling method, using hardware
performance counter data as input parameters. We have provided direct validation (with 5% errors) of an analytical
model to calculate a lower bound of CPI, for a generic microprocessor. We showed the diagnostic qualities of these
models when applied to the MIPS R10000 microprocessor. Unlike most analytical counterparts, this model is
validated with real code on real machines using on-chip performance counters. We then applied this technique to
some typical multimedia applications using hardware performance counters. These abstract workload parameters
provide us some new insights about the performance behaviors of multimedia applications, which usually depend on
the input of the application. Our simplistic queue modeling also provides a picture of the utilization of processor
architectural features. We have made significant contributions in this research toward a new avenue of analytical
modeling with the capability of direct validation without the use of simulators and have shown their application on
multimedia codes. Dependencies need to be studied further using our techniques and additional techniques to
quantify dependencies will be attempted. Latency and its influence on current models are also of interest to us.
Modeling of branches should be incorporated in the model to extend its app}icability. Overall, we will endeavor to

provide useful formulas for those interested in quickly characterizing workloads against architectures with the hope

of predicting the influence of architectural advances on current code.

References:

1. Lubeck, O.M, Luo, Y., and Wasserman, H.J. et al, An Empirical Hierarchical Memory Model Based on
Hardware Performance Counters, PDPTA’98, Las Vegas, July 13-16, 1998.

2. Bianchini, R., Lim, B., Evaluating the Performance of Multithreading and Prefetching in Multiprocessors,
Journal of Parallel and Distributed Computing, N.37, p83-97, 1996.

3. Degener, J. and Bormann, C., The README file of public domain GSM package, fipy//fip.cs.tu-berlin.de/

4. MPEG Software Simulation Group website: htfp//www mpeg.org/MSSG/

5. Pan, D., Working Draft of MPEG/Audio Technical Report, titp//www iuma.comvaudio utils/converters/

6. Sun, X. H., Cameron, K. W,, et al., A Hierarchical Statistic Methodology for Advanced Memory System
Evaluation, submitted to IPPS’99, Sept. 1998.

7. Tom Benoist, “strange software page”, http://www.webcom.com/ie/benoist/

8. Schwarzmeier, J. (SGI/Cray), Private Communications, Sept. 1997.

9

1

. Tumer, S. (SGI/Cray), Private Communications, Mar. 1998,
0. Sorin, D.J,, Pai, V.S., Adve; S.V., Vemmon, M.K., and Wood, D.A., Analytic Evaluation of Shared-Memory
Systems with ILP Processors, 25 Annual International Symposium on Computer Architecture, June 1998,

11. Albonesi, D.H., and Koren, 1., A Mean Value Analysis Multiprocessor Model Incorporating Superscalar
Processors and Latency Tolerating Technigues, International Journal of Parallel Programming, Vol. 24, No. 3,
1996.

12. Emma, P.G., and Davidson, E.S., Characterization of Branch and Data Dependencies in Programs for
Evaluating Pipeline Performance, IEEE Transactions on Computers, Vol. C-36, No. 7, July 1987.

13. De Gloria, A., Ancarani, F., Bellotti, F., and Olivieri, M., Instruction level analytic prediction of paraliel CPU
architecture performance, I1S "97, Dec. 1997.

14. Migliardi, M., and Maresca, M., Modelling Instruction Level Parallel Architectures Efficiency in Image
Processing Applications, International Conference on High Performance Computing and Networking, Vienna,
Austria, April 1997.

15. MacDougall, M.H., Instruction-Level Program and Processor Modeling, IEEE Computer, July 1984

16. Luo, Y. and Cameron, K.W,, Instruction-level Characterization of Scientific Computing Application using
Hardware Performance Counters, Workshop on Workload Characterization at Micro-31, Nov. 1998.

17. Martin, R., Chen, Y-C., and Yeager, K., MIPS R10000 Microprocessor User’s Manual, Version 1.1, Jan. 1996.

18. Tektronix Standard MPEG test stream library, ftp:/ftp.tek.com/tv/test/streams/Element/index.html

19

